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On unitary equivalence of quasi-free Hilbert modules

by

Li Chen (Shanghai)

Abstract. We characterize unitary equivalence of quasi-free Hilbert modules, which
complements Douglas and Misra’s earlier work [New York J. Math. 11 (2005)]. We first
confine our arguments to the classical setting of reproducing Hilbert spaces and then relate
our result to equivalence of Hermitian vector bundles.

1. Introduction. In a 1978 Acta paper ([2]), Cowen and Douglas es-
tablished the Cowen–Douglas theory, making a connection between operator
theory and complex geometry. Since then, various generalizations and appli-
cations have been found, and many ideas and methods have been extended
to investigation of Hilbert modules ([1], [4], [5], [6]).

The theory of Hilbert modules, introduced by Douglas and Paulsen
([6]), provides a powerful tool to study multivariate operator theory. For
a bounded domain Ω in Cm, let A(Ω) be the function algebra consisting of
functions that are holomorphic in some neighbourhood of Ω with supremum
norm. A Hilbert space R is said to be a contractive Hilbert module over A(Ω)
if there exists a module action A(Ω)×R→ R satisfying

‖ϕ · f‖R ≤ ‖ϕ‖A(Ω)‖f‖R
for ϕ in A(Ω) and f in R. Two Hilbert modules R and R′ are said to be
isomorphic if there exists a unitary module map from R onto R′.

Quasi-free Hilbert modules were introduced by Douglas and Misra in
the study of resolutions of general Hilbert modules ([4]). It was shown that
a large class of Hilbert modules admit resolutions with quasi-free Hilbert
modules, therefore quasi-free Hilbert modules can be regarded as building
blocks of general Hilbert modules.

A quasi-free Hilbert module can be naturally regarded as a vector-valued
reproducing Hilbert space to which one can associate a Hermitian vector
bundle. Geometric methods, including curvatures and the Rigidity Theorem,
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play a significant role in obtaining unitary invariants for quasi-free Hilbert
modules (see [1], [2], [5]).

To describe unitary equivalence of quasi-free Hilbert modules, Douglas
and Misra ([5]) introduced a modulus function µ(R,R′) for a pair of quasi-free
Hilbert modules R and R′. It is closely related to the geometry of the Her-
mitian vector bundles associated to the modules; its definition will be given
in the next section. Let Hol(Ω) be the set of holomorphic matrix-valued
functions on Ω. Douglas and Misra gave the following necessary condition
for two modules to be unitarily equivalent:

Theorem 1.1 ([5]). If finite rank quasi-free Hilbert modules R and R′

over A(Ω) are unitarily equivalent , then the modulus function µ(R,R′) is the
absolute value of a function Ψ in Hol(Ω).

We will mainly consider the converse of Theorem 1.1. In [5], the con-
verse of Theorem 1.1 was proved under the additional hypothesis that the
bounded domain Ω is strongly pseudo-convex. In this paper, by studying the
reproducing kernels of the Hilbert modules via calculating the Gramians of
certain frames, we are able to show that the condition of Theorem 1.1 is
sufficient for any bounded domain Ω. Our main result is as follows:

Theorem 1.2. If the modulus function µ(R,R′) for the two finite rank
quasi-free Hilbert modules R and R′ over A(Ω) is the absolute value of
a function Ψ in Hol(Ω), then R and R′ are unitarily equivalent.

The reproducing kernel approach to Cowen–Douglas theory was first
adopted by Curto and Salinas ([3]). It enables us to argue without using the
language of complex geometry, as will be seen in Section 3.

In Section 4, we provide a geometric characterization of unitary equiva-
lence. The notion of spectral sheaf will be involved and the proof relies on
the calculations made in Section 3. This characterization gives a geometric
interpretation of the main theorem.

2. Preliminaries. In this section, we will make a quick review of quasi-
free Hilbert modules. Throughout the rest of this paper, we use {e1, . . . , en}
to denote the standard basis of Cn.

First we recall some basic elements on localization of Hilbert modules,
introduced in [6]. Fix z in Ω. We can construct a one-dimensional Hilbert
module Cz, which is the one-dimensional Hilbert space C with module action
ϕ · ξ = ϕ(z)ξ, for ϕ in A(Ω) and ξ in C. We denote the complex number 1
by 1z in the Hilbert module Cz.

Given a Hilbert module R over A(Ω), the Hilbert module tensor product
R⊗A Cz is called the localization of R at z, which is canonically isomorphic
to the quotient module R/Rz (which in turn is isomorphic to R⊥z with
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compressed module action), where

Rz = [A(Ω)zR]−, A(Ω)z = {ϕ ∈ A(Ω) | ϕ(z) = 0}.

The isomorphism is given by

R⊗A Cz → R⊥z : f ⊗A 1z 7→ Pzf,

where Pz denotes the orthogonal projection from R onto R⊥z . It is easy to
see, by definition of tensor product of Hilbert modules ([6]), that the module
action of a function ϕ in A(Ω) on R⊗A Cz is just multiplication by ϕ(z).

Recall that a Hilbert module R is said to be finitely generated if R admits
a finite generating set E in the sense that the finite linear sums

n∑
i=1

ϕi · fi, fi ∈ E, ϕi ∈ A(Ω),

are dense in R. The minimal cardinality of a generating set is called the
rank of R.

Now we give the definition of quasi-free Hilbert modules introduced by
Douglas and Misra.

Definition 2.1 ([4]). A finitely generated Hilbert module R of rank n
over A(Ω) is said to be quasi-free relative to the generating set {f1, . . . , fn}
if

(i) f1 ⊗A 1z, . . . , fn ⊗A 1z forms a basis for R⊗A Cz for every z in Ω,
(ii) the linear map Xz : R⊗A Cz → Cn defined by

Xz(fi ⊗A 1z) = ei

is locally uniformly bounded,
(iii) f ⊗A 1z = 0 for every z in Ω if and only if f = 0.

By (i), Xz is a well-defined invertible linear map. If we denote the vector
Xz(f⊗A1z) by f(z), condition (iii) just says that f(z) = 0 for every z if and
only if f = 0 in R. In other words, R is a subspace of Cn-valued functions
on Ω. It is easy to see that

f(z) = 0 ⇔ Xz(f ⊗A 1z) = 0 ⇔ f ⊗A 1z = 0 ⇔ f∈Rz.

Therefore, Rz = {f ∈ R | f(z) = 0}, and condition (iii) is equivalent to

R =
∨
z∈Ω

R⊥z .

Condition (ii) ensures that the evaluation f 7→ f(z) is bounded, i.e.,
R is a reproducing Hilbert space. Moreover, the locally uniformly bounded
assumption implies that R consists of holomorphic functions.
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In fact, for any finite linear combination
∑k

i=1 ϕi ·fi, ϕi ∈ A(Ω), we have( k∑
i=1

ϕi ·fi
)

(z) =
k∑
i=1

Xz(ϕi ·fi⊗A1z) =
k∑
i=1

ϕi(z)Xz(fi⊗A1z) =
k∑
i=1

ϕi(z)ei,

so
∑k

i=1 ϕi · fi is holomorphic. On the other hand, any function f in R can
be approximated in norm by such linear combinations. By (ii), f(z) is the
limit function of a sequence of locally uniformly convergent holomorphic
functions, hence must be holomorphic.

We summarize these facts as a proposition:

Proposition 2.2. Any finite rank quasi-free Hilbert module R over A(Ω)
with generating set {f1, . . . , fn} is a reproducing Hilbert space consisting of
Cn-valued holomorphic functions over Ω, with evaluation given by

f(z) = Xz(f ⊗A 1z),

where Xz is given by Definition 2.1(ii). In particular , the generating function
fi takes the constant value ei.

Let R and R′ be two quasi-free Hilbert modules relative to generators
{f1, . . . , fn} and {f ′1, . . . , f ′n} respectively. For any z in Ω, we can define an
invertible operator δz : R⊗ACz → R′⊗ACz by setting δz(fi⊗A1z) = f ′i⊗A1z.
The modulus function µ(R,R′) is defined by µ(R,R′)(z) = (δ∗zδz)

1/2, which is
a positive operator on R⊗A Cz for any z in Ω.

We say a function Ψ belongs to Hol(Ω) if for any z, Ψ(z) is a linear opera-
tor on R⊗ACz such that its matrix relative to the basis f1⊗A1z, . . . , fn⊗A1z
varies holomorphically in z. In other words, Hol(Ω) can be identified with
the space of holomorphic n × n matrix-valued functions once we fix the
frame.

In the rank one case, the Laplacian of the logarithm of the modulus
function as a complex two-form is the difference of the curvatures of the
line bundles associated with R and R′ ([5]). Hence by Theorem 1.1, the
curvatures of the two associated line bundles coincide if the two modules
are unitarily equivalent.

3. Unitary equivalence of quasi-free Hilbert modules. Recall that
a Hilbert space H of functions from Ω to Cn is a reproducing Hilbert space
if the evaluation functional evz : f 7→ f(z) is bounded for every z. In this
case, H admits an n× n matrix-valued kernel function K(·, ·), satisfying

〈f,K(z, ·)ξ〉R = 〈f(z), ξ〉Cn

for any ξ in Cn and z in Ω. Here K(z, ·)ξ = ev∗z ξ and K(z, w) = evw ev∗z .
For any {zi} in Ω, and {ξi},{ηi} in Cn, we have the following well-known
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identity:〈 k∑
i=1

K(zi, ·)ξi,
k∑
i=1

K(zi, ·)ηi
〉
R

=
∑

1≤i,j≤k
〈K(zi, zj)ξi, ηj〉Cn .

Moreover, the finite linear sums
∑k

i=1K(zi, ·)ξi form a dense subspace of H.
If H consists of holomorphic functions, the kernel function K(z, w) is holo-
morphic in w and anti-holomorphic in z.

Using the dual set of kernel functions introduced in [5], the kernel func-
tion K(z, w) of a quasi-free Hilbert module R can be easily calculated.

As before, let {f1, . . . , fn} be the generating set of R. By the Riesz
Theorem, for every z in Ω and 1 ≤ i ≤ n, there exist k1

z , . . . , k
n
z in R

satisfying the following duality:

(3.1) 〈f(z), ei〉Cn = 〈f, kiz〉R, f ∈ R.
In other words,

kiz = ev∗z ei

for z in Ω and 1 ≤ i ≤ n. Consequently, f ∈ Rz if and only if f ⊥ kiz for
every 1 ≤ i ≤ n, thus R⊥z = span{k1

z , . . . , k
n
z }. Moreover, regarding vectors

in Cn as columns of complex numbers, we have

K(z, w) = [〈 evw ev∗z ej , ei〉]1≤i,j≤n = [〈 ev∗z ej , ev∗w ei〉]1≤i,j≤n
= [〈kjz, kiw〉]1≤i,j≤n.

In particular,

(3.2) K(z, z) = [〈kjz, kiz〉]1≤i,j≤n,
which is the transpose of the Gram matrix of the frame {kiz}.

Under mild conditions, operators between two reproducing Hilbert
spaces commuting with coordinate operatorsMzi have been completely char-
acterized in terms of the reproducing kernels by Curto and Salinas ([3]).
Following their ideas, we can give a corresponding result characterizing uni-
tary equivalence of quasi-free Hilbert modules. We begin with a lemma on
module maps.

Lemma 3.1. Let R and R′ be two quasi-free Hilbert modules, and T
a unitary operator from R to R′. The following are equivalent :

(i) T is a module map.
(ii) TRz ⊂ R′z for every z ∈ Ω.

(iii) TR⊥z ⊂ R′⊥z for every z ∈ Ω.

In any case, TRz = R′z and TR⊥z = R′⊥z .

Proof. (i)⇒(ii). This is obvious from the definition of Rz and R′z.
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(ii)⇒(i). We have to show that TMϕ = MϕT , or equivalently, M∗ϕT
∗ =

T ∗M∗ϕ. Since R′ =
∨
z∈Ω R

′⊥
z , it suffices to show that for any z ∈ Ω and

f ∈ R′⊥z , M∗ϕT
∗f = T ∗M∗ϕf .

The condition TRz ⊂ R′z implies T ∗R′⊥z ⊂ R⊥z , and it is easy to check
that the action of M∗ϕ on R⊥z and R′⊥z is scalar multiplication by ϕ(z).
Therefore,

M∗ϕT
∗f = ϕ(z)T ∗f = T ∗ ϕ(z) f = T ∗M∗ϕf,

as desired.
Note that (i)⇔(ii) holds for any bounded operator T .
(i)⇒(iii). Recall that A(Ω)z = {ϕ ∈ A(Ω) | ϕ(z) = 0} and R′z =

[A(Ω)zR′]−. It suffices to show that for any f ∈ R⊥z , ϕ ∈ A(Ω)z and g ∈ R′,

〈Tf,Mϕg〉 = 0.

Since T is a unitary module map, it commutes with Mϕ and M∗ϕ, hence

〈Tf,Mϕg〉 = 〈M∗ϕTf, g〉 = 〈TM∗ϕf, g〉 = ϕ(z)〈Tf, g〉 = 0.

(iii)⇒(i). Similar arguments to those in (ii)⇒(i) imply that TM∗ϕ =
M∗ϕT . Since T is unitary, TMϕ = MϕT . The rest is obvious.

The following theorem characterizes unitary equivalence of quasi-free
Hilbert modules in terms of reproducing kernels. While our setting is slightly
different from [3], the proof is essentially the same, and we only include the
detailed proof of the sufficiency part for completeness.

Theorem 3.2. Let R and R′ be two quasi-free Hilbert modules over A(Ω)
with kernel functions K(z, w) and K ′(z, w). R and R′ are unitarily equiva-
lent if and only if there exists a matrix-valued function Φ which is invertible
at every z in Ω such that K ′(z, w) = Φ∗(w)K(z, w)Φ(z). In this case, the
unitary module map is given by MΦ∗ : f(·) 7→ Φ∗(·)f(·).

Proof. Sufficiency: We will show that the multiplication operator MΦ∗

is a unitary module map from R to R′. Since Rz and R′z consist of functions
vanishing at z, the operator MΦ∗ obviously satisfies the second condition
of Lemma 3.1, so we only need to show that MΦ∗ is a well defined unitary
operator.

The identity K ′(z, w) = Φ∗(w)K(z, w)Φ(z) implies that for any finite set
{zi} ⊆ Ω and {ξi} ⊆ Cn, 1 ≤ i ≤ k,

MΦ∗

k∑
i=1

K(zi, ·)ξi = Φ∗(·)
k∑
i=1

K(zi, ·)ξi =
k∑
i=1

K ′(zi, ·)Φ−1(zi)ξi.

Note that the right-hand side of the equation above lies in R′,
so MΦ∗ is a well defined operator from the subspace of finite linear combina-
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tions
∑k

i=1K(zi, ·)ξi onto the subspace of finite linear combinations∑k
i=1K

′(zi, ·)ηi, which are dense in R and R′ respectively.
Moreover,∥∥∥ k∑
i=1

K ′(zi, ·)Φ−1(zi)ξi
∥∥∥2

=
∑

1≤i,j≤k
〈K ′(zi, zj)Φ−1(zi)ξi, Φ−1(zj)ξj〉

=
∑

1≤i,j≤k
〈Φ∗−1(zj)K ′(zi, zj)Φ−1(zi)ξi, ξj〉

=
∑

1≤i,j≤k
〈K(zi, zj)ξi, ξj〉 =

∥∥∥ k∑
i=1

K(zi, ·)ξi
∥∥∥2
.

Now the operator MΦ∗ : f(·) → Φ∗(·)f(·) is an isometry from a dense
subspace of R onto a dense subspace of R′, thus admits a unique unitary
extension. By continuity, the extension operator is also given by MΦ∗ .

To prove our main theorem, we need to establish an elementary lemma
in linear algebra. The transpose and conjugate of a matrix A will be denoted
by AT and A respectively.

Lemma 3.3. Let H be a Hilbert space and M be an n-dimensional sub-
space such that {g1, . . . , gn} is a base for M . If h1, . . . , hn are n vectors in
H such that 〈hi, gj〉 = δij (the Kronecker symbol), then

Gr(Ph1, . . . , Phn) = Gr∗−1(g1, . . . , gn),

where P denotes the orthogonal projection onto M and where

Gr(g1, . . . , gn) = [〈gi, gj〉]1≤i,j≤n
and

Gr(Ph1, . . . , Phn) = [〈Phi, Phj〉]1≤i,j≤n
are the Gramians.

Proof. We first prove the following projection formula:

(3.3) (Ph1, . . . , Phn) = (g1, . . . , gn) GrT−1(g1, . . . , gn).

To this end, we denote the right-hand side of the above equation by
(g′1, . . . , g

′
n), which is a row of vectors in M . We have to check that hi − g′i

is orthogonal to M , or
〈hi − g′i, gj〉 = 0

for any 1≤i, j ≤ n. Equivalently,

[〈g′i, gj〉]1≤i,j≤n = I.
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For simplicity, we introduce the following notation: for two matrices A =
[aij ]m′×m and B = [bij ]m×m′′ with entries aij , bij in H, define

〈A,B〉 =
[∑

k

〈aik, bkj〉
]
m′×m′′

,

which is a numerical matrix. It is easy to see that if C and D are both
numerical matrices,

〈CA,BD〉 = C〈A,B〉D.
Given vectors f1, . . . , fn and f ′1, . . . , f

′
n in H, we have

[〈fi, f ′j〉]1≤i,j≤n = 〈(f1, . . . , fn)T , (f ′1, . . . , f
′
n)〉.

In particular,

Gr(f1, . . . , fn) = 〈(f1, . . . , fn)T , (f1, . . . , fn)〉.
Now we have

[〈g′i, gj〉]1≤i,j≤n = 〈(g′1, . . . , g′n)T , (g1, . . . , gn)〉
= 〈(GrT−1(g1, . . . , gn))T (g1, . . . , gn)T , (g1, . . . , gn)〉
= Gr−1(g1, . . . , gn)〈(g1, . . . , gn)T , (g1, . . . , gn)〉
= Gr−1(g1, . . . , gn) Gr(g1, . . . , gn) = I,

hence the projection formula (3.3) follows.
By this formula,

Gr(Ph1, . . . , Phn) = 〈(Ph1, . . . , Phn)T , (Ph1, . . . , Phn)〉

= (GrT−1(g1, . . . , gn))T Gr(g1, . . . , gn)GrT−1(g1, . . . , gn)
= Gr∗−1(g1, . . . , gn).

Corollary 3.4. For a quasi-free Hilbert module R relative to the gen-
erating set {f1, . . . , fn}, we have

Gr(f1 ⊗A 1z, . . . , fn ⊗A 1z) = Gr∗−1(k1
z , . . . , k

n
z ),

where {kiz} is the dual set of kernel functions at z.

Proof. Since the map R ⊗A Cz → R⊥z : f ⊗A 1z 7→ Pzf is unitary, we
have

Gr(f1 ⊗A 1z, . . . , fn ⊗A 1z) = Gr(Pzf1, . . . , Pzfn).

Recall that R⊥z = span{k1
z , . . . , k

n
z }, and by (3.1) we have

〈fi, kjz〉R = 〈fi(z), ej〉Cn = 〈ei, ej〉Cn = δij ,

hence Lemma 3.3 can be applied and we are done.

Now we are ready to give the proof of our main theorem.

Proof of Theorem 1.2. Let {f1, . . . , fn} and {f ′1, . . . , f ′n} be the generat-
ing sets relative to which R and R′ are quasi-free. By the hypothesis of the
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theorem, we have
δ∗zδz = Ψ(z)∗Ψ(z)

for a function Ψ(z) in Hol(Ω). Since δz is invertible, so is Ψ(z), hence we
have

I = [δzΨ(z)−1]∗[δzΨ(z)−1].

Thus δzΨ(z)−1 is unitary in the following diagram:

R⊗A Cz
Ψ−1(z) //

δzΨ−1(z) &&NNNNNNNNNN R⊗A Cz

δzxxpppppppppp

R′ ⊗A Cz

with matrix representation

δzΨ(z)−1 : R⊗A Cz → R′ ⊗A Cz,

(f1 ⊗A 1z, . . . , fn ⊗A 1z) 7→ (f ′1 ⊗A 1z, . . . , f ′n ⊗A 1z)Ψ(z)−1.

Hence we have the following relation of Gramians:

Gr(f1 ⊗A 1z, . . . , fn ⊗A 1z) = Ψ(z)T−1 Gr(f ′1 ⊗A 1z, . . . , f ′n ⊗A 1z)Ψ(z)−1,

where Ψ(z) is a holomorphic matrix-valued function such that Ψ(z) is in-
vertible for every z. Appealing to Corollary 3.4 we get

Gr∗−1(k1
z , . . . , k

n
z ) = Ψ(z)T−1Gr∗−1(k′1z , . . . , k

′n
z )Ψ(z)−1.

Equivalently,

(3.4) Gr(k1
z , . . . , k

n
z ) = Ψ(z) Gr(k′1z , . . . , k

′n
z )Ψ(z)T .

Combining this with (3.2), we come to the desired identity:

(3.5) K(z, z) = Ψ(z)K ′(z, z)Ψ∗(z).

We claim the following stronger identity:

(3.6) K(z, w) = Ψ(w)K ′(z, w)Ψ∗(z).

In fact, since Ψ(z) is holomorphic, the matrix-valued function K(z, w) −
Ψ(w)K ′(z, w)Ψ∗(z) is holomorphic in w and anti-holomorphic in z, and (3.5)
implies that this function vanishes on the diagonal. Using Taylor expansion,
it is not hard to see that such a function must vanish identically ([7, Propo-
sition 1]), hence (3.6) holds.

Finally, we rewrite (3.6) as

K ′(z, w) = Ψ(w)−1K(z, w)Ψ−1∗(z),

so that Theorem 3.2 can be applied by taking Φ(z) = Ψ−1∗(z), completing
the proof. In light of Theorem 3.2, the unitary map is given by MΨ−1 :
f(·) 7→ Ψ−1(·)f(·).
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4. Equivalence of associated Hermitian vector bundles. As a
complement of our main result, we characterize unitary equivalence of quasi-
free Hilbert modules in terms of Hermitian vector bundles. We say that two
holomorphic (resp. anti-holomorphic) Hermitian vector bundles are equiva-
lent if there exists a holomorphic (resp. anti-holomorphic) isometric bundle
map between them.

Given a quasi-free Hilbert module R with generator {f1, . . . , fn} and dual
kernel {k1

z , . . . , k
n
z }, we can construct a natural bundle

⋃
z∈Ω R

⊥
z . As shown

in [5], for any z in Ω and 1 ≤ i ≤ n, the map z 7→ kiz is anti-holomorphic
in z, thus

⋃
z∈Ω R

⊥
z is an anti-holomorphic Hermitian vector bundle such

that {kiz} forms an anti-holomorphic frame. This bundle, obtained as the
pull-back of the anti-holomorphic map z 7→ R⊥z from Ω to the Grassmann
manifold of n-dimensional subspaces of R, is closely related to unitary in-
variants of quasi-free Hilbert modules.

Using the Rigidity Theorem established in [2], one can show that two
finite rank quasi-free Hilbert modules R and R′ are unitarily equivalent if
and only if

⋃
z∈Ω R

⊥
z and

⋃
z∈Ω R

′⊥
z are equivalent.

On the other hand, there is another vector bundle Sp(R) that can be
associated to a quasi-free Hilbert module R, which is holomorphic with
fibre R⊗A Cz at each z in Ω. This bundle Sp(R) =

⋃
z∈Ω R⊗A Cz is called

the spectral sheaf of R. Douglas and Misra proved the following result:

Proposition 4.1 ([5]). For a finite rank quasi-free Hilbert module over
A(Ω), there is a unique well-defined holomorphic structure on Sp(R) relative
to which the functions z 7→ k⊗A1z are holomorphic sections for each k in R.

Since {fi⊗ 1z} spans R⊗A Cz, it is a holomorphic frame for Sp(R). The
metric of the fibre R ⊗A Cz is induced by the metric on R⊥z in R via the
unitary map

R⊗A Cz → R⊥z : f ⊗A 1z 7→ Pzf.

Douglas and Misra showed in [5] that this induced metric makes Sp(R)
a holomorphic Hermitian vector bundle over Ω.

Finally, we give the following geometric characterization.

Theorem 4.2. For two finite rank quasi-free Hilbert modules R and R′,
the following are equivalent :

(i) R and R′ and unitarily equivalent.
(ii) The anti-holomorphic Hermitian vector bundles

⋃
z∈Ω R

⊥
z and⋃

z∈Ω R
′⊥
z are equivalent.

(iii) The holomorphic Hermitian vector bundles Sp(R) and Sp(R′) are
equivalent.

Proof. (i)⇔(ii). Combine the Rigidity Theorem ([2]) with Lemma 3.1.



Quasi-free Hilbert modules 97

(ii)⇒(iii). By definition, there exists an anti-holomorphic matrix-valued
function Θ(z) such that for any z in Ω, the fibre map

Θ(z) : R⊥z → R′⊥z ,

(k1
z , . . . , k

n
z ) 7→ (k′1z , . . . , k

′n
z )Θ(z),

is isometric. Hence we have

Gr(k1
z , . . . , k

n
z ) = Θ(z)T Gr(k′1z , . . . , k

′n
z )Θ(z).

Applying Corollary 3.4, we get

Gr(f1 ⊗A 1z, . . . , fn ⊗A 1z) = Θ(z)−1 Gr(f ′1 ⊗A 1z, . . . , f ′n ⊗A 1z)ΘT−1(z).

Therefore, the fibre map defined by

Θ̂(z) : R⊗A Cz → R′ ⊗A Cz,

(f1 ⊗A 1z, . . . , fn ⊗A 1z) 7→ (f ′1 ⊗A 1z, . . . , f ′n ⊗A 1z)Θ∗−1(z),

is isometric. Noting that {fi ⊗ 1z} is a holomorphic frame, and Θ∗−1(z) is
holomorphic since Θ(z) is anti-holomorphic, we see that the fibre maps Θ̂(z)
glue to an isometric holomorphic bundle map from Sp(R) to Sp(R′), hence
Sp(R) and Sp(R′) are equivalent.

(iii)⇒(ii) follows in the same way.

Remark 4.3. It is easy to see that if the modulus function µ(R,R′) is
the absolute value of a function Ψ in Hol(Ω), then Sp(R) and Sp(R′) are
equivalent via the fibre map given by Ψ(z)−1 with respect to the holomor-
phic frames, therefore Theorem 1.2 can be regarded as a consequence of
Theorem 4.2, and this essentially relies on the Rigidity Theorem.
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