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The dual of the James tree space is
asymptotically uniformly convex

by

Maria Girardi (Columbia, SC)

Abstract. The dual of the James tree space is asymptotically uniformly convex.

1. Introduction. In 1950, R. C. James [J1] constructed a Banach space
which is now called the James space. This space, along with its many vari-
ants (such as the James tree space [J2]) and their duals and preduals, have
been a rich source for further research and results (both positive ones and
counterexamples), answering many questions, several of which date back to
Banach [B, 1932]. See [FG] for a splendid survey of such spaces.

This paper’s main result, Theorem 5, shows that the dual JT ∗ of the
James tree space JT is asymptotically uniformly convex. (See Section 2 for
definitions.)

Schachermayer [S, Theorem 4.1] showed that JT ∗ has the Kadec–Klee
property. It follows from Theorem 5 of this paper that JT ∗ enjoys the
uniform Kadec–Klee property. Of course, the same can be said about the
(unique) predual JT∗ of JT . In fact, Theorem 3 shows that the modulus of
asymptotic convexity of JT∗ is of power type 3.

Johnson, Lindenstrauss, Preiss, and Schechtman [JLPS] showed that an
asymptotically uniformly convex space has the point of continuity prop-
erty and asked whether an asymptotically uniformly convex space has the
Radon–Nikodým property. It is well known that both JT∗ and JT ∗ have the
point of continuity property yet fail the Radon–Nikodým property. It follows
from Theorem 5 of this paper that JT ∗ is an asymptotically uniformly con-
vex (dual) space without the Radon–Nikodým property. Thus JT∗ is a sep-
arable asymptotically uniformly convex space without the Radon–Nikodým
property. To the best of the author’s knowledge, these are the first known
examples of asymptotically uniformly convex spaces without the Radon–
Nikodým property.
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2. Definitions and notation. Throughout this paper X denotes an
arbitrary (infinite-dimensional real) Banach space. If X is a Banach space,
then X∗ is its dual space, B(X) is its (closed) unit ball, S(X) is its unit
sphere, ı̂ : X → X∗∗ is the natural point-evaluation isometric embedding,
x̂ = ı̂(x) and X̂ = ı̂(X). If Y is a subset of X, then [Y ] is the closed linear
span of Y and

N(X) = {[x∗i ]>1≤i≤n : x∗i ∈ X∗ and n ∈ N},

W(X∗) = {[xi]⊥1≤i≤n : xi ∈ X and n ∈ N}.
Thus N(X) is the collection of (norm-closed) finite-codimensional subspaces
of X while W(X∗) is the collection of weak-star closed finite-codimensional
subspaces of X∗. All notation and terminology, not otherwise explained, are
as in [DU, LT1, LT2].

The modulus of convexity δX : [0, 2]→ [0, 1] of X is

δX(ε) = inf
{

1−
∥∥∥∥
x+ y

2

∥∥∥∥ : x, y ∈ S(X) and ‖x− y‖ ≥ ε
}

and X is uniformly convex (UC ) if and only if δX(ε) > 0 for each ε ∈ (0, 2].
The modulus of asymptotic convexity δX : [0, 1]→ [0, 1] of X is

δX(ε) = inf
x∈S(X)

sup
Y∈N(X)

inf
y∈S(Y)

[‖x+ εy‖ − 1]

and X is asymptotically uniformly convex (AUC ) if and only if δX(ε) > 0
for each ε in (0, 1].

A space X has the Kadec–Klee (KK ) property provided the relative norm
and weak topologies on B(X) coincide on S(X). A space X has the uniform
Kadec–Klee (UKK ) property provided for each ε > 0 there exists δ > 0 such
that every ε-separated weakly convergent sequence {xn} in B(X) converges
to an element of norm less than 1− δ.

Related to the above geometric isometric properties are the following
geometric isomorphic properties.

• X has the Radon–Nikodým property (RNP) provided each bounded
subset of X has nonempty slices of arbitrarily small diameter.
• X has the point of continuity property (PCP) provided each bounded

subset of X has nonempty relatively weakly open subsets of arbitrarily small
diameter.
• X has the complete continuity property (CCP) provided each bounded

subset of X is Bocce dentable.

Implications between these various properties are summarized in the
diagram below.
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UC → AUC → UKK → KK
↓ ↓ ↓

RNP → PCP → CCP

Helpful notation is

δX(ε) = inf
x∈S(X)

δX(ε, x)

where
δX(ε, x) = sup

Y∈N(X)
inf

y∈S(Y)
[‖x+ εy‖ − 1].

Note that, for each x ∈ S(X),

δX(ε, x) = sup
Y∈N(X)

inf
y∈Y
‖y‖≥ε

[‖x+ y‖ − 1]

and so δX(ε, x) is a nondecreasing function of ε. Thus δX is a nondecreasing
Lipschitz function with Lipschitz constant at most one. For any space X and
ε ∈ [0, 1],

δX(ε) ≤ ε = δ`1(ε);

thus, `1 is, in some sense, the most asymptotically uniformly convex space.
Uniform convexity, the KK property, and the UKK property have been

extensively studied (for example, see [DGZ, LT2]). Asymptotic uniform con-
vexity has been examined explicitly in [JLPS, M] and implicitly in [GKL,
KOS]. The RNP, PCP, and CCP have also been extensively studied (for
example, see [DU, GGMS, G1, G2]).

The JT space is constructed on a (binary) tree

T =
∞⋃

n=0

∆n

where ∆n is the nth level of the tree; thus,

∆0 = {∅} and ∆n = {−1,+1}n

for each n ∈ N. The finite tree TN up through level N ∈ N ∪ {0} is

TN =
N⋃

n=0

∆n.

The tree T is equipped with its natural (tree) ordering: if t1 and t2 are
elements of T , then t1 < t2 provided one of the following holds:

1. t1 = ∅ and t2 6= ∅,
2. for some n,m ∈ N,

t1 = (ε1
1, ε

1
2, . . . , ε

1
n) and t2 = (ε2

1, ε
2
2, . . . , ε

2
m)

with n < m and ε1
i = ε2

i for each 1 ≤ i ≤ n .
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A (finite) segment of T is a linearly ordered subset {tn, tn+1, . . . , tn+k}
of T where ti ∈ ∆i for each n ≤ i ≤ n + k. A branch of T is a linearly
ordered subset {t0, t1, t2, . . .} of T where ti ∈ ∆i for each i ∈ N ∪ {0}.

The James tree space JT is the completion of the space of finitely sup-
ported functions x : T → R with respect to the norm

‖x‖JT = sup
{[ n∑

i=1

∣∣∣
∑

t∈Si
xt

∣∣∣
2]1/2

: S1, . . . , Sn are disjoint segments of T
}
.

By lexicographically ordering T , the sequence {ηt}t∈T in JT , where

ηt(s) =
{

1 if t = s,
0 if t 6= s,

forms a monotone boundedly complete (Schauder) basis of JT with bior-
thogonal functions {η∗t }t∈T in JT ∗. Thus ĴT∗ = [η∗t ]t∈T .

For N,M ∈ N ∪ {0} with N ≤ M , the restriction maps from JT to JT
given by

πN (x) =
∑

t∈∆N
η∗t (x)ηt,

π[N,M ](x) =
∑

t∈⋃Mi=N ∆i

η∗t (x)ηt,

π[N,ω)(x) =
∑

t∈⋃∞i=N ∆i

η∗t (x)ηt

are each contractive projections (by the nature of the norm on JT ); thus,
so are their adjoints.

Let Γ be the set of all branches of T . Then [LS, Theorem 1] the mapping
π∞ : JT ∗ → `2(Γ ) given by

π∞(x∗) = {lim
t∈B

x∗(ηt)}B∈Γ

is an isometric quotient mapping with kernel ĴT∗. Also, for each x∗ ∈ JT ∗,
‖x∗‖ = lim

N→∞
‖π∗[0,N ]x

∗‖,
‖π∞x∗‖ = lim

N→∞
‖π∗[N,ω)x

∗‖ = lim
N→∞

‖π∗Nx∗‖,

by the weak-star lower semicontinuity of the norm on JT ∗.
To show that JT ∗ has the Kadec–Klee property, Schachermayer calcu-

lated the two quantitative bounds below.

Fact 1 [S, Lemma 3.8]. Let f1 : (0, 1)→ (0,∞) be a continuous strictly
increasing function satisfying f1(t) < 2−10t3 for each t ∈ (0, 1). Let N ∈ N
and z∗ ∈ JT ∗. If

[1− f1(t)]‖z∗‖ < ‖π∗[0,N ]z
∗‖
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then
‖π∗[N,ω)z

∗‖ < ‖π∗Nz∗‖+ t‖z∗‖.
Fact 2 [S, Lemma 3.11]. Let f2 : (0, 1)→ (0,∞) be a continuous strictly

increasing function satisfying f2(t) < 2−26t5 for each t ∈ (0, 1). Let N ∈ N
and ε0 ∈ (0, 1) and x̃∗, ũ∗ ∈ JT ∗. If

‖π∗[N,ω)x̃
∗‖ ≤ 1,(2.1)

‖π∗N x̃∗‖ > 1− f2(ε0),(2.2)

‖π∞x̃∗‖ > 1− f2(ε0),(2.3)

‖π∗[N,ω)(x̃
∗ + ũ∗)‖ ≤ 1,(2.4)

‖π∗N ũ∗‖ < f2(ε0),(2.5)

‖π∞ũ∗‖ < f2(ε0),(2.6)

then

(2.7) ‖π∗[N,ω)ũ
∗‖ < ε0.

3. Results. Theorem 3 shows that the modulus of asymptotic convexity
of JT∗ is of power type 3. Its proof uses Fact 1.

Theorem 3. There exists a positive constant k so that

δJT∗(ε) ≥ kε3

for each ε ∈ (0, 1]. Thus JT∗ is asymptotically uniformly convex.

Proof. Fix c ∈ (0, 2−10) and find k so that

(1) 0 < k(1 + k)2 ≤ c.
Fix ε ∈ (0, 1) and a finitely supported x∗ ∈ S(JT∗). It suffices to show that

(2) δJT∗(ε, x∗) ≥ kε3.

Find N ∈ N so that π∗[0,N−1]x̂∗ = x̂∗ and let Y = [ηt]>t∈TN . Fix y∗ ∈ S(Y).
Assume that

‖x∗ + εy∗‖ − 1 < kε3.

Then [
1− kε3

1 + kε3

]
‖x̂∗ + εŷ∗‖ < 1 = ‖π∗[0,N ](x̂∗ + εŷ∗)‖.

Thus by Fact 1, with f1(t) = ct3,

‖π∗[N,ω)(x̂∗ + εŷ∗)‖ < ‖π∗N (x̂∗ + εŷ∗)‖+ f−1
1

(
kε3

1 + kε3

)
‖(x̂∗ + εŷ∗)‖

and so

(3) ε < [1 + kε3]f−1
1

(
kε3

1 + kε3

)
.
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But inequality (3) is equivalent to

c1/3 < k1/3(1 + kε3)2/3,

which contradicts (1). Thus ‖x∗ + εy∗‖ − 1 ≥ kε3 and so (2) holds.

A modification of the proof of Theorem 3 shows that, for each ε ∈ (0, 1),
the δJT ∗(ε, x∗) stays uniformly bounded below from zero for x∗ ∈ S(JT ∗)
whose ‖π∞x∗‖ is small. Recall that if x∗ ∈ JT∗ then ‖π∞x̂∗‖ = 0.

Lemma 4. For each ε ∈ (0, 1) there exists η = η(ε) > 0 so that

inf
x∗∈S(JT ∗)
‖π∞x∗‖≤η

sup
Y∈W(JT ∗)

inf
y∗∈S(Y)

[‖x∗ + εy∗‖ − 1] > 0.

Proof. Fix ε ∈ (0, 1). With the notation of Fact 1, find δ, η2 > 0 so that

4η2 +
δ

1− f1(δ)
< ε.

Fix x∗ ∈ S(JT ∗) with ‖π∞x∗‖ ≡ b ≤ η2. It suffices to show that

(4) sup
Y∈W(JT ∗)

inf
y∗∈S(Y)

‖x∗ + εy∗‖ ≥ 1
1− f1(δ)

.

Fix η1 ∈ (0, 1). Find N ∈ N so that

1− η1 ≤ ‖π∗[0,N ]x
∗‖ and ‖π∗[N,ω)x

∗‖ < b+ η2

and let Y = [ηt]⊥t∈TN . Fix y∗ ∈ S(Y).
Assume that

‖x∗ + εy∗‖ < 1− η1

1− f1(δ)
.

Then

[1− f1(δ)]‖x∗ + εy∗‖ < ‖π∗[0,N ]x
∗‖ = ‖π∗[0,N ](x

∗ + εy∗)‖.
Thus by Fact 1,

‖π∗[N,ω)(x
∗ + εy∗)‖ < ‖π∗N (x∗ + εy∗)‖+ δ‖(x∗ + εy∗)‖

and so

ε− (b+ η2) < (b+ η2) +
δ

1− f1(δ)
.

But b ≤ η2 and so

ε < 4η2 +
δ

1− f1(δ)
.

A contradiction, thus

‖x∗ + εy∗‖ ≥ 1− η1

1− f1(δ)
.

Since η1 > 0 was arbitrary, inequality (4) holds.
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Thus to show that JT ∗ is asymptotically uniformly convex, one just
needs to examine δJT ∗(ε, x∗) for x∗ ∈ S(JT ∗) whose ‖π∞x∗‖ is not small.
Fact 2 is used for this case.

Theorem 5. JT ∗ is asymptotically uniformly convex.

Proof. Fix ε ∈ (0, 1) and let ε0 = ε/4. Let f1 : (0, 1) → (0, 2−12) be
given by f1(t) = 2−12t3 and f2 be a function satisfying the hypothesis in
Fact 2. Find δ, η2 > 0 so that

4η2 +
δ

1− f1(δ)
< ε.

Next find γi > 0 and τ > 1 so that

γ3 < γ2 < 1/2,(5)

τ ≤ (1− γ1)(1− γ2)
1− f2(ε0)

,(6)

τ <
1− γ2√

1− f2
2 (ε0)

,(7)

τ ≤ η3
2γ

3
3

215(1− γ2)3 − γ4 + 1,(8)

τ − 1 + γ4

τ
< f1(1),(9)

τ ≤ 1
1− f1(δ)

.(10)

Fix x∗ ∈ S(JT ∗). It suffices to show that

(11) sup
Y∈N(JT ∗)

inf
y∈S(Y)

‖x∗ + εy∗‖ ≥ τ.

Let ‖π∞x∗‖ ≡ b. If b ≤ η2, then by the proof of Lemma 4 and (10), inequality
(11) holds. So let b > η2. Find N ∈ N so that

(1− γ1)b < ‖π∗Nx∗‖ ≤ ‖π∗[N,ω)x
∗‖ < b

(
1− γ3

1− γ2

)
<

b

1− γ2
,(12)

1− γ4 < ‖π∗[0,N ]x
∗‖.(13)

Let gx∗ ∈ JT ∗∗ be the functional given by

gx∗(z∗) = 〈π∞z∗, π∞x∗〉H2

where the inner product is the natural inner product on `2(Γ ). Let

Y = [ηt]⊥t∈TN ∩ [gx∗ ]>

and fix y∗ ∈ S(Y).
Assume that

(14) ‖x∗ + εy∗‖ < τ.
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It suffices to find a contradiction to (14). Towards this, let

x̃∗ =
1− γ2

τb
x∗ and ỹ∗ =

1− γ2

τb
y∗.

It suffices to show (keeping the same notation but with ũ∗ = εỹ∗) that
conditions (2.1) through (2.6) of Fact 2 hold; for then condition (2.7) holds
and so by (5),

ε0 > ‖π∗[N,ω)εỹ
∗‖ =

1− γ2

τb
ε ≥ ε

4
= ε0.

Condition (2.1) follows from (12) since

‖π∗[N,ω)x̃
∗‖ ≤ 1− γ2

τb
· b

1− γ2
≤ 1.

Condition (2.2) follows from (12) and (6) since

‖π∗N x̃∗‖ >
1− γ2

τb
(1− γ1)b =

(1− γ1)(1− γ2)
τ

≥ 1− f2(ε0).

Towards condition (2.3), note that by (7),

(15) ‖π∞x̃∗‖ =
1− γ2

τb
b =

1− γ2

τ
>
√

1− f2
2 (ε0)

and so
‖π∞x̃∗‖ > 1− f2(ε0).

Towards condition (2.4), note that by (14) and (13),

‖x∗ + εy∗‖ < τ

1− γ4
‖π∗[0,N ](x

∗ + εy∗)‖.

Thus by Fact 1 and (9),

‖π∗[N,ω)(x
∗ + εy∗)‖ < ‖π∗N (x∗ + εy∗)‖

+ f−1
1

(
τ − 1 + γ4

τ

)
‖(x∗ + εy∗)‖

≤ b 1− γ3

1− γ2
+ τ24

(
τ − 1 + γ4

τ

)1/3

.

Thus condition (2.4) holds provided

b
1− γ3

1− γ2
+ τ24

(
τ − 1 + γ4

τ

)1/3

≤ τb

1− γ2
,

or equivalently

τ2/3(τ − 1 + γ4)1/3 ≤ b(τ − 1 + γ3)
24(1− γ2)

.
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But by (8) and since b > η2,

τ2/3(τ − 1 + γ4)1/3 ≤ 2(τ − 1 + γ4)1/3 ≤ 2η2γ3

25(1− γ2)

≤ bγ3

24(1− γ2)
≤ b(τ − 1 + γ3)

24(1− γ2)
.

Thus condition (2.4) holds.
Condition (2.5) follows from the fact that y∗ ∈ [ηt]⊥t∈TN . Towards condi-

tion (2.6), since y∗ ∈ [gx∗ ]>, the vectors π∞ỹ∗ and π∞x̃∗ are orthogonal in
`2(Γ ) and so

‖π∞εỹ∗‖2 = ‖π∞(x̃∗ + εỹ∗)‖2 − ‖π∞x̃∗‖2;

but π∞ = π∞π∗[N,ω) and so by condition (2.4) and (15),

‖π∞εỹ∗‖2 ≤ ‖π∗[N,ω)(x̃
∗ + εỹ∗)‖2 − ‖π∞x̃∗‖2

< 1− [1− f2
2 (ε0)] = f2

2 (ε0).

Thus condition (2.6) holds.

The proof in [JLPS] that an asymptotically uniformly convex space has
the PCP shows that if δX(ε) > 0 for each ε ∈ (0, 1] then X has the PCP. A
bit more can be said.

Proposition 6. If δX(1/2) > 0 then X has the PCP.

The proof of Proposition 6 uses the following (essentially known) lemma.

Lemma 7. Let X be a space without the PCP and 0 < ε < 1. Then there
is a closed subset A of X so that

(1) each (nonempty) relatively weakly open subset of A has diameter
larger than 1− ε,

(2) sup{‖a‖ : a ∈ A} = 1.

Proof. Let X fail the PCP and 0 < ε < 1. By a standard argument (e.g.,
see [SSW, Prop. 4.10]), there is a closed subset Ã of X of diameter one such
that each (nonempty) relatively weakly open subset of Ã has diameter larger
than 1− ε. Without loss of generality 0 ∈ Ã (just consider a translate of Ã).
Let

b = sup{‖x‖ : x ∈ Ã} and A = Ã/b.

Note that 0 < b ≤ 1. If V is a (nonempty) relatively weakly open subset of
A, then bV is a relatively weakly open subset of Ã and so

diamV =
1
b

diam bV > 1− ε.
Thus A does the job.
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Proof of Proposition 6. Let X be a Banach space without the PCP. Fix
t ∈ (0, 1/2) and δ ∈ (0, t). It suffices to show that δX(t) ≤ 2δ.

Find a subset A of X which satisfies the conditions of Lemma 7 with
ε = 1− 2t and find a ∈ A so that∥∥∥∥

a

‖a‖ − a
∥∥∥∥ < δ.

Let Y ∈ N(X). It suffices to show that

inf
y∈Y
‖y‖≥t

[∥∥∥∥
a

‖a‖ + y

∥∥∥∥− 1
]
≤ 2δ.

By condition (1) of Lemma 7 there exists x ∈ A so that ‖x− a‖ ≥ t and
x − a is almost in Y; thus, by a standard perturbation argument (e.g., see
[GJ, Lemma 2]) there exists y ∈ Y so that

‖y‖ ≥ t and ‖y − (x− a)‖ < δ.

Thus ∥∥∥∥
a

‖a‖ + y

∥∥∥∥ ≤
∥∥∥∥
a

‖a‖ − a
∥∥∥∥+ ‖y − x+ a‖+ ‖x‖ < 1 + 2δ.

Thus δX(1/2) = 0.

The observation below formalizes an essentially known fact, which to the
best of the author’s knowledge, has not appeared in print as such. Recall
that the modulus of asymptotic smoothness %X : [0, 1]→ [0, 1] of X is

%X(ε) = sup
x∈S(X)

inf
Y∈N(X)

sup
y∈S(Y)

[‖x+ εy‖ − 1]

and X is asymptotically uniformly smooth if and only if limε→0+ %X(ε)/ε = 0.
Also, Lp(X) is the Lebesgue–Bochner space of strongly measurable X-valued
functions defined on a separable nonatomic probability space, equipped with
its usual norm.

Observation 8. Let 1 < p < ∞. For a Banach space X, the following
are equivalent.

(1) X is uniformly convexifiable.
(2) Lp(X) is uniformly convexifiable.
(3) Lp(X) is asymptotically uniformly convexifiable.
(4) Lp(X) admits an equivalent UKK norm.
(5) Lp(X) is asymptotically uniformly smoothable.

Proof. Let 1 < p <∞ and X be a Banach space.
That (1) through (4) are equivalent and that (2) implies (5) follows easily

from the following known facts about a Banach space Y:

(i) Y is uniformly convex if and only if Lp(Y) is [Mc].
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(ii) Y is uniformly convexifiable if and only if Lp(Y) admits an equivalent
UKK norm [DGK, Theorem 4].

(iii) Y is uniformly convexifiable if and only if Y is uniformly smoothable
(cf. [DU, page 144]).

Towards showing that (5) implies (1), let Lp(X) be asymptotically uni-
formly smoothable and X0 be a separable subspace of X. It suffices to show
that X0 is uniformly convexifiable (cf. [DGZ, Remark IV.4.4]).

It follows from [GKL, Proposition 2.6] that if Y is separable, then Y is
asymptotically uniformly smooth if and only if Y∗ has the UKK∗ property.
Thus [Lp(X0)]∗ admits an equivalent UKK∗ norm. But `1 cannot embed
into Lp(X0) since Lp(X0) is asymptotically uniformly smoothable and so
[Lp(X0)]∗ is asymptotically weak* uniformly convexifiable and so is also
asymptotically uniformly convexifiable. Thus Lq(X∗0) is asymptotically uni-
formly convexifiable where 1/p+ 1/q = 1. From (3)⇒(1) it follows that X∗0
is uniformly convexifiable and hence so is X0.

Acknowledgements. The author thanks William B. Johnson and
Thomas Schlumprecht for fruitful discussions on asymptotic uniform con-
vexity at the NSF Workshop in Linear Analysis and Probability, Texas A&M
University, during the Summer of 1999.
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