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Local dual spaces of a Banach space

by

Manuel González (Santander)
and Antonio Mart́ınez-Abejón (Oviedo)

Abstract. We study the local dual spaces of a Banach space X, which can be de-
scribed as the subspaces of X∗ that have the properties that the principle of local reflex-
ivity attributes to X as a subspace of X∗∗.

We give several characterizations of local dual spaces, which allow us to show many
examples. Moreover, every separable space X has a separable local dual Z, and we can
choose Z with the metric approximation property ifX has it. We also show that a separable
space containing no copies of `1 admits a smallest local dual.

1. Introduction. The principle of local reflexivity [14] shows that there
is a close relation between a Banach space X and its second dual X∗∗ from
a finite-dimensional point of view: X∗∗ is finitely dual representable in X
with ε-isometries that fix points (see Definition 2.1). This means that X can
be considered as a “local” dual of X∗.

In [9] the authors introduced the polar property as a test to check if X∗

is finitely dual representable in its subspaces. Here we consider a smaller
class of subspaces Z of X∗ (Definition 2.1) that satisfy the principle of
local reflexivity in full force: X∗ is finitely dual representable in Z with
ε-isometries that fix points. So we can properly refer to these subspaces Z
as local dual spaces of X. We give several characterizations of such spaces,
and we describe examples of local dual spaces for some classical spaces like
C[0, 1], L1[0, 1], and for some families of Banach spaces, like `1(X∗), `∞(X),
X ⊗π Y and X ⊗ε Y in the case that Y ∗ has the metric approximation
property (M.A.P., for short). We show that for µ a finite positive measure,
L1(µ,X∗) is a local dual of L∞(µ,X), improving a result of Dı́az [3]. We
also prove that every separable space with the M.A.P. has a separable local
dual space with the M.A.P.
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The relation between a Banach space X and its local dual spaces is
symmetric, in the sense that any local dual Z of X has a local dual isometric
to X. This fact can also be seen as an extension of the local reflexivity
principle.

We prove that every subspace L of X∗ is contained in a local dual Z of
X with dens(Z) = max{dens(L),dens(X)}. Using this fact and some results
of Godefroy and Kalton [7], we show that a separable space X containing
no copies of `1 admits a smallest local dual Zd which is also separable. This
result provides an answer to a question in [7]. We also give a partial answer
to another question in [7] by showing that a space X isometric to a dual
space has a smallest local dual Zd if and only if it admits a smallest norming
subspace Zn, and in this case Zd = Zn.

In the paper X and Y are Banach spaces, BX the closed unit ball of
X, SX the unit sphere of X, and X∗ the dual of X. We identify X with
a subspace of X∗∗. A subspace is always a closed subspace. For A ⊂ X we
consider the sets

A◦ := {f ∈ X∗ : |〈f, x〉| ≤ 1 for every x ∈ A},
A⊥ := {f ∈ X∗ : 〈f, x〉 = 0 for every x ∈ A}.

Analogously, for C ⊂ X∗, we define the subsets C◦ and C⊥ of X. We denote
by B(X,Y ) the space of all (bounded linear) operators from X into Y , and
by K(X,Y ) the subspace of all compact operators. Given T ∈ B(X,Y ),
N(T ) and R(T ) are the range and the kernel of T , and T ∗ is the conjugate
operator of T .

Given a number 0 < ε < 1, an operator T ∈ B(X,Y ) is an ε-isometry if
it satisfies (1 + ε)−1 < ‖Tx‖ < 1 + ε for all x ∈ SX . A space X is said to
be finitely representable in Y if for each ε > 0 and each finite-dimensional
subspace M of X there is an ε-isometry T : M → Y . We denote by N the
set of all positive integers.

2. Local dual spaces. Recall that a subspace Z of X∗ is norming if

‖x‖ = sup{|〈f, x〉| : f ∈ BZ} for every x ∈ X.
Moreover, X∗ is finitely dual representable (f.d.r., for short) in Z [9, Defi-
nition 1] if for every couple of finite-dimensional subspaces F of X∗ and G
of X, and for every 0 < ε < 1, there is an ε-isometry L : F → Z such that
〈Lf, x〉 = 〈f, x〉 for all x ∈ G and all f ∈ F .

Clearly, if X∗ is f.d.r. in Z, then Z is norming. However, the converse
implication does not hold [9, Remark after Theorem 4].

Now we introduce a concept which is strictly stronger than finite dual
representability (see Example 2.11).
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Definition 2.1. Let Z be a subspace of X∗. We say that Z is a local
dual space of X if for every couple of finite-dimensional subspaces F of X∗

and G of X, and every number 0 < ε < 1, there is an ε-isometry L : F → Z
satisfying the following conditions:

(a) 〈Lf, x〉 = 〈f, x〉 for all x ∈ G and all f ∈ F , and
(b) Lf = f for all f ∈ F ∩ Z.

Remark 2.2. (a) Obviously, X∗ is a local dual of X.
(b) A local dual of X provides an almost-isometric local representation

of X∗. This could be useful when we do not have a description of X∗, but
it is possible to find a local dual. This happens for the ultrapowers XU of X
and for L∞(µ,X) (see (c) and Corollary 2.7).

(c) The principle of local reflexivity [14] establishes that a Banach space
X (as well as every isometric predual of X∗) is a local dual of X∗, and the
principle of local reflexivity for ultrapowers [12, Theorem 7.3] establishes
that (X∗)U is a local dual of XU.

(d) There are spacesX so thatX∗ contains no proper norming subspaces.
Hence X∗ is the only local dual of X. This is the case when X is an M-
ideal in its bidual [11, Corollary III.2.16], or more generally, when X is
Hahn–Banach smooth. This means that every x∗ ∈ X∗ admits only one
Hahn–Banach extension to X∗∗ [21].

For the structure of Banach spaces admitting no proper norming sub-
spaces, we refer to [6], specially Theorem 8.3 where a characterization of
these spaces is given, and [2].

The following technical result is a direct application of the Hahn–Banach
Theorem and the principle of local reflexivity.

Lemma 2.3. Let Z be a norming subspace of X∗. Then for every couple
of finite-dimensional subspaces E of Z⊥⊥ and F of X, and every 0 < ε < 1,
there is an ε-isometry L : E → Z such that Le = e for all e ∈ E ∩ Z, and
〈Le, x〉 = 〈e, x〉 for all e ∈ E and all x ∈ F .

Proof. The canonical isometry T : Z⊥⊥ → Z∗∗ maps f ∈ Z⊥⊥ to the
functional f̂ ∈Z∗∗ defined by 〈f̂ , ζ〉 :=〈f, ζe〉, where ζe∈(X∗)∗ is any Hahn–
Banach extension of ζ∈Z∗. Note that 〈T−1f̂ , g〉 :=〈f̂ , g|Z〉 for every g∈X∗∗.

Let E1 := T (E). Since Z is norming, the map that sends x ∈ F to the
functional x̂ ∈ Z∗ given by 〈x̂, z〉 := 〈z, x〉 is an isometry. So we can apply
the principle of local reflexivity to get an ε-isometry Λ : E1 → Z such that
〈a, x̂〉 = 〈Λa, x〉 for all a ∈ E1 and x ∈ F , and Λa = a for all a ∈ E1 ∩ Z.
The ε-isometry L := ΛT |E satisfies the requirements of our statement.

Definition 2.4. Given a couple of subspaces Z of X∗ and G of Z∗, an
operator L : G → X∗∗ is said to be an extension operator if Lf |Z = f for
every f ∈ G.
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The following result will be very useful to find examples of local dual
spaces of a Banach space X. The proof uses an ultrapower version of the
Lindenstrauss compactness principle and some ideas of [15]. These ideas have
also been used in [8, Proposition 3.6] in order to give a local characterization
of subspaces of a Banach space which are unconditional ideals.

Theorem 2.5. For a subspace Z of X∗, the following statements are
equivalent :

(1) Z is a local dual of X;
(2) for every couple of finite-dimensional subspaces F of X∗ and G of

X, and every 0 < ε < 1, there is an ε-isometry L : F → Z such that

(a′) |〈Lf, x〉 − 〈f, x〉| < ε‖f‖ · ‖x‖ for all x ∈ G and all f ∈ F , and
(b′) ‖Lf − f‖ ≤ ε‖f‖ for all f ∈ F ∩ Z;

(3) there is an isometric extension operator L : Z∗ → X∗∗ so that
R(L) ⊃ X;

(4) there exists a norm-one projection P : X∗∗ → X∗∗ such that N(P ) =
Z⊥ and R(P ) ⊃ X;

(5) there exists a norm-one projection Q : X∗∗∗ → X∗∗∗ such that
R(Q) = Z⊥⊥ and N(Q) ⊂ X⊥ (where X∗∗∗ = X∗ ⊕X⊥).

Proof. We denote by ι the natural inclusion operator from Z into X∗.
Observe that ι∗ : X∗∗ → Z∗ is the restriction operator: ι∗(F ) = F |Z .

(1)⇒(2). This is trivial.
(2)⇒(3). First, for every compact operator T : Z → Y we obtain a

compact extension T̃ : X∗ → Y with ‖T̃‖ = ‖T‖, as follows:
Let A be the family of all pairs α = (Eα, Fα) of finite-dimensional

subspaces Eα ⊂ X∗ and Fα ⊂ X. We define |α| := dimEα + dimFα.
For every α ∈ A we select an |α|−1-isometry Lα : Eα → Z such that
|〈Lαe, x〉−〈e, x〉| < ε‖e‖·‖x‖ for all e ∈ Eα and all x ∈ Fα, and ‖Lαz−z‖ ≤
|α|−1‖z‖ for all z ∈ Eα ∩ Z.

We fix an ultrafilter U on A refining the order filter associated to the
order inclusion. Taking Lαg = 0 for g 6∈ Eα, we can define the operator

T̃ g := lim
α→U

TLαg, g ∈ X∗.

Note that (TLαg)α∈A is contained in the compact set 2‖g‖ · TBZ . Since
Lα|Eα∩Z converges to the identity map, T̃ is an extension of T ; i.e., T̃ ι = T .
In particular, ‖T‖ ≤ ‖T̃‖. Moreover, ‖T̃‖ = limα→U ‖TLα‖ ≤ ‖T‖.

Now, for every finite-dimensional subspace G of Z∗, we consider the
quotient map qG : Z → Z/G⊥, and denote by ιG the inclusion operator
from G into Z∗. Let QG : X∗ → Z/G⊥ be the extension of qG built as in
the first part of the proof. Note that ι∗Q∗G = ιG, so Q∗G : G → X∗∗ is an
isometric extension operator.
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Let V be an ultrafilter on the set of all the finite-dimensional subspaces of
Z, refining the filter associated to the order inclusion. The w∗-compactness
of BX∗∗ allows us to define L : Z∗ → X∗∗ as Lh := w∗- limG→VQ∗Gh.
Clearly, ‖L‖ = 1 and ι∗L is the identity, so L is an extension operator.

It only remains to see that R(L) ⊃ X. Since every x ∈ X belongs to X∗∗,
we can consider its restriction x|Z ∈ Z∗. Let G be any finite-dimensional
subspace of Z∗ containing x|Z . Then for every f ∈ X∗, we have

〈Q∗G(x|Z), f〉 = 〈x|Z , QGf〉 = lim
α→U
〈x|Z , qGLαf〉

= lim
α→U
〈ιG(x|Z), Lαf〉 = lim

α→U
〈Lαf, x〉 = 〈f, x〉,

hence Q∗G(x|Z) = x, so x = L(x|Z), concluding the proof.
(3)⇒(4). The operator P := Lι∗ defines a projection on X∗∗, because

ι∗L is the identity on Z∗, and ‖P‖ = 1. Also, R(P ) ⊃ X since ι∗ is surjective
and R(L) ⊃ X. Finally, N(P ) = N(ι∗) = Z⊥.

(4)⇒(5). It is enough to take Q = P ∗.
(5)⇒(1). LetQ be a norm-one projection onX∗∗∗ such thatR(Q) = Z⊥⊥

and N(Q) ⊂ X⊥. First, considering the natural embedding of X∗ in X∗∗∗,
we show that the restriction Q|X∗ is an isometry. Indeed, given f ∈ X∗ and
0 < ε < 1, we select x ∈ X such that ‖x‖ = 1 and 〈f, x〉 > ‖f‖ − ε. Since
R(I −Q) ⊂ X⊥, we have 〈f, x〉 = 〈Qf, x〉; hence ‖Qf‖ = ‖f‖.

Fix F ∈ Z⊥ and x ∈ X. We choose f ∈ X∗ so that ‖f‖ = 1 and
〈f, x〉 = ‖x‖. Since R(Q) = Z⊥⊥ and N(Q) ⊂ X⊥, we have

‖F − x‖ ≥ |〈F − x,Qf〉| = |〈x,Qf〉| = ‖x‖.
By [5, Lemma I.1], we conclude that Z is norming.

Now, in order to show that Z is a local dual of X, we take a number
0 < ε < 1 and finite-dimensional subspaces E ⊂ X∗ and F ⊂ X, and set
E1 := Q(E) ⊂ Z⊥⊥.

Applying Lemma 2.3, we get an ε-isometry L : E1 → Z so that

〈Le, x〉 = 〈e, x〉 for all e ∈ E1, x ∈ F ,

Le = e for all e ∈ E1 ∩ Z.
Thus LQ : E → Z is an ε-isometry. Moreover, given e ∈ E ∩ Z, we have
Le = e and Qe = e, so LQe = e. In addition, given e ∈ E, x ∈ F , we see
that

〈LQe, x〉 = 〈Qe, x〉 = 〈e, x〉,
and the proof is complete.

Remark 2.6. Since X is weak∗-dense in X∗∗, the projection P in The-
orem 2.5(4) cannot be weak∗-continuous.

A direct application of Theorem 2.5 gives the following improvement of
a result of Dı́az [3, Theorem 2.1].
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Corollary 2.7. Let µ be a finite positive measure. Then L1(µ,X∗) is
a local dual of L∞(µ,X).

Proof. It is enough to observe that, in the case that µ is a probability
measure, [3, Theorem 2.1] establishes that L1(µ,X∗) satisfies condition (2)
in Theorem 2.5.

Next we apply Theorem 2.5 to show examples of local dual spaces for
some classical Banach spaces.

Let λ be a positive Borel measure on a metrizable compact space K. We
denote by B(K) the Banach algebra of all scalar, Borel-measurable bounded
functions on K, endowed with the supremum norm. We can identify L∞(λ)
with the quotient B(K)/J0, where J0 := {f ∈ B(K) :

�
|f | dλ = 0}. We

denote by
πλ : B(K)→ L∞(λ)

the canonical quotient map. Using the continuum hypothesis, it was proved
in [18, Theorem 3], in the case supp(λ) = K, that πλ admits a strong Borel
lifting; i.e., there exists an algebra homomorphism

%λ : L∞(λ)→ B(K)

so that for every f ∈ L∞(λ) we have %λ(f)(t) = f(t) for λ-almost all t ∈ K,
and %λ(f) = f for every f ∈ C(K).

It follows from these properties that %λ is a right inverse of πλ that
satisfies

‖%λ(f)‖ = ‖f‖∞ for every f ∈ L∞(λ).

For m the Lebesgue measure on [0, 1], the existence of %m can be derived
from the results of von Neumann and Stone in [19]. In this case we write
L∞[0, 1] rather than L∞(m). Recall that L1[0, 1]∗ = L∞[0, 1] and C[0, 1]∗ =
M [0, 1], the space of all regular Borel measures on [0, 1]. For every positive
λ ∈ M [0, 1], the space L1(λ) is embedded in M [0, 1] through the map f 7→
λf , where λf (U) =

�
U
f dλ.

Proposition 2.8. Assume the continuum hypothesis 2ω = ω1.

(a) The natural copy of C[0, 1] in L∞[0, 1] is a local dual of L1[0, 1].
(b) The natural copy of L1[0, 1] in M [0, 1] is a local dual of C[0, 1].

Proof. (a) We consider the map L : M [0, 1]→ L∞[0, 1]∗ given by

〈Lµ, f〉 :=
1�

0

%m(f)(t) dµ(t).

This map is well defined because %m(f) is Borel measurable for every f in
L∞[0, 1]. Since %m(g) = g for every g ∈ C[0, 1], L is an isometric extension
operator from C[0, 1]∗ into L1[0, 1]∗∗. Moreover, %m(f)(t) = f(t) a.e. for



Local dual spaces 161

every f implies that L(h) = h for every h ∈ L1[0, 1]; hence L(M [0, 1]) ⊃
L1[0, 1].

(b) The map Lm : L∞[0, 1]→M [0, 1]∗ defined by

〈Lmf, µ〉 :=
1�

0

%m(f)(t) dµ(t)

is an isometric extension operator from L1[0, 1]∗ into C[0, 1]∗∗, because
M [0, 1] ⊃ L1[0, 1] and %m(f)(t) = f(t) a.e. for every f . Moreover, %m(f) = f
for every f ∈ C[0, 1] implies Lm(L∞[0, 1]) ⊃ C[0, 1].

Remark 2.9. (a) In the proof of Proposition 2.8, we have applied the
continuum hypothesis in order to select a Borel function for every f ∈ L∞, so
that we can define an isometric extension operator L : C[0, 1]∗ → L∞[0, 1]∗.
However, in our opinion it should be possible to find a proof in which the
continuum hypothesis is not necessary.

(b) The Radon–Nikodym theorem allows us to write

C[0, 1]∗ = L1[0, 1]⊕1 Msing[0, 1].

So if Q is the projection with range L1[0, 1] and kernel Msing[0, 1], then
Q∗ is a norm-one projection on C[0, 1]∗∗ with N(Q∗) = L1[0, 1]⊥. How-
ever, R(Q∗) = Msing[0, 1]⊥ 6⊃ C[0, 1]. Thus, we cannot apply part (4) of
Theorem 2.5 to derive that L1[0, 1] is a local dual of C[0, 1].

(c) Suppose that λ ∈ M [0, 1] is a positive Borel measure with support
equal to [0, 1] and satisfying m ⊥ λ. Then using an argument similar to that
in Proposition 2.8, we can prove that L1(λ) is a local dual of C[0, 1]. Hence,
C[0, 1] admits two local dual spaces with intersection {0}.

As an example of a measure λ so that L1(λ) ∩ L1[0, 1] = {0}, we can
consider the discrete measure associated to a dense sequence in [0, 1].

Proposition 2.8 and the principle of local reflexivity suggest that the
relation of “being a local dual” is symmetric. Next we prove it.

Let Z be a local dual of X. Denoting by x̂ the vector x ∈ X viewed as
an element of X∗∗, we consider the following natural map:

Υ : x ∈ X 7→ x̂|Z ∈ Z∗.
Note that Υ is an isometry, because Z is norming.

Proposition 2.10. Let Z be a local dual of X and let L : Z∗ → X∗∗

be an isometric extension such that L(Z∗) ⊃ X. Then

(a) LΥ is the natural embedding from X into X∗∗.
(b) Υ (X) is a local dual of Z isometric to X.

Proof. (a) Let J and ι denote the embedding of X in X∗∗ and the
embedding of Z in X∗, respectively. Then Υ = ι∗J . Moreover, for every
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z ∈ Z and z∗ ∈ Z∗,
〈ι∗Lz∗, z〉 = 〈Lz∗, ιz〉 = 〈z∗, z〉;

hence ι∗L is the identity on Z∗. Thus, Lι∗ is a projection on X∗∗ with
R(Lι∗) = R(L) ⊃ X; hence LΥ = Lι∗J = J .

(b) We define Λ : Υ (X)∗ → Z∗∗ by

〈Λf, g〉 := 〈Lg, f ◦ Υ 〉, f ∈ Υ (X)∗, g ∈ Z∗.
Clearly ‖Λ‖ ≤ 1. Moreover, for every f ∈ Υ (X)∗ and every Υx ∈ Υ (X),

〈Λf, Υx〉 = 〈LΥx, f ◦ Υ 〉 = 〈f ◦ Υ, x〉 = 〈f, Υx〉.
Thus Λ is an isometric extension operator. Moreover, for every y ∈ Z we
can write y = f ◦ Υ with f ∈ Υ (X)∗. Then

〈Λf, g〉 = 〈Lg, f ◦ Υ 〉 = 〈Lg, y〉 = 〈g, y〉
for every g ∈ Z∗; hence Λ(Υ (X)∗) ⊃ Z.

Now we show that X∗ f.d.r. in Z does not imply that Z is a local dual
of X. In order to do that, observe that

Z1 ⊂ Z2 ⊂ X∗ and X∗ f.d.r. in Z1 ⇒ X∗ f.d.r. in Z2.

The following example shows that this implication is not valid for local dual
spaces.

Example 2.11. The principle of local reflexivity implies that `∞ is f.d.r.
in c0.

On the other hand, since the quotient map q : `∞ → `∞/c0 is not weakly
compact, `∞/c0 contains a complemented subspace isomorphic to `∞ [17,
Proposition 2.f.4]. Therefore, there is a subspace N of `∞/c0 such that the
quotient space (`∞/c0)/N is isomorphic to `2. We take M := q−1(N).

Claim. `∗1 = `∞ is f.d.r. in M , but M is not a local dual of `1.

Note that `∞/M is isomorphic to (`∞/c0)/N , so M⊥ is isomorphic to `2.
Since c0 ⊂M , we see that `∞ is f.d.r. in M . But M⊥ is non-complemented in
`∗∞ because `∗∞ has the Dunford–Pettis property. Therefore, by Theorem 2.5,
M is not a local dual of `1.

Proposition 2.12. Let X be a Banach space. Then

(a) `1(X∗) is a local dual of `∞(X), and
(b) `∞(X) is a local dual of `1(X∗).

Proof. (a) For every couple α := (E,F ) of finite-dimensional subspaces
of `1(X∗), `∞(X∗∗), we select a pair of sequences (En), (Fn) of finite-
dimensional subspaces of X∗ and X∗∗ respectively so that E ⊂ `1(En)
and F ⊂ `∞(Fn). We define |α| := dim(E) + dim(F ).
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The principle of local reflexivity allows us to find, for every n, an |α|−1-
isometry Sαn : Fn → X so that 〈Sαnf, e〉 = 〈e, f〉 for every e ∈ En and
f ∈ Fn, and Sαn (f) = f for every f ∈ Fn ∩X. We consider the (non-linear)
map Sα : `∞(X∗∗)→ `∞(X) given by Sα(zn) := (Sαn (zn)) if (zn) ∈ F , and
Sα(zn) := 0 otherwise.

Let U be an ultrafilter in the set of all couples α = (E,F ) of finite-
dimensional subspaces E of `1(X∗) and F of `∞(X∗∗) refining the order
filter. We define an operator Λ : `1(X∗)∗ = `∞(X∗∗)→ `∞(X)∗∗ by

Λ((zn)) := w∗- lim
α→U

Sα(zn), (zn) ∈ `∞(X∗∗).

Note that Λ is an isometry and Λ(yn) = (yn) for every (yn) ∈ `∞(X∗∗).
Therefore, Λ is an isometric extension operator. Moreover, Λ((xn)) = (xn)
if (xn) ∈ `∞(X). In particular Λ(`∞(X∗∗)) ⊃ `∞(X).

(b) It is enough to observe that the operator Υ : `∞(X) → `1(X∗)∗,
introduced in Proposition 2.10, is the natural inclusion.

Recall that a Banach space X has the metric approximation property
(M.A.P., for short) if for every ε > 0 and every compact set K in X, there
is a finite rank operator T on X such that ‖T‖ ≤ 1 and ‖Tx − x‖ ≤ ε
for every x ∈ K. Note that if X∗ has the M.A.P., then so does X [4,
Corollary VIII.3.9]. However, the converse implication is not valid [17, The-
orem 1.e.7].

The following result is proved using some ideas of [13].

Proposition 2.13. Assume that X∗ or Y ∗ has the M.A.P. Then

(a) X∗ ⊗ε Y ∗ is a local dual of X ⊗π Y , and
(b) X∗ ⊗π Y ∗ is a local dual of X ⊗ε Y .

Proof. We assume that Y ∗ has the M.A.P.
(a) The dual space (X⊗πY )∗ can be identified with B(X,Y ∗). Moreover,

since Y ∗ has the M.A.P., X∗ ⊗ε Y ∗ can be identified with K(X,Y ∗), and
there exists a net (Aα) of finite rank operators on Y ∗ with ‖Aα‖ ≤ 1 so
that limα ‖Aαg − g‖ = 0 for every g ∈ Y ∗. We can assume that (Aα) is
σ(K(Y ∗)∗∗,K(Y ∗)∗)-convergent.

For T ∈ B(X,Y ∗) and Φ ∈ K(X,Y ∗)∗, the expression ΦT (A) := Φ(AT )
defines ΦT ∈ K(Y ∗)∗. Then we define Λ : K(X,Y ∗)∗ → B(X,Y ∗)∗ by

〈ΛΦ, T 〉 := lim
α
〈Φ,AαT 〉 = lim

α
〈Aα, ΦT 〉.

Note that for every f ⊗ g ∈ X∗ ⊗ε Y ∗ we have

〈ΛΦ, f ⊗ g〉 = lim
α
〈Φ,Aα(g) · f〉 = 〈Φ, f ⊗ g〉.

So Λ is an isometric extension operator. Analogously, we can check that for
every x⊗y ∈ X⊗π Y ⊂ B(X,Y ∗)∗, we have Λ(x⊗y|K(X,Y ∗)) = x⊗y. Thus
X ⊗π Y ⊂ Λ(K(X,Y ∗)∗), and it is enough to apply Theorem 2.5.
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(b) The proof is analogous, identifying (X⊗εY )∗ with the space I(X,Y ∗)
of all integral operators from X into Y ∗.

Remark 2.14. (a) If we assume in Proposition 2.13 that Y ∗ has the
metric compact approximation property (defined as the M.A.P., but us-
ing compact operators instead of finite rank operators), then we find that
K(X,Y ∗) is a local dual of X ⊗π Y .

(b) It follows from the results of Lima [16, Theorem 13] that if Y ∗ has
the Radon–Nikodym property and Y ∗∗ ⊗ε Y ∗ is a local dual of Y ∗ ⊗π Y ,
then Y ∗ has the M.A.P. So it is not enough to assume in Proposition 2.13
that X or Y has the M.A.P.

(c) Let µ be a finite positive measure and let K be a compact space.
Since the spaces L1(µ)∗ ≡ L∞(µ) and C(K)∗ ≡ M(K) have the M.A.P., it
follows from Proposition 2.13 that X∗⊗εL∞(µ) is a local dual of L1(µ,X) =
X⊗πL1(µ), and that X∗⊗πM(K) is a local dual of C(K,X) = X⊗εC(K).

(d) The tensor product X∗ ⊗ε L∞(µ) in part (c) can be identified with
a (proper, in general) subspace of L∞(µ,X∗).

It has been proved in [10] that L∞(µ,X∗) is also a local dual of L1(µ,X).

Casazza and Kalton [1] proved that for every separable Banach space X
with the M.A.P., we can find a sequence (Tn) of finite rank operators on X
such that

(a) limn→∞ ‖Tnx− x‖ = 0 for all x ∈ X,
(b) limn→∞ ‖Tn‖ = 1 and
(c) TnTk = TkTn = Tmin{k,n};

i.e., X admits a commuting 1-approximating sequence (Tn). Using this fact
we show in the following result that a separable Banach space with the
M.A.P. admits a local dual of X with the M.A.P. Its proof is similar to the
proof of [7, Lemma II.2].

Theorem 2.15. Let X be a separable Banach space with the M.A.P., and
let (Tn) be a commuting 1-approximating sequence on X. Then

⋃∞
n=1 R(T ∗n)

is a local dual of X, and has the M.A.P.

Proof. Let U be an ultrafilter on N. We define a map P on X∗∗ by

Pz := w∗- lim
k→U

T ∗∗k z, z ∈ X∗∗.

From T ∗∗n T ∗∗k = T ∗∗k T ∗∗n = T ∗∗min{k,n} and the weak∗-continuity of the opera-
tors T ∗∗n , it follows that for every n ∈ N and every z ∈ X∗∗, we have

(1) T ∗∗n Pz = PT ∗∗n z = T ∗∗n z.

Hence P 2z = w∗- limn→U T
∗∗
n Pz = Pz. Since limn→∞ ‖Tn‖ = 1, P is a

norm-one projection. Also, it follows from formula (1) that N(T ∗∗n ) ⊃ N(P )
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for every n ∈ N. Since the intersection of the kernels N(T ∗∗n ) is clearly
contained in N(P ), we get

N(P ) =
∞⋂

n=1

N(T ∗∗n ).

As a consequence, N(P ) is weak∗-closed. And clearly P (X∗∗) ⊃ X.
Note that TnTk = TkTn = Tmin{k,n} implies N(T ∗∗n )⊥ = R(T ∗n) ⊂

R(T ∗n+1) for every n. Therefore

N(P )⊥ =
∞⋃

n=1

R(T ∗n),

and it follows from Theorem 2.5 that
⋃∞
n=1R(T ∗n) is a local dual of X.

Moreover, since T ∗nf is weak∗-convergent for every f ∈ X∗, and compact
operators take weak∗-convergent sequences to norm-convergent sequences,
by formula (1) we have limk→∞ ‖T ∗k f −f‖ = limk→∞ ‖T ∗n(T ∗k g−g)‖ = 0 for
every f = T ∗ng ∈ R(T ∗n). Since (T ∗k ) is bounded, we get limk→∞ ‖T ∗k f − f‖
= 0 for every f ∈ ⋃∞n=1 R(T ∗n); hence

⋃∞
n=1 R(T ∗n) has the M.A.P.

Remark 2.16. If X has a monotone Schauder basis, then the local dual
of X provided by Theorem 2.15 is the subspace generated by the coefficient
functionals of the basis.

As an application of Theorem 2.15, we give another example of a local
dual space of L1[0, 1].

Example 2.17. The subspace Z of L∞[0, 1] generated by the character-
istic functions χn,i of the dyadic intervals

[
i− 1
2n

,
i

2n

]
, n = 0, 1, 2, . . . ; i = 1, . . . 2n,

is a local dual of L1[0, 1] isometric to C(∆), where ∆ denotes the Cantor
set.

It is enough to check that the sequence (Pn) of projections defined by

Pnf :=
2n∑

i=1

〈2nχn,i, f〉χn,i

is a commuting 1-approximating sequence in L1[0, 1], and that
⋃
nR(P ∗n) is

the subspace generated by the functions χn,i.
In relation to the necessity of the continuum hypothesis in Proposi-

tion 2.8, note that C(∆) is isomorphic, but not isometric to C[0, 1].

We have seen in part (a) of the previous example that there are local
dual spaces Z1 and Z2 of C[0, 1] so that Z1 ∩ Z2 is finite-dimensional. Now
we will show that this cannot happen for spaces that contain no copies of `1.
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Godefroy and Kalton [7] considered the family PX of all the subspaces Y
of X∗∗ for which there is a norm-one projection on X∗∗ such that Y = N(P )
and R(P ) ⊃ X. The following result is an application of [7, Proposition V.1]
and our previous results.

Proposition 2.18. If X contains no copies of `1, then it admits a
smallest local dual ; i.e., there exists a local dual Zd contained in every local
dual of X.

Proof. If X contains no copies of `1, then PX consists of weak∗-closed
subspaces of X∗∗ and has a largest element L [7, Proposition V.1]. By The-
orem 2.5, the local dual spaces of X are precisely the subspaces Z of X∗

such that Z⊥ ∈ PX . Thus Zd := L⊥ is the smallest local dual of X.

The following result was obtained by Sims and Yost [20] (see [11, Lem-
mas III.4.3 and III.4.4]). Here, dens(X) stands for the density character of
X, defined as the smallest cardinal κ for which X has a dense subset of
cardinality κ.

Proposition 2.19. Let L be a subspace of Y , and let F be a subspace
of Y ∗ with dens(F ) ≤ dens(L). Then there exists a subspace M of Y with
dens(M) = dens(L) and M ⊃ L for which there exists an isometric exten-
sion operator T : M∗ → Y ∗ such that T (M∗) ⊃ F .

We now prove our next result about the existence of local dual spaces.

Proposition 2.20. Every subspace L of X∗ is contained in a local dual
ZL of X with dens(ZL) = max{dens(L),dens(X)}.

Proof. Given a subspace L of X∗, it is easy to find a subspace L0 of X∗

so that L ⊂ L0 and dens(L0) = max{dens(L),dens(X)}. If we apply Propo-
sition 2.19 to L0 as a subspace of X∗ and X as a subspace of X∗∗ we get a
subspace ZL of X∗ with ZL ⊃ L and dens(ZL) = max{dens(L),dens(X)}
for which there exists an isometric extension operator T : Z∗L → X∗∗ such
that T (Z∗L) ⊃ X. By Theorem 2.5, this is the desired local dual of X.

Remark 2.21. (a) Assume that X is separable and contains no copies of
`1, and that X∗ is not separable. By Proposition 2.20, the smallest local dual
space Zd provided by Proposition 2.18 is separable; in particular, Zd 6= X∗.
This fact gives an affirmative answer to a question of Godefroy and Kalton
in [7, Remarks V.3].

(b) Assume that X contains no copies of `1. In this case, apart from
the smallest local dual Zd there also exists a smallest norming subspace
Zn ⊂ X∗ [5, Lemma I.2 and Theorem II.3]. Clearly Zn is contained in Zd.
However, we do not know whether or not Zn = Zd.

Question [7, Remarks V.3]. Assume that both Zn and Zd exist for X.
Is Zn = Zd?
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We can only give an affirmative answer for dual spaces.

Proposition 2.22. Assume that X is isometric to a dual space. Then
X admits a smallest local dual Zd if and only if it admits a smallest norming
subspace Zn. In this case Zd = Zn, and this space is the unique isometric
predual of X.

Proof. By [5, Lemma I.2], the smallest norming subspace Zn exists if
and only if

Z⊥n = {z ∈ X∗∗ : ‖z − x‖ ≥ ‖x‖ for every x ∈ X}.
In this case X∗∗ = X ⊕ Z⊥n and Zn is the unique predual of X [5, Theo-
rem II.1].

Clearly, the projection P on X∗∗ with kernel Z⊥n and range X satisfies
‖P‖ = 1 and the remaining conditions in Theorem 2.5. Hence Zn is a local
dual of X, and it is the smallest one, because every local dual is norming.

Conversely, assume that the smallest local dual Zd exists, and let P be
the associated projection. If X∗ is a predual of X, then X∗∗ = X ⊕X⊥∗ =
P (X)⊕Z⊥d . Since X ⊂ P (X) and Zd ⊂ X∗ (hence X⊥∗ ⊂ Z⊥d ), we conclude
that Zd = X∗ and X⊥∗ = Z⊥d . In particular,

Z⊥d = {z ∈ X∗∗ : ‖z − x‖ ≥ ‖x‖ for every x ∈ X};
hence Zd is the smallest norming subspace of X.

Remark 2.23. (a) In Proposition 2.22, we have seen that a dual space
admitting a smallest norming subspace has a unique predual. However, this
condition is not sufficient, since L∞[0, 1] has a unique predual but it does
not admit a smallest norming subspace [5, Proposition IV.2].

(b) There are spaces X containing no copies of `1 so that X∗ is f.d.r. in
a subspace Z which is not a local dual of X.

Indeed, let Y be a separable space such that Y ∗∗/Y is isomorphic to c0,
and let Q : Y ∗∗ → Y ∗∗/Y denote the quotient map. We select a subspace
M of c0 such that M⊥ is not complemented in `1. For example, we can take
M so that M⊥ is isomorphic to `1(`n2 ).

The space X = Y ∗ contains no copies of `1, and X∗ is f.d.r. in Z :=
Q−1(M), because Y is contained in Z. However, Z is not a local dual of X
because Z⊥ = M⊥ is not complemented.
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