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Local dual spaces of a Banach space
by

MANUEL GONZALEZ (Santander)
and ANTONIO MARTINEZ-ABEJON (Oviedo)

Abstract. We study the local dual spaces of a Banach space X, which can be de-
scribed as the subspaces of X* that have the properties that the principle of local reflex-
ivity attributes to X as a subspace of X **.

We give several characterizations of local dual spaces, which allow us to show many
examples. Moreover, every separable space X has a separable local dual Z, and we can
choose Z with the metric approximation property if X has it. We also show that a separable
space containing no copies of 1 admits a smallest local dual.

1. Introduction. The principle of local reflexivity [14] shows that there
is a close relation between a Banach space X and its second dual X** from
a finite-dimensional point of view: X** is finitely dual representable in X
with e-isometries that fix points (see Definition 2.1). This means that X can
be considered as a “local” dual of X*.

In [9] the authors introduced the polar property as a test to check if X*
is finitely dual representable in its subspaces. Here we consider a smaller
class of subspaces Z of X* (Definition 2.1) that satisfy the principle of
local reflexivity in full force: X* is finitely dual representable in Z with
g-isometries that fix points. So we can properly refer to these subspaces Z
as local dual spaces of X. We give several characterizations of such spaces,
and we describe examples of local dual spaces for some classical spaces like
C10,1], L1[0, 1], and for some families of Banach spaces, like ¢1(X*), {o(X),
X ®;Y and X ®.Y in the case that Y* has the metric approximation
property (M.A.P., for short). We show that for u a finite positive measure,
Li(p, X*) is a local dual of Lo (i, X), improving a result of Diaz [3]. We
also prove that every separable space with the M.A.P. has a separable local
dual space with the M.A.P.
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The relation between a Banach space X and its local dual spaces is
symmetric, in the sense that any local dual Z of X has a local dual isometric
to X. This fact can also be seen as an extension of the local reflexivity
principle.

We prove that every subspace L of X* is contained in a local dual Z of
X with dens(Z) = max{dens(L), dens(X)}. Using this fact and some results
of Godefroy and Kalton [7], we show that a separable space X containing
no copies of £; admits a smallest local dual Z; which is also separable. This
result provides an answer to a question in [7]. We also give a partial answer
to another question in [7] by showing that a space X isometric to a dual
space has a smallest local dual Z; if and only if it admits a smallest norming
subspace Z,,, and in this case Z43 = Z,.

In the paper X and Y are Banach spaces, Bx the closed unit ball of
X, Sx the unit sphere of X, and X* the dual of X. We identify X with
a subspace of X**. A subspace is always a closed subspace. For A C X we
consider the sets

A% ={f e X" [{f,x)| <1 for every z € A},
At ={fe X" :(f,x) =0 for every z € A}.

Analogously, for C C X*, we define the subsets C; and C'; of X. We denote
by B(X,Y) the space of all (bounded linear) operators from X into Y, and
by K(X,Y) the subspace of all compact operators. Given T" € B(X,Y),
N(T) and R(T) are the range and the kernel of T', and T is the conjugate
operator of T

Given a number 0 < € < 1, an operator T' € B(X,Y') is an e-isometry if
it satisfies (1 +¢)7! < ||Tz|| < 1+ ¢ for all z € Sx. A space X is said to
be finitely representable in Y if for each € > 0 and each finite-dimensional
subspace M of X there is an e-isometry T': M — Y. We denote by N the
set of all positive integers.

2. Local dual spaces. Recall that a subspace Z of X* is norming if
lz|| = sup{|{f,z)| : f € Bz} for every x € X.

Moreover, X* is finitely dual representable (f.d.r., for short) in Z [9, Defi-
nition 1] if for every couple of finite-dimensional subspaces F' of X* and G
of X, and for every 0 < € < 1, there is an e-isometry L : F' — Z such that
(Lf,z) = (f,x) for all z € G and all f € F.

Clearly, if X* is f.d.r. in Z, then Z is norming. However, the converse
implication does not hold [9, Remark after Theorem 4].

Now we introduce a concept which is strictly stronger than finite dual
representability (see Example 2.11).
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DEFINITION 2.1. Let Z be a subspace of X*. We say that Z is a local
dual space of X if for every couple of finite-dimensional subspaces F of X*
and G of X, and every number 0 < £ < 1, there is an e-isometry L : FF — Z
satisfying the following conditions:

(a) (Lf,xy = (f,x) for all x € G and all f € F, and
(b) Lf = f forall f € FNZ.

REMARK 2.2. (a) Obviously, X* is a local dual of X.

(b) A local dual of X provides an almost-isometric local representation
of X*. This could be useful when we do not have a description of X*, but
it is possible to find a local dual. This happens for the ultrapowers X of X
and for Lo (1, X) (see (c) and Corollary 2.7).

(c) The principle of local reflexivity [14] establishes that a Banach space
X (as well as every isometric predual of X*) is a local dual of X*, and the
principle of local reflexivity for ultrapowers [12, Theorem 7.3] establishes
that (X*)y is a local dual of X§.

(d) There are spaces X so that X* contains no proper norming subspaces.
Hence X* is the only local dual of X. This is the case when X is an M-
ideal in its bidual [11, Corollary III.2.16], or more generally, when X is
Hahn—Banach smooth. This means that every x* € X* admits only one
Hahn—Banach extension to X** [21].

For the structure of Banach spaces admitting no proper norming sub-
spaces, we refer to [6], specially Theorem 8.3 where a characterization of
these spaces is given, and [2].

The following technical result is a direct application of the Hahn—Banach
Theorem and the principle of local reflexivity.

LEMMA 2.3. Let Z be a norming subspace of X*. Then for every couple
of finite-dimensional subspaces E of Z++ and F of X, and every 0 < € < 1,
there is an e-isometry L : E — Z such that Le = e for alle € EN Z, and
(Le,z) = (e,x) for alle € E and all x € F.

Proof. The canonical isometry T': Z++ — Z** maps f € Z+ to the
functional f € Z** defined by (f,():=(f,(.), where (. € (X*)* is any Hahn—
Banach extension of { € Z*. Note that <T*1f, g):= <f, glz) for every ge X**.

Let Ey := T(FE). Since Z is norming, the map that sends x € F to the
functional z € Z* given by (Z, z) := (z,x) is an isometry. So we can apply
the principle of local reflexivity to get an e-isometry A : £1 — Z such that
(a,7) = (Aa,x) for all a € Ey and = € F, and Aa = a for all a € E1 N Z.
The e-isometry L := AT|g satisfies the requirements of our statement. m

DEFINITION 2.4. Given a couple of subspaces Z of X* and G of Z*, an
operator L : G — X™** is said to be an eztension operator if Lf|; = f for
every f € G.
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The following result will be very useful to find examples of local dual
spaces of a Banach space X. The proof uses an ultrapower version of the
Lindenstrauss compactness principle and some ideas of [15]. These ideas have
also been used in [8, Proposition 3.6] in order to give a local characterization
of subspaces of a Banach space which are unconditional ideals.

THEOREM 2.5. For a subspace Z of X*, the following statements are
equivalent:

(1) Z is a local dual of X;
(2) for every couple of finite-dimensional subspaces F' of X* and G of
X, and every 0 < € < 1, there is an e-isometry L : F' — Z such that

@) [(Lf,x)y — (f,x)| <elfll- ||zl for all x € G and all f € F, and
(B NILf = fll < el f|| for all f € F N Z;

(3) there is an isometric extension operator L : Z* — X** so that
R(L) D X;

(4) there ezists a norm-one projection P : X** — X** such that N(P) =
Z+ and R(P) D X;

(5) there exists a mnorm-one projection Q : X*** — X*** such that
R(Q)=Z*t and N(Q) C X+ (where X*™* = X* @ X1).

Proof. We denote by ¢ the natural inclusion operator from Z into X*.
Observe that ¢* : X** — Z* is the restriction operator: .*(F) = F|z.

(1)=-(2). This is trivial.

(2)=(3). First, for every compact operator 7' : Z — Y we obtain a
compact extension T : X* — Y with |T|| = || T||, as follows:

Let A be the family of all pairs o = (E,,F,) of finite-dimensional
subspaces E, C X* and F, C X. We define |a| := dim E, + dim F,.
For every a € A we select an |o|~!-isometry L, : E, — Z such that
|(Loe,x)—(e,z)| < €lle]|-||z] for all e € E, and all z € F,,, and || Loz —z|| <
la|71|z|| for all z € E, N Z.

We fix an ultrafilter 4 on A refining the order filter associated to the
order inclusion. Taking L,g = 0 for g € E,,, we can define the operator

fg = lim TLn.g, g€ X"

Note that (T'Log)aca is contained in the compact set 2||g|| - T—BZ Since
Lo |g,nz converges to the identity map, T is an extension of T;i.e., T.=T.
In particular, |T|| < ||T||. Moreover, | T|| = lima_g |TLa|| < | T]|.

Now, for every finite-dimensional subspace G of Z*, we consider the
quotient map g : Z — Z/G., and denote by (s the inclusion operator
from G into Z*. Let Qg : X* — Z/G, be the extension of g¢ built as in
the first part of the proof. Note that *Qf = 1@, so Qf : G — X** is an
isometric extension operator.
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Let ¥ be an ultrafilter on the set of all the finite-dimensional subspaces of
Z, refining the filter associated to the order inclusion. The w*-compactness
of Bx«« allows us to define L : Z* — X** as Lh := w*-limg_g Q%h.
Clearly, ||L|| = 1 and ¢*L is the identity, so L is an extension operator.

It only remains to see that R(L) D X. Since every = € X belongs to X **,
we can consider its restriction x|z € Z*. Let G be any finite-dimensional
subspace of Z* containing z|z. Then for every f € X*, we have

(Qa(el2). ) = (ol2.Qaf) = lim (ol qoLaf)
= O{%<LG(x‘Z)7Laf> = O{%<Laf7 .CU> = <f7 33),

hence Q¢ (z|z) = z, so = L(x|z), concluding the proof.

(3)=-(4). The operator P := Li* defines a projection on X**, because
t*L is the identity on Z*, and || P|| = 1. Also, R(P) D X since ¢* is surjective
and R(L) O X. Finally, N(P) = N(.*) = Z*+.

(4)=(5). It is enough to take Q = P*.

(5)=(1). Let Q be a norm-one projection on X *** such that R(Q) = Z++
and N(Q) C X*. First, considering the natural embedding of X* in X***,
we show that the restriction Q|x~ is an isometry. Indeed, given f € X* and
0 <e <1, weselect z € X such that ||z|]| = 1 and (f,z) > ||f]| — . Since
R(I— Q) C X, we have (f,2) = (Qf,); hence [|Qf] = |||

Fix F € Zt and * € X. We choose f € X* so that ||f|| = 1 and
(f,z) = ||z||. Since R(Q) = Z++ and N(Q) C X+, we have

I1F = || > [(F —2,Qf) = [(z,Qf)| = [|l]|.

By [5, Lemma I.1], we conclude that Z is norming.

Now, in order to show that Z is a local dual of X, we take a number
0 < € < 1 and finite-dimensional subspaces E C X* and F C X, and set
E,:=Q(E)C Z++.

Applying Lemma 2.3, we get an e-isometry L : E1 — Z so that

(Le,x) = (e,x) forallee€ Eq,xz € F,
Le=c¢ forallee E1 N Z.
Thus LQ : E — Z is an e-isometry. Moreover, given e € E N Z, we have
Le = e and Qe = e, so LQe = e. In addition, given e € E, x € F, we see
that
(LQe, x) = (Qe, x) = (e, x),

and the proof is complete. m

REMARK 2.6. Since X is weak*-dense in X**, the projection P in The-
orem 2.5(4) cannot be weak*-continuous.

A direct application of Theorem 2.5 gives the following improvement of
a result of Diaz [3, Theorem 2.1].
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COROLLARY 2.7. Let p be a finite positive measure. Then Ly (u, X™*) is
a local dual of Loo(p, X).

Proof. Tt is enough to observe that, in the case that u is a probability
measure, [3, Theorem 2.1] establishes that L;(p, X*) satisfies condition (2)
in Theorem 2.5. m

Next we apply Theorem 2.5 to show examples of local dual spaces for
some classical Banach spaces.

Let A be a positive Borel measure on a metrizable compact space K. We
denote by B(K) the Banach algebra of all scalar, Borel-measurable bounded
functions on K, endowed with the supremum norm. We can identify Lo ()
with the quotient B(K)/Jy, where Jy = {f € B(K) : {|f|d\ = 0}. We
denote by

7y B(K) — Loo(N)
the canonical quotient map. Using the continuum hypothesis, it was proved

in [18, Theorem 3], in the case supp(A) = K, that 7y admits a strong Borel
lifting; i.e., there exists an algebra homomorphism

ox : Loo(A) — B(K)

so that for every f € Lo, (A) we have ox(f)(t) = f(¢) for A-almost all t € K,
and o) (f) = f for every f € C(K).

It follows from these properties that o) is a right inverse of 7, that
satisfies

o)l = Ifllec  for every f € Loo(A).

For m the Lebesgue measure on [0, 1], the existence of g,,, can be derived
from the results of von Neumann and Stone in [19]. In this case we write
L [0,1] rather than Lo, (m). Recall that L]0, 1]* = L0, 1] and CI0, 1]* =
M0, 1], the space of all regular Borel measures on [0, 1]. For every positive
A € M]J0,1], the space Lq(A) is embedded in M][0, 1] through the map f —
Mg, where A\p(U) = §, fd\.

PROPOSITION 2.8. Assume the continuum hypothesis 2% = w1.

(a) The natural copy of C[0,1] in Ls[0,1] is a local dual of L]0, 1].
(b) The natural copy of L1[0,1] in M[0,1] is a local dual of C|0,1].
Proof. (a) We consider the map L : M[0,1] — L[0, 1]* given by

1
(Lps, f) o= | om (£)(t) du(t).
0
This map is well defined because g,,(f) is Borel measurable for every f in
L [0,1]. Since g,,(g) = g for every g € C[0,1], L is an isometric extension
operator from C10,1]* into L0, 1]**. Moreover, o,,(f)(t) = f(t) a.e. for
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every f implies that L(h) = h for every h € L1[0,1]; hence L(M][0,1]) D
Lq[0,1].

(b) The map Ly, : Ls[0,1] 0,1]* defined by

- M|
(Lo fs ) = § om (£)(8) dp(t)
0

is an isometric extension operator from L1[0,1]* into C]0,1]**, because
M]I0,1] D L1[0,1] and o,,(f)(t) = f(t) a.e. for every f. Moreover, o, (f) = f
for every f € C[0,1] implies L,,(Loo[0,1]) D C[0,1]. m

REMARK 2.9. (a) In the proof of Proposition 2.8, we have applied the
continuum hypothesis in order to select a Borel function for every f € Lo, so
that we can define an isometric extension operator L : C|0, 1]* — L [0, 1]*.
However, in our opinion it should be possible to find a proof in which the
continuum hypothesis is not necessary.

(b) The Radon—Nikodym theorem allows us to write

C[0,1]* = L1[0,1] @1 Muing|0, 1].

So if @ is the projection with range L;[0,1] and kernel Mging[0, 1], then
Q* is a norm-one projection on C[0,1]** with N(Q*) = L;[0,1]+. How-
ever, R(Q*) = Msing[0,1]+ 2 C[0,1]. Thus, we cannot apply part (4) of
Theorem 2.5 to derive that L4[0,1] is a local dual of C0, 1].

(c) Suppose that A € M][0,1] is a positive Borel measure with support
equal to [0, 1] and satisfying m L A. Then using an argument similar to that
in Proposition 2.8, we can prove that L;(\) is a local dual of C[0, 1]. Hence,
C[0,1] admits two local dual spaces with intersection {0}.

As an example of a measure A so that L;(\) N L1[0,1] = {0}, we can
consider the discrete measure associated to a dense sequence in [0, 1].

Proposition 2.8 and the principle of local reflexivity suggest that the
relation of “being a local dual” is symmetric. Next we prove it.
Let Z be a local dual of X. Denoting by Z the vector z € X viewed as
an element of X**, we consider the following natural map:
Y:eeXw—ZlgeZ".
Note that 7" is an isometry, because Z is norming.

PRrROPOSITION 2.10. Let Z be a local dual of X and let L : Z* — X**
be an isometric extension such that L(Z*) D X. Then

(a) LY is the natural embedding from X into X**.
(b) T(X) is a local dual of Z isometric to X.

Proof. (a) Let J and ¢ denote the embedding of X in X** and the
embedding of Z in X*, respectively. Then 7" = *J. Moreover, for every
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z € Z and z* € Z*,
(L*Lz*,z) = (Lz%,12) = (2%, 2);
hence (*L is the identity on Z*. Thus, Lt* is a projection on X** with
R(Lt*) = R(L) D X; hence LY = Lv*J = J.
(b) We define A : T(X)* — Z** by
(Af,g) == (Lg,foY), [feY(X)", geZ".
Clearly ||A|| < 1. Moreover, for every f € 7(X)* and every Yz € T(X),
(Af,Ta) = (LTw,foT) = (foT\a) = (f.Ta).
Thus A is an isometric extension operator. Moreover, for every y € Z we
can write y = f oY with f € 7(X)*. Then
(Af,9) = (Lg, foT) =(Lg,y) = (9,y)
for every g € Z*; hence A(Y(X)*) D Z. =

Now we show that X™* f.d.r. in Z does not imply that Z is a local dual
of X. In order to do that, observe that

71 CZyC X" and X*fdr.in Z; = X*fd.r.in Zs.

The following example shows that this implication is not valid for local dual
spaces.

ExXAMPLE 2.11. The principle of local reflexivity implies that ¢, is f.d.r.
in cg.

On the other hand, since the quotient map ¢ : oo — £ /co is not weakly
compact, o, /co contains a complemented subspace isomorphic to £, [17,
Proposition 2.f.4]. Therefore, there is a subspace N of £ /co such that the
quotient space (£ /co)/N is isomorphic to f. We take M := ¢~ 1(N).

CLAM. 07 =L s f.d.r. in M, but M is not a local dual of £1.

Note that £, /M is isomorphic to (£, /co)/N, so M+ is isomorphic to £5.
Since ¢ C M, we see that £, is f.d.r. in M. But M~ is non-complemented in
2% because £} has the Dunford—Pettis property. Therefore, by Theorem 2.5,
M 1is not a local dual of /1. m

ProposITION 2.12. Let X be a Banach space. Then

(a) €1(X™) is a local dual of ls(X), and
(b) loo(X) is a local dual of 1(X™).

Proof. (a) For every couple « := (E, F) of finite-dimensional subspaces
of £1(X™*), loo(X™), we select a pair of sequences (E,), (F},) of finite-
dimensional subspaces of X* and X** respectively so that £ C ¢1(E,)
and F' C lo(F),). We define |af := dim(E) + dim(F).
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The principle of local reflexivity allows us to find, for every n, an |a|~!-
isometry S& : F, — X so that (S$f,e) = (e, f) for every e € E,, and
f € F,,and Sy(f) = f for every f € F,, N X. We consider the (non-linear)
map S% : loo (X**) — loo(X) given by S%(zy,) := (S%(2n)) if (25,) € F, and
S%(zp) := 0 otherwise.

Let {4 be an ultrafilter in the set of all couples a = (FE, F) of finite-
dimensional subspaces E of ¢1(X™*) and F of {.(X**) refining the order
filter. We define an operator A : £1(X*)* = loo(X™) — loo(X)** by

A((zn)) == w*- iifhsa(z")’ (zn) € Loo(X™).

Note that A is an isometry and A(y,) = (yn) for every (yn) € loo(X™).
Therefore, A is an isometric extension operator. Moreover, A((x,,)) = (z,)
if (zy,) € loo(X). In particular A(loo (X**)) D loo(X).

(b) Tt is enough to observe that the operator 1" : £, (X) — £1(X*)*,
introduced in Proposition 2.10, is the natural inclusion. =

Recall that a Banach space X has the metric approximation property
(M.A.P., for short) if for every € > 0 and every compact set K in X, there
is a finite rank operator 7" on X such that |[T|| < 1 and [Tz — z| < ¢
for every x € K. Note that if X* has the M.A.P., then so does X [4,
Corollary VIIIL.3.9]. However, the converse implication is not valid [17, The-
orem 1.e.7].

The following result is proved using some ideas of [13].

PRrROPOSITION 2.13. Assume that X* or Y* has the M.A.P. Then

(a) X* ®: Y™ is a local dual of X @Y, and
(b) X* ®, Y™ is a local dual of X ®. Y.

Proof. We assume that Y* has the M.A.P.

(a) The dual space (X ®,Y)* can be identified with B(X,Y™*). Moreover,
since Y* has the M.A.P., X* ®. Y* can be identified with K(X,Y™*), and
there exists a net (A,) of finite rank operators on Y* with ||A.]| < 1 so
that lim, ||[Aag — g|| = 0 for every g € Y*. We can assume that (4,) is
a(K(Y*)**, IC(Y*)*)-convergent.

For T € B(X,Y*) and ¢ € K(X,Y*)*, the expression &7 (A) := (AT
defines &1 € KL(Y*)*. Then we define A : (X, Y™*)* — B(X,Y™*)* by

(AP, T) := lim(P, A, T) = lim(A,, Dr).
Note that for every f ® g € X* ®. Y* we have
(A2, f @ g) = lim(®, Au(g) - f) = (P, f ® g).

So A is an isometric extension operator. Analogously, we can check that for
every tQy € X ®,Y C B(X,Y™)*, we have A(x @ y|x(x,y+)) = r®y. Thus
X ®,Y C AK(X,Y*)*"), and it is enough to apply Theorem 2.5.
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(b) The proof is analogous, identifying (X ®.Y")* with the space Z(X,Y™)
of all integral operators from X into Y*. m

REMARK 2.14. (a) If we assume in Proposition 2.13 that Y* has the
metric compact approximation property (defined as the M.A.P., but us-
ing compact operators instead of finite rank operators), then we find that
K(X,Y*) is a local dual of X ®, Y.

(b) It follows from the results of Lima [16, Theorem 13] that if Y* has
the Radon—Nikodym property and Y** ®. Y* is a local dual of Y* ®, Y,
then Y* has the M.A.P. So it is not enough to assume in Proposition 2.13
that X or Y has the M.A.P.

(c) Let p be a finite positive measure and let K be a compact space.
Since the spaces Li(u)* = Loo(p) and C(K)* = M(K) have the M.A.P., it
follows from Proposition 2.13 that X*®. Lo (1) is a local dual of Ly (u, X) =
X ®x Ly (1), and that X*®, M(K) is a local dual of C(K, X) = X®.C(K).

(d) The tensor product X* ®. Lo (i) in part (c¢) can be identified with
a (proper, in general) subspace of Lo (i, X™*).

It has been proved in [10] that L. (u, X™*) is also a local dual of Lq (i, X).

Casazza and Kalton [1] proved that for every separable Banach space X
with the M.A.P., we can find a sequence (T3,) of finite rank operators on X
such that

(a) limy, oo || Tnx —z|| =0 for all z € X,

(b) lim,, 0 || 70|l = 1 and

(¢) TnTk = Ti Ty = Trnin{k,n}s
i.e., X admits a commuting 1-approximating sequence (1,). Using this fact
we show in the following result that a separable Banach space with the

M.A.P. admits a local dual of X with the M.A.P. Its proof is similar to the
proof of [7, Lemma I1.2].

THEOREM 2.15. Let X be a separable Banach space with the M.A.P., and
let (T},) be a commuting 1-approzimating sequence on X . Then |J, - R(T})
is a local dual of X, and has the M.A.P.

Proof. Let U be an ultrafilter on N. We define a map P on X** by

Pz :=w* lim Tz, z¢€ X™.
k—sl
From T T = T 1" = Tk .y and the weak®-continuity of the opera-
tors T,*, it follows that for every n € N and every z € X**, we have

(1) TPz = PT 2 = T 2.

Hence P?z = w*-lim, g T;}*Pz = Pz. Since lim, . ||Tn]] = 1, P is a
norm-one projection. Also, it follows from formula (1) that N(7,*) D N(P)
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for every n € N. Since the intersection of the kernels N(T*) is clearly
contained in N(P), we get

N(P) = (| N(T;").

As a consequence, N (P) is weak*-closed. And clearly P(X**) D X.
Note that T, Ty = TxT, = Twmin{k,n} implies N(T;*). = R(T;) C
R(T;, ) for every n. Therefore

N(P). = | R(TY),

and it follows from Theorem 2.5 that |J,-; R(T}) is a local dual of X.

Moreover, since T¢ f is weak*-convergent for every f € X*, and compact
operators take weak*-convergent sequences to norm-convergent sequences,
by formula (1) we have limy_,o0 ||T} f — f| = limp—oo || T (T3 g —g)|| = O for
every f =Txg € R(Ty). Since (T}) is bounded, we get limy_,o || T} f — f]|
=0 for every f € U,—, R(T;); hence | J;~_, R(T;) has the M.A.P. u

REMARK 2.16. If X has a monotone Schauder basis, then the local dual
of X provided by Theorem 2.15 is the subspace generated by the coefficient
functionals of the basis.

As an application of Theorem 2.15, we give another example of a local
dual space of L1[0,1].

EXAMPLE 2.17. The subspace Z of L0, 1] generated by the character-
istic functions xn; of the dyadic intervals

2n 7 9n
is a local dual of L1]0,1] isometric to C(A), where A denotes the Cantor
set.

1
[Z i} n=20,1,2,...; i=1,...2",

It is enough to check that the sequence (P,,) of projections defined by
on
P.f = Z(ann,iv ) Xn,i
i=1
is a commuting 1-approximating sequence in L;[0, 1], and that | J,, R(P}) is
the subspace generated by the functions x,, ;.
In relation to the necessity of the continuum hypothesis in Proposi-
tion 2.8, note that C'(A) is isomorphic, but not isometric to C0, 1].

We have seen in part (a) of the previous example that there are local
dual spaces Z; and Zs of C[0, 1] so that Z; N Zs is finite-dimensional. Now
we will show that this cannot happen for spaces that contain no copies of ¢;.
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Godefroy and Kalton [7] considered the family Px of all the subspaces Y’
of X** for which there is a norm-one projection on X ** such that Y = N(P)
and R(P) D X. The following result is an application of [7, Proposition V.1]
and our previous results.

ProrosSITION 2.18. If X contains no copies of f1, then it admits a

smallest local dual; i.e., there exists a local dual Zg contained in every local
dual of X.

Proof. If X contains no copies of ¢1, then Px consists of weak*-closed
subspaces of X** and has a largest element L [7, Proposition V.1]. By The-
orem 2.5, the local dual spaces of X are precisely the subspaces Z of X*
such that Z+ € Px. Thus Z, := L is the smallest local dual of X. m

The following result was obtained by Sims and Yost [20] (see [11, Lem-
mas I11.4.3 and II1.4.4]). Here, dens(X) stands for the density character of
X, defined as the smallest cardinal x for which X has a dense subset of
cardinality &.

PROPOSITION 2.19. Let L be a subspace of Y, and let F' be a subspace
of Y* with dens(F) < dens(L). Then there exists a subspace M of Y with
dens(M) = dens(L) and M D L for which there ezists an isometric exten-
sion operator T : M* — Y™* such that T(M*) D F.

We now prove our next result about the existence of local dual spaces.

PROPOSITION 2.20. Ewvery subspace L of X™* is contained in a local dual
Z1, of X with dens(Z) = max{dens(L), dens(X)}.

Proof. Given a subspace L of X™*, it is easy to find a subspace Lg of X*
so that L C Ly and dens(Ly) = max{dens(L), dens(X)}. If we apply Propo-
sition 2.19 to Ly as a subspace of X* and X as a subspace of X** we get a
subspace Zy, of X* with Z;, D L and dens(Z;) = max{dens(L),dens(X)}
for which there exists an isometric extension operator T : Z7 — X™* such
that T'(Z7) D X. By Theorem 2.5, this is the desired local dual of X. =

REMARK 2.21. (a) Assume that X is separable and contains no copies of
l1, and that X * is not separable. By Proposition 2.20, the smallest local dual
space Z4 provided by Proposition 2.18 is separable; in particular, Z; # X*.
This fact gives an affirmative answer to a question of Godefroy and Kalton
in [7, Remarks V.3].

(b) Assume that X contains no copies of ¢1. In this case, apart from
the smallest local dual Z; there also exists a smallest norming subspace
Z, C X* [5, Lemma 1.2 and Theorem II.3]. Clearly Z,, is contained in Z,.
However, we do not know whether or not Z,, = Z,.

QUESTION [7, Remarks V.3]. Assume that both Z,, and Z; exist for X.
Is Z, = Z4?
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We can only give an affirmative answer for dual spaces.

PROPOSITION 2.22. Assume that X is isometric to a dual space. Then
X admits a smallest local dual Zg if and only if it admits a smallest norming
subspace Z,. In this case Zg4 = Z,, and this space is the unique isometric
predual of X.

Proof. By [5, Lemma 1.2], the smallest norming subspace Z,, exists if
and only if

Zr={2€ X* ||z — x| > |z for every z € X}.

In this case X** = X @ Z;- and Z, is the unique predual of X [5, Theo-
rem II.1].

Clearly, the projection P on X** with kernel Z;- and range X satisfies
||IP|| = 1 and the remaining conditions in Theorem 2.5. Hence Z,, is a local
dual of X, and it is the smallest one, because every local dual is norming.

Conversely, assume that the smallest local dual Z,; exists, and let P be
the associated projection. If X, is a predual of X, then X** = X @ X} =
P(X)® Zz. Since X C P(X) and Zy C X, (hence X;- C Z3), we conclude
that Zg = X, and X = Zj-. In particular,

Z7 ={z€ X* ||z — 2| > ||z|| for every x € X};
hence Z; is the smallest norming subspace of X. m

REMARK 2.23. (a) In Proposition 2.22, we have seen that a dual space
admitting a smallest norming subspace has a unique predual. However, this
condition is not sufficient, since L [0,1] has a unique predual but it does
not admit a smallest norming subspace [5, Proposition IV.2].

(b) There are spaces X containing no copies of ¢; so that X* is f.d.r. in
a subspace Z which is not a local dual of X.

Indeed, let Y be a separable space such that Y**/Y is isomorphic to c¢g,
and let @ : Y** — Y**/Y denote the quotient map. We select a subspace
M of ¢y such that M~ is not complemented in ¢;. For example, we can take
M so that M~ is isomorphic to 1 (¢%).

The space X = Y™ contains no copies of ¢/;, and X* is f.d.r. in Z :=
Q' (M), because Y is contained in Z. However, Z is not a local dual of X
because Z+ = M~ is not complemented.
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