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Spectral multipliers for a distinguished Laplacian on
certain groups of exponential growth

(A remark on the paper of M. Cowling et al.)

by

Adam Sikora (Las Cruces, NM)

Abstract. We study spectral multipliers for a distinguished Laplacian on certain
groups of exponential growth. We obtain a stronger optimal version of the results proved
in [CGHM] and [A].

The aim of this note is to introduce some small but significant changes
to the proof of the spectral multiplier theorem obtained in [CGHM]. These
changes allow us to obtain a stronger version of the result obtained in
[CGHM]. The required order of differentiability in our version of the spectral
multiplier theorem is 1/2 smaller than in [CGHM]. This improvement is sig-
nificant as our result is optimal in the sense that this order of differentiability
cannot be further decreased (see remark to Theorem 1).

Our proof is valid not only for the groups investigated in [CGHM],
namely Iwasawa components of noncompact, semisimple Lie groups, but
it also works for the groups considered in [A], i.e. solvable extensions of
H-type groups. Also in the latter case we obtain a stronger optimal version
of the result proved in [A].

To avoid repetition we only describe this part of the proof which is
different than in [CGHM]. For a broader discussion of multiplier theorems
on groups of exponential growth we refer the reader to [CGHM]. For basic
definitions and facts concerning solvable extensions of H-type groups see [A].

Before we state our main result we have to introduce some notation. How-
ever, for full description of notation which we use we again refer the reader
to [CGHM]. Let G denote a connected, noncompact, semisimple Lie group.
Write G = ANK for an Iwasawa decomposition of G and S for the solvable
group AN . We identify S with the symmetric space G/K. Under this iden-
tification the G-invariant measure is the left-invariant measure on S and the
Riemannian metric on G/K is a left-invariant metric on S. We denote by n
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the dimension of S, by l its real rank and by ν the pseudo-dimension 2d+ l,
where d is the cardinality |Σ+

0 | of the set of indivisible positive roots.
If X is a left-invariant vector field on S we denote by X̌ the right-

invariant vector field on S which coincides with X at the identity. We are
going to study the distinguished Laplacian on S defined by the formula

∆S = −
n∑

i=1

X̌2
i ,(1)

where X1, . . . ,Xn is any orthonormal base of the Riemannian metric on S.
∆S does not depend on the particular choice of orthonormal base. Further
∆S is self-adjoint and positive definite and it admits a spectral decom-
position. By the spectral theorem, for any bounded Borel function m the
operator

m(∆S) =
∞�

0

m(λ) dE∆S(λ)(2)

is well defined and bounded on L2(S). For the definition of a distinguished
Laplacian on solvable extensions of H-type groups we refer the reader to [A].

We denote by Hs(R) the L2-Sobolev space of order s on R. If m is a
function on R+ which is locally in Hs(R) we define ‖m‖(s) by

‖m‖(s) = sup
t≥1
‖ηδtm‖Hs ,

where η ∈ C∞c (R+) is any nonzero smooth function with compact support
on R+ and δtm(λ) = m(tλ). Note that the condition ‖m‖(s) < ∞ is ac-
tually independent of the choice of η. The main goal of this paper is to
prove the following theorem which is a stronger optimal version of [CGHM,
Theorem 2.1] and [A, Theorem 2].

Theorem 1. Suppose that L is the distinguished Laplacian on an Iwa-
sawa AN group or on a solvable extension of an H-type group. Fix s0 and
s∞ in R+ such that

s0 > ν/2 and s∞ > max{ν/2, n/2} (1).

Let m be a function on [0,∞) such that

(i) on the interval [0, 2], m coincides with a function in Hs0(R);
(ii) m is locally in Hs∞ and ‖m‖(s∞) <∞.

Then m(∆S) is bounded on Lp(S) for 1 < p <∞ and is of weak type (1, 1).

Remark. The order of differentiability required in Theorem 1 is optimal.
Indeed, let σa(∆S) = (1−∆S)a+ be the Riesz mean of ∆S of order a. Then
on complex symmetric spaces, σa(∆S) is bounded on all spaces Lp(S) if and

(1) ν = 3 for any solvable extension of an H-type group.
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only if a > (n−1)/2 = (ν−1)/2 (see [H]). Now the function (1−λ)a+ belongs
to Hs if and only if a > s − 1/2. Hence Theorem 1 describes the optimal
range of summability of Riesz means. Another way to see that the order of
differentiability required in Theorem 1 is optimal is to consider imaginary
powers of L. Indeed, let ϕ be a smooth function equal to 0 on [0, 1] and 1
off [0, 2]. We put mα(λ) = ϕ(λ)λiα. Then (see [SW])

‖mα(∆S)‖L1→L1,∞ ≥ C(1 + |α|)n/2.
However, ‖mα‖(s) ∼ (1 + |α|)s and so the conclusion of Theorem 1 does not
hold for any s∞ < n/2.

Proof of Theorem 1. First we note that if (i) and (ii) hold for m, then
m̃(λ) = m(λ− 1) also satisfies (i) and (ii). Hence it is enough to prove that
m(∆′S) is of weak type (1, 1), where ∆′S = ∆S+I. We denote by Km(∆′S) the
convolution kernel associated with m(∆′S) (see [CGHM]). We let Br denote
the open ball of radius r centred at the identity of S defined relative to the
left-invariant metric. Finally we put Ak = B2k/2 \B2(k−1)/2 .

A minor variation of the standard Calderón–Zygmund technique de-
scribed in [CGHM] reduces the proof of Theorem 1 to the following two
propositions (compare [CGHM, Proposition 3.2, Lemma 4.4]):

Proposition 1. Suppose that ε is a positive real number and X is a left-
invariant vector field on S. For all nonnegative integers j and all integers
k, if suppm ⊂ [2j−2, 2j ], then

‖χAkKm(∆′S)‖L2 ≤ Cε2nj/4(2k+j + 1)ε−s/2‖δ2jm‖Hs ,(3)

‖χAkXKm(∆′S)‖L2 ≤ Cε2(n+2)j/4(2k+j + 1)ε−s/2‖δ2jm‖Hs .(4)

Proposition 2. Suppose s > ν/2 and suppm0 ⊂ [−1, b] where b ∈ R.
Then

‖Km0(∆′S)‖L1(S) = ‖m0(∆′S)‖L1(S)→L1(S) ≤ Cb‖m0‖Hs .(5)

Proof of Propositions 1 and 2. First we note that (see [CGHM, (1.1)])
�

S

|Km(∆′S)(g)|2 dg =
�

a∗
|m(1 + 〈λ, λ〉)|2|c(λ)|−2 dλ(6)

≤ C ′
∞�

0

|m(τ)|2τn/2−1 dτ = C
�

Rn
|Km(∆Rn)(x)|2 dx,

where ∆Rn is the Laplace operator on Rn. Hence

‖χAkKm(∆′S)‖L2 ≤ ‖Km(∆′S)‖L2 ≤ C2nj/4‖δ2jm‖L2 .(7)

It is proved in [CGHM, Lemma 4.4] that if suppm ⊂ [2j−2, 2j ], then

(8) ‖χAkKm(∆′S)‖L2 ≤ C(2(1−2s)(k+j)/4+nj/4 + 2nj/4e−2k+j−4
)‖δ2jm‖Hs .
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By (8) and (7), if suppm ⊂ [2j−2, 2j ], then

‖χAkKm(∆′S)‖L2 ≤ C2nj/4(2k+j + 1)1/4−s/2‖δ2jm‖Hs .(9)

Now we show that one can put any ε > 0 in place of 1/4 in (9). To do this
we use the Mauceri–Meda interpolation trick (see [MM]). By interpolation
between (9) and (7),

‖χAkKm(∆′S)‖L2 ≤ C2nj/4(2k+j + 1)θ(1/4−s/2)‖δ2jm‖[L2,Hs]θ .

Hence by putting s′ = θs and taking θ small enough we obtain (3).
To prove (4) we note that by (6) for any bounded Borel function m,

‖XKm(∆′S)‖L2 ≤ C(‖X̌Km(∆′S)‖L2 + ‖Km(∆′S)‖L2)(10)

≤ C‖
√
∆′SKm(∆′S)‖L2 ≤ C2(n+2)j/4‖δ2jm‖L2 .

The rest of the proof of (4) is the same as for (3).
Note that for any a > 0 the operator ∆S + aI satisfies the Gaussian

bounds for the corresponding heat kernels. It also satisfies the finite speed
propagation of the solution of the wave equation (see (16)). We do not use
any other properties in the proof of (3). Hence (3) holds for ∆S + aI and so
(3) holds for all functions m such that suppm ⊂ [−1, 2j]. Now Proposition 2
follows from (3). Indeed by [CGHM, Lemma 1.3 and (1.3)] and (3),

(11) ‖Km0(∆′S)‖L1(S) = ‖χB1Km0(∆′S)‖L1 +
∑

k>0

‖χAkKm0(∆′S)‖L1

≤ ‖φ0χB1‖L2‖χB1Km0(∆′S)‖L2 +
∑

k>0

‖φ0χAk‖L2‖χAkKm0(∆′S)‖L2

≤ C
(
‖χB1Km0(∆′S)‖L2 +

∑

k>0

2kν/4‖χAkKm0(∆′S)‖L2

)

≤ C
(
‖m0‖L2 +

∑

k>0

2(ν−2s+ε)k/4‖m0‖Hs

)
≤ C‖m0‖Hs .

This ends the proof of Propositions 1 and 2 and Theorem 1.

Finally we describe an alternative way of proving Propositions 2 and 1.
This way is independent of [CGHM, Lemma 4.4] (we do not need (8) in the
proof). In contrast to [A, CGHM], in this proof we do not need estimates
for the gradient of the heat kernel. Actually the result which we obtain is
more precise than Propositions 2 and 1.

Proposition 3. Suppose that suppm0 ⊂ [−1, b] where b ∈ R+. Then

‖Km0(∆′S)‖L1(S) = ‖m0(∆′S)‖L1(S)→L1(S) ≤ Cb‖m0‖B2,1
ν/2
,(12)

where Bq,q′
s denotes the Besov space (see [T] for definition and basic prop-

erties). Moreover if k ∈ Z and j ∈ Z+ and suppm ⊂ [0, 2j], then
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‖χAkKm(∆′S)‖L2 ≤ C2nj/4(2k+j + 1)−s/2‖δ2jm‖B2,∞
s

,(13)

‖χAkXKm(∆′S)‖L2 ≤ C2(n+2)j/4(2k+j + 1)−s/2‖δ2jm‖B2,∞
s

.(14)

Proof. By (6),
�

S

|Km(∆′S)(g)|2 dg ≤ C
�

Rn
|Km(∆Rn)(x)|2 dx.(15)

Next, if br is the Euclidean ball of radius r centred at 0 in Rn and
χbr is the characteristic function of br, then the functions χbrKm(∆Rn) and
(1 − χbr)Km(∆Rn) are radial, so there exist functions mr : R+ → C and
mr : R+ → C such that

Kmr(∆Rn) = χbrKm(∆Rn) and Kmr(∆Rn) = (1− χbr)Km(∆Rn).

Now we put M(λ) = mr(λ2) and we denote by M̂ the Fourier transform of
M . Then supp M̂ ⊂ [−r, r]. By the finite speed propagation property of the
wave equation (cf. [S, Theorem 1]), we have

supp(K
Ct(
√
∆′S)) ⊂ Bt,(16)

where Ct(λ) = cos(tλ). Hence using the functional calculus formula

mr(∆′S) = M(
√
∆′S) =

1
2π

�
M̂(t)Ct(

√
∆′S) dt,

we obtain
supp(mr(∆′S)) ⊂ Br.(17)

Obviously m = mr +mr so by (17),

Kmr(∆′S)(g) = Km(∆′S)(g) for g 6∈ Br.
Hence by (15),

�

Bc
r

|Km(∆′S)(g)|2 dg =
�

Bc
r

|Kmr(∆′S)(g)|2 dg ≤
�

S

|Kmr(∆′S)(g)|2 dg

≤ C
�

Rn
|Kmr(∆Rn)(x)|2 dx = C

�

bcr

|Km(∆Rn)(x)|2 dx.

Thus

‖χAk+1Km(∆′S)‖L2 ≤ ‖χBc
2k/2

Km(∆′S)‖L2 ≤ C‖χbc
2k/2

Km(∆Rn)‖L2

≤ C2nj/4(2k+j + 1)−s/2‖δ2jm(| · |)‖
B2,∞
s (Rn)

≤ C2nj/4(2k+j + 1)−s/2‖δ2jm‖B2,∞
s (R).

To prove (14) we note that (see (10))

‖XKm(∆′S)‖L2 ≤ C‖
√
∆′SKm(∆′S)‖L2 ≤ ‖Km(∆Rn+2)‖L2 .

Now the rest of the proof of (14) is the same as the proof of (13).
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Finally (see (11)),

‖Km0(∆′S)‖L1(S) ≤ C
(
‖χB1Km0(∆′S)‖L2 +

∑

k>0

2kν/4‖χAkKm0(∆′S)‖L2

)

≤ C
(
‖Km0(∆′S)‖L2 +

∑

k≥0

2kν/4‖χBc
2k/2

Km0(∆′S)‖L2

)

≤ C
(
‖Km0(∆Rn)‖L2 +

∑

k≥0

2kν/4‖χbc
2k/2

Km0(∆Rn)‖L2

)

= C
(
‖Km0(∆Rn)‖L2 +

∑

k≥0

∑

i>k

2kν/4‖χaiKm0(∆Rn)‖L2

)

≤ C
(
‖Km0(∆Rn)‖L2 +

∑

i>0

2iν/4‖χaiKm0(∆Rn)‖L2

)

= C‖m0(| · |)‖B2,1
ν/2(Rn) ≤ C‖m0‖B2,1

ν/2(R),

where ak = b2k/2b2(k−1)/2 .
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