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First results on spectrally bounded operators

by

Martin Mathieu and Gerhard J. Schick (Belfast)

Abstract. A linear mapping T from a subspace E of a Banach algebra into another
Banach algebra is defined to be spectrally bounded if there is a constant M ≥ 0 such that
r(Tx) ≤Mr(x) for all x ∈ E, where r(·) denotes the spectral radius. We study some basic
properties of this class of operators, which are sometimes analogous to, sometimes very
different from, those of bounded operators between Banach spaces.

1. Introduction. A linear operator between Banach algebras is said to
be spectrally bounded if it increases the spectral radius of each element but by
a universal multiplicative constant. (For the precise definition, see Section 2
below.) Spectrally bounded operators made their appearance, in various
guises, in a number of papers since the mid 1970’s; see [1, 8, 15, 16, 22], to
cite but a few. The concept became more prominent when it was discovered
that a derivation d on a Banach algebra A is spectrally bounded if and only
if dA is contained in the Jacobson radical rad(A) of A [9, Theorem 2.5]. This
revealed an intimate interrelation with the non-commutative Singer–Wermer
conjecture and, hence, with Automatic Continuity Theory [12]. Another
instance of such an interplay had arisen earlier in Aupetit’s approach to
Johnson’s uniqueness-of-the-complete-norm-topology theorem [1]. Aupetit
proved that every surjective spectrally bounded operator onto a semisimple
Banach algebra must be bounded, from which Johnson’s result follows easily.

Recently, spectrally bounded operators and their properties were stud-
ied in greater detail in [7, 10, 11, 18]. For instance, Šemrl proved that every
bijective spectrally bounded operator on the algebra B(H) of all bounded
linear operators on an infinite dimensional Hilbert space H is a Jordan auto-
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morphism [19], and his result was extended to arbitrary properly infinite von
Neumann algebras in [13]. In the formulation presented below, the concept
of a spectrally bounded operator turned out to be crucial in order to extend
Johnson’s automatic continuity theorem for homomorphisms to Lie homo-
morphisms in [5]. The continuity of Lie homomorphisms had been studied
before in [17] and [6] under rather restrictive assumptions.

Having thus proved its usefulness, the concept of a spectrally bounded
operator deserves a thorough study from scratch, we believe. It is the pur-
pose of the present article to establish some first results in this direction.
Of course, not in the sense of being the first results proven, but rather some
basic observations on which a fuller theory eventually should build. Sec-
tion 2 is devoted to an introduction of the appropriate framework and a
compilation of some of the existing material in a systematic way. In anal-
ogy to the theory of bounded linear operators, we then start a discussion
of a duality theory with a closer look at spectrally bounded linear function-
als in Section 3 below. It will emerge that, due to the failure of a general
Hahn–Banach theorem, the notion of a spectral dual (see Definition 3.1) is
far less powerful than the usual concept of the topological dual of a Banach
space.

The fourth section is concerned with the investigation of spectral isome-
tries (i.e., spectral radius-preserving operators) with an outlook on a pos-
sible structure theorem for them analogous to the one recently obtained for
spectrally bounded operators in [13].

2. The framework for spectrally bounded operators. In this pa-
per, we study operators defined on normed spaces that are endowed with a
“spectral structure”. To this end, we consider a normed space E, a unital
Banach algebra A, and a linear topological isomorphism ι from E into A.
Strictly speaking, our objects are therefore triples (E,A, ι); however, in order
to simplify the notation, we shall always suppress ι and consider E already
as a normed subspace of A. We denote this by writing “E ⊆ A”, and we say
that E is a spectrally normed space; but we emphasize that the “spectral
structure” on E depends on the embedding, up to topological isomorphism.

In this setting, E ⊆ A, we can define the spectral radius r(x) of x ∈ E by
the usual formula r(x) = limn→∞ ‖xn‖1/n, computed in A. Note that, once
the embedding is fixed, this does not depend on whether we consider the
entire algebra A or any unital closed subalgebra of A containing E. Hence,
if we assume that E ⊆ A is commutative, we may without loss of generality
suppose that A itself is commutative, upon replacing A by a maximal com-
mutative subalgebra of A containing the commutative subset E, if necessary.

Examples 2.1. 1. Every normed space E carries at least one spectral
structure via the isometric embedding jE of E into C(E′1), the complex-
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valued continuous functions on the dual unit ball E ′1 endowed with the
weak∗-topology. This is a commutative, semisimple structure on E; in fact,
‖x‖ = r(x) for all x ∈ E in this case.

2. Suppose that E is a unital Banach algebra itself. Then there is the
canonical spectral structure on E given by the identical mapping. This struc-
ture coincides with the one induced by considering E as a closed subalgebra
of the algebra B(E) of all bounded linear operators on E via the left regular
representation.

Definition 2.2. Let E ⊆ A, F ⊆ B be spectrally normed spaces. A
linear mapping T : E → F is called spectrally bounded if there is a constant
M ≥ 0 such that

r(Tx) ≤Mr(x) (x ∈ E).

By SB(E,F ) we denote the set of all spectrally bounded operators from E
into F .

Note that, if F is not commutative, SB(E,F ) will in general not be a
vector space. Nevertheless we introduce an analogue of the operator norm
for spectrally bounded operators.

Definition 2.3. Let T ∈ SB(E,F ) for some spectrally normed spaces
E and F . We put

‖T‖σ = inf{M ≥ 0 | r(Tx) ≤Mr(x) for all x ∈ E}
and call ‖T‖σ the spectral operator norm of T .

Here are some immediate properties of the spectral operator norm.

Proposition 2.4. Suppose that E, F , G are spectrally normed spaces,
and let S, T ∈ SB(E,F ) and R ∈ SB(F,G). Then

(i) ‖T‖σ = sup{r(Tx) | x ∈ E, r(x) ≤ 1}
= sup{r(Tx) | x ∈ E, r(x) = 1};

(ii) ‖λT‖σ = |λ| · ‖T‖σ for all λ ∈ C;
(iii) ‖RT‖σ ≤ ‖R‖σ‖T‖σ;
(iv) ‖S + T‖σ ≤ ‖S‖σ + ‖T‖σ if F is commutative.

Proof. Let M ≥ 0 be such that, for all x ∈ E, r(Tx) ≤ Mr(x). Then
sup{r(Tx) | x ∈ E, r(x) ≤ 1} ≤ M , so the supremum is also dominated
by ‖T‖σ. Let α = sup{r(Tx) | x ∈ E, r(x) = 1} (with the understanding
that α = 0 if the set on the right hand side is empty). For all quasi-nilpotent
x ∈ E certainly r(Tx) ≤ αr(x) holds since T is spectrally bounded. Suppose
x ∈ E is not quasi-nilpotent. Then r(T (x/r(x))) ≤ α. Hence, r(Tx) ≤ αr(x)
holds for all x ∈ E, which shows that α ≥ ‖T‖σ. Combining these facts yields
assertion (i).
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Assertion (ii) follows directly from (i). Note that (i) in particular implies
that r(Tx) ≤ ‖T‖σr(x) for all x ∈ E. Therefore,

r(RTx) ≤ ‖R‖σr(Tx) ≤ ‖R‖σ‖T‖σr(x) (x ∈ E),

which entails (iii). Suppose that F is commutative. Then the spectral radius
is subadditive and therefore the sum of two spectrally bounded operators is
spectrally bounded. Assertion (iv) is thus evident.

Notation. For a spectrally normed space E ⊆ A, we put rad(E) =
E ∩ rad(A) and we call E semisimple if rad(E) = 0. This terminology is
justified as we can embed E/rad(E) into A/rad(A) under preservation of
the spectral structure.

Corollary 2.5. Suppose that F is a semisimple commutative spectrally
normed space. For every spectrally normed space E, (SB(E,F ), ‖·‖σ) is a
normed space. If E = F then SB(E) = SB(E,F ) is a unital normed algebra.

Proof. This is immediate from Proposition 2.4 and the well known fact
that the spectral radius is a norm on a semisimple commutative Banach
algebra.

Before going any further let us consider a few examples.

Example 2.6. Let A be a Banach algebra and a, b ∈ A. Denote by
da,b: x 7→ xa− bx, x ∈ A, the generalised inner derivation determined by a
and b. Then da,b is bounded with ‖da,b‖ ≤ ‖a‖+ ‖b‖. By [11, Theorem B],
da,b is spectrally bounded if and only if both a and b belong to the centre
modulo the radical, Z(A), of A. In this case, ‖da,b‖σ = r(a− b) ≤ ‖da,b‖.

Example 2.7. Let A = M2(C) be the C∗-algebra of all complex 2 × 2
matrices. Let f be the bounded linear functional on A given by f((aij)) =
a11, (aij) ∈ A. Then f is not spectrally bounded since

xn =
(
n 1− n
n 1− n

)

has spectral radius 1 for each n ∈ N, but f(xn) = n.

Example 2.8. Let A = C(X) be the C∗-algebra of all continuous
complex-valued functions on a compact Hausdorff space X. Let B = M2(A)
denote the C∗-algebra of all 2× 2 matrices with entries in A. Suppose there
is an unbounded linear functional ϕ on A. Then the mapping

T : A→ B, a 7→
(
a ϕ(a)
0 a

)
,

is an unbounded operator on A which is spectrally bounded since Ta is
invertible whenever a ∈ A is invertible.
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These examples illustrate that, in general, there is no interrelation be-
tween boundedness and spectral boundedness for linear operators. The fol-
lowing observation is an exception.

Proposition 2.9. Let E, F be spectrally normed spaces.

(i) Suppose that E ⊆ C(X). Then B(E,F ) ⊆ SB(E,F ) and ‖·‖σ ≤ ‖·‖.
(ii) Suppose that F ⊆ C(Y ). Then SB(E,F ) ⊆ B(E,F ) and ‖·‖ ≤ ‖·‖σ.

Proof. Both assertions are immediate from the fact that ‖x‖ = r(x) for
every bounded continuous function x.

Examples 2.7 and 2.8 show that the commutative C∗-algebras appearing
in the assumptions of Proposition 2.9 cannot be replaced by arbitrary ones.

The following automatic continuity result was first proved for the case
E = A, a Banach algebra, in [1, Theorem 1] (see also [2, Theorem 5.5.1]),
and its extension to general E is noted in [5, Lemma A]. We use the standard
notation

S(T ) = {y ∈ F | ∃(xn)n∈N in E, xn → 0, Txn → y}
for the separating space of the operator T : E → F .

2.10. Aupetit’s Lemma. Let T be a spectrally bounded operator on a
spectrally normed space E. Then r(Tx) ≤ r(Tx + y) for all x ∈ E and all
y ∈ S(T ). Consequently , if E is complete and T maps onto a semisimple
Banach algebra, then T is bounded.

This result shows that, modulo the radical, surjectivity of a spectrally
bounded operator entails boundedness. The behaviour with respect to the
radical is easily controlled via the following observation.

Proposition 2.11. Let T : E → B be a spectrally bounded operator from
a spectrally normed space E onto a Banach algebra B. Then T rad(E) ⊆
rad(B).

Proof. By [3, Theorem 1], an element a belongs to the radical if and only
if sup{r(x+ λa) | λ ∈ C} <∞ for all elements x. Let a ∈ rad(E). Then for
each y ∈ B there is x ∈ E such that Tx = y and thus

r(y + λTa) = r(T (x+ λa)) ≤ ‖T‖σr(x+ λa) = ‖T‖σr(x).

Therefore, the above characterisation of the radical completes the argu-
ment.

Corollary 2.12. Let T : E → B be a spectrally bounded operator from
a complete spectrally normed space E onto a Banach algebra B. Then
the induced operator T̂ : E/rad(E) → B/rad(B) is bounded and spectrally
bounded with ‖T̂‖σ = ‖T‖σ. If B is semisimple then T itself is bounded ,
and ‖T̂‖ = ‖T‖.
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It was shown in [9, Lemma 2.1] that every spectrally bounded derivation
on a Banach algebra fixes the radical. Indeed, on a commutative Banach
algebra, every derivation d is spectrally infinitesimal, i.e., ‖d‖σ = 0, by
Thomas’ theorem [21]. On the other hand, without additional assumptions
spectral boundedness does not imply compatibility with the radical, as the
following example shows.

Example 2.13. Let A be the unitisation of a radical Banach algebra.
Take x ∈ rad(A) and ϕ ∈ A′ such that ϕ(x) = 1. Let B = M2(A). We define
T : A→ B by

Ta =
(
a ϕ(a)
0 a

)
.

Then T preserves invertible elements and hence is spectrally bounded. How-
ever, since rad(B) = M2(rad(A)), Tx is not contained in rad(B).

Remark 2.14. In [13] it is shown that every spectrally bounded oper-
ator onto a semisimple Banach algebra preserves nilpotent elements, which
however requires more sophisticated tools.

Remark 2.15. The above discussion suggests the question whether an
analogue of the open mapping theorem is valid for spectrally bounded oper-
ators. That is, is the inverse of a bijective spectrally bounded operator onto
a (semisimple) Banach algebra spectrally bounded? This holds, e.g., if the
range is of the form C(X), by Proposition 2.9(i), but fails in general. We
can simply take the canonical linear isomorphism between C4 and M2(C)
as an example.

3. The spectral dual. In this section we shall introduce the spectral
analogue of the dual space of a normed space and discuss a few of its proper-
ties. Naturally, the question of extensions of spectrally bounded functionals
and the validity of a Hahn–Banach theorem play a central role.

By Corollary 2.5, the spectrally bounded linear functionals on a spec-
trally normed space E form a normed space (SB(E,C), ‖·‖σ). It is therefore
close at hand to introduce the following terminology.

Definition 3.1. For a spectrally normed space E we call the normed
space (SB(E,C), ‖·‖σ) the spectral dual of E and denote it by Eσ.

Proposition 3.2. For every spectrally normed space E, the spectral dual
Eσ is a Banach space.

Proof. Let (fn)n∈N be a Cauchy sequence in Eσ. Then, for ε > 0 and all
n,m ≥ n0 for some n0 ∈ N,

|fn(x)− fm(x)| = r((fn − fm)(x)) ≤ ‖fn − fm‖σr(x) < εr(x) (x ∈ E).
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This implies that (fn)n∈N converges pointwise to a functional f on E and, for
all x with r(x) ≤ 1, r((fn−f)(x)) ≤ ε for all n ≥ n0. Hence, ‖fn − f‖σ ≤ ε,
n ≥ n0, and ‖f‖σ = limn ‖fn‖σ, which shows that f ∈ Eσ and (fn)n∈N
converges to f in Eσ.

Let E′ denote the dual space of a normed space E. By Proposition 2.9,
we have a contractive embedding of Eσ into E′, whenever E is spectrally
normed. By Example 2.7, this embedding is in general not surjective. How-
ever, combining Proposition 2.9 with the above result immediately gives the
following special case.

Corollary 3.3. Let E be a spectrally normed space such that E ⊆
C(X). Then Eσ and E′ are isometrically isomorphic via the identical map-
ping.

However, if E is simply a commutative spectrally normed space, the
subspace SB(E,C) of E′ may be proper and non-closed, as the following
example illustrates.

Example 3.4. By the closed graph theorem it is clear that SB(E,C)
is closed in E′ if and only if ‖ · ‖ and ‖·‖σ are equivalent on Eσ. Therefore
our task is to produce an example of a spectrally normed space E and an
unbounded sequence (fn)n∈N in Eσ which is bounded in E′.

Let c0 be the non-unital Banach algebra of all complex null sequences.
Consider the non-trivial ideal J of c0 defined by

J = {(xk)k∈N ∈ c0 | sup
k∈N
|kxk| <∞}.

We define on J a new norm by ‖(xk)k∈N‖′ = supk∈N |kxk|. With this norm,
J becomes a commutative Banach algebra under componentwise multi-
plication. Let A be the unitisation of J . It is easy to see that, for each
x = (xk)k∈N+x0 ∈ A, the spectrum is given by σ(x) = {x0, x0 +xk | k ∈ N}.
Consequently, r(x) = supk∈N{|x0|, |x0 +xk|}. In particular, A is semisimple.

Let T be the bounded operator defined by

T : A→ `∞, (xk)k∈N + x0 7→ (
√
k xk)k∈N.

For every n ∈ N, let Pn be the projection of `∞ onto the subspace spanned
by the first n canonical unit vectors e1, . . . , en and let Tn = Pn ◦ T . Then

r(Tnx) = sup{|
√
k xk| | 1 ≤ k ≤ n} ≤

√
n sup{|xk| | 1 ≤ k ≤ n} ≤ 2

√
n r(x)

for all x ∈ A and n ∈ N. Therefore, Tn ∈ SB(A, `∞) ⊆ B(A, `∞) for every
n ∈ N.

Clearly, (Tn)n∈N converges to T in norm. However, T is not spectrally
bounded since T ẽn =

√
n en, where ẽn denotes the nth canonical unit vector

in c0.
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We have thus shown that SB(A, `∞) is not closed in the Banach space
B(A, `∞) and we shall deduce from this that SB(A,C) is not closed in A′.

Choose a real number 1 < θ < 3/2 and define g ∈ (`∞)′ by

g(x) =
∞∑

k=2

k−θxk−1 (x = (xk)k∈N ∈ `∞).

By Corollary 3.3, g is spectrally bounded. Therefore, fn = T ′ng ∈ SB(A,C)
for all n ∈ N. Let f = T ′g = limn fn ∈ A′. To see that f 6∈ SB(A,C), let
yn =

∑n
k=1 ẽn ∈ A. Then r(yn) = 1 but

f(yn) =
n∑

k=2

k−θ+1/2,

which grows arbitrarily large as n→∞.

Remark 3.5. Of course, we have to check that the spectral dual Eσ is
an object in our new category. Since Eσ is a normed space, it carries the
spectral structure inherited from the embedding into C((Eσ)′1); compare
Example 2.1.1. Indeed, ‖f‖σ = r(f) for all f ∈ Eσ in this spectral structure.
We shall always consider Eσ as a spectrally normed space endowed with this
(canonical) spectral structure.

From Remark 3.5 and Corollary 3.3 we derive the following rigidity prop-
erty of the spectral dual space construction.

Corollary 3.6. For every spectrally normed space E, the dual (Eσ)′ of
the spectral dual Eσ of E is isometrically isomorphic to the spectral bidual
Eσσ of E (via the identical mapping).

Corollary 3.7. The adjoint T σ of a spectrally bounded operator T is
spectrally bounded with ‖T σ‖σ ≤ ‖T‖σ.

Proof. Let T : E → F be a spectrally bounded operator between the
spectrally normed spaces E and F . Denote by T σ: F σ → Eσ the adjoint
mapping T σg = g◦T , g ∈ F σ. By the definition of the dual spectral structure
we find

r(Tσg) = ‖g ◦ T‖σ ≤ ‖g‖σ‖T‖σ = ‖T‖σr(g)

for all g ∈ F σ, where we have used Proposition 2.4(iii). As a result, T σ ∈
SB(F σ, Eσ) and ‖T σ‖σ ≤ ‖T‖σ.

Before becoming too optimistic about the role of the spectral dual, let
us describe it in some non-commutative setting.

Example 3.8. Let A = Mn(C) for some n ∈ N. Take f ∈ Aσ; then f
vanishes on all nilpotent matrices. It is well known that the space s`n(C) of
all trace zero matrices is linearly spanned by the nilpotent matrices. Denot-
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ing by tr the normalised trace on A, we thus find ker tr ⊆ ker f . It follows
that f = α tr for some α ∈ C. Therefore, Mn(C)σ = C independent of n.

It even can come worse, as the next example shows.

Example 3.9. Let A = B(H) for some infinite-dimensional Hilbert
space H. Take f ∈ Aσ. It is known that every element in B(H) is a sum of
nilpotent elements (in fact, elements with square zero); see, e.g., [14, Theo-
rem 2]. As f vanishes on nilpotent elements, f=0. Therefore, B(H)σ={0}.

These examples can be extended as follows. For every properly infinite
von Neumann algebra A, Aσ = {0}; see [13, Corollary 3.9]. On the other
hand, if A is a finite factor with canonical trace τ , then the same arguments
as in Example 3.8 apply since the subspace spanned by the nilpotent ele-
ments is dense in ker τ and every f ∈ Aσ is bounded; hence, f is a multiple
of τ . It follows that Aσ = C in this case as well. However, this does not
extend to arbitrary finite von Neumann algebras. If A = C(X), by Corol-
lary 3.3, C(X)σ = C(X)′.

The above examples drastically rule out any hope for a Hahn–Banach
type theorem for spectrally bounded functionals. Behind this is the fact that,
in non-commutative algebras, there may be quasi-nilpotent elements x and y
whose sum z is not quasi-nilpotent. If f is a spectrally bounded functional on
the one-dimensional subspace spanned by z such that f(z) = 1, no extension
of f to the entire algebra will be spectrally bounded.

Remark 3.10. Let E ⊆ A, where the Banach algebra A is commutative
modulo the radical. Then the spectral radius is subadditive. Hence, whenever
f ∈ Eσ we can apply Banach’s extension theorem to f with the seminorm
p(x) = ‖f‖σr(x), x ∈ E. Therefore, an extension f̃ ∈ Aσ of f with the
property ‖f‖σ = ‖f̃‖σ exists. In this situation, all the familiar results in
duality theory hold; e.g., Eσ separates the points in E.

Since there is no extension theorem for spectrally bounded functionals in
general, criteria which entail spectral boundedness become very important.
The following one is a slight modification of an observation made in the
commutative case in [2, Lemma 4.1.15]. By coK we denote the convex hull
of a subset K of a vector space.

Proposition 3.11. Let E ⊆ A be a spectrally normed space which con-
tains the identity of A. Let f be a linear functional on E, and let M > 0.
Then f is spectrally bounded with ‖f‖σ ≤ M = f(1) if and only if f(x) ∈
M coσ(x) for all x ∈ E.

Proof. We first prove the sufficiency of the criterion. If f(1) ∈M coσ(1)
= {M} then f(1) = M . From the assumption f(x) ∈ M coσ(x) it follows
directly that |f(x)| ≤Mr(x) for each x ∈ E, wherefore ‖f‖σ ≤M .
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To show the necessity, we put f ′ = f/M ; then f ′(1) = 1 and ‖f ′‖σ ≤ 1.
Take λ 6∈ coσ(x). Then

|f ′(x)− λ| = |f ′(x− λ)| ≤ r(x− λ),

which implies that f ′(x) ∈ B(λ; r(x − λ)), the closed disk about λ with
radius r(x − λ). Since coσ(x) =

⋂
|λ|>r(x)B(λ; r(x − λ)), it follows that

f ′(x) ∈ coσ(x) for all x ∈ E. This yields the assertion.

4. Spectral isometries. Contractions and isometries play a distin-
guished role in the theory of bounded operators; thus it is not surprising
that their spectral relatives deserve special attention as well.

Definition 4.1. Let E and F be spectrally normed spaces. A linear
operator T ∈ SB(E,F ) is said to be a spectral contraction if ‖T‖σ ≤ 1, and
T is called a spectral isometry if r(Tx) = r(x) for all x ∈ E.

Unlike isometries, spectral isometries may only be injective modulo the
radical.

Proposition 4.2. Let T : A → B be a spectral isometry. Then kerT ⊆
rad(A). Thus, T is injective if A is semisimple.

Proof. Suppose a ∈ kerT . Then, for all x ∈ A, we have

r(x) = r(Tx) = r(Tx+ Ta) = r(x+ a),

which implies that a ∈ rad(A) by [2, Theorem 5.3.1].

Proposition 4.3. Let T : A→ B be a surjective spectral isometry. Then
TZ(A) ⊆ Z(B).

Proof. The argument relies on the following observation by Pták ([15,
Proposition 2.1], see also [2, Theorem 5.2.2]): An element z belongs to the
centre modulo the radical if and only if r(x+ z) ≤ r(x) + r(z) for all x.

Take a ∈ Z(A), and for y ∈ B take x ∈ A such that Tx = y. Then

r(y + Ta) = r(T (x+ a)) = r(x+ a) ≤ r(x) + r(a) = r(y) + r(Ta);

hence Ta ∈ Z(B).

The operator T is called unital if T1 = 1. The above results together
with a classical theorem enable us to deduce that unital surjective spectral
isometries are well behaved on the commutative part of semisimple Banach
algebras.

Corollary 4.4. Let T : A→ B be a unital surjective spectral isometry ,
and let both A and B be semisimple. Then TZ(A) = Z(B). Furthermore,
the restriction T |Z(A) is an algebra isomorphism.

Proof. By Proposition 4.3, TZ(A) ⊆ Z(B) and, since T is injective by
Proposition 4.2, we can apply the same argument to the inverse spectral
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isometry T−1. Hence, TZ(A) = Z(B). The restriction T |Z(A): Z(A) →
Z(B) is thus a unital surjective spectral isometry between semisimple com-
mutative Banach algebras (as rad(Z(A)) = rad(A)∩Z(A)). By Nagasawa’s
theorem [2, Theorem 4.1.17], it follows that T |Z(A) is an isomorphism.

Remark 4.5. In some favourable circumstances, the assumption T1 = 1
in Corollary 4.4 above reduces to a scaling. For instance, if B = B(E) for
a Banach space E, every spectral isometry T from a semisimple Banach
algebra A onto B satisfies T1 = λ1 for some unimodular λ ∈ C. The argu-
ment used in [10, Theorem 1] for the case A = B = B(E) takes over almost
verbatim.

There is some evidence that spectral isometries are well compatible
with the algebraic structure, even in a non-commutative environment. It
is shown in [10] that every unital surjective spectral isometry on B(E),
E a Banach space, is a Jordan isomorphism. This had been obtained for
finite-dimensional E earlier by Aupetit [3, Proposition 2]. Sourour proved
in [20] that every surjective invertibility-preserving operator T on B(E) sat-
isfies the Jordan property T (x2) = (Tx)2 for all x. Very recently, Aupetit
[4] showed that every surjective spectrum-preserving operator between von
Neumann algebras also has this property, thus solving a long-standing prob-
lem by Kaplansky in this framework. If T is a spectral isometry on a von
Neumann algebra, the results in [13] show that the restriction of T to the
properly infinite part (which is a spectrally bounded operator) is a Jordan
homomorphism. Taking all these results together, we propose the following
conjecture.

Conjecture 4.6. Every unital surjective spectral isometry between uni-
tal C∗-algebras is a Jordan isomorphism.

One of the first cases that has to be studied to make progress on this
conjecture is a II1 factor. We also note that dropping “spectral” in Conjec-
ture 4.6 leads to Kadison’s celebrated characterisation of Jordan ∗-isomor-
phisms.

One of the possible strategies to tackle this problem is to show that
spectral isometries preserve large enough parts of the spectrum, in order to
apply some of the previous results. We conclude this paper with two rather
elementary observations of this type. The first one extends an argument in
the proof of [10, Theorem 1] from the case A = B = B(E).

Proposition 4.7. Every bijective unital spectral isometry between two
Banach algebras preserves the peripheral spectrum.

Proof. Suppose that T : A → B is a bijective unital spectral isometry
between the Banach algebras A and B. Let a ∈ A and take λ ∈ σ(a) with
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|λ| = r(a). Then

r(Ta+ λ) = r(T (a+ λ)) = r(a+ λ) = 2|λ| = 2r(a).

Hence, there is α ∈ σ(Ta) such that |α+ λ| = 2|λ|, wherefore |α| ≥ |λ|. On
the other hand, |α| ≤ r(Ta) = r(a) = |λ| so that |α| = |λ|. From

|α− λ|2 = 2|α|2 + 2|λ|2 − |α+ λ|2 = 4|λ|2 − (2|λ|)2 = 0

we thus deduce that α = λ. Therefore, λ belongs to the peripheral spectrum
of Ta. The same argument applied to T−1 yields the reverse inclusion.

Proposition 4.8. Every unital spectral isometry between two Banach
algebras preserves the convex hull of the spectrum.

Proof. Suppose that T : A→ B is a unital spectral isometry between the
Banach algebras A and B. The convex hull coσ(a) of the spectrum of an
element a is the intersection of all disks B(λ; r(a−λ)), |λ| > r(a). Therefore,

coσ(Ta) =
⋂

|λ|>r(Ta)

B(λ; r(Ta− λ)) =
⋂

|λ|>r(a)

B(λ; r(a− λ)) = coσ(a).

In particular, every unital spectral isometry preserves singleton spectra.
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