
STUDIA MATHEMATICA 211 (2) (2012)

Module maps over locally compact quantum groups

by
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Abstract. We study locally compact quantum groups G and their module maps
through a general Banach algebra approach. As applications, we obtain various character-
izations of compactness and discreteness, which in particular generalize a result by Lau
(1978) and recover another one by Runde (2008). Properties of module maps on L∞(G)
are used to characterize strong Arens irregularity of L1(G) and are linked to commuta-
tion relations over G with several double commutant theorems established. We prove the
quantum group version of the theorems by Young (1973), Lau (1981), and Forrest (1991)
regarding Arens regularity of the group algebra L1(G) and the Fourier algebra A(G). We
extend the classical Eberlein theorem on the inclusion B(G) ⊆ WAP(G) to all locally
compact quantum groups.

1. Introduction. Let G = (L∞(G), Γ, ϕ, ψ) be a von Neumann alge-
braic locally compact quantum group and let L1(G) be the convolution
quantum group algebra of G. If we let C0(G) be the reduced C∗-algebra
associated with G, then its operator dual M(G) is a faithful completely con-
tractive Banach algebra containing L1(G) as an ideal. It has been shown in
the recent work [25, 26, 28] that many important results in abstract har-
monic analysis can be generalized to the locally compact quantum group
setting, and thus we can develop a corresponding theory of quantum har-
monic analysis. In this paper, we study L1(G)-module maps and structures
on L∞(G). Through a general Banach algebra approach, we obtain in par-
ticular some interesting characterizations of compactness and discreteness
of G.

In Section 2, we recall some definitions for locally compact quantum
groups and associated Banach algebras. We strengthen and extend the com-
pletely isometric embedding result M(G) → LUC (G)∗ (cf. [28]) to a more
general setting, where LUC (G) = 〈L∞(G) ? L1(G)〉 is the space of left uni-
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formly continuous functionals on L1(G). In fact, we show that if X is any
left introverted subspace of L∞(G) with C0(G) ⊆ X ⊆ M(C0(G)), then
there exists a completely isometric C0(G)-bimodule and L1(G)-bimodule al-
gebra homomorphism π : M(G)→ X∗ such that X∗ = π(M(G))⊕C0(G)⊥.
Through the canonical inclusion X ⊆ C0(G)∗∗, we take a natural approach
to constructing such an embedding, and we obtain some additional proper-
ties through this approach (cf. Proposition 2.1 and Corollary 2.5). This ap-
proach, which is even new for the co-commutative case as considered in [41],
yields more characterizations of compact and discrete quantum groups and
an extension theorem for quantum group measure algebra homomorphisms.

In Section 3, we prove several characterizations of compact quantum
groups, which in particular generalize a result by Lau [35] and recover an-
other one by Runde [54]. We characterize compactness of G in terms of the
space WAP(G) of weakly almost periodic functionals on L1(G) and quo-
tient strong Arens irregularity of L1(G). This shows that quotient strong
Arens irregularity may have to be taken into account for answering the
open question raised by Runde in [55, Remark 4.5], which asked whether
LUC (G) = WAP(G) is equivalent to G being compact. We also study when
L1(G) = M(G) holds and present characterizations for discreteness of G. We
show that compactness, discreteness, and finiteness of a quantum group G
can be characterized simultaneously by comparing the right multiplier alge-
bra RM (L1(G)) of L1(G) with the module product L1(G) ? LUC (G)∗. We
obtain the quantum group version of the theorems by Young [64], Lau [37],
and Forrest [16] regarding Arens regularity of the group algebra L1(G) and
the Fourier algebra A(G). Properties of module maps on L∞(G) are fur-
ther used to characterize strong Arens irregularity of L1(G) and are linked
to commutation relations over G. We establish several double commutant
theorems, which in particular improve and extend the commutant theorem
[17, Theorem 5.1] on L1(G) by Ghahramani and Lau. Many of the results
obtained in Section 3 are new even for the Fourier algebra A(G).

In Section 4, we prove two more results on properties of module maps
over G, which characterize amenability and compactness of G in terms of
weakly compact module maps on L∞(G), generalizing and unifying some
results on L1(G) and A(G) by Akemann [1] and Lau [35, 36].

A classical Eberlein theorem says that every positive definite function
on a locally compact group G is weakly almost periodic. In Section 5, we
extend this result to all locally compact quantum groups G. More precisely,
we show that every bounded linear functional on the universal quantum
group C∗-algebra Cu(Ĝ) of Ĝ canonically corresponds to a weakly almost
periodic functional on L1(G). In this way, each µ ∈ Cu(Ĝ)∗ defines a weakly
compact L1(G)-module map from L1(G) to L∞(G).
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2. Definitions and preliminary results. Let us start this section
by recalling some notation related to locally compact quantum groups. The
reader is referred to Kustermans and Vaes [33, 34], Runde [54, 55], van Daele
[62], and [25, 26, 28] for more information. Let G = (M,Γ, ϕ, ψ) be a von
Neumann algebraic locally compact quantum group. Then the pre-adjoint of
the co-multiplication Γ induces on M∗ an associative completely contractive
multiplication ? : M∗ ⊗̂M∗ →M∗, where ⊗̂ is the operator space projective
tensor product. In the case where M is L∞(G) or VN (G) with G a locally
compact group, the algebra (M∗, ?) is the usual convolution group algebra
L1(G), respectively, the Fourier algebra A(G).

It is known (cf. [58, Theorem 2] and [61, Section 2]) thatM has the form
L∞(G) if G is a commutative locally compact quantum group (i.e., M is
commutative). By duality, if G is co-commutative (i.e., Γ satisfies Σ◦Γ = Γ ),
then M has the form VN (G), where Σ is the flip operator on Hϕ ⊗Hϕ.

As for the commutative quantum group case, the von Neumann algebra
M and the convolution algebra (M∗, ?) are denoted by L∞(G) and L1(G),
respectively, and the Hilbert space associated with ϕ or ψ is denoted by
L2(G). Then L1(G) is a faithful completely contractive Banach algebra, and
we have 〈L1(G) ? L1(G)〉 = L1(G) (cf. [25, Fact 1] and [26, Proposition 1]).
The multiplication on L1(G) induces canonically a completely contractive
L1(G)-bimodule structure on L∞(G) satisfying

(2.1) x ? f = (f ⊗ ι)Γ (x) and f ? x = (ι⊗ f)Γ (x)

for all x ∈ L∞(G) and f ∈ L1(G). The quantum group G is said to be
co-amenable if L1(G) has a bounded approximate identity.

It is known that there are two Banach algebra multiplications � and ♦ on
L1(G)∗∗, each extending the multiplication ? on L1(G). For m, n ∈ L1(G)∗∗

and x ∈ L∞(G), by definition, the left Arens product m � n ∈ L1(G)∗∗

satisfies 〈m�n, x〉 = 〈m,n�x〉, where n�x = (ι⊗n)Γ (x) ∈ L∞(G) is given
by 〈n � x, f〉 = 〈n, x ? f〉 (f ∈ L1(G)). Similarly, the right Arens product
m♦n ∈ L1(G)∗∗ satisfies 〈x,m♦n〉 = 〈x♦m,n〉, where x♦m = (m⊗ι)Γ (x) ∈
L∞(G) is given by 〈f, x ♦m〉 = 〈f ? x,m〉 (f ∈ L1(G)). It can be shown by
a matricial argument that both Arens products are completely contractive
multiplications on L1(G)∗∗. The algebra L1(G) is said to be Arens regular if
� and ♦ coincide on L1(G)∗∗.

Clearly, the map L1(G)∗∗ → L1(G)∗∗, n 7→ n �m, is w∗-w∗ continuous
for each m ∈ L1(G)∗∗. The left topological centre of L1(G)∗∗ is defined by

Z(L1(G)∗∗,�) = {m ∈ L1(G)∗∗ : n 7→ m � n is w∗-continuous on L1(G)∗∗}.
The right topological centre Z(L1(G)∗∗,♦) of L1(G)∗∗ is defined analogously.
Then we have

L1(G) ⊆ Z(L1(G)∗∗,�) ∩ Z(L1(G)∗∗,♦)
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and
Z(L1(G)∗∗,�) ∪ Z(L1(G)∗∗,♦) ⊆ L1(G)∗∗,

and L1(G) is Arens regular if and only if Z(L1(G)∗∗,�) = L1(G)∗∗ =
Z(L1(G)∗∗,♦). The algebra L1(G) is said to be strongly Arens irregular (SAI)
if Z(L1(G)∗∗,�) = L1(G) = Z(L1(G)∗∗,♦) (cf. [8]).

For an L1(G)-submodule X of L∞(G) and for x ∈ X and m ∈ X∗, one
can naturally define m � x and x ♦m in L∞(G). Then X is said to be left
introverted in L∞(G) if X∗�X ⊆ X. In this case, the canonical quotient map
L1(G)∗∗ → X∗ yields a Banach algebra multiplication on X∗ (also denoted
by �) such that (X∗,�) ∼= (L1(G)∗∗,�)/X⊥. The topological centre Zt(X

∗)
of X∗ is defined analogously to Z(L1(G)∗∗,�). Right introverted subspaces
of L∞(G) and their topological centres are defined similarly.

Let C0(G) be the reduced C∗-algebra associated with G (cf. [34]) and let
M(C0(G)) be the multiplier algebra of C0(G). Then

(2.2) C0(G) ⊆M(C0(G)) ⊆ L∞(G).

A quantum group G is compact if 1 ∈ C0(G), and is discrete if the dual
quantum group Ĝ of G is compact, which is equivalent to L1(G) being
unital (cf. [14, 54]). The co-multiplication Γ maps C0(G) into the multi-
plier algebra M(C0(G)⊗ C0(G)) of the minimal C∗-algebra tensor product
C0(G) ⊗ C0(G). Then C0(G)∗ is a completely contractive Banach algebra
under the multiplication (also denoted by ?) given by

(2.3) 〈µ ? ν, x〉 = 〈µ⊗ ν, Γ (x)〉 = 〈µ, (id⊗ ν)Γ (x)〉 = 〈ν, (µ⊗ id)Γ (x)〉

(µ, ν ∈ C0(G)∗, x ∈ C0(G)), where

µ⊗ ν = µ(id⊗ ν) = ν(µ⊗ id) ∈M(C0(G)⊗ C0(G))∗.

It is known that L1(G) is canonically identified with a closed two-sided
ideal in (C0(G)∗, ?) via f 7→ f |C0(G) (cf. [33, pp. 913–914]). If the quantum
group is commutative (respectively, co-commutative), then C0(G) = C0(G)
and C0(G)∗ = M(G) (respectively, C0(G) = C∗λ(G) and C0(G)∗ = Bλ(G))
for some locally compact group G, where C∗λ(G) is the reduced group C∗-
algebra of G and Bλ(G) is the reduced Fourier–Stieltjes algebra of G. The
C∗-algebra C0(G) is two-sided introverted in L∞(G), and the Arens prod-
ucts � and ♦ on C0(G)∗ coincide; they are just the product ? due to (2.1)
and (2.3) (cf. [28, (2.10)]). We use M(G) to denote the completely contrac-
tive Banach algebra (C0(G)∗, ?). ThenM(G) is a dual Banach algebra in the
sense of [53, Definition 1.1]; that is, the multiplication onM(G) is separately
w∗-continuous. It is known from [28, Proposition 2.2] that the multiplication
on M(G) is also faithful.
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According to [25, 55], the subspaces LUC (G) and RUC (G) of L∞(G) are
defined by

(2.4) LUC (G) = 〈L∞(G) ? L1(G)〉 and RUC (G) = 〈L1(G) ? L∞(G)〉.

Here, 〈·〉 means the closed linear span. Then LUC (G) is left introverted
in L∞(G), and RUC (G) is right introverted in L∞(G). They are the usual
spaces LUC (G) and RUC (G) if L∞(G) = L∞(G) for a locally compact
group G, where LUC (G) (respectively, RUC (G)) is the space of bounded
left (respectively, right) uniformly continuous functions on G. If L∞(G) =

VN (G), then LUC (G) = RUC (G) is the space UCB(Ĝ) of uniformly contin-
uous functionals on A(G) (cf. [19]). We say that G is a SIN quantum group
if LUC (G) = RUC (G) (cf. [25]). In [55, Theorem 2.4], Runde showed that
LUC (G) is an operator system in L∞(G) (i.e., a closed self-adjoint subspace
of L∞(G) containing 1) such that

(2.5) C0(G) ⊆ LUC (G) ⊆ M(C0(G)).

It was proved in [28, Theorem 5.6] that if G is semiregular, then LUC (G)
is a unital C∗-subalgebra of M(C0(G)). This is a quite general result, which
covers all Kac algebras, though we still do not know whether it holds for all
quantum groups. See [55, 57] for some cases of co-amenable quantum groups,
where LUC (G) was also shown to be a C∗-algebra.

Let WAP(G) be the space of weakly almost periodic functionals on
L1(G), i.e., the subspace of L∞(G) consisting of x ∈ L∞(G) such that
L1(G) → L∞(G), f 7→ x ? f is weakly compact. Then WAP(G) is an
L1(G)-submodule of L∞(G) and is two-sided introverted in L∞(G). It is
known that if L∞(G) = L∞(G), then WAP(G) = WAP(G), the space of
weakly almost periodic functions on G (cf. [8, p. 69]), and hence WAP(G)

is often denoted by WAP(Ĝ) when L∞(G) = VN (G). We have C0(G) ⊆
WAP(G) since the two Arens products on C0(G)∗ coincide, and WAP(G) ⊆
LUC (G) ∩ RUC (G) if G is co-amenable (cf. [8, Propositions 3.11 and 3.12]
and [55, Theorem 4.4]). The relation between LUC (G) and WAP(G) will be
investigated in Section 3.

If G is co-amenable, then there exists a canonical completely isomet-
ric algebra homomorphism M(G) ∼= RMcb(L1(G)) → LUC (G)∗ (cf. [28,
Propositions 3.1 and 6.5]). In general, M(G) can be linked to LUC (G)∗

without going though RMcb(L1(G)) (cf. (2.14) below). In fact, as shown in
[28, Proposition 6.1], we can obtain a completely isometric embedding π :
M(G) → LUC (G)∗ via the existence of a unique strictly continuous exten-
sion of each µ ∈ C0(G)∗ to LUC (G). This generalizes the corresponding re-
sult by Lau and Losert [41] on A(G). We note that an isometric embedding of
M(G)→ LUC (G)∗ was considered in [51, Lemma 4.1], but the proof was not
complete since the necessary strict continuity argument was missing there.
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In the following, we show that this embedding result can be strengthened
and extended to more general left introverted subspaces X of L∞(G) satis-
fying C0(G) ⊆ X ⊆M(C0(G)). A related result for subspaces of M(C0(G))
with a stronger left introversion property can be found in [57]. To make
the presentation clear, we use ˜M(C0(G)) to denote the idealizer of C0(G)
in C0(G)∗∗. That is,

(2.6) ˜M(C0(G)) = {x ∈ C0(G)∗∗ : ax, xa ∈ C0(G) for all a ∈ C0(G)}.
It is known that we have the C∗-algebra isomorphism

M(C0(G)) ∼= ˜M(C0(G)),

which extends the canonical embedding C0(G) ↪→ C0(G)∗∗. We shall define
the embedding M(G)→ X∗ through the map

(2.7) τ : X ⊆M(C0(G)) ∼= ˜M(C0(G)) ⊆ C0(G)∗∗.

This approach to constructing the embedding M(G)→ X∗ is different from
the one used in [28, 57] and also different from the one used in [41] for VN (G).
Note that τ(C0(G)) = C0(G) and X is a C0(G)-submodule of M(C0(G)).
Therefore, τ : X → C0(G)∗∗ is a C0(G)-bimodule map. We use · to denote the
canonical C0(G)-bimodule actions onM(G). ThenM(G) = M(G) ·C0(G) =
C0(G) ·M(G) (cf. [49, Proposition 9.4.27]).

Proposition 2.1. Let G be a locally compact quantum group and let X
be a left introverted subspace of L∞(G) such that C0(G) ⊆ X ⊆M(C0(G)).
Let τ : X → C0(G)∗∗ be the map given in (2.7). Then

π = τ∗|M(G) : M(G)→ X∗

is a completely isometric algebra homomorphism such that

X∗ = π(M(G))⊕ C0(G)⊥,

where C0(G)⊥ = {m ∈ X∗ : m|C0(G) = 0} is a w∗-closed ideal in X∗.
Furthermore, we have

(i) π : M(G) → X∗ is a C0(G)-bimodule and L1(G)-bimodule map
satisfying

〈π(µ), x ? f〉 = 〈x, f ? µ〉 and 〈π(µ), f ? x〉 = 〈x, µ ? f〉
for all µ ∈M(G), x ∈ X, and f ∈ L1(G);

(ii) π∗|X = τ ;
(iii) π(M(G)) ⊆ Zt(X

∗) if X ⊆ LUC (G).

Proof. Let µ ∈M(G). By definition, we have π(µ) = µ̃◦τ , where µ̃ is the
canonical image of µ in M(G)∗∗ = (C0(G)∗∗)∗. Therefore, π(µ)|C0(G) = µ,
and π : M(G)→ X∗ is a complete isometry.
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On the other hand, since M(G) = M(G) · C0(G) and τ : X → C0(G)∗∗

is a C0(G)-bimodule map, the functional π(µ) ∈ X∗ is continuous in the
relative strict topology of X, and thus we also have π(µ) = µ′|X , where
µ′ ∈ M(C0(G))∗ is the unique strictly continuous extension of µ. Note that
the co-multiplication Γ maps M(C0(G)) into M(C0(G) ⊗ C0(G)), and is
strictly continuous on the closed unit ball of M(C0(G)). Hence, we derive
from (2.1) and (2.3) that

(2.8) π(µ) � x = (ι⊗ µ)Γ (x) and π(µ) � π(ν) = π(µ ? ν)

for all x ∈ X and µ, ν ∈M(G). It follows that π : M(G)→ X∗ is an algebra
homomorphism. Clearly, C0(G)⊥ is a w∗-closed ideal in X∗, and we have
X∗ = π(M(G))⊕ C0(G)⊥.

(i) Since τ is a C0(G)-bimodule map, so is the map π = τ∗|M(G). Let
f ∈ L1(G). Then π(f) = f |X . Thus π(f ? µ) = π(f) � π(µ) = f ? π(µ).
Similarly, we have π(µ ? f) = π(µ) ? f . Therefore, π : M(G) → X∗ is an
L1(G)-bimodule map, and the two equalities hold.

(ii) This is evident.
(iii) We first suppose that X = 〈X ? L1(G)〉. It is seen from (i) that

(x?f)♦π(µ) = x? (f ?µ) for all x ∈ X and f ∈ L1(G). Then X ♦π(µ) ⊆ X
since X = 〈X ? L1(G)〉. Combining this with the first equality in (i), we
have 〈π(µ) � n, x〉 = 〈x ♦ π(µ), n〉 for all n ∈ X∗ and x ∈ X. Therefore,
π(µ) ∈ Zt(X

∗).
In general, we suppose that X ⊆ LUC (G). By the above argument,

we have M(G) ⊆ Zt(LUC (G)∗) under the embedding M(G) → LUC (G)∗,
whose composition with the restriction map LUC (G)∗ → X∗ is just the map
π : M(G) → X∗. Since the restriction map LUC (G)∗ → X∗ is a surjective
algebra homomorphism, we obtain π(M(G)) ⊆ Zt(X

∗).

Remark 2.2. It is seen from Proposition 2.1(ii) that π∗|X is completely
isometric, since it is exactly the canonical inclusion map τ : X → C0(G)∗∗.
In particular, if L∞(G) = VN (G) and X = UCB(Ĝ), then π∗|

UCB(Ĝ)
is

completely isometric, which was proved in [30, Proposition 3.3] under the
hypothesis that A(G) has an approximate identity of completely bounded
multiplier norm 1. The map π∗|

UCB(Ĝ)
was earlier considered in [41, Propo-

sition 7.5], where Lau and Losert showed that G is compact if and only
if π∗(UCB(Ĝ)) = Bλ(G)∗. See Theorem 3.7 below for the quantum group
version of their result.

Let W and V be the left and right fundamental unitaries of G, respec-
tively (cf. [33, 34]). Let

λ : L1(G)→ C0(Ĝ) ⊆ L∞(Ĝ), f 7→ (f ⊗ ι)(W ),

be the left regular representation of G. Then λ has a natural w∗-w∗ contin-
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uous and completely contractive algebra extension M(G) → L∞(Ĝ), which
is still denoted by λ and given by 〈λ(µ), f̂〉 = 〈µ, λ∗(f̂)〉, where

λ∗ : L1(Ĝ)→ C0(G) ⊆ L∞(G)

is the completely contractive injection f̂ 7→ (ι ⊗ f̂)(W ). Since C0(Ĝ) =

λ(L1(G))
‖·‖

, we have λ : M(G)→M(C0(Ĝ)) ⊆ L∞(Ĝ). Similarly, the right
regular representation ρ : L1(G) → L∞(Ĝ′), f 7→ (ι ⊗ f)(V ), of G is ex-
tended naturally to a w∗-w∗ continuous and completely contractive algebra
homomorphism ρ : M(G) → M(C0(Ĝ′)) ⊆ L∞(Ĝ′) satisfying 〈ρ(µ), f̂ ′〉 =

〈µ, ρ∗(f̂ ′)〉, where ρ∗ : L1(Ĝ′)→ C0(G) ⊆ L∞(G) is the completely contrac-
tive injection f̂ ′ 7→ (f̂ ′ ⊗ ι)(V ) (cf. [28]). The proof of Proposition 2.1 shows
that for all µ ∈M(G), f̂ ∈ L1(Ĝ), and f̂ ′ ∈ L1(Ĝ′), we have

(2.9) 〈π(µ), λ∗(f̂)〉 = 〈λ(µ), f̂〉 and 〈π(µ), ρ∗(f̂
′)〉 = 〈ρ(µ), f̂ ′〉.

When L∞(G) = VN (G) and X = LUC (G), this relation between the map π
and the left and right regular representations of G was given in [41, Propo-
sition 4.2(b)].

As in the situation above for the left and right regular representations
of G, the maps λ∗ and ρ∗ can also be extended naturally to w∗-w∗ con-
tinuous complete contractions λ∗ : M(Ĝ) → M(C0(G)) ⊆ L∞(G) and
ρ∗ : M(Ĝ′) → M(C0(G)) ⊆ L∞(G), respectively. If $A : A∗ → M(A)∗

denotes the (unique) strictly continuous extension map for a given C∗-
algebra A, then, extending (2.9), we can further obtain

(2.10)
〈$C0(G)(µ), λ∗(µ̂)〉 = 〈λ(µ), $

C0(Ĝ)
(µ̂)〉,

〈$C0(G)(µ), ρ∗(µ̂
′)〉 = 〈ρ(µ), $

C0(Ĝ′)(µ̂
′)〉,

where µ ∈M(G), µ̂ ∈M(Ĝ), and µ̂′ ∈M(Ĝ′).
Note that the left regular representation λ̂ : L1(Ĝ) → L∞(G) of Ĝ

is given by λ̂(f̂) = (f̂ ⊗ ι)(ΣW ∗Σ), and the right regular representation
ρ̂′ : L1(Ĝ′) → L∞(G) of Ĝ′ is given by ρ̂′(f̂ ′) = (ι ⊗ f̂ ′)(ΣV ∗Σ). It follows
that

λ∗(f̂) = λ̂((f̂)∗)∗ and ρ∗(f̂
′) = ρ̂′((f̂ ′)∗)∗

for all f̂ ∈ L1(Ĝ) and f̂ ′ ∈ L1(Ĝ′). Therefore, the maps λ∗ : M(Ĝ)→ L∞(G)

and ρ∗ : M(Ĝ′)→ L∞(G) are anti-algebra homomorphisms.
It is known that for any locally compact group G, the Fourier–Stieltjes

algebra B(G) is contained in WAP(G), and the left regular representation
ofGmapsM(G) intoWAP(Ĝ) (cf. [13, Theorem 11.2], [5, Corollary 3.3], and
[12, Theorem 2.8 and Chapter 8]). For a general locally compact quantum
group G, from the proof below, we see in particular how the embedding
M(Ĝ) ⊆ WAP(G) can be obtained quickly via the pair (λ, λ∗) of maps.
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The proof also motivates the argument used in Section 5 in establishing the
stronger embedding Cu(Ĝ)∗ ⊆ WAP(G), a quantum group version of the
above results on L∞(G) and VN (G), where Cu(Ĝ) is the universal quantum
group C∗-algebra of Ĝ.

Proposition 2.3. Let G be a locally compact quantum group. Then we
have λ(M(G)) ⊆ WAP(Ĝ), ρ(M(G)) ⊆ WAP(Ĝ′), λ∗(M(Ĝ)) ⊆ WAP(G),
and ρ∗(M(Ĝ′)) ⊆WAP(G). Therefore, if G and Ĝ are co-amenable, then

(2.11) 〈π(µ), λ∗(µ̂)〉 = 〈λ(µ), π̂(µ̂)〉 and 〈π(µ), ρ∗(µ̂
′)〉 = 〈ρ(µ), π̂′(µ̂′)〉

for all µ ∈ M(G), µ̂ ∈ M(Ĝ), and µ̂′ ∈ M(Ĝ′), where π, π̂, and π̂′ are the
embeddings M(H) → LUC (H)∗ given in Proposition 2.1 with H = G, Ĝ,
and Ĝ′, respectively.

Proof. To make the notation simple, we prove only the third inclusion;
the proof of the other inclusions is similar, noticing that λ and ρ are algebra
homomorphisms and λ∗ and ρ∗ are anti-algebra homomorphisms.

Let µ̂ ∈M(Ĝ) and f ∈ L1(G). Then we have

(2.12) λ∗(µ̂) ? f = λ∗(µ̂ · λ(f)),

where for m̂ ∈M0(Ĝ)∗, µ̂ · m̂ ∈M(Ĝ)∗∗ is given by n̂ 7→ 〈µ̂, m̂n̂〉. Then µ̂ · m̂
is indeed in M(Ĝ), since the multiplication on the von Neumann algebra
M(Ĝ)∗ is separately w∗-w∗ continuous. Then µ̂ · λ(fi) → µ̂ · m̂ weakly in
M(Ĝ) if λ(fi) → m̂ ∈ M(Ĝ)∗ in the w∗-topology of M(Ĝ)∗. It follows that
the set {µ̂ · λ(f) : f ∈ L1(G) and ‖f‖ ≤ 1} is relatively weakly compact in
M(Ĝ). Therefore, the set {λ∗(µ̂) ? f : f ∈ L1(G) and ‖f‖ ≤ 1} is relatively
weakly compact in L∞(G) (cf. (2.12)); that is, λ∗(µ̂) ∈WAP(G).

The final assertion follows from (2.10) and the fact that WAP(H) ⊆
LUC (H) if H is co-amenable.

Theorem 2.4. Let G be a locally compact quantum group and let X be
a left introverted subspace of L∞(G) containing C0(G). Then

(i) X∗ is right unital ⇔ G is co-amenable;
(ii) X∗ is left unital⇔ G is co-amenable and X ⊆ LUC (G); in this case,

X∗ is unital and X = 〈X ? L1(G)〉.

Proof. It is known from [3, Theorem 3.1] that G is co-amenable if and
only if M(G) is unital; the latter is also equivalent to M(G) being right
or left unital, since C0(G) = 〈C0(G) ? M(G)〉 = 〈M(G) ? C0(G)〉 (cf. [28,
Proposition 2.2]). Note that the restriction map X∗ →M(G) is a surjective
algebra homomorphism, and any w∗-cluster point of a bounded approximate
identity of L1(G) in X∗ is a right identity of X∗. Therefore, (i) is true.
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If X∗ is left unital, then G is co-amenable by the above discussions, and
X = 〈X ?L1(G)〉 since L1(G) is w∗-dense in X∗. Conversely, suppose that G
is co-amenable and X ⊆ LUC (G). Then X∗ has a right identity m0, which
is a w∗-cluster point of a bounded approximate identity of L1(G) in X∗. Due
to X ⊆ LUC (G), m0 is also a left identity of X∗. Hence, the assertion (ii)
holds.

Therefore, (L∞(G)∗,�) is (left) unital if and only if G is co-amenable and
L∞(G) = LUC (G), and for X = C0(G), LUC (G), or WAP(G), we have

(2.13) X∗ is one-sided (and hence two-sided) unital
⇔ G is co-amenable.

Clearly, we have the following corollary by (2.8), Proposition 2.1(i), and
Theorem 2.4.

Corollary 2.5. Let X and π be as in Proposition 2.1. Then X is a
left M(G)-submodule of L∞(G) and π is a right M(G)-module map. In ad-
dition, if X is an M(G)-submodule of L∞(G) (e.g., X = C0(G), LUC (G),
WAP(G)), then π is an M(G)-bimodule map.

In particular, if G is co-amenable with µ0 the identity of M(G), then
e0 = π(µ0) is a right identity of X∗, and π is given by µ 7→ e0 ? µ, which is
equal to µ 7→ µ ? e0 if X is an M(G)-submodule of L∞(G).

The corollary below follows immediately from Proposition 2.1 and its
proof. See [30] for results on extension of reduced Fourier–Stieltjes algebra
homomorphisms.

Corollary 2.6. Let G1 and G2 be locally compact quantum groups and
let j : M(G1)→ M(G2) be a bounded algebra homomorphism. Suppose that
for i = 1, 2, Xi is a left introverted subspace of L∞(Gi) such that C0(Gi) ⊆
Xi ⊆ M(C0(Gi)) and j∗(τ2(X2)) ⊆ τ1(X1), where τi : Xi → C0(Gi)

∗∗ is
given as in (2.7). Then the bounded linear map κ = τ−11 ◦ j∗ ◦ τ2 : X2 → X1

satisfies the following:

(i) the adjoint map κ∗ : X∗1 → X∗2 is the unique w∗-w∗ continuous
extension of j and an algebra homomorphism with ‖κ∗‖ = ‖j‖;

(ii) if j is completely bounded, then so is κ∗ and we have ‖κ∗‖cb = ‖j‖cb.

Let BL1(G)(L∞(G)) be the Banach algebra of bounded right L1(G)-
module maps on L∞(G), and let RM (L1(G)) be the right multiplier al-
gebra of L1(G) (with opposite composition as the multiplication). Then
RM (L1(G)) ∼= Bσ

L1(G)(L∞(G)) via µ 7→ µ∗, where Bσ
L1(G)(L∞(G)) is the

Banach algebra consisting of the w∗-w∗ continuous maps in BL1(G)(L∞(G)).
For m ∈ LUC (G)∗, we let mL(x) = m � x (x ∈ L∞(G)), and we use the
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same notation when m ∈ L∞(G)∗. Then the map

LUC (G)∗ → BL1(G)(L∞(G)), m 7→ mL,

is an injective, contractive and w∗-w∗ continuous algebra homomrophism (cf.
[28]). In what follows, whenever the algebras RM (L1(G)) and LUC (G)∗ are
compared, they are identified with their canonical images in BL1(G)(L∞(G)).
Also, we write L1(G) = M(G) if the canonical embedding L1(G) → M(G)

is onto. It is seen from Proposition 2.1(i) that we have the commutative
diagram of algebra homomorphisms

(2.14)

M(G)
mr
//

π

��

RM (L1(G))

T 7→T ∗
��

LUC (G)∗
n7→nL// BL1(G)(L∞(G))

where mr(µ)(f) = f ? µ (µ ∈M(G), f ∈ L1(G)). Therefore, we always have
M(G) ⊆ RM (L1(G)) ∩ LUC (G)∗.

For general Banach algebras A, we introduced in [25] the concept of
quotient strong Arens irregularity (Q-SAI). We say that A is Q-SAI if
Zt(〈A∗A〉∗) ⊆ RM (A) and Zt(〈AA∗〉∗) ⊆ LM (A), where Zt(·) denotes topo-
logical centre, 〈A∗A〉∗ and 〈AA∗〉∗ are the canonical quotient Banach alge-
bras of (A∗∗,�) and (A∗∗,♦), respectively, and RM (A) and LM (A) denote
the right and left multiplier algebras of A, respectively. It follows from Propo-
sition 2.1(iii) and [25, Theorem 32] that

L1(G) is Q-SAI ⇔ Zt(LUC (G)∗) ⊆ RM (L1(G))(2.15)
⇔ Zt(LUC (G)∗) = M(G).

It was also shown in [25, Theorem 15] that

G is co-amenable ⇔ RM (L1(G)) ⊆ Zt(LUC (G)∗)(2.16)
⇔ LUC (G)∗ = BL1(G)(L∞(G)).

Therefore, Q-SAI and co-amenability are in a sense opposite to each other,
and every commutative locally compact quantum group happens to have
both these properties.

Let Bl
L1(G)(L∞(G)) be the space of all T ∈ BL1(G)(L∞(G)) satisfying

T ∗(L1(G)) ⊆ Zt(L1(G)∗∗,�). Then Bl
L1(G)(L∞(G)) is the space of operators

T in BL1(G)(L∞(G)) such that L1(G)∗∗ → BL1(G)(L∞(G)), m 7→ T ◦ mL,
is w∗-w∗ continuous. Analogously, the space Br

L1(G)(L∞(G)) can be defined
and obtained by replacing Zt(L1(G)∗∗,�) and mL by Zt(L1(G)∗∗,♦) and
mR, respectively, where mR(x) = x ♦ m (x ∈ L∞(G)). Then we have
Br
L1(G)(L∞(G)) = BL1(G)∗∗(L∞(G)), where BL1(G)∗∗(L∞(G)) is the alge-

bra of bounded right (L1(G)∗∗,♦)-module maps on L∞(G). It is evident
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that
Bσ
L1(G)(L∞(G)) ⊆ Bl

L1(G)(L∞(G)) ⊆ BL1(G)(L∞(G)).

Due to [25, Corollary 4(i) and Theorems 23 and 32], we have

(2.17) L1(G) is Q-SAI ⇔ Bl
L1(G)(L∞(G)) = Bσ

L1(G)(L∞(G)).

Remark 2.7. Suppose that L1(G) is Q-SAI and X is given as in Propo-
sition 2.1(iii). Then C0(G) ⊆ X ⊆ LUC (G), and we have

Zt(LUC (G)∗) = Zt(C0(G)∗) = M(G) ⊆ Zt(X
∗).

In this situation, however, we may not have Zt(X
∗) = M(G). For example,

if L∞(G) = L∞(G) with G a non-compact locally compact group, then X =
WAP(G) satisfies all the conditions in Proposition 2.1(iii), but Zt(X

∗) =
WAP(G)∗ 6= M(G) since C0(G) ( WAP(G).

Finally, we recall that the class of Banach algebras of type (M) was
introduced in [26]. Roughly speaking, a Banach algebra A is of type (M)
if an algebraic form of the Kakutani–Kodaira theorem on locally compact
groups holds for A (see [26] for the precise definition). It is known from [26]
that every L1(G) is in this class, and so is A(G) if G is amenable. Also, any
separable quantum group algebra L1(G) with G co-amenable is of type (M).
The reader is referred to [26] for more information on this class of Banach
algebras.

3. Module maps over quantum groups, compactness, and dis-
creteness

Theorem 3.1. Let G be a locally compact quantum group. Then the
following statements are equivalent:

(i) G is compact;
(ii) LUC (G) = C0(G);
(iii) the embedding π : M(G) → LUC (G)∗ in Proposition 2.1 is w∗-w∗

continuous;
(iv) LUC (G)∗ = M(G);
(v) LUC (G)∗ ⊆ RM (L1(G));
(vi) L1(G) ? L1(G)∗∗ ⊆ L1(G);
(vii) L1(G) ? LUC (G)∗ ⊆M(G);
(viii) L1(G) ? LUC (G)∗ ⊆ RM (L1(G));
(ix) BL1(G)(L∞(G)) = Bσ

L1(G)(L∞(G)).

In addition, the inclusions in (v) and (vi) can be replaced by equalities if G
is co-amenable.

Proof. (i)⇔(ii). This follows from (2.5) and the facts that 1 ∈ LUC (G),
and G is compact (i.e., 1 ∈ C0(G)) if and only if C0(G) = M(C0(G)).
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(ii)⇒(vi). Suppose that LUC (G) = C0(G). Let f , g ∈ L1(G) and m ∈
L1(G)∗∗. Let p = m|LUC (G). Then p ∈ M(G) and g ? p ∈ L1(G). For all
x ∈ L∞(G), we have x ? f ∈ C0(G), and thus

〈(f ? g) ? m, x〉 = 〈p, (x ? f) ? g〉M(G),C0(G)

= 〈g ? p, x ? f〉L1(G),L∞(G) = 〈f ? (g ? p), x〉.

Therefore, (f ? g) ? m = f ? (g ? p) ∈ L1(G), and hence (vi) holds since
〈L1(G) ? L1(G)〉 = L1(G).

(vi)⇒(ii). Assume that L1(G)?L1(G)∗∗ ⊆ L1(G) but C0(G) ( LUC (G).
Then there exists m ∈ L1(G)∗∗ such that m|LUC (G) 6= 0 but m|C0(G) = 0.
For all a ∈ C0(G) and f ∈ L1(G), we have

〈a, f ? m〉 = 〈a ? f,m〉 = 0

since a ? f ∈ C0(G), and hence f ? m = 0, noticing that f ? m ∈ L1(G).
Thus 〈x ? f,m〉 = 〈x, f ? m〉 = 0 for all x ∈ L∞(G) and f ∈ L1(G); that is,
m|LUC (G) = 0, a contradiction.

(ii)⇒(iii). Note that for µ ∈ M(G), the functional π(µ) is an extension
of µ to LUC (G). Hence, if C0(G) = LUC (G), then π : M(G) → LUC (G)∗

is just the identity map and hence is w∗-w∗ continuous.
(iii)⇒(iv). Suppose that π : M(G) → LUC (G)∗ is w∗-w∗ continuous.

Then π(M(G)) is w∗-closed in LUC (G)∗ by the Krein–Šmulian theorem,
since π is a w∗-w∗ continuous isometry. Note that π(L1(G)) is w∗-dense in
LUC (G)∗. Therefore, LUC (G)∗ = π(M(G)).

(vi)⇔(vii)⇔(viii). This can be shown by the same argument as used in
the proof of (ii)⇒(vi), noticing that LUC (G)∗ is a canonical quotient algebra
of (L1(G)∗∗,�) and 〈L1(G) ? L1(G)〉 = L1(G).

(iv)⇒(v)⇒(viii), and (ix)⇒(v). These are obvious.
(v)⇒(ix). This follows from [27, Theorem 3.2(V)] on general Banach al-

gebras A satisfying 〈AA〉 = A. To make the proof self-contained, we give
below a direct proof. Suppose that LUC (G)∗ ⊆ RM (L1(G)). Let T ∈
BL1(G)(L∞(G)). Then S = T |LUC (G) : LUC (G) → LUC (G) and thus
S∗(LUC (G)∗) ⊆ RM (L1(G)). Let f, g ∈ L1(G). Then S∗(g)L = µ∗ for
some µ ∈ RM (L1(G)). Hence, for all x ∈ L∞(G), we have

〈T ∗(f ? g), x〉 = 〈g, T (x) ? f〉 = 〈g, S(x ? f)〉
= 〈S∗(g), x ? f〉 = 〈S∗(g)L(x), f〉 = 〈x, µ(f)〉.

Therefore, T ∗(f ? g) = µ(f) ∈ L1(G). Since 〈L1(G) ? L1(G)〉 = L1(G), it
follows that T ∗(L1(G)) ⊆ L1(G) and thus T ∈ Bσ

L1(G)(L∞(G)).
The final assertion holds since if G is co-amenable, then RM (L1(G)) ⊆

LUC (G)∗ (cf. (2.16)) and L1(G) ⊆ L1(G) ? L1(G)∗∗, noticing that now
(L1(G)∗∗,�) is right unital (cf. Theorem 2.4).
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The above Banach algebra approach gives an elementary proof of the
equivalence (i)⇔(vi), which is one of the main results of [54] by Runde.
The proof can even be quicker if the embedding M(G) ↪→ LUC (G)∗ is
used. For L∞(G), (i)⇔(ix) was shown by Lau [35, Theorem 2]. For VN (G),
the equivalences (i)⇔(ii), (i)⇔(iii), (i)⇔(iv), and (i)⇔(vi) were shown by
Lau [36, Proposition 4.5], Ilie and Stokke [30, Proposition 3.5], Lau and
Losert [41, Theorem 4.12], and Lau [37, Theorem 3.7], respectively.

Obviously, (vi) is equivalent to L1(G)∗∗ ? L1(G) ⊆ L1(G), since L1(G)
is an involutive Banach algebra. Note that C0(G)⊥ ∩ RM (L1(G)) = {0},
where C0(G)⊥ is the annihilator of C0(G) in LUC (G)∗. Therefore, due to
(ii), we can also replace the product L1(G) ? LUC (G)∗ in (vii) and (viii) by
LUC (G)∗ ? L1(G).

Recall that a quantum group G is called amenable if there exists a left
invariant mean on L∞(G), that is, there existsm ∈ L∞(G)∗ such that ‖m‖ =
〈m, 1〉 = 1 and f ?m = 〈1, f〉m for all f ∈ L1(G). In this case, m|LUC (G) is a
left invariant mean on LUC (G) since 1 ∈ LUC (G). Right invariant means are
defined similarly. It is known that the involution on L1(G) can be canonically
extended to a linear involution ◦ on L1(G)∗∗ such that (m � n)◦ = n◦ ♦m◦

(cf. [25, p. 633]). Clearly, m ∈ L∞(G)∗ is a left invariant mean if and only
if m◦ is a right invariant mean. Therefore, the existence of a right invariant
mean on L∞(G) is equivalent to G being amenable. It is also known that
every co-commutative locally compact quantum group is amenable.

It is not clear whether WAP(G) always has a left invariant mean, though
this is the case when the quantum group is commutative or amenable (cf.
[55, Remark 4.7]). Similar to the situation for LUC (G), the restriction to
WAP(G) of any one-sided invariant mean on L∞(G) is a mean on WAP(G)
with the same side of invariance. Furthermore, for any left (respectively,
right) invariant mean m on WAP(G) with p ∈ L∞(G)∗ a Hahn–Banach
extension of m, it is seen that n = p◦|WAP(G) is a right (respectively, left)
invariant mean on WAP(G). As noted in [55, Remark 4.7], we can conclude
that

(3.1) if WAP(G) has a one-sided invariant mean,
then it is unique and two-sided invariant.

According to [25], the norm closed subspace LUC (G)∗R of LUC (G)∗ is
defined by

LUC (G)∗R = {m ∈ LUC (G)∗ : x ♦m ∈ LUC (G) for all x ∈ LUC (G)}.

For m ∈ LUC (G)∗R and n ∈ LUC (G)∗, we can naturally define the element
m ♦ n in LUC (G)∗. It is known from [25, Theorem 2] that

Zt(LUC (G)∗) = {m ∈ LUC (G)∗R : m � n = m ♦ n for all n ∈ LUC (G)∗}.
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Therefore,

M(G) ⊆ Zt(LUC (G)∗) ⊆ LUC (G)∗R ⊆ LUC (G)∗.

It is evident that m ∈ LUC (G)∗R if m is a right invariant mean on LUC (G).

Theorem 3.2. Let G be a locally compact quantum group. Then the
following statements are equivalent:

(i) LUC (G) ⊆WAP(G);
(ii) LUC (G)∗ = Zt(LUC (G)∗);
(iii) L1(G) ? L1(G)∗∗ ⊆ Zt(L1(G)∗∗,�);
(iv) L1(G) ? LUC (G)∗ ⊆ Zt(LUC (G)∗);
(v) BL1(G)(L∞(G)) = Bl

L1(G)(L∞(G)).

If LUC (G)∗ is left faithful (e.g., G is co-amenable or SIN ), then (i)–(v) are
equivalent to

(vi) LUC (G)∗R = Zt(LUC (G)∗).

Furthermore, the above (i)–(vi) are all equivalent to G being compact in the
following two cases:

(a) L1(G) is Q-SAI;
(b) G is amenable with L1(G) separable.

Proof. The first two assertions follow by applying [27, Theorem 5.4] (on
more general Banach algebras A satisfying 〈AA〉 = A) to A = L1(G). To
show the final assertion, we suppose that (vi) holds. We prove below that G is
compact in the cases (a) and (b), noticing thatG is compact⇒(i)⇔(ii)⇒(vi).

Case (a). Since LUC (G)∗ is left faithful now (cf. [27, Proposition 3.15]),
due to (vi)⇔(ii), we have LUC (G)∗ = Zt(LUC (G)∗) = M(G) (cf. (2.15)).
Therefore, G is compact (cf. Theorem 3.1).

Case (b). Let m0 be a fixed right invariant mean on LUC (G), which
exists by taking restriction to LUC (G) of a right invariant mean on L∞(G).
Let γ ∈ L∞(G)∗ be any left invariant mean and let n = γ|LUC (G). Then
m0 ∈ LUC (G)∗R = Zt(LUC (G)∗) and hence m0 �n = m0 ♦n. Since L1(G) is
w∗-dense in LUC (G)∗, n is a left invariant mean, and m0 is a right invariant
mean, we obtain

n = 〈m0, 1〉n = m0 � n = m0 ♦ n = 〈n, 1〉m0 = m0;

that is, n = m0. Taking an f0 ∈ L1(G) with f0(1) = 1, we have

〈γ, x〉 = f0(1)〈γ, x〉 = 〈γ, x?f0〉 = 〈n, x?f0〉 = 〈m0, x?f0〉 for all x ∈ L∞(G).

Therefore, γ is the unique left invariant mean on L∞(G).
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To see that G is compact, by [3, Proposition 3.1], we only need to show
that γ is in L1(G). This is indeed true by applying [38, Proposition 4.15(b)]
on F -algebras, a class of Banach algebras including all convolution quan-
tum group algebras. In fact, as mentioned in [38, Proposition 4.15(b)] (with
details omitted), this follows by an argument given in the proof of [19, The-
orem 7] (more precisely, by using [18, Corollary 1.3]). For convenience, we
include below the details of the argument for showing that γ ∈ L1(G).

Let K be the set of normal states on L∞(G). Then, by the Hahn–Banach
theorem, we have γ ∈ K

w∗ (the w∗-closure of K in L∞(G)∗). Let (ui) be
a norm dense sequence in K. For each i, let si : L1(G) → L1(G) be the
bounded linear map f 7→ (ui ? f) − f . Then s∗∗i : L∞(G)∗ → L∞(G)∗ is
given by p 7→ (ui ? p)− p. Let

F = K
w∗ ∩ {p ∈ L∞(G)∗ : s∗∗i (p) = 0 for i = 1, 2, · · · }.

Clearly, if p ∈ Kw∗ , then s∗∗i (p) = 0 for all i if and only if p is a left invariant
mean on L∞(G). Therefore, we have F = {γ}. By [18, Corollary 1.3], there
exists a sequence (vi) in K such that vi → γ in the w∗-topology of L∞(G)∗.
Then (vi) is a weak Cauchy sequence in L1(G). It follows from the weak
sequential completeness of L1(G) that γ is indeed in L1(G).

Remark 3.3. By (3.1), we have

G is compact ⇒ LUC (G) ⊆WAP(G)(3.2)
⇒ L∞(G) has at most one left invariant mean.

The final paragraph in the proof of Theorem 3.2 shows that if L1(G) is
separable, then

(3.3) G is compact ⇔ L∞(G) has a unique left invariant mean.

It is also seen from the proof that in Theorem 3.2, the class of quantum
groups with property (b) can be replaced by the larger class of quantum
groups G satisfying

(c) either L∞(G) has more than one left invariant mean, or G is compact .

It is known from [41, Corollary 4.11] that all co-commutative quantum groups
satisfy (c); in this case, Lau and Losert [42, Proposition 5.1] showed that (ii)
in Theorem 3.2 is equivalent to G being compact.

Corollary 3.4. Let G be a locally compact quantum group. Then the
following statements are equivalent:

(i) G is compact;
(ii) L1(G) is Q-SAI and LUC (G) ⊆WAP(G).
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If L1(G) is separable, then (i) and (ii) are equivalent to

(iii) G is amenable and LUC (G) ⊆WAP(G).

Therefore, if G is co-amenable, then G is compact if and only if L1(G)
is Q-SAI and LUC (G) = WAP(G).

Proof. The first two assertions follow from Theorem 3.2. The final asser-
tion holds, since WAP(G) ⊆ LUC (G) if G is co-amenable (cf. [8, Proposi-
tion 3.12]).

Remark 3.5. (i) Since every group algebra L1(G) is Q-SAI (cf. [39]),
for the commutative quantum group case, we find that G is compact if and
only if LUC (G) = WAP(G). In the co-commutative case, though L1(G) can
be non-Q-SAI (cf. [46]), we still have

(3.4) G is compact ⇔ LUC (G) ⊆WAP(G).

This is true due to [19, Theorem 12] (see [22, Corollary 6.6] for an improve-
ment of [19, Theorem 12]). The equivalence in (3.4) also follows from (3.2)
and the fact that VN (G) has a unique invariant mean precisely when G is
discrete (cf. [41, Corollary 4.11]). Theorem 3.2 together with Remark 3.3
shows that (3.4) holds if G satisfies one of the above conditions (a), (b),
and (c). It would be interesting to know whether we have (3.4) for gen-
eral locally compact quantum groups, or equivalently, whether the inclusion
LUC (G) ⊆WAP(G) implies that L1(G) is Q-SAI.

(ii) We point out that, even for co-commutative compact quantum
groups, it is still open whether WAP(G) ⊆ LUC (G) holds. If this is true,
then there is no infinite group G with the Fourier algebra A(G) Arens regu-
lar; that is known only for amenable groups G (cf. [16, Proposition 3.5] and
[37, Proposition 3.3]). As noted in [42, Problem 3] and [45, Remark 7], it is
possible that an Olshanskĭı group would provide a counterexample to this
open question. Therefore, it is very difficult to give an affirmative answer
to the question raised by Runde in [55, Remark 4.5], which asked whether
LUC (G) = WAP(G) is equivalent to G being compact for a general locally
compact quantum group G.

Note that the adjoint of the inclusion map L1(G) → M(G) is the sur-
jective normal ∗-homomorphism C0(G)∗∗ → L∞(G), x 7→ x|L1(G), which
extends the inclusion C0(G) ⊆ L∞(G). Clearly, the kernel of this ∗-homo-
morphism is the w∗-closed ideal L1(G)⊥ in C0(G)∗∗. Then there exists a
central projection p in C0(G)∗∗ such that L1(G)⊥ = (1 − p)C0(G)∗∗, and
thus we have

(3.5) C0(G)∗∗ = pC0(G)∗∗ ⊕∞ L1(G)⊥ ∼= L∞(G)⊕∞ L1(G)⊥

via x ⊕ y 7→ x|L1(G) ⊕ y. Let κ : L∞(G) → C0(G)∗∗ be the injective and
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normal ∗-homomorphism induced from (3.5). Recall that

C0(G) ⊆M(C0(G)) ⊆ L∞(G) and M(C0(G)) ∼= ˜M(C0(G)) ⊆ C0(G)∗∗.

However, as shown below, we do not have κ(M(C0(G))) = ˜M(C0(G)) in
general. On the other hand, comparing κ : L∞(G)→ C0(G)∗∗ with the map
τ = π∗|LUC (G) : LUC (G) → C0(G)∗∗ as given in Section 2, we see that
κ is always w∗-w∗ continuous and τ is always an M(G)-bimodule map (cf.
Corollary 2.5). It turns out that κ is an M(G)-bimodule map if and only if
τ is relatively w∗-w∗ continuous.

Proposition 3.6. For any locally compact quantum group G, the fol-
lowing statements are equivalent:

(i) L1(G) = M(G);
(ii) κ(C0(G)) = C0(G) (respectively, κ(M(C0(G))) = ˜M(C0(G)));
(iii) κ|LUC (G) = τ (respectively, κ(1L∞(G)) = 1C0(G)∗∗);
(iv) κ : L∞(G) → C0(G)∗∗ is an M(G)-bimodule (respectively, L1(G)-

bimodule) map;
(v) τ : LUC (G)→M(G)∗ is σ(LUC (G), L1(G))-w∗ continuous.

Proof. Note that κ(1L∞(G)) = p, and τ : LUC (G) → M(G)∗ is exactly
the inclusion map LUC (G) → L∞(G) when L1(G) = M(G) canonically.
Thus we have (iii)⇒(i)⇒ each of (ii)–(v).

(ii)⇒(i), and (v)⇒(i). These follow from the Hahn–Banach theorem and
the facts that C0(G) is w∗-dense in C0(G)∗∗ and pC0(G)∗∗ is w∗-closed
in C0(G)∗∗.

(iv)⇒(i). Suppose that κ : L∞(G) → C0(G)∗∗ is an L1(G)-bimodule
map. Since (L1(G)⊥) ? L1(G) = {0}, by (3.5), we have

C0(G)∗∗ ? L1(G) = (pC0(G)∗∗) ? L1(G) = κ(L∞(G)) ? L1(G)

= κ(L∞(G) ? L1(G)) ⊆ pC0(G)∗∗.

Then 1C0(G)∗∗ = p, since 1C0(G)∗∗ ∈ C0(G)∗∗ ? L1(G). Hence, L1(G)⊥ = {0},
that is, L1(G) = M(G).

It is known from [54, Theorem 4.4] that G is discrete if and only if
˜M(C0(G)) = C0(G)∗∗. We shall see from the following theorem that G is

discrete if and only if M(C0(G)) = L∞(G) and L1(G) = M(G).
For co-amenable quantum groups G, unlike the situation in The-

orem 3.1(v) and (vi), the inclusions in Theorem 3.1(vii) and (viii) usually
cannot be replaced by the equalities. In fact, we show below that the re-
version of the inclusion in Theorem 3.1(viii) characterizes discreteness (the
“reversal” of compactness). This is also the case with Theorem 3.1(vii) for
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the following class of quantum groups. We say that

G satisfies Condition (∗) if G is co-amenable(3.6)
or L1(G) ? L1(G) ( L1(G).

Note that L1(G) ?L1(G) = L1(G) if G is co-amenable. It is known from [43,
Proposition 2] that every co-commutative locally compact quantum group
satisfies Condition (∗).

Theorem 3.7. Let G be a locally compact quantum group. Consider the
following statements:

(i) G is discrete;
(ii) L1(G) =M(G), and LUC (G) =L∞(G) (resp.,M(C0(G)) =L∞(G));

(iii) π∗|LUC (G) : LUC (G)→M(G)∗ is surjective;
(iv) RM (L1(G)) ⊆ L1(G) ? LUC (G)∗;
(v) Zt(LUC (G)∗) ⊆ L1(G) ? LUC (G)∗;
(vi) M(G) ⊆ L1(G) ? LUC (G)∗;
(vii) L1(G) = M(G).

Then (i)⇔(ii)⇔(iii)⇔(iv)⇒(v)⇒(vi)⇒(vii), (i)–(vi) are equivalent if G sat-
isfies Condition (∗), and (i)–(vii) are equivalent if G is co-amenable.

Furthermore, if G is co-amenable with L1(G) of type (M) (e.g., L1(G)
is separable), then (i)–(vii) are all equivalent to

(viii) LUC (G) = L∞(G).

Proof. It is obvious that (i) ⇒ each of (ii)–(v), and (v)⇒(vi). We have
(ii)⇔(i) by Proposition 3.6 and [54, Theorem 4.4], and (vi)⇒(vii) holds due
to the decomposition LUC (G)∗ = M(G)⊕ C0(G)⊥ in Proposition 2.1.

(iii)⇒(i). Suppose that π∗(LUC (G)) = M(G)∗. By Proposition 2.1(ii),
we have ˜M(C0(G)) = C0(G)∗∗. Therefore, G is discrete (cf. [54, Theo-
rem 4.4]).

(iv)⇒(i). Suppose that RM (L1(G)) ⊆ L1(G) ? LUC (G)∗. Then, for the
identity map id on L1(G), there exist f ∈ L1(G) and n ∈ LUC (G)∗ such that
id∗ = (f ? n)L. By the decomposition LUC (G)∗ = M(G) ⊕ C0(G)⊥ again,
we have n = µ+ p for some µ ∈M(G) and p ∈ C0(G)⊥. Let f0 = f ? µ and
m = f?p. Then f0 ∈ L1(G),m ∈ C0(G)⊥, and id∗ = (f0+m)L = (f0)L+mL.
For x ∈ C0(G) and g, h ∈ L1(G), we have 〈mL(h?x), g〉 = 〈m,h?x?g〉 = 0,
and hence

〈x, g ? h〉 = 〈h ? x, g〉 = 〈id∗(h ? x), g〉 = 〈(f0)L(h ? x), g〉+ 〈mL(h ? x), g〉
= 〈f0 ? h ? x, g〉 = 〈x, g ? f0 ? h〉.

Thus g ? h = g ? f0 ? h for all g, h ∈ L1(G). Therefore, f0 is an identity of
L1(G) since L1(G) is faithful. It follows that L1(G) is unital, and hence G
is discrete.
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The second and third assertions hold since G is co-amenable if and only
if M(G) is unital (cf. [3, Theorem 3.1]), and the final assertion follows from
[25, Theorem 22].

Remark 3.8. (a) It is known from [4, Theorem 3.6] that if a locally
compact group G contains an almost connected open normal subgroup, then
G is compact whenever A(G) = Bλ(G). It is open whether this is true for all
groups G. Therefore, it is unknown whether (i) and (vii) are equivalent for
general co-commutative quantum groups. Also, it is not clear for us whether
(i)⇔(vii) for all non-co-amenable compact quantum groups G, though this
holds if in addition G is co-commutative (cf. [4, Lemma 3.5]).

(b) Obviously, we have

G is discrete ⇒ LUC (G) = L∞(G) ⇒ M(C0(G)) = L∞(G).

The reverse implications hold if the quantum group is commutative or co-
commutative (cf. [20, Theorem 3]). As seen in Theorem 3.7, we have
“LUC (G) = L∞(G) ⇒ G is discrete” if L1(G) is of type (M).

On the other hand, there exists a non-discrete quantum group G such
that L1(G) ∼= M(G) as Banach spaces and M(C0(G)) ∼= L∞(G) as C∗-
algebras. In fact, Baaj and Skandalis showed that there exists a quantum
group G such that C0(G) ∼= K(H) ⊆ B(H) ∼= L∞(G) (as C∗-algebras) for
some Hilbert space H of infinite dimension (cf. [2, Section 8]). It is clear
that this quantum group G is non-discrete (nor compact). In this case, by
Theorem 3.7, the ∗-homomorphic embedding C0(G) → L∞(G) obtained
above is not compatible with the canonical inclusion C0(G) ⊆ L∞(G), and
the induced identifications L1(G) ∼= M(G) and M(C0(G)) ∼= L∞(G) are not
the canonical equalities. The reader is referred to [29] for conditions which
are equivalent to the canonical inclusion C0(G) ⊆ K(L2(G)).

For convenience, a locally compact quantum group G is said to be finite
if L∞(G) is finite-dimensional. It is clear that

(3.7) G is finite ⇔ G is compact and discrete.

In fact, if G is compact and discrete, then L∞(G) must be a finite direct
sum of full matrix algebras.

The result below is immediate by Theorems 3.1 and 3.7, and (3.7), which
shows that compactness, discreteness, and finiteness of G can be charac-
terized simultaneously by comparing RM (L1(G)) with the module product
L1(G) ?LUC (G)∗. It is interesting to compare this result with those charac-
terizations of Q-SAI and co-amenability given in terms of RM (L1(G)) and
Zt(LUC (G)∗) (cf. (2.15) and (2.16)). Note that Zt(LUC (G)∗) and L1(G) ?
LUC (G)∗ are not related in general (cf. Theorems 3.2 and 3.7).
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Theorem 3.9. Let G be a locally compact quantum group. Then the
following assertions hold:

(i) G is compact⇔ L1(G) ? LUC (G)∗ ⊆ RM (L1(G)).
(ii) G is discrete⇔ L1(G) ? LUC (G)∗ ⊇ RM (L1(G)).
(iii) G is finite⇔ L1(G) ? LUC (G)∗ = RM (L1(G)).

Furthermore, the algebra RM (L1(G)) in (i)–(iii) can be replaced byM(G)
if G satisfies Condition (∗).

It is known that a group algebra L1(G) is Arens regular if and only
if G is finite (cf. [64]). As mentioned in Remark 3.5(ii), the above L1(G)
can be replaced by A(G) if G is amenable. These two results can be seen
dual of each other, noticing that L∞(G) is always co-amenable, and VN (G)
is co-amenable precisely when G is amenable. Also, for a general locally
compact group G, Arens regularity of A(G) implies discreteness of G (cf.
[16, Theorem 3.2]). We have the following quantum group version of these
results.

Theorem 3.10. Let G be a locally compact quantum group such that
L1(G) is Arens regular. Then

(i) G is discrete if G is co-amenable;
(ii) G is compact if one of the conditions (a), (b), and (c) in Theorem 3.2

and Remark 3.3 is satisfied.

Therefore, G is finite if G is co-amenable satisfying one of the above (a),
(b), and (c).

Proof. (i) If G is co-amenable, then L1(G) is unital by [59, Theorem 3.3],
and hence G is discrete.

(ii) Since L1(G) is Arens regular, we have Zt(L1(G)∗∗,�) = L1(G)∗∗.
Then the assertion holds by Theorem 3.2 and Remark 3.3.

The final assertion follows from (i), (ii), and (3.7).

Let LM (L1(G)) be the left multiplier algebra of L1(G). Then

LM (L1(G))→ B(L∞(G)), µ 7→ µ∗,

is an injective anti-algebra homomorphism. In the following Theorem 3.11,
RM (L1(G)) and LM (L1(G)) are identified with their canonical images
in B(L∞(G)) and the commutants are taken in B(L∞(G)). This result
in particular improves and extends [17, Theorem 5.1], which says that
BL1(G)(L∞(G))c = M(G) (or equivalently, L1(G)cc = M(G)) holds in
B(L∞(G)) for every locally compact group G, noticing that L1(G) is al-
ways SAI and of type (M) (cf. [40, 26]).
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Theorem 3.11. Let G be a locally compact quantum group. Then

(I) L1(G)c =M(G)c =RM (L1(G))c via L1(G)⊆M(G) ↪→RM (L1(G));
(II) L1(G)c =M(G)c =LM (L1(G))c via L1(G)⊆M(G) ↪→LM (L1(G));
(III) LM (L1(G))c = RM (L1(G)) if and only if G is compact if and only

if RM (L1(G))c = LM (L1(G)).

Furthermore, if L1(G) is of type (M), then the following statements are
equivalent:

(i) BL1(G)∗∗(L∞(G)) = Bσ
L1(G)(L∞(G));

(ii) L1(G) is SAI;
(iii) M(G)cc = M(G) viaM(G) ∼= RM (L1(G)) orM(G) ∼= LM (L1(G)).

Proof. (I) Clearly, we have RM (L1(G))c ⊆ M(G)c ⊆ L1(G)c. Con-
versely, let T ∈ L1(G)c. Then

T (f ? x) = f ? T (x) (f ∈ L1(G), x ∈ L∞(G)).

For all f, g ∈ L1(G), µ ∈ RM (L1(G)), and x ∈ L∞(G), since g ? µ∗(x) =
µ(g) ? x, we have

〈T (µ∗(x)), f ? g〉 = 〈T (g ? µ∗(x)), f〉 = 〈T (µ(g) ? x), f〉
= 〈Tx, f ? µ(g)〉 = 〈µ∗(Tx), f ? g〉.

Thus T ◦µ∗ = µ∗◦T for all µ ∈ RM (L1(G)), since 〈L1(G)?L1(G)〉 = L1(G).
Therefore, T ∈ RM (L1(G))c.

(II) This follows by a similar argument as given above.
(III) It is easy to see that L1(G)c = BL1(G)(L∞(G)) under the canonical

embedding L1(G) ↪→LM (L1(G)). The equivalences then follow from (I), (II),
and Theorem 3.1 and its left-sided version.

Suppose now that L1(G) is of type (M). Since G is co-amenable, it is
seen from Section 2 that

Bσ
L1(G)(L∞(G)) = {mL : m ∈ L1(G)∗∗ and L1(G) ? m ⊆ L1(G)},

BL1(G)∗∗(L∞(G)) = {mL : m ∈ L1(G)∗∗ and L1(G) ? m ⊆ Zt(L1(G)∗∗,♦)}.
Recall from [26, Theorem 32(ii)] that

L1(G) is SAI ⇔ L1(G) ? Zt(L1(G)∗∗,♦) ⊆ L1(G).

Therefore, we obtain (i)⇔(ii).
On the other hand, under L1(G) ⊆ M(G) ∼= RM (L1(G)), we have

Bσ
L1(G)(L∞(G)) = M(G), L1(G)c = {mR : m ∈ L1(G)∗∗}, and

BL1(G)∗∗(L∞(G)) = {mR : m ∈ L1(G)∗∗}c.
The corresponding equalities hold for L1(G) ⊆ M(G) ∼= LM (L1(G)). It
follows from (I) and (II) that we have (i)⇔(iii).



Module maps over quantum groups 133

In the immediate corollary below, (ii) is the quantum group version of
[41, Theorem 6.5(i)] on VN (G).

Corollary 3.12. Let G be a locally compact quantum group. Then

(i) if L1(G) is separable, M(G)cc = M(G) if and only if G is co-
amenable and L1(G) is SAI;

(ii) if G is compact with L1(G) of type (M), L1(G) is SAI.

Let G be a locally compact group. Then BL1(G)(L∞(G)) = LUC (G)∗,

Bσ
L1(G)(L∞(G)) = BL1(G)∗∗(L∞(G)) = Bl

L1(G)(L∞(G))

∼= Zt(LUC (G)∗) = M(G),

and L1(G) is SAI (cf. [39, 40]). In particular, Theorem 3.2 strengthens
[35, Theorem 2] on L∞(G). The situation for A(G) is very different. Firstly,
the topological centres of A(G)∗∗ (with either Arens product) and UCB(Ĝ)∗

are just their algebraic centres, since A(G) is commutative. Secondly, on the
one hand, A(G) is SAI for many amenable groups G (cf. [15, 23, 24, 41, 42]).
On the other hand, as shown by Losert [45, 46], both A(F2) and A(SU (3)) are
non-SAI, though A(F2) is Q-SAI (cf. Corollary 3.4) and SU (3) is compact.
Finally, we have UCB(Ĝ)∗ ⊆ BA(G)(VN (G)), Bλ(G) ⊆ Bσ

A(G)(VN (G)),

and Z(UCB(Ĝ)∗) ⊆ BA(G)∗∗(VN (G)) = Bl
A(G)(VN (G)), and any (hence all)

of these three equalities holds precisely when G is amenable. In this case,
(iv)⇔(ix) in Theorem 3.1, (ii)⇔(v) in Theorem 3.2, and the equivalence
in (2.17) are indeed non-trivial.

We close this section with some applications to A(G). Obviously, we
always have

Z(A(G)∗∗) �A(G)∗∗ ⊆ A(G) ⇒ Z(A(G)∗∗) �A(G)∗∗ ⊆ Z(A(G)∗∗)

⇒ A(G) ·A(G)∗∗ ⊆ Z(A(G)∗∗).

By Theorem 3.1 and [60, Theorem 2.2], we have

Z(A(G)∗∗) �A(G)∗∗ ⊆ A(G) ⇔ A(G) ·A(G)∗∗ ⊆ A(G).

Combining the above with Theorem 3.2 and Remark 3.3, we obtain the
following result on Fourier algebras.

Corollary 3.13. Let G be a locally compact group. Then for L∞(G) =
VN (G), (i)–(ix) in Theorem 3.1 and (i)–(vi) in Theorem 3.2 are all equiva-
lent, and are also equivalent to each of the following statements:

(i) G is discrete;
(ii) Z(A(G)∗∗) �A(G)∗∗ ⊆ A(G);
(iii) A(G) �A(G)∗∗ ⊆ Z(A(G)∗∗).
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Let B(G) be the Fourier–Stieltjes algebra of G, let MA(G) be the multi-
plier algebra of A(G), and letMcbA(G) be the completely bounded multiplier
algebra of A(G). Then we have

A(G) ⊆ Bλ(G) ⊆ B(G) ⊆McbA(G) ⊆MA(G) ⊆ B(VN (G)).

As pointed out earlier, the quantum group VN (G) satisfies Condition (∗) de-
fined in (3.6). It is known from [44] that G is amenable if and only if B(G) =
MA(G). Also, we haveMA(G) ⊆MA(G)c∩MA(G)cc. Therefore, we obtain
the corollary below from Theorems 3.7, 3.9 and 3.11, and Corollary 3.13.

Corollary 3.14. Let G be a locally compact group. Then Theorem 3.9
holds for L∞(G) = VN (G) with RM (L1(G)) replaced by any of Bλ(G),
B(G), McbA(G), MA(G), and Z(UCB(Ĝ)∗). Furthermore, we have

(i) A(G)c = A(G) if and only if G is finite;
(ii) A(G)cc = A(G) if and only if G is compact and A(G) is SAI;
(iii) B(G)c = B(G) (respectively, Bλ(G)c = Bλ(G)) if and only if G is

amenable and discrete;
(iv) B(G)cc = B(G) (respectively, Bλ(G)cc = Bλ(G)) if and only if G is

amenable and A(G) is SAI.

Example 3.15. Let G = SU (3). Since A(G) is non-SAI as mentioned
above, by Theorem 3.11 and Corollary 3.13, we obtain

Bσ
A(G)(VN (G)) ( BA(G)∗∗(VN (G)) ( BA(G)(VN (G)).

On the other hand, we can see from Theorem 3.11 and its proof that

Bσ
A(G)(VN (G))cc = BA(G)∗∗(VN (G)) = BA(G)(VN (G))c = A(G)cc.

Note that BA(G)∗∗(VN (G)) is also a commutative Banach algebra, since
BA(G)∗∗(VN (G)) ∼= Z(A(G)∗∗).

Remark 3.16. The canonical representation LUC (G)∗→BL1(G)(L∞(G))
in fact induces a completely contractive algebra injection

ΦL : LUC (G)∗ → CBL1(G)(L∞(G)), m 7→ mL,

which is just the adjoint map of the completely contractive module product
L∞(G) ⊗̂ L1(G) → LUC (G), x ⊗ f 7→ x ? f (cf. [28, Section 6]). It is easy
to see that the algebras B(L∞(G)), RM (L1(G)), and LM (L1(G)) can be
replaced by CB(L∞(G)), RMcb(L1(G)), and LMcb(L1(G)), respectively, in
the results presented in this section, and each of these results (as well as
those in Section 4) has its left-sided and right-sided versions.

4. Weakly compact module maps over quantum groups. As men-
tioned in Section 3, for a general non-commutative and non-amenable locally
compact quantum group G, it is not clear whether WAP(G) has a left invari-
ant mean, whose existence is thus assumed in the proposition below. This
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proposition generalizes [35, Theorem 4] on L∞(G) with X = LUC (G) or
L∞(G), noticing that the map T there satisfies T (1) = 1. The proof of [35,
Theorem 4] is modified for the present quantum group setting.

Proposition 4.1. Let G be a locally compact quantum group such that
WAP(G) has a left invariant mean. Then the following statements are equiv-
alent:

(i) G is amenable;
(ii) there exists a unital, completely positive, and weakly compact map S

in BL1(G)(L∞(G));
(iii) there exists a weakly compact map S in BL1(G)(L∞(G)) such that

1 ∈ S(L∞(G)).

Furthermore, if G is co-amenable, then (i)–(iii) are equivalent to

(iv) there exists a weakly compact map S in BL1(G)(LUC (G)) such that
1 ∈ S(LUC (G)),

where BL1(G)(LUC (G)) is the space of bounded right L1(G)-module maps on
LUC (G).

Proof. (i)⇒(ii). Suppose that m ∈ L∞(G)∗ is a left invariant mean. We
define S : L∞(G) → L∞(G) by S(x) = 〈m,x〉1. Then S ∈ BL1(G)(L∞(G))
is unital, completely positive, and weakly compact.

(ii) ⇒ (iii). This is trivial.
(iii)⇒(i). Suppose that S is a weakly compact operator in the space

BL1(G)(L∞(G)) such that 1 ∈ S(L∞(G)). For x ∈ L∞(G), since the set

{S(x) ? f : f ∈ L1(G) and ‖f‖ ≤ 1} = {S(x ? f) : f ∈ L1(G) and ‖f‖ ≤ 1}
is relatively weakly compact in L∞(G), we have S(x) ∈WAP(G). Let β be
a left invariant mean on WAP(G) and let p(x) = 〈β, S(x)〉 (x ∈ L∞(G)).
Then p is a left invariant bounded linear functional on L∞(G), and p 6= 0
since 1 ∈ S(L∞(G)). Thus L∞(G)∗ has a non-zero left invariant element.
Therefore, L∞(G) has a left invariant mean (cf. [52]); that is, the quantum
group G is amenable.

The final assertion holds, since

BL1(G)(L∞(G)) ∼= LUC (G)∗ ∼= BL1(G)(LUC (G))

canonically if the quantum group G is co-amenable (cf. [28, Proposition 6.5
and Remark 6.7]).

Let RMwc(L1(G)) be the Banach algebra of weakly compact right mul-
tipliers of L1(G) and let Bwc(L∞(G)) be the Banach algebra of weakly com-
pact maps in B(L∞(G)). Then

(4.1) RMwc(L1(G)) ∼= Bσ
L1(G)(L∞(G)) ∩Bwc(L∞(G))
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via RM (L1(G)) ↪→ B(L∞(G)). The theorem below generalizes and unifies
[1, Theorem 4] on L1(G) and [36, Proposition 6.11] on A(G).

Theorem 4.2. Let G be a locally compact quantum group. Then

G is compact ⇔ L1(G) ⊆ RMwc(L1(G)) canonically.

Furthermore, L1(G) ∼= RMwc(L1(G)) canonically if G is compact and
co-amenable.

Proof. Let f 7→ rf be the canonical embedding L1(G) → RM (L1(G))
given by rf (g) = g ?f (g ∈ L1(G)). According to Theorem 3.1, G is compact
if and only if L1(G) ? L1(G)∗∗ ⊆ L1(G), which is true if and only if the
map rf : L1(G) → L1(G) is weakly compact for all f ∈ L1(G) (cf. [49,
Proposition 1.4.13]). Therefore, the equivalence holds.

Suppose now that G is compact and co-amenable. Let µ ∈ RMwc(L1(G)).
Let (eα) be a bounded approximate identity of L1(G) such that

µ(eα)→ f0 ∈ L1(G) weakly.

Then we have

µ(f) = lim
α
µ(f ? eα) = lim

α
f ? µ(eα) = f ? f0 = rf0(f) for all f ∈ L1(G),

that is, µ = rf0 ∈ L1(G).

The converse of the second assertion in Theorem 4.2 holds in the two
classical cases.

Corollary 4.3. Let G be a commutative or co-commutative locally com-
pact quantum group. Then

G is compact and co-amenable ⇔ L1(G) ∼= RMwc(L1(G)) canonically.

Proof. By Theorem 4.2, we need only show “⇐”, which is obvious if the
quantum group is commutative. Suppose that the quantum group is co-
commutative and L1(G) ∼= RMwc(L1(G)) canonically. Then the embedding
L1(G) → RM (L1(G)), f 7→ rf , is bounded from below. It follows from [44,
Theorem 1] that the quantum group G is co-amenable.

Remark 4.4. It is interesting to know whether in general

RMwc(L1(G)) 6= {0} ⇔ G is compact,

which is true for L1(G) = L1(G) and L1(G) = A(G) (cf. [56, Theorem 1]
and [36, Proposition 6.9]).

For x ∈ L∞(G), let x`(f) = x ? f (f ∈ L1(G)). Then x` is in the
space BL1(G)(L1(G), L∞(G)) of bounded right L1(G)-module maps from
L1(G) to L∞(G). In fact, we have x` = Γ (x) under the identification
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CB(L1(G), L∞(G)) ∼= L∞(G) ⊗̄ L∞(G). Therefore, the map

(4.2) L∞(G)→ CBL1(G)(L1(G), L∞(G)), x 7→ x`,

is completely isometric, and we obtain

(4.3) WAP(G) = {x ∈ L∞(G) : x` ∈ CBwc
L1(G)(L1(G), L∞(G))},

where CBwc
L1(G)(L1(G), L∞(G)) is the space of weakly compact maps in

CBL1(G)(L1(G), L∞(G)). We shall show in Section 5 that the spaceWAP(G)

always contains a canonical copy of Cu(Ĝ)∗ (cf. Proposition 2.3 and the para-
graph before it).

Remark 4.5. It is also interesting to compare the equivalence in Corol-
lary 4.3 with the following characterization (4.4) of Arens regularity. Suppose
that G is co-amenable. Then

L∞(G) ∼= CBL1(G)(L1(G), L∞(G)) = BL1(G)(L1(G), L∞(G)),

WAP(G) ∼= CBwc
L1(G)(L1(G), L∞(G)) = Bwc

L1(G)(L1(G), L∞(G)),

since we have T = T ∗(E)L for all T ∈ BL1(G)(L1(G), L∞(G)), where E is a
right identity of (L1(G)∗∗,�). Therefore,

(4.4) L1(G) is Arens regular
⇔ BL1(G)(L1(G), L∞(G)) = Bwc

L1(G)(L1(G), L∞(G)).

Note that when G is co-amenable, the space Bwc
L1(G)(L1(G), L∞(G)) con-

sists precisely of all maps in BL1(G)(L1(G), L∞(G)) factoring through
reflexive Banach spaces, which is also equal to the space of all maps in
CBL1(G)(L1(G), L∞(G)) factoring through reflexive operator spaces. This
fact can be derived by combining [8, Proposition 3.13] with [9, Corollary 1]
and its cb-version [50, Theorem 2.1]. It is also seen from [10, Theorem 4.4]
that these weakly compact right L1(G)-module maps from L1(G) to L∞(G)
can factor through reflexive completely contractive L1(G)-bimodules.

5. An Eberlein theorem over quantum groups. Let G be a lo-
cally compact quantum group. Let Cu(G) be the universal quantum group
C∗-algebra of G, and let Π : Cu(G) → C0(G) be the canonical surjective
∗-homomorphism, whose unique ∗-homomorphic extension M(Cu(G)) →
M(C0(G)) is also denoted byΠ. For the dual quantum group Ĝ of G, this ho-
momorphism is denoted by Π̂. It is known from [32] that there exist unitaries
U ∈ M(Cu(G)) ⊗ Cu(Ĝ)) and V ∈ M(Cu(G) ⊗ C0(Ĝ)), and co-associative
non-degenerate ∗-homomorphisms

∆u : Cu(G)→M(Cu(G)⊗ Cu(G)),

∆̂u : Cu(Ĝ)→M(Cu(Ĝ)⊗ Cu(Ĝ))
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such that

(5.1) (ι⊗ Π̂)(U) = V, (∆u ⊗ ι)(U) = U13U23, (ι⊗ ∆̂u)(U) = U13U12.
The reader is referred to [32] for more information on (Cu(G), ∆u).

It follows that Cu(G)∗ is a Banach algebra with the multiplication ?u
induced by ∆u. Let

(5.2) Mu(G) = (Cu(G)∗, ?u)

be the universal quantum measure algebra of G. Then the map

Π∗ : M(G)→Mu(G)

is an isometric algebra homomorphism.
A theorem by Eberlein (cf. [13, Theorem 11.2] and [5, Corollary 3.3])

shows that if G is a locally compact group, then every positive definite
function on G is weakly almost periodic. Therefore, we have

B(G) ⊆WAP(G).

As shown by Dunkl and Ramirez [12, Theorem 2.8 and Chapter 8], the
dual version of this classical Eberlein theorem holds; that is, the left regular
representation of G defines a homomorphic embedding

M(G)→ VN (G) with range contained in WAP(Ĝ).

In the setting of locally compact quantum groups, these two results can be
unified and stated as follows:

If G is a commutative or co-commutative locally compact quantum
group, then the left regular representation λ̂ : M(Ĝ) → L∞(G) of Ĝ
extends to an injective homomorphism λ̂u : Mu(Ĝ) → L∞(G) with
λ̂u(Mu(Ĝ)) ⊆WAP(G).

We show in this section that in fact the above assertion holds for all
quantum groups. In this way, by (4.2) and (4.3), we obtain canonically a
homomorphic embedding

(5.3) Mu(Ĝ) ⊆ CBwc
L1(G)(L1(G), L∞(G)).

First, using the unitary U , we define the maps

(5.4)
Φu : Mu(G)→M(Cu(Ĝ)), µ 7→ (µ⊗ ι)(U),

Ψu : Mu(Ĝ)→M(Cu(G)), µ̂ 7→ (ι⊗ µ̂)(U).

Let
λu = Π̂ ◦ Φu : Mu(G)→M(C0(Ĝ)).

Due to the first equality in (5.1), we see that λu is indeed the map given by

(5.5) λu : Mu(G)→M(C0(Ĝ)), µ 7→ (µ⊗ ι)(V).
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Proposition 5.1. Let G be a locally compact quantum group. Then the
following statements hold:

(i) Φu : Mu(G)→M(Cu(Ĝ)) and Ψu : Mu(Ĝ)→M(Cu(G)) are homo-
morphisms satisfying

〈Φu(µ), µ̂〉 = 〈µ, Ψu(µ̂)〉 for all µ ∈Mu(G) and µ̂ ∈Mu(Ĝ).

(ii) λu : Mu(G) → M(C0(Ĝ)) is a homomorphic injection, extending
the left regular representation λ : M(G) → M(C0(Ĝ)) of G in the
sense that λu ◦Π∗ = λ.

(iii) (Ψu ◦ Π̂∗)(L1(Ĝ)) ⊆ Cu(G).

Proof. (i) The maps Φu and Ψu are homomorphisms due to (5.1), and the
equality 〈Φu(µ), µ̂〉 = 〈µ, Ψu(µ̂)〉 follows from the definition of Φu and Ψu.

(ii) Clearly, λu = Π̂ ◦ Φu : Mu(G) → M(C0(Ĝ)) is a homomorphism.
Also, the map λu is injective by (5.5) and [32, (5.2)], which asserts that

(5.6) Cu(G) = span‖·‖{(ι⊗ f̂)(V) : f̂ ∈ L1(Ĝ)}.
Finally, λu ◦Π∗ = λ holds since (Π ⊗ ι)(V) = W (cf. [32, Proposition 5.1]).

(iii) Let f̂ ∈ L1(Ĝ). Then, by (5.6) and the first equality in (5.1), we have

Ψu(Π̂∗(f̂)) = (ι⊗ Π̂∗(f̂))(U) = (ι⊗ f̂)((ι⊗ Π̂)(U)) = (ι⊗ f̂)(V) ∈ Cu(G).

Therefore, the inclusion (Ψu ◦ Π̂∗)(L1(Ĝ)) ⊆ Cu(G) holds.

Note that L1(G) is an ideal in M(G), and Π∗(M(G)) is an ideal in
Mu(G) (cf. [32, Proposition 8.3]). Since L1(G) = 〈L1(G) ? L1(G)〉, it follows
immediately that

(5.7) Π∗(L1(G)) is a two-sided ideal in Mu(G).

Thus we can consider the strict topology on Mu(G) by defining ωi → ω
strictly inMu(G) if ωi ?uΠ∗(f)→ ω?uΠ

∗(f) and Π∗(f)?uωi → Π∗(f)?uω

for all f ∈ L1(G). Note that λ(L1(G)) is norm dense in C0(Ĝ). Together
with (5.5)–(5.7), we can obtain some further properties of the map λu as
given in the proposition below.

Proposition 5.2. Let G be a locally compact quantum group. Then the
following statements hold:

(i) λu : Mu(G) → M(C0(Ĝ)) is the unique homomorphic extension of
λ : M(G)→M(C0(Ĝ)).

(ii) λu : Mu(G)→ L∞(Ĝ) is w∗-w∗ continuous.
(iii) λu : Mu(G) → M(C0(Ĝ)) is strictly continuous on bounded subsets

of Mu(G); that is, if (ωi) is a bounded net in Mu(G), then

ωi→ω strictly in Mu(G) ⇒ λu(ωi)→ λu(ω) strictly in M(C0(Ĝ)).
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Remark 5.3. It follows from (5.7) that there exists a canonical algebra
homomorphism

(5.8) Mu(G)→Mcb(L1(G)).

On the other hand, as observed in [28, Section 3], using the representation
theorem established in [31] and the relation between λ and ρ, we can obtain
an algebra embedding

(5.9) Mcb(L1(G))→M(C0(Ĝ)).

In fact, it is seen from the M `
cb-version of [31, Corollary 4.4] that each µ in

LMcb(L1(G)) is determined uniquely by an element b̂ of L∞(Ĝ) satisfying
λ(µ(f)) = b̂λ(f) (f ∈ L1(G)), and hence we have

b̂C0(Ĝ) ⊆ C0(Ĝ).

Through a Hilbert C∗-module approach, Daws proved [11, Theorem 4.2]
that b̂ ∈ M(C0(Ĝ)). It is seen from Propositions 5.1(ii) and 5.2(i) that
λu = Π̂ ◦ Φu : Mu(G) → M(C0(Ĝ)) is exactly the composition of the two
maps in (5.8) and (5.9), and thus the homomorphism in (5.8) is also injective.

Remark 5.4. Note that L1(Ĝ) = C0(Ĝ) · L1(Ĝ), where · denotes the
canonical C0(Ĝ)-bimodule action on L1(Ĝ) (cf. [28, Proposition 2.1]).
By (5.6) and Proposition 5.2(iii), we deduce that

if (ωi) is a bounded net in Mu(G) such that ωi → ω ∈Mu(G) strictly,
then ωi → ω in the w∗-topology on Mu(G).

It is interesting to know whether the converse holds on the unit sphere of
Mu(G), which is the case when the quantum group is commutative or co-
commutative (cf. [48, 21]).

Due to Proposition 5.1(iii), we can define the contraction

(5.10) λu∗ : L1(Ĝ)→ Cu(G), f̂ 7→ Ψu(Π̂∗(f̂)) = (ι⊗ f̂)(V).

Then the lemma below holds by Proposition 5.1(i) and the definition of the
maps λu and λu∗ .

Lemma 5.5. For all µ ∈Mu(G) and f̂ ∈ L1(Ĝ), we have

(5.11) λu(µ) ?̂ f̂ = λu(µ · λu∗(f̂)) and f̂ ?̂ λu(µ) = λu(λu∗(f̂) · µ),

where ?̂ and · denote the canonical module actions of L1(Ĝ) on L∞(Ĝ) and
Cu(G) on Mu(G), respectively.

Following an argument similar to the one used in the proof of Proposi-
tion 2.3 (comparing (5.11) with (2.12)), we show below that λu mapsMu(G)

into WAP(Ĝ). The following theorem unifies the corresponding results in
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[13, 12] for L∞(G) and VN (G), and our approach is new even for these two
classical cases.

Theorem 5.6. Let G be a locally compact quantum group and let Cu(G)
be the universal quantum group C∗-algebra of G. Then the injective complete
contraction

λu : Mu(G)→M(C0(Ĝ)) ⊆ L∞(Ĝ), µ 7→ (µ⊗ ι)(V),

is the unique homomorphic extension of the left regular representation

λ : M(G)→M(C0(Ĝ)), µ 7→ (µ⊗ ι)(W ),

of G, and

(5.12) λu(Mu(G)) ⊆WAP(Ĝ).

Proof. We only need to show the inclusion (5.12). Let µ ∈ Mu(G). If
(f̂i) is a net in L1(Ĝ) such that λu∗(f̂i)→ m ∈ Mu(G)∗ in the w∗-topology
of Mu(G)∗, then µ · λu∗(f̂i) → µ · m weakly in Mu(G), since Mu(G)∗ is a
von Neumann algebra and thus µ ·m ∈Mu(G)∗∗ is actually in Mu(G). Note
that the map λu∗ is contractive. It follows that the set {µ · λu∗(f̂) : f̂ ∈
L1(Ĝ) and ‖f̂‖ ≤ 1} is relatively weakly compact inMu(G). By Lemma 5.5,
the set {λu(µ) ?̂ f̂ : f̂ ∈ L1(Ĝ) and ‖f̂‖ ≤ 1} is relatively weakly compact in
L∞(Ĝ). Therefore, λu(µ) ∈WAP(Ĝ).

Remark 5.7. (i) Clearly, we have the commutative diagram of algebra
homomorphisms

Mu(G)

λu

��

Φu

��

//Mcb(L1(G))

����

M(G)

77

λ
��

Π∗
gg

M(Cu(Ĝ))
Π̂ //M(C0(Ĝ)) // L∞(Ĝ)

whereMu(G)→Mcb(L1(G)) andMcb(L1(G))→M(C0(Ĝ)) are given in (5.8)
and (5.9), respectively, M(G) → Mcb(L1(G)) is the canonical embedding,
Mcb(L1(G))→ L∞(Ĝ) is the composition of the maps

Mcb(L1(G)) ↪→ LMcb(L1(G)) ∼= M `
cb(L1(G)) ⊆ L∞(Ĝ)

(cf. [31]), and M(C0(Ĝ))→ L∞(Ĝ) is the inclusion map.
(ii) When G is co-amenable, the embedding Mcb(L1(G)) → M(C0(Ĝ))

has range in WAP(Ĝ) (cf. Proposition 2.3). This is also the case when the
quantum group is co-commutative (cf. [63]). It is interesting to know whether
this is true for all locally compact quantum groups G.
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Replacing G in Theorem 5.6 by Ĝ, we can define the quantum Eberlein
algebra of G by

(5.13) E(G) = λ̂u(Mu(Ĝ))
‖·‖
⊆WAP(G).

See, for example, [6, 7, 47] for information on the Eberlein algebra E(G)
of a locally compact group G. The proposition below is clear by Theorem
5.6 and Proposition 2.1, noticing that it is still open whether the inclusion
WAP(G) ⊆M(C0(G)) always holds (cf. Remark 3.5(ii)).

Proposition 5.8. Let G be a locally compact quantum group. Then the
quantum Eberlein algebra E(G) of G is an M(G)-submodule of L∞(G) and
is two-sided introverted in L∞(G) satisfying

(5.14) C0(G) ⊆ E(G) ⊆WAP(G) ∩M(C0(G)).

Therefore, E(G)∗ is a dual Banach algebra (since the two Arens products
on E(G)∗ coincide), and each of Proposition 2.1, Corollary 2.5, and the
statement in (2.13) holds for X = E(G).
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