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Differentiability from the representation formula and
the Sobolev—Poincaré inequality

by

VALENTINO MAGNANI (Pisa)

Abstract. In the geometries of stratified groups, we provide differentiability theorems
for both functions of bounded variation and Sobolev functions. Proofs are based on a
systematic application of the Sobolev—Poincaré inequality and the so-called representation
formula.

Introduction. The aim of the present paper is to introduce a simple
and unified approach to higher order differentiability of both Sobolev and
BV functions on stratified groups. These groups represent a large family of
different geometries, which also include Euclidean spaces [17]. For instance,
the Heisenberg group is a well known example of a noncommutative stratified
group [42].

The classical notions of Sobolev functions and of functions with bounded
variation extend to the general context of stratified groups as follows. We
consider left invariant vector fields X1, ..., X, and we say that a locally sum-
mable function v on an open subset {2 of a stratified group G has H-bounded
variation if its distributional derivative X;u is a finite Radon measure for
every j = 1,...,m. If all distributional derivatives Xj ---X; u are mea-
sures for every p < k and js € {1,...,m} for every s = 1,...,p, then we say
that u has H-bounded k-variation, and write u € BV (£2). The H-Sobolev
space Wfl’p (£2) is defined in analogous way; the central role played by the
vector fields X is then clear. In fact, they span the first layer of the strat-
ified algebra and yield the geometry of the group, defining the so-called
Carnot—Carathéodory distance (see Section 1 below).

In order to state our results, we introduce the notion of “LP differentiabil-
ity of order £”. In the Euclidean context this definition goes back to Calderén
and Zygmund [6], [7]. A function u € LI (£2) is said to be L? differentiable
of order k at x € (2 if there exists a polynomial F|;; of homogeneous degree
less than or equal to k such that
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The anisotropy of stratified groups requires the notion of homogeneous de-
gree of a polynomial, which amounts to take into account the “weight” of
every coordinate (see Subsection 1.2). The polynomial P is uniquely de-
fined and it is called the “LP differential of u of order k”. Note that every
function v which is L? differentiable of order k at x € 2 satisfies the equiv-
alent condition

2) lim (

x,r

lu(y) = Poy(v)\? ,
o )" )dy‘o’

as we show in Lemma 1.16. It is well known that LP differentiability turns
out to be the natural concept to study fine properties of functions with
bounded variation and Sobolev functions in Euclidean spaces. In this case
LP differentiability and approximation theorems for Sobolev functions can
be found for instance in [2], [4]-[7], [15]; see also [41], [46] and the references
therein.

Previous results on higher order differentiability in stratified groups can
be found in [1]. The importance of higher order differentiability stems for
instance from the recent interest in studying second order pointwise dif-
ferentiability of H-convex functions [13], [24], [26], [34], [36]. The present
paper can be thought of as a development of [1]; we extend the previ-
ous results adopting a simpler approach which also applies to H-Sobolev
functions. Here we do not use maximal functions and Rademacher’s theo-
rem. On the contrary, as a byproduct of our results and of Lemma 3.1.5 in
[16], we also provide another proof of Rademacher’s theorem on stratified
groups.

Our first order differentiability theorem is stated as follows. Let u : {2 —
R be a function of H-bounded variation and let 5 = Q/(Q — 1), where @ is
the Hausdorff dimension of the group. Then u is a.e. L? differentiable and its
differential corresponds to the density of Dpu®, which is the absolutely con-
tinuous part of the the measure Dyu (see Section 1 for precise definitions).
The Euclidean version of this result has been first proved by Calderén and
Zygmund [6] (see also Federer’s proof in Theorem 4.5.9(26) of [16]). First
order differentiability results for Sobolev functions with 1 < p < oo are al-
ready known in the general setting of doubling metric spaces admitting the
Poincaré inequality [3]. Our method for first order differentiability also ap-
plies to Sobolev functions for any p > 1. The main features of our approach
consist in the use of the Sobolev—Poincaré inequality (9) and the so-called
“representation formula”, stated as follows. There exists a dimensional con-
stant C' such that for every function u in C°°({2) and every open ball B, o,



Sobolev—Poincaré inequality 253
compactly contained in {2, the pointwise estimate

Viu(y)|
(3) lu(w) — up,, | < cBST ﬁ dy

holds, where g is the Carnot—Carathéodory distance (see Section 1 for more
details). This formula on stratified groups has been proved by Lu [31] (see
also [10], [18], [19] and [35]).

The core of the present paper pertains to higher order differentiability,
which poses novel difficulties, due to the noncommutativity of the vector
fields Xi, ..., Xy In fact, the characterization of the differential Py, in (1)
using distributional derivatives of u requires a basis of left invariant dif-
ferential operators on G. By the Poincaré-Birkhoff-Witt theorem one can
explicitly construct such a basis by iterated compositions of Xi,..., X,
seen as first order left invariant differential operators. As a consequence,
Proposition 3.1 provides a characterization of P,;. This proposition plays
a crucial role in the argument by induction which connects first order dif-
ferentiability to higher order differentiability. We show that every function
u € BVE(0) is L' differentiable of order k and that in the case k < Q it
is L7 differentiable of the same order, where v = Q/(Q — k). In Euclidean
spaces this result fits in Theorem 1(i) of [15]. Note that the Euclidean proof
of [15] uses minimizing polynomials, which suitably replace the Taylor ex-
pansion of the function, hence following a completely different approach. In
analogous way, we prove that every function u in Wlﬁ’p (£2) is a.e. LP differ-
entiable of order k and that in the case kp < @ it is a.e. L" differentiable,
where 7 = Qp/(Q — kp).

Finally, we give a brief overview of the present paper. Section 1 is de-
voted to preliminary notions and basic tools used in the subsequent sec-
tions. We prove Lemma 1.16 and we give a simple argument leading to the
key estimates (20) and (21). In Section 2 we prove the sub-Riemannian ver-
sion of the well known Calderén—Zygmund differentiability of functions with
bounded variation. As a byproduct of our first order differentiability results,
we give another proof of the Rademacher theorem on stratified groups. In
Section 3 we prove higher order differentiability of functions in BV#(£2) and

in WEP(02).
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1. Preliminaries. A stratified group is a simply connected nilpotent Lie
group G endowed with a graded Lie algebra G, which is decomposed into a
direct sum of subspaces V; subject to the condition Vj 1 = [V}, V1] for every
j € N\ {0}, and V; = {0} whenever j is greater than a positive integer.
We denote by ¢ the maximum integer such that V, # {0} and we call it the
nilpotence degree or the step of the group. Recall that for arbitrary subspaces
V,W C G we define [V, W] =span{[X,Y] | X € V, Y € W}.

The assumption that G is simply connected and nilpotent ensures that
the exponential map exp : G — G is a diffeomorphism. The grading of
G allows us to define dilations on the group, i.e. maps 6; : G — G with
0t(D25-1v5) = 25 tJv;, where t > 0 and >_j=1vj € G is the unique repre-
sentation of a vector of G with v; € V; for every j = 1,..., . This notion of
dilation is motivated by the fact that the composition exp o d;oln: G —» G
is a group homomorphism, where In = exp~!. We will use the same symbol
to denote dilations which are read on the group. The underlying metric of
the group is a left invariant Riemannian metric g such that the subspaces
V; are orthogonal to each other. We will always refer to these metrics, called
graded metrics. The Riemannian volume on G given by a graded metric will
be denoted by v,. It is clear that v, is left invariant, hence it is a Haar
measure of the group. For ease of notation, we will also write vy(A) = |A],
where A C G is a measurable set, and we will use the symbol dx when
integration is considered with respect to the Riemannian volume measure
vg. The averaged integral of a summable map u : A — R is defined as
ug =4, u=14"11,u

The Carnot—Carathéodory distance between two points x and z’ is ob-
tained by taking the infimum of the lengths of absolutely continuous curves
a.e. tangent to the horizontal subbundle and connecting x with x’. The
length of connecting curves is computed by a graded metric g, hence the
Carnot—Carathéodory distance g is left invariant and it has the important
scaling property o(0uz,0px’) = to(z, '), where x,2’ € G (see for instance
[25]). We denote by B, , the open ball of center = and radius r > 0 with re-
spect to the Carnot—Carathéodory distance. Balls of radius r centered at the
unit element e of the group will be denoted simply by B,. We will frequently
use the following scaling property:

(4) | Bar| = |B|r?

for every x € G and any r > 0. The integer () is the Hausdorff dimension of
G with respect to the Carnot—Carathéodory distance and it is strictly greater
than the topological dimension ¢ of the group whenever G is not Abelian.
More information on stratified groups can be found for instance in [12], [17]
and [42].
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We introduce the horizontal space H,G = {X(p) | X € V1} at p € G and
consider the disjoint union of all these subspaces with the relevant vector
bundle topology. This collection forms the so-called horizontal subbundle,
denoted by HG. Smooth sections of the horizontal subbundle are called hor-
izontal vector fields. We assume throughout the paper that {2 is an open
subset of a stratified group G. The space of smooth horizontal vector fields
of 2 is denoted by I'(Hf2) and the one of compactly supported horizontal
vector fields by I.(HS?2). Note that a horizontal vector field ¢ can be written
as 1"y ¢; X, where (X1,...,X,) is a basis of the first layer Vi C G. The
H-divergence of ¢ is defined as Z;nzl Xj¢; and it is denoted by divy ¢. Note
that the definition of H-divergence does not depend on the choice of the basis
of V4. These notions allow us to introduce functions of bounded variations
naturally associated to the sub-Riemannian structure of the group (see [9],
[20] for more information).

DEFINITION 1.1 (H-BV functions). We say that a function u € L(£2) is
a function of H-bounded variation (for short, an H-BV function) if

|Dpul(£2) = sup{ S u(z) divg p(z) dx | ¢ € I.(H), |p] < 1} < 0.
Q

We denote by BVy(§2) and BV joc(£2) the space of functions of H-bounded
variation and of locally H-bounded variation, respectively.

By the Riesz representation theorem we get the existence of a nonnegative
Radon measure | Dyu| and of a Borel section v of Hf? such that |v(x)| = 1 for
| Drul-a.e. x € £2. Moreover for every ¢ € I.(HS2) the following integration
by parts formula holds:

(5) | u(x) diva ¢(z) dw = — | (¢, v) d | Dyul.
2 9]

The vector-valued measure v | Dyul is denoted by Dyu. The symbols | Dyul?
and |Dyul® stand for the absolutely continuous part and the singular part
of |Dyul, respectively. We also define the vector measures Djju = v |Dyu|*
and Djju = v |Dyul®.

The density of D{ju with respect to the Haar measure of the group is
denoted by Vyu. In our arguments we will consider Vyu as a measurable
vector function with values in R™. This is possible whenever we refer to an
orthonormal basis (X1,...,X,,) of Vi. Note that if u is of class C*, then
Viu = (Xqu, ..., Xpnu).

DEFINITION 1.2 (H-BV* functions). By induction on k > 2 we say that
a measurable map u : 2 — R has H-bounded k-variation (for short, an
H-BV* function) if for any i = 1,...,m the distributional derivatives X;u



256 V. Magnani

are representable by functions with H-bounded (k — 1)-variation. We denote
by BV (£2) the space of all H-BV* functions.

DEFINITION 1.3 (H-Sobolev functions). A function u € LP({2) belongs
to Wfl’p(()) if for all j, € {1,...,m} and s = 1,..., k there exists a function
Vjy,...5x € LP(£2) such that

(6) Vu) (X, - X58) (W) dy = (=1 { vj,_5 () 8(y) dy
Q Q
for every ¢ € C°(12), where (X1, ..., X,,) is an orthonormal basis of V;. We

denote by Wflf’ _.(§2) the space of measurable functions defined on {2 which

belong to WP (') for every open set {2 compactly contained in 2.
) H

REMARK 1.4. We observe that Definitions 1.2 and 1.3 do not depend on
the choice of the orthonormal basis (X1,..., Xm).

1.1. Poincaré and Sobolev—Poincaré inequalities. Important tools for our
study are the Poincaré inequality and the Sobolev-Poincaré inequality on
stratified groups. These inequalities hold for smooth functions on more gen-
eral Carnot—Carathéodory spaces endowed with a system of Hérmander vec-
tor fields. As pointed out in [32], Jerison’s result [28] includes the Poincaré
inequality with respect to the L? norm for every p € [1,00[. Another ap-
proach to the Poincaré inequality for vector fields has recently been devel-
oped by Lanconelli and Morbidelli [29]. In the case of Lie groups a simple
proof of the Poincaré inequality has been given by Varopoulos [43] (see also
[27] and [40]).

THEOREM 1.5 (Poincaré inequality). Let {2 be an open subset of G and
let 1 < p < oo. Then there exists a constant C > 0 such that for every
u € C®(§2) and any ball B, 2, compactly contained in (2 we have

(7) | fuy) —up,,[Pdy < Cr* | |Viu(y)[ dy.
Bzv"' Bz,'r
The following Sobolev—Poincaré inequality has been proved in [18], [31]
and [37].

THEOREM 1.6 (Sobolev—Poincaré inequality). Let {2 be an open subset
of G and let 1 < p < Q. Then there exists a constant C > 0 such that for
every u € C™(12), setting v = Qp/(Q — p), we have

® () —us, ) <or(§ () dy)

x,r x,r

1/p

Smooth approximation of functions of bounded variation is also available
in general Carnot—Carathéodory spaces [20], [22]; then the previous Sobolev—
Poincaré inequality in the case p = 1 can be extended to H-BV functions.
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THEOREM 1.7. Let 2 be an open subset of G and let § = Q/(Q — 1).
Then there ezists a constant C > 0 such that for every u € BV joc(£2) and
any ball By o, compactly contained in 2 we have

1/5 D U B;E'r
(9) (§ [ —us,, P Paz)" <cr %'

x,r

Note that as a consequence of (9) we have the following Poincaré inequal-
ity for H-BV functions:

(10) | lu(2) —up,,|dz < Cr|Dyul(B,.,).
Bz r
1.2. Approzimate reqularity and LP differentiability of order k. In this
subsection we introduce several notions of weak regularity for measurable
functions on stratified groups. We begin by recalling the notion of approxi-
mate continuity.

DEFINITION 1.8 (Approximate continuity). We say that u € LL (£2,R™)
has an approximate limit A € R™ at x € (2 if
lim lu(y) — Al dy = 0.

r—0+t

In the case A = u(x) we say that x is an approzimate continuity point and
we denote by A, the subset of all approximate continuity points of wu.

REMARK 1.9. Notice that the approximate limit is uniquely defined and
it does not depend on the representative element of u. In the next proposition
we recall p-approximate continuity of functions in LP((?2) using the doubling
property of G. As a consequence of this result for p = 1 we have |2\ 4,| = 0.

PROPOSITION 1.10. Let u € LY (2,R™) and let 1 < p < oo. Then for
a.e. ¢ € {2 we have
(11) § luly) — w(@)Pdy = 0.
Bz,r
Proof. Stratified groups endowed with their left invariant volume mea-
sure are in particular doubling spaces. Therefore Theorem 2.9.8 of [16] is
available and it implies that for a.e. x € {2 and for every g € Q™ the follow-
ing limit exists:
lim § fu(y) — ¢ dy = |u(z) — q/”.
r—0t
Then we get
1/p
lim sup ( § lu(y) — u(az)|p) <2u(x) —q| —0 asqg— u(z),

r—0t

x,r

and this completes the proof. =
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DEFINITION 1.11. We define n; = dimVj; for any j = 1,...,¢, mg =0
and m; = 22:1 nj for any i = 1,...,.. We say that a basis (Wi,...,W,) of
G is an adapted basis if

(12) Wy 115 W)

is a basis of V; for any j =1,...,¢.

In order to tackle the higher order approximate differentiability of H-BV*
functions we will recall some well known facts about polynomials on stratified
groups. We will refer to Chapter 1.C of [17]. A function P : G — R is a
polynomial on G if the composition P o exp is a polynomial on G. Let us
fix an adapted basis (W1, ..., W,) and its dual basis of 1-forms (71, ...,7,).
Then every polynomial P : G — R can be represented as
(13) P= Z car?,

[0
where (71, ...,2,) is a fixed coordinate system on G given by x; = n;oexp~!
fori =1,...,q, we set z* = z{* - -xgq for every a € N9, and only a finite
number of coefficients ¢, € R do not vanish.

The degree d; of W; is well defined by the relation W; € Vj;,. Then we
define the homogeneous degree of a polynomial P : G — R with expression
(13) as

h-deg(P) = max{d(a) | ca # 0},

where d(a) = Y°9_, day. The space of polynomials of homogeneous degree
less than or equal to k& will be denoted by Py x(G).

Next, we extend the definition of LP differentiability of order k to strat-
ified groups. This notion is due to Calderén and Zygmund (see [6] and [7]).

DEFINITION 1.12 (L? differentiability of order k). A functionu € L] (£2)

is said to be LP differentiable of order k at x € (2 if there exists a polynomial
Tm S fPHJﬁ(G) such that

(14) (§ [uw) - Ta@Pdy) " = o(h) asr 0%,

z,r

REMARK 1.13. The LP differential of order £ is always uniquely defined.
In fact, a function f which is L differentiable of order k at z is also L'-
differentiable, since

| luw) - T@ldy < (§ ul) - Ta@Pay) "

BI,T x,r
where 1 < p < 0o. Then Lemma 1.14 implies uniqueness. Similarly, one can
check that more generally L? differentiability of order k implies L" differen-
tiability of order k at the same point for all 1 < r < p.
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LEMMA 1.14. Let P € Py (G) be such that

: Pl _
r1—1>%1+ -S rk dy = 0.

x,r

Then P is the null polynomial.

Proof. By a left translation at the unit element of the group we can
assume that z = e. We fix a coordinate system (z1,...,z4) on G, hence
we can write P(y) = d(a)<k Ca¥”- Suppose by contradiction that P is not
vanishing. Then the integer p = min{d(«) | ¢, # 0} is well defined and we
set P1(y) = > (a)=p Cay”- By the homogeneity of P, it follows that

P(6yy) = rp<P1 Z Cari@—ry >
d(a)>p
Defining Q- (y) = > 4(a)>p car™@~Py® we note that

sup |Q-(y)| -0 asr—0F.
yEB

By a change of variable we have

P P(o,
(15) S Pl :3)‘ dy = S [POw)l (fky) dy —0 asr—0".
By

Then for a sufficiently small r € |0, 1[ we obtain
P( 1
§ VPO gy > o (§ 1Pl dy - § 12wl d) = 2 § 1Pl ay.
Bi B B1
Since P; is a nonvanishing polynomial, this inequality contradicts (15). m

REMARK 1.15. The next lemma proves that condition (14) is equivalent
to

(16) i <|u(y;<;7§gmg(y)> dy = 0.

LEMMA 1.16. Let g € LIOC(Q be such that g > 0 a.e. in 2 and let o > 0.
Then the condition § B, 9=o0(r") asr— 0" implies that

(17) = 0.

T‘*)OJ'_ §

1:7‘

Proof. Let x € £2 and let 7 > 0 be sufficiently small. We define rj, = r27*
for every integer £ > 0. Then we have
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9(y) 20 N1 o 2R
dy < — 9(y)dy =2 g(y) dy
Birg(xvyyl LBIJ|2£%7€£B§% EE% T? ij
o

2
<——— sup s “ dy — 0
= § 9(y)dy

x,s
asr — 07, m

1.3. Representation formula. Another important tool is the “representa-
tion formula” stated in the next theorem. This formula will lead us to the
pointwise estimates (20) and (21) that play a key role in our method to ob-
tain differentiability results. In the next theorem we state the representation
formula for H-BV functions. Its proof can be easily obtained for instance fol-
lowing the method of [19]. Short proofs of the representation formula can also
be found in [9] and [35]. In particular, we mention the sharp result of [35],
where, in a more general metric setting, the integral in the representation
formula is considered on the ball with optimal radius.

THEOREM 1.17 (Representation formula). Let {2 C G be an open subset.
Then there ezists a constant C' > 0 such that for every ball B, o, compactly
contained in {2 we have

1
ﬁdeU’(z)

(18) ’u($)—-UB%r|§ C S Q($ 2)

BCL‘,T
for every u € BVy joc(Bg,r) whenever x € By, N A,.
We can rewrite (18) using Fubini’s theorem as follows. For every a > 1

we have

o0

1 1
| dewuz):(a—n | ( | t—gdt) d|Dyul(z)
Bz,r ’ Bz,r Q(:L‘,Z)
T x,r x ¢ D .Bx D _er
=(a—1) | [Digul(Bor 1 Bar) dt:(a—ng’ Hl(Boe) gy | H“’(_l 7).
5 tOl 0 tOé TO&

that implies by a change of variable

a—1

ra—l

| Dyu|(Ba,ir) | Dru|(Bz,r)
L o R

1
(19) ——————d|Dnul(z) =
BS N

The representation formula along with (19) yields the following theorem.

O ey =

THEOREM 1.18. Let 2 C G be a bounded open set. Then there exists a
constant C' > 0 such that for every ball By 2, compactly contained in {2 we
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have

|DHU|(Bz,tr)
(tr)@Q

for every u € BV 10c(2) whenever x € By, N Ay.

Dyu|(Ba,r
i B

1
(20) lu(z) —up, .| < CT‘{S Q
0

As an immediate consequence we have the following corollary.

COROLLARY 1.19. Let 2 C G be a bounded open set and let 1 < p < 0.
Then there ezists a constant C > 0 such that for every ball By o, compactly
contained in {2 we have

1
(1) u(e) — g, | < Cr{§ (§ [Vaul)pdy)
0 Bx,tr

+(§ nuray) ).

x,r

for every u € W}ll’foc(ﬁ) whenever © € By, N A,.
2. First order differentiability. We begin this section with some pre-
liminary lemmas that will be used in what follows. Throughout the paper we
will use the notation v* for the map x — (v,Ilnx), where x € G and v € V].
Note that v*(,x) = rv*(z) and v* : G — R is a group homomorphism.

LEMMA 2.1. Let p be a nonnegative Radon measure on {2 such that
there exists a subset N C {2 of Haar measure zero and j(f2\ N) = 0. Then
lim, g+ p(By)r~? =0 for a.e. x € 1.

Proof. By contradiction, if we had a measurable subset A C {2 with
|A| > 0 such that

w(Bz,r)

>0
Q

lim sup
r—0+

for every x € A, then we would get a measurable subset A C A\ N with
positive measure and A > 0 such that |Djju|(A") > Au(A’) > 0. This stan-
dard fact can be checked for instance by Theorems 2.10.17 and 2.10.18 of
[16]. Then the inequalities

0 < pu(A) < p(2\N)
lead us to a contradiction. m

LEMMA 2.2. Let u € BVyoc(£2). Then for a.e. v € Ayy, and every
ceR,

i 1Dl = Vigu(a)* = 0| (Be)

=0.
r—0+ TQ
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Proof. Using the definitions of the absolutely continuous part and singu-
lar part of | Dyyu| one can check without difficulty that

(22) |D(u — Vau(z)* — ¢)| = |Vau — Vau(z)| vy + [Duul®.
Let us first check that for a.e. z € {2 we have

| Duul*(Bayr)
) e =0

The Radon—Nikodym theorem gives us a measurable subset N C {2 such
that

IN|=0 and |Dgul*(N¢) =0.
Then by Lemma 2.1 the limit (23) holds a.e. in 2. As a consequence, the

assumption that z is an approximate continuity point of Vpu concludes the
proof. =

The next theorem has been proved by Calderén and Zygmund for func-
tions of bounded variation in Euclidean spaces [6] (see also [16]).

THEOREM 2.3 (Calderén-Zygmund). Let u € BV oc(£2) and let § =
Q/(Q — 1). Then u is LP differentiable of order 1 at a.e. x € 2 and the
differential is representable as Vyu(x)*, where Vyu is the density of Di{u

Proof. Due to Lemma 2.2, for a.e. z € A, N Ay, we have

. | Dyl (By,)
24 1 _
( ) ri%l‘* T‘Q

where v(y) = u(y) — Vyu(z)*(z7y) — u(x) and = € A, with v(z) = 0. By
the triangle inequality we have

( S 1ot Way) " < (o) v, 0 dy) " + o, |

€,

=0,

The Sobolevaoincaré inequality (9) and the estimate (20) give a constant
(1 such that

@) (§ pwra)”

Bz,r
1
D By tr D By r
§017“{S| #0lBotr) 4y | [Divll ’)}:o(r),
0

(tr)@ rQ
where the last equality follows from condition (24). =

The approach used in the previous theorem can be applied to LP differ-
entiability of Sobolev functions, obtaining the following known results (see

[31)-



Sobolev—Poincaré inequality 263

THEOREM 2.4. Let u € W}ll’foc(_()) with 1 < p < Q. Then u has an L7
differential of order 1 at a.e. x € {2 and the differential is representable as
Vuu(z)*, where Vyu is the density of D{u and v = Qp/(Q — p).

THEOREM 2.5. Let u € Wé”l’oc(ﬂ) with 1 < p < oco. Then u has an LP
differential of order 1 at a.e. x € 2 and the differential is representable as
Vuu(z)*, where Vyu is the density of Diju.

2.1. Another proof of Rademacher’s theorem. As a consequence of a.e. L'
differentiability of H-BV functions we obtain another proof of the Radema-
cher theorem for real-valued Lipschitz maps on stratified groups. This result
for group-valued maps is much more demanding and it is due to Pansu [39]. In
the case of real-valued Lipschitz maps on Carnot—Carathéodory spaces, this
theorem has been proved by Monti and Serra Cassano [38], using a Morrey-
type estimate in Carnot—Carathéodory spaces due to Lu [33]. In the general
case of doubling metric spaces admitting the Poincaré inequality, another
proof of Rademacher’s theorem is given in [3] for functions belonging to
Wfll’p (£2), where p is greater than the homogeneous dimension of the metric
space. In stratified groups, a different proof of this theorem is given in [14].

Here we present a different approach which applies Lemma 3.1.5 of [16].
By this lemma, the Rademacher theorem follows by a.e. approximate dif-
ferentiability. Our proof extends this lemma to stratified groups and uses
the a.e. L' differentiability of functions of H-bounded variation, proved in
Theorem 2.3.

THEOREM 2.6 (Rademacher). Let u: {2 — R be a Lipschitz map. Then
for a.e. x € §2 there exists a unique vector Vuu(x) € V1 such that

|u(y) — u(z) — Vuu(z)"(=""y)|

lim =0.
y—e o(z,y)
Proof. It is not difficult to check that u has distributional derivative X;u
in L>(£2) for every j = 1,...,m (see [21] and [23] for more information).

In particular u € BVy(§2) and Theorem 2.3 largely ensures that u is L!
differentiable at a.e. z € 2. Let us pick = € 2 at which u is L' differentiable
with differential Vyu(z)*. By Lemma 1.16 with a = 1 we obtain the limit

i 1 1)~ u) — V() (@)
r—0+ B Q(‘T7 y)

x,r

dy = 0.

In particular v is approximately differentiable at = in the Federer sense [16],
that is, for every € > 0 the set

E. = {y € 2| uly) - u(z) - Vau(z)* (2" 'y)| < colz, y)}

has the property |E. N By,||Bzr|”! — 1 as r — 07. Then z is a density
point of E., hence the doubling property gives that dist(y, E:) = o(o(y,x)) as
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o(y, ) — 0T. Fix 79 > 0 such that dist(y, E.) < o(y, z) for every o(y,z) <
ro. We choose y € Emmo, assuming that Em,ro CR.Ifyé¢ E.N E:v,ro C 12,
then dist(y, F-) > 0 and there exists a € E. such that o(y,a) < 2dist(y, E;).
We denote by L the Lipschitz constant of u. We have

lu(y) — u(z) — Viu(z)*(@""y)|
< |Vau(@)*(a”'y)| + |u(a) — u(z) = Vau(z)*(z ™ a)| + u(y) — u(a)]

< | Vau(z)*|2c0(y, ) + co(y, x) + 2Leo(y, x).

In the case y € E. N By,,, by definition of E., we have |u(y) — u(z) —
Vuu(z)*(x~1y)| < co(y, x). The arbitrary choice of € concludes the proof. m

3. Higher order differentiability. In the first part of this section we
review some basic facts about left invariant differential operators on groups.
In particular we recall the important Poincaré-Birkhoff-Witt theorem, which
will be of importance to our differentiability results of higher order.

In R™ for every k € N\ {0} there is a natural correspondence between
differential operators 95 with |a| = > ", aj < k and polynomials of degree
less than or equal to k. The same analogy holds for stratified groups. For
convenience of notation, we will identify the Lie algebra G of left invariant
vector fields with the isomorphic vector space of first order left invariant
differential operators. Let (Wi,...,W,) be a graded basis of G, regarded
as a basis of first order left invariant differential operators. Recall that a
homogeneous left invariant differential operator Z has degree d if 67 = r?Z,
that is,

07 Z(p) = Z(p 0 8;) = dp(8,Z) = rldp(Z) = rZp

for every r > 0 and ¢ € C°°(G). By this definition one easily checks that
the left invariant vector field W; of degree d; also has homogeneous degree
d; as left invariant differential operator. With this notion we can define the
homogeneous degree of a left invariant differential operator. We consider a
left invariant differential operator

Z = Z caW¢,
(0%
where only a finite number of coeflicients ¢, € R do not vanish and W*¢ is
defined by the following ordered compositions:
we :Wlal'“anq
for every oo = (a1, ..., ) € N%. We define the homogeneous degree of Z as
h-deg(Z) = max{d(«) | co # 0},

where d(o) = >°7_, dioy,. The finite-dimensional space of left invariant dif-
ferential operators of homogeneous degree less than or equal to k& will be
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denoted by Ay (G). The Poincaré-Birkhoff-Witt theorem states that the set
of differential operators

(W Wi | (ag,...,0q) € N7}

is a basis of the algebra of left invariant differential operators on G (see p. 21
of [17]). The next proposition states a precise relation between polynomials
and left invariant differential operators on groups (see Proposition 1.30 of

[17]).
PROPOSITION 3.1. There exists an isomorphism L : Py ;(G) — Ax(G),
given by
L(P)= Y (W*P)(0O)W*.
d(a)<k

DEFINITION 3.2 (Mixed derivatives). Let u € BV (£2) and let Y7,...,Y,
€ G be first order left invariant differential operators with Z?Zl h-deg(Y})
< k. We define the Radon measure Dy;...y,u as follows:

(26)  {@dDyivyu=(—1)7 [u(@)(¥, - Vig)a)dz Vo € C(2).
2 02

Some remarks here are in order. Since the flow associated to Y € G
preserves the measure, we infer that div(Y’) = 0, hence by the classical di-
vergence theorem relation (26) holds for smooth functions v with Dy;..y, u =
(Vi - Ypu)u,.

Note also that the existence of the distributional derivative Dy,..y,u as a
measure follows by the Lie bracket generating condition on horizontal vector
fields (X1,. .., Xy,) that are now regarded as differential operators. It suffices
to observe that every left invariant differential operator Z with h-deg(Z) = k
can be written as a linear combination of up to k-fold iterated commutators
of (X1,...,X;). Then one uses the definition of H-BV* functions, which
exactly requires that every iterated distributional derivative X, --- X; u is
a measure, where 1 < j1,..., 5 < m.

By the Radon—Nikodym theorem we have Dy, . y,u = (Dyh,,,,ypu)a +
(Dyi,...,y,u)®, where the terms of the sum are the absolutely continuous part
and the singular part of Dy;..y,u, respectively. The density of (Dy;...y,u)*
will be denoted simply by Y7 - - - Y,u. In the case the measure (Dy;...y,u)®* is
replaced by (Dyeu)? its density will be denoted by W*u. Recall that for ev-

ery i = 1,...,m the differential operators W; € G have homogeneous degree
equal to one. We will denote these operators by X;, where i =1,...,m.
Due to the Poincaré-Birkhoft-Witt theorem, for every ji,...,j, €
{1,...,m} there exist coefficients {0?11]0:} such that
Q] yeeny X «
) XXy = Y W

d(a)<p
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where o = (a1, ..., og) and X, is a horizontal differential operator for every
s = 1,...,p, that is, it has homogeneous degree equal to one. By a direct
computation, it is not difficult to see that Definition 3.2 and the linearity of
(27) give the relation

(28) Dy, .x;u= (=1 Y (—1)‘“'02}17’.:'7;?"le(11“,W:qu
d(a)<p

for every u € BVE(£2) and p < k.

3.1. Differentiability of H-BV* functions. Here we prove the higher or-
der approximate differentiability of H-BV* functions. We start with a pre-
liminary lemma.

LEMMA 3.3. Letu € BVIIEMOC(Q). Then for a.e. © € (yn)<) Aweu there
exists a unique polynomial Py € Py 1(G) such that WPy (x) = Weu(x)
and

lim |Dya(u — P[x])\(BLT)r_Q =0 for every d(«o) < k.

r—0+

Proof. By Proposition 3.1 for every x € ﬂd(a) <k Awey we have a unique
polynomial Py;) € Py 1 (G) such that WPy (x) = Wu(z) for all d(a) < k.
By the regularity of P|,; we have the decomposition

|Dwe(u — Pgp)| = W — W Pylvg + | Dweul.
Then Lemma 2.1 concludes the proof. =

THEOREM 3.4. Let u € BV’I‘EUOC(Q) with 1 < k < Q and define v =
Q/(Q — k). Then u is a.e. L7 differentiable of order k.

Proof. By Lemma 3.3 for a.e. x € ﬂd(a)gk Awa,, we have a unique poly-

nomial Py, € Py 1(G) such that WPy, (z) = Wu(r) and

lim [Dyo(u — Py)|(Bey)r=9 =0

r—0+
for every d(a) < k. By induction on k, suppose that our claim is satisfied
for k —1 > 1 and that u € L} _(£2), where n = Q/(Q — k + 1). Theorem 2.3
shows that our claim holds for k—1 = 1. For every j = 1, ..., m the functions
Xju and u are H-BV*~!, so the induction hypothesis implies that u, X ju €
L] (£2) and there exists a unique polynomial R; € Py ;—1(G) such that

loc

1/n
20)  ( § IXul) - Rl dy) " = o) as 0%,
and WAX;u(z) = WPRj(z) for every d(8) < k — 1. By the Poincaré-
Birkhoff-Witt theorem we have a finite number of coefficients {cg j} such
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that
(30) WﬁXju(x): Z cgJ-WO‘u(:U): Z cgﬂ-Wo‘P[x}(x)
d(e)<k d(a)<k
= WPX;Py (),

so WPRj(z) = W’BXJ‘PM(:L’) for every d(3) < k — 1. By Proposition 3.1,
observing that X;P,; € Pui-1(G) we have R; = X;Py, for every j =
L,...,m. Thus for every j = 1,...,m we have X;(u — P)) = X;ju — R;. As

a result, defining v = u— P,j and using condition (29) for every j = 1,...,m
we obtain

1/n _
(31) (§ 1Xody) " = o+ ).

x,r

The condition k¥ < @ implies the inequality = Q(Q — k +1)~! < Q, hence
the Sobolev—Poincaré inequality (8) yields

(§ 1) -vs, )" <or( § Vmowray)
B,

z,r

where v = @Qn/(Q —n) = Q/(Q — k). From condition (31) for every j =
1,...,m we obtain

(52) (5 o) v, [ay) " = otrb).
Bz,r

Notice that v € Wé’?oc(ﬂ), so we can apply (21) to get

(33) |sz,r\s0r{§( b oiwsor) e (5 19mur) ),
0

x,tr x,r
hence condition (31) gives |vp, | = o(r*) as r — 0T. Finally, by the triangle
inequality we have

(5 wwray) < (§ 0 -vs, )" + o, | = o).
By .» Bz,r

thereby finishing the proof. =

The previous proof by induction works for H-BV* with arbitrary k, pro-
vided that the use of (8) and (21) is replaced by that of (10) and (20),
respectively. As a result, we obtain the following theorem.

THEOREM 3.5. Every u belonging to BVI’leOC(Q) is a.e. L' differentiable
of order k.
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3.2. Diﬁerentiability of H-Sobolev functions. We first observe that
WI’; e (£2) C BVY loc(£2), thus all previous considerations for H-BV* func-

tions hold for H- Sobolev functions of the same order. We have in addition
Dwou = (W*u)vg, where Weu € LP(£2) for every d(a) < k.

LEMMA 3.6. Let u € Wﬁfoc(ﬁ) Then for a.e. © € (yq)<p Aweu there
exists a unique polynomial Py € Py 1(G) such that WPy (x) = Weu(x)
and

; a ap P gy —
Tim§ (W u(y) — WPy (y)|” dy =0

for every d(a) < k.

Proof. By Propositions 1.10 and 3.1 for a.e. x € {2 we have a unique poly-
nomial P,y € Py x(G) such that WP (z) = Weu(x) for every d(a) < F,
where the number Wu(x) has the property
lim 4 [Wu(y) — WPy (z)P dy =0

r—0t
x,r

for every d(a) < k. Then the continuity of WP, leads us to the conclu-
sion. m

THEOREM 3.7. Let u € Wﬁ:foc(ﬁ) with 1 < kp < @Q and define v =
Qp/(Q — kp). Then u is a.e. L7 differentiable of order k.

Proof. By Lemma 3.6 for a.e. z € {2 we have a unique polynomial F,) €
P,k (G) such that WPy (2z) = Wu(x) and

lim, b Weuly) — WPy (y)IP dy = 0

for every d(a) < k. By induction on k, suppose that our claim is satisfied for
k—1>1and that u € L] (£2), where n = Qp(Q — (k—1)p)~'. Theorem 2.4
and the Sobolev—Poincaré inequality (8) ensure that our claim holds for
kE—1 = 1. We have u, X;u € Wlﬁ*l’p(ﬂ) for every j = 1,...,m. By the
induction hypothesis, u, X;u € Lj (£2) and for every j = 1,...,m there
exists a unique polynomial R; € Py ;—1(G) such that

1/n _
(34) (§ 1Xul) - Ri)dy) " = o(r" 1),
which satisfies the condition W4 X u(z) = WPR;(z) for every d(3) < k — 1.
By the Poincaré-Birkhoff-Witt theorem we have a finite number of coeffi-
cients {cj j} such that

Wh X ju(x Z ¢, Woulz) = Y ¢ ;WP = WPX; Py (),
d(a)<k
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so WAR;(x) = WﬁXjP[x} (x) for every d(3) < k — 1. In view of Proposi-
tion 3.1 and observing that X;P,) € Puy-1(G) we have R; = X;Py, for
every j =1,...,m. Then, defining v = u — P,;) we obtain X;v = X;u — R;
for every j = 1,...,m. Thus, relation (34) yields

(§ XKprdy)”” = o).

BI,T
Then we arrive at the condition
1/n
(35) (§ 1Vao@dy) " = oY),
Bz,r

Recall that by induction hypothesis v € WI}I’"(Q), furthermore the condition
kp < @Q gives n < Q); therefore we can apply the Sobolev—Poincaré inequality
(8) to get

(§ pwra)” <o § 19mlrar)” + s,

x,r z,T

where v = Qn/(Q — n) = Qp/(Q — kp). Moreover, by (21) we have the
estimate

1
vz, < cr{ §(
0
Then there exists a constant C such that

( b loly Ivdy)

B(E’V‘

§ Vautrdy) " de+ (§ wauwra) ).

B ,tr Bz,r

gclr{ﬁ( §vuutray) " ae (§ Vautay)

0 x,tr x,r
Finally, relation (35) and the previous inequality conclude the proof. m

Replacing in the previous proof the Sobolev—Poincaré inequality (8) with
the Poincaré inequality (7) and Theorem 2.4 with Theorem 2.5, we obtain
the following theorem.

THEOREM 3.8. Every function u belonging to WH (£2) is a.e. LP dif-

ferentiable of order k.

loc
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