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Abstract. The following iterated commutators 7 m, of the maximal operator for
multilinear singular integral operators and I, m of the multilinear fractional integral op-
erator are introduced and studied:

— —

T*,Hb(f)(w) = 2210) [blv [va s [bm—h [bm7T5]m]m—1 o ]2]1(f )(:E) >

Lo (F)(x) = [b1, b2, - - b1, [bm, TaJm]m—1 - J2]1 (F) (),

where Ts are the smooth truncations of the multilinear singular integral operators and
I, is the multilinear fractional integral operator, b; € BMO for ¢ = 1,...,m and f =

(fla-"7fm)'

Weighted strong and L(log L) type end-point estimates for the above iterated com-
mutators associated with two classes of multiple weights, Ay and A(z,q), are obtained,
respectively.

1. Introduction. The multilinear Calderén—Zygmund theory is a nat-
ural generalization of the linear case. Many authors were interested in these
topics ([5], [6], [, [18], [15), [8], [19], 221, [, 200, [25], [14], [1]). We first
recall the definition of and some results on multilinear Calderén—Zygmund
operators as well as the corresponding multilinear maximal operators and
fractional type operators.

DEFINITION 1.1 (Multilinear Calderén—Zygmund operators). Let T be a
multilinear operator initially defined on the m-fold product of the Schwartz
space and taking values in the space of tempered distributions,

T:R") x - x S (R") = S'(R").
As described in [6], T' is an m-linear Calderén—Zygmund operator if for some
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1 < ¢g; < o0, it extends to a bounded multilinear operator from L% x- - - x L™
to L1, where 1/q = 1/q1+- - -+1/qm, and if there exists a function K, defined

off the diagonal x = y; = - -+ = ¥,,, in (R?)™+! satisfying
T(fi,- s fm) (@) = S K(z,yt, - ym) f1(y1) -+ fon(Ym) dy1 - - - dym
(R7)™
for all z ¢ (L, supp fj,
A
(11) ‘K(y07y17"'7ym)| S

(k=0 [k — we)™

and

(1.2)  |K(yo,---,Yjr--->Ym) —K(yo,...,y;,...,ym)\
Aly; —y;
= (k=0 lyk — wil)mte

for some € > 0 and all 0 < j < m, whenever |y; —y}| < 3 maxo<p<m |Yj — Ykl-
The maximal multilinear singular integral operator is defined by

T.(f)(x) = SUp (T, -+ f) @)

’ £

where Ty are the smooth truncations of T' given by

T5(f17 s 7fm)('1")

= S K@, y1s- - ym) fr(yn) -+ fin(ym) 4.
lz—y1[?+-+|z—ym|*>6?
Here, dif = dy; - - - dym,.

As pointed out in [17], Ty(f)(z) is pointwise well-defined when [i €
L% (R™) with 1 < ¢; < o0.

The study of multilinear singular integral operators and their maximal
operators has a long history. For the maximal multilinear operator T}, one
can see for example [2], [13], [17] and [20] for more details. We list some
results for T:

THEOREM A ([I7]). Let 1 < ¢; < o0, 1/q = 1/q1 + -+ + 1/gm, and
we Ay N---NAgy,. Let T be an m-linear Calderén-Zygmund operator.
Then there exists a constant Cy, < oo such that for all f: (f1,---s fm)
satisfying ||T*(f)\|Lq(w) < o0 we have

IT2(F ) Loy < Crg(A+W) T I1£ill Loi o)

=1

where W is the norm of T as a mapping T : L' x --- x L1 — L1/m,
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THEOREM B ([2]). Assume that 1/p1+ -+ 1/pym = 1/p and & € Ap.
Then

(i) If 1 < p1y..oypm < 00, then Ty is bounded from LP*(wp) X --- X
LPm(wp,) to LP(vg).

(i) If 1 < p1,...,pm < o0, then Ty is bounded from LP'(wi) X «-+ X
LPm (wy,) to LP*°(vg).

Here, Ay is the multiple weights as in Definition 2.1 below, and each
w; is a nonnegative measurable function. The boundedness of T, on Hardy
spaces and weighted Hardy spaces was obtained in [13] and [21].

Now, let us recall some definitions and background for multilinear frac-
tional type operators.

In 1992, Grafakos [12] first defined and studied the following multilinear
maximal function and multilinear fractional integral:

Mo(F)w) =sup Lo | | TLate o] o

r>0 ||<r =1

(f»( S |’n @ I];ﬂ - zy dy,

where 0; (i = 1,...,m) are fixed dlstlnct and nonzero real numbers and
0 < a < n. If we simply take m = 1 and 6; = 1, then M, and I, are just
the operators studied by Muckenhoupt and Wheeden [23]. In 1999, Kenig
and Stein [I8] considered another more general type of multilinear fractional
integral defined by

La(f)@) = |

‘(yl y mn OszZ ylw--7ym7$))dyi7
(Rn)m, LA m

where ¢; is a linear combination of y;s and = depending on the matrix A.
They showed that I, 4 was of strong type (LP* x --- x LPm L%) and weak
type (LP x---x LPm L2°°). When ¢;(y1, .. ., Ym,x) = © —y;, we denote this
multilinear fractional type operator by I,,.

The question of the existence of a multiple weight theory was posed in
[16], and since then it has been an open problem to give the right class of
multiple weights for m-linear Calderén—Zygmund operators and multilinear
fractional integral operators so that weighted estimates still hold in the
multilinear setting. This was established in [19], [22], [3] and the multiple
weight classes Ay and A ;) were introduced (see the definitions in Section 2
below).

In [19] and [3], the following commutators of T and I, in the jth en-
try were defined. Weighted strong and weighted end-point L(log L) type
estimates associated with Ay and Az, weights were given, respectively.
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DEFINITION 1.2 (Commutators in the jth entry [19], [3]). Given a col-
lection of locally integrable functions b = b= (b1,...,bm), we define the
commutators of the m-linear Calder6n—Zygmund operator T' and fractional
integral I, to be

m

B, TF) = Ty(frs- o fon) = D TEF) = Ton (),

=1

m
lio(F)@) = S8 (D)) = FonalF) (@)
i=1
where each term is the commutator of b; and 7" in the jth entry of T, that is,

Also

Iia(f)(x) = b (@) Ia(frs s Fireens fn) (@) = Ta(froe ooy b e ey fn) ()

Recently, the following iterated commutators of multilinear Calderén—
Zygmund operators and pointwise multiplication with BMO functions were
defined and studied in products of Lebesgue spaces, including strong type
and weak end-point estimates with multiple Ay weights [25]:

(13) THb(f)(x) = [b17 [bZa s [bm—l’ [bmaT]m]m—l o ]2]1(]?)(93)
To clarify the notation, if T is associated with a Calderén—Zygmund kernel
K in the usual way, then

m m
Tin(F)(x) = | []®i@) = b)) K@y, ym) [] filw) 43
(Rn)m j=1 i=1
Here, we use the notation IIb since the commutator part in the above inte-
grand is a product of b;(z) — b;(y;).

Therefore, an open interesting question arises: can we establish weighted
strong and end-point estimates of iterated commutators for the multilinear
operator T, and 1,7 We have found no results in the literature for the com-
mutators of the multilinear operator Ty (m > 2), even for the commutators
of T, in the jth entry.

In this article, we give a positive answer to the above question. We study
iterated commutators of maximal multilinear singular integral operators and
multilinear fractional integral operators defined by

(14)  Tom(f)(z) = sup (b1, [b2. - - - [bm—1, [Brs Tolmlm—1 -+ 21 () (@)]

=Sup‘ | [T0s@) = b)) K (@1, ym) Hfi(yi)d?j‘

>0 lz—y1 |2+ +|z—ym|?>62 =1 i=1
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and
(15) Lo (F)@) = b1, b2, s o Tl 1+ 2] (F) ()
1 - i
(R§)m|(x_ylmm_ym)mnajl_l(j( )= bstus) TL o)

REMARK 1.1. Note that, when m = 1 in (1.3) and (1.5), Tip(f) and
I, (f) coincide with the classical linear commutators [b, T]f = bT'(f) —
T(bf)and [b, I f = bI,(f)—1a(bf). A classical result by Coifman, Rochberg
and Weiss [7] is that [b,T] is L? bounded for 1 < p < oo when b € BMO.
But [b, T fails to be an operator of weak type (1,1): a counterexample was
given by C. Pérez [24] and an alternative L(log L) type result was obtained.
In 1982, Chanillo proved that the commutator of the fractional integral op-
erator [b, [,] is bounded from LP into L? (p > 1,1/q¢ = 1/p — a/n) when
b € BMO. In 2002, Ding, Lu and Zhang [9] studied the continuity proper-
ties of fractional type operators. They showed that [b, I,] can fail to be an
operator of weak type (L!, L™/ ("=®):%) "giving counterexamples and proving
alternative L(log L) type estimates.

We now state our results:

THEOREM 1.1 (Weighted strong bounds for Ty m,). Let J € Ay, vg =
[T 1wf/pj (see Definition 2.1), 1/p =1/p1 + -+ 4+ 1/pm with 1 < p; < o0,
J=1...,m, and be BMO":. Then there is a constant C' > 0 independent
of b and f such that for all f in any product of ij. (R™) spaces,

(1.6) T sy < CTT I HBMOH 1£ill sy

j=1
where b= (by, ..., bm).

THEOREM 1.2 (Weighted end-point estimate for T\ m1,). Let G € A(y 1),
vg = H;nzl w;)/pj and b € BMO™. Then there exists a constant C depending
on b but independent of f such that
(1.7)

vs({e € R Tp(f)(@) > ) < O

jemE

§ 91l )
R

n

Il
_

7
m

——
where ®(t) = t(1 + log™ t) and M) —Po...0P.

REMARK 1.2. If m = 1, then weighted strong LP and weighted end-point
L(log L) estimates for commutators of the classical linear operator T, were
studied in [27].
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As for I, b, we get

THEOREM 1.3 (Weighted strong bounds for I, ). Let 0 < a < mn,
1<pi,e.copm <00, I/p=1/pr+---+1/py and 1/qg = 1/p — a/n. For
r>1with0 < ra < mn, if J" € A(p/rq/r) vl e Ay and b € BMO™,

where vg = [[%, wi, there is a constant C > 0 independent ofg and fsuch
that

(1.8) 1ot () ooy < CTT 1030 LTI el
j=1 i=1

THEOREM 1.4 (Weighted end-point estimate for I, ). Let 0 < a <
mn, & € A, 1)n/(mn—a)), Vo = lliegwi and b € BMO™. Then there
exists a constant C' depending on b but independent offsuch that

. n_

(1.9) 77 ({z € R™: Inmp(f)(z) >

1)
{1+log ﬁ&@ |fzyzr/t>dy@)]m

i=1R"

TVL’VL o

n

< [T § 2010, |/t>wj<y]>dyj}m"‘°'.
j=1Rn

Moreover, if 0 < a; <n for all j and o = Z;nzl, we obtain

(1.10) u:"" T ({z € R™: I mn () (2) Bl

< c{ 11 [1 + % logt (ﬁ [ &1 f:(0)1/0) dyi)]

j=1 i=1R"
< | (£ ()10 () dyj}m”,
Rn

where &(t) and @™ are as in Theorem 1.2.

As a corollary of Theorems 1.3 and 1.4, similar results can be obtained
for commutators of the multilinear fractional maximal operator. Let us first
give its definition. Suppose each f; (i = 1,...,m) is locally integrable on R".
Then for any x € R", we define the multilinear fractional maximal operator
and its commutator by

Ma(f)(@) =sup|@\a/“[[ 5 ()] dys
@ @lg
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and
Maio(F) (@) = sup Q" TT 5 § 1bs() — bi(w)l fi(w) |y,
Q i1 1915

where the supremum is taken over all cubes @ containing x in R™ with sides
parallel to the axes.

COROLLARY 1.1. Let a, b;, &, p;,q be as in Theorems 1.3 and 1.4. Then
the conclusions of Theorems 1.3 and 1.4 still hold for M, mb.-

The article is organized as follows. In Section |2 we prepare some defini-
tions and lemmas. Some propositions will be listed and proved in Section
including the main Proposition 3.1. Then, we give the proof of Theorems
1.1-1.3. Section {4| will be devoted to the study of end-point L(log L) type
estimates for iterated commutators of multilinear fractional type operators.

2. Definitions and some lemmas. Let us recall the definitions of A
and Az ) weights. For m exponents p1, ..., pm, we will often write p for the
number given by 1/p = 1/p1++--+1/pm, and p for the vector (p1,...,pm).

DEFINITION 2.1 (Multiple Ay weights [19]). Let 1 < pq,...,pm < 00.
Given & = (wi,...,wy), where each w; (i = 1,...,m) is a nonnegative

function on R", set
] [ /
p/pj
o = wj .
j=1

We say that & satisfies the Ay condition if

2 SWQ@5>WﬁQ&SIﬂWQM’

where the supremum is taken over all cubes @ in R™.
When p; = (IQ\ S wl pz) P! is understood as (infgw;)~t.

DEFINITION 2.2 (Multiple A4y weights [3], [22]). Let 1 < p1,...,pm
< oo, 1/p=1/p1+ -+ 1/pm, and ¢ > 0. Suppose that & = (w1, ...,wn)
and each w; (i = 1,...,m) is a nonnegative function on R". We say that
W e A(ﬁ,q) if

2.2 Lo T L)
22 m{@ﬂw> H(méM ) <

where vg = [[/%, w; and the supremum is taken over all cubes @ in R".

Ifp; = (\Q| 8 W, ) Y7 i understood as (infow;) ™t
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REMARK 2.1. In particular, when m = 1, Az reduces to the classical A,
weights. Moreover, if m = 1 and p; = 1, then this class of weights coincides
with the classical A; weights. Also, when m =1, A;4) reduces to the classi-
cal A, q) weights, defined in 1974 by B. Muckenhoupt and R. Wheeden [23].
We will refer to (2.1) and (2.2) as the multilinear Ay condition and A g
condition, respectively.

We need the following L(log L) type multilinear maximal fractional op-
erators and sharp maximal functions:

DEFINITION 2.3. For any f: (f1,---, fm) and 0 < a < mn, two multi-
linear fractional L(log L) type maximal operators are defined by

M 11 1) = 50 11U g 10 T @l

i#£]
and
Migox 1a(5)@) = 59 Q1 TT 14l rg0s 1.0
z i=1
respectively. If a = 0, we simply denote Mpaogr)0 = Mrpaogr) and

ML(logL 0 M]L(log L)

DEFINITION 2.4 (Sharp maximal functions). For 6 > 0, M; is the max-
imal function

1/5
al £ >|5dy)

where @ is a cube containing x with sides parallel to the coordinate axes;
in addition, M* is the sharp maximal function of Fefferman and Stein [10],

VI£@w) - foldy

Maf () = (7)) = sup (

Mif(z) = buplnf

IQ!

and
Mjf(a) = ME(|f1)) (),
where fq is the average of f over Q.

We prepare some lemmas which will be used later. The following Holder
inequality on Orlicz spaces can be found in [26] p. 58].

LEMMA 2.1 (Generalized Holder inequality [26]). Let ¢(t) = t(1+log™t),
P(t) = e — 1 and suppose that
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171y 20t (3> 02§ 6(1f(@)/N du < 1} < o0
Rn

lgll, 2 it {3 >0 §w(g@)l/N)du <1} < oo
)

with respect to some measure . Then for any cube @Q,

(23> ’Q‘ S |fg| < 2HfHL logL)QHgHexpLQ

Some other inequalities are also necessary.

LEMMA 2.2 ([3]). Let r > 1 and b € BMO. Then there is a constant
C > 0 independent of b such that for any f satisfying the assumption of the
generalized Holder inequality, the following inequalities hold:

(24) ‘Q| S ‘f‘ CHfHL (log L),Q>
1 1/r
(25) s < (g §1T)
Ql}
(2.6) S b—bq)f < CHb”BMOHfHL(logL
Q
_— 1/(r—1)
(2.7 (sup -t ) bl

We also need Kolmogorov’s inequalities:
LEMMA 2.3 (Kolmogorov’s inequality [19], [IT), p. 485]).
(a) Suppose 0 < p < q < 0. Then

(2.8) Il e @.az/10) < Cllf lLace(,d2/1Q))-

(b) Suppose that 0 < a < n and p,q > 0 satisfy 1/¢g=1/p — a/n. Then
for any measurable function f and cube Q,

p\ /P <q>1/p a/n
(2.9) (gm) <(2) 1l

To prove Theorem 1.4, we also need the following known results,

LEMMA 2.4 (Weighted estimates for M, and I, [22], [3]). Let 0 < «
<mn, 1 <p1,...pm < 00, 1/p:1/p1++1/pﬂ’w ]-/q:]-/p_a/n and
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& € Apq)- Then there is a constant C' > 0 independent offsuch that

(2.10) IMa ()l oo o <CH||fZ||LPz W)

(2.11) 1 Za(F) | o0 <CH||fl||Lpz Why

3. Proof of Theorems 1.1-1.3. To begin with, we prepare a proposi-
tion which plays an important role in the proof of our theorems. The basic
idea is to control the iterated commutators of T} by certain two operators.

Let u,v € C*([0,00)) be such that |u'(t)] < Ct~L, [v/(t)] < Ct~! and

X[2,00) (1) S u(t) < X[1,00)(1);  X[1,21(8) L 0(t) < Xp1/2,3 (1)
We define the maximal operators

U*(f)(x)
1>0 " (g i=1
()
—sup| | K@y gl — il + o+ o= gal/m) [T fiw) dgl-
>0 Rnym i=1

For simplicity, we denote

2 Yts - ym)u(V T — ]+ =yl /1),

Ku,n(%yl, s aym) -
Kvﬂ?(xuyla o 7y’m) =K

S unw yla---aym)Hfi(yi)dgv
(Rn m =1

Vao(F) = | Kunlz.y,. . um) Hfz vi)
(Rm)™
It is easy to see that T,(f) < U*(f)(z) + V*(f)(z). Moreover, T*ynb(f) <
Ui () (@) + Vi (F) (), where
Ui (/) (x) = sup [[br, (b2, - o1, [brms Unlimlm—1 -+ JoJ1 (/) ()

K(
(,

n>0
n>0 (R)m j=1 i=1

and
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Viin(f) (@) = sup | (b, [ba, - - (b1, (s Vilimlm—1 -+~ J21 (F ) (@)

n>0
>0 (Raym j=1 i=1

Following [25], for positive integers m and j with 1 < j < m, we denote by
C7" the family of all finite subsets o = {o(1),...,0(j)} of {1,...,m} of j dif-
ferent elements, where always o(k) < o(j) if k < j. With any o € C7*, we as-
sociate the complementary sequence o’ € C’;nij given by ¢/ ={1,...,m}\o
with the convention CJ" = (). Given an m-tuple b of functions and o € C}»”,
we also use the notation b, for the j-tuple obtained from b and given by

(b0(1)7 SR ba(j))'
Similarly to the above definitions for Uy, (f ) (z) and Vi, (f ) (), if 0 € CT,
and by, = (by(1), - - -5 by(j)) in BMO’, we define the following commutators:

U, (£)(x)

J m
=sup| | Kup(@yi. . ym) [[ (o bty o)) [ [ fi(wi) 4,
1>01 Raym i=1 i=1
Vi, (/) (@)
J m
=swp| | Kon(@,y1,- o ym) [ [0 @) = botiy o)) [ £iwi) 4]
720" (gnym i=1 i=1

S ngl(ba(z‘) (l‘) by (%) (ya (7) )) H;ﬂll fl(yl)

Loy, (f) (@) = dij.

and Lo, (f) = I (f). 1 o = {1.....m}, then Uy, () = Upp(F).
Vﬁ%(f) = Vﬁkb(JF) and I b, (f) = T (f).

ProprosITION 3.1 (Pointwise control of Mg(Uﬁb(f)),Mg(Vﬁkb(f)),

Mg(la,nb(f)))- Let 0 < § <e,0<d < 1/mand 0 < a < mn. Then
there is a constant C' > 0 depending on § and € such that

(3.1) M (Ui (f)) (@) < CT 185 ll30 (Mgog 1) () (@) + Me(U™(f)) (@)

j=1

+CZ > HHb leMoM: (U, (F)(@),

j=1 oeC i=1
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(3.2) ME(Viin(F))(@) < CTT IbilBMO (M L1og 1y (F) (@) + M(V*(F))(2))

j=1

+CZ Z HHb IBMoM:(Vitp,, (f)(@),

j=1 aesz 1

(3.3)  Mi(Inmn(f)(@

)
H 165BMO ML(logL) (f)(:c) +Ma(Ia(JF))(37))

—l—CZ > HHbg(i)HBMOM( ottb,, () (@).

j=1 o€CT i=1
Inequality (3.3) still holds for 6 = 1/m.

Proof. We only give the proof for Uy ( f) and I b ( £); the proof for
Vﬁkb(f) is almost the same as that for Uﬁb(f).

For clarity of exposition, we give the proof in the case m = 2. The
argument can be extended to the case m > 2 with only trivial modifications.

We first give the proof for Uy ( 7).

Fix b1, b, € BMO and let p1, p2 denote any constants. We split Uﬁb(f)(x)
in the following way:

Ut (F) ()
= sup |(b1(x) —p1) (ba(x) — p2) Uy (F) () — (b1 () — p1) Uy (f1, (b2 — p2) f2) ()

n>0

— (ba(x) — p2)Up((b1 — p1) 1, f2) () + Uy ((br — p1) f1, (b2 — p2) f2)(2)|

—

sup | —(b1(x) — p1) (ba(x) = p2)Uy () (@) +(b1(2) = p1) Uy, (f1: f2) (@)

n>0
+ (ba(x) = p2)Uy by py (f1, f2) (@) 4+ Uy (b1 — p1) f1, (b2 — p2) f2) ()|
Here, we use the notations
Up by (J1, f2) (@) = Uy((b1 = p1) f1, f2) (),
Up by (15 f2) (@) = Uy(f1, (b2 — p2) f2) ().
Similar notations will be used throughout the remainder of this paper.

Fix zp € R™ and let @ be a cube centered at . Notice that 0 < § < 1/m.
Let ¢ = sup,, | Z?’:1 ¢j|, with ¢; = ¢;(n) to be defined later. Then we have

) ) 1/5
Qaswmuwm—ﬂw) <O+ Ty + T + T,
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|(01(2) = p1)(ba(2) = p2) (U™ (F)(2)]° d=

)]
=
o
—
>
(V)
/‘\
\_/
b
(V]
SN—
d
@‘
s
b
=
—~
~k
=
>
N—
/\
\_/
Qq
N
N————
—
~
[«9)

(o]
Q
T = (1 Vsup [(b1(2) = 1)U o (1 f2) (2)]]° 2
’ ‘Qn>0
(o]
Q
|

) 3 1/6
T, = (H sup (Up((b1 = p1) f1, (b2 — p2) f2) (2 Z ‘ ) :
Q"]

Let pj = (b;)3g be the average of b; on 3Q for j =1,2.
For any 1 < ri,7r9,r3 < oo with 1/r; +1/ro +1/r3 = 1 and r3 < €/,
T can be estimated by using Hoélder’s inequality and (2.7)):

1 1

1 N1 o\

1< 0 V) = ™ ) ™ (5 Sleate) = pal )™
Q

j=1
Let 1 < t1,ts < oo with 1 = 1/t; + 1/t2 and ta < /3. Then T, can be
estimated by using Holder’s inequality and Jensen’s inequalities:

n<C(ig V)=l i m<\@| §sup (024, (1. ) (2 ) ™

< C||b1||BMoME<U;f_,,2<f ))(wo) < cnblnBMoMe(U;‘f(f ))(o)-
Since T5 and T3 are symmetric, similarly, we have
T3 < Cllballpso M= (U3, (1)) (w0) < Cllballprnio M= (Uy" (F)) (o).

Now, we are in a position to estimate Ty. Let f0 = fixzg and f° = fi —
Recall that ¢ = sup, | E?:l ¢;|. Then we take

c1 = Up((b1 — p1) f7, (b2 — p2) f5°)(x0),

Ccy = Un((bl —p1) f1°, (b2 — p2)fg)($0)’

c3 = Up((b1 — p1) 17, (b2 — p2) £5°)(x0)-

0
i
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Using the above notations, we may split Ty as
Ty <Tyy+Tyo+Tyz+Tyy,

First, we shall estimate T} ;. Use Kolmogorov’s inequality, Lemma 2.2(a),
Theorem B with w; = 1 for m = 2 and (2.6), it now follows that
1
Ti < c<

1/pod
I LACRIBL T, )N a0

<ClQI HU*((b1 — ) f7s (b2 = p2) )| /200 ()
< CIRIT*[[(b1 = )Ml £l (B2 = p2) F2 Nl 1)
< CHblHBMOHf?HL ttog o) 102l Baio 172 £ g 1)

< CH 16ill 5o Mz logL)(f)( 0)-

i=1
Secondly, we estimate T 2. By the mean value theorem,

Tyo < |Q\ SSUPW (b1 = p1) 7, (b2 = p2) 5°)(2) — ea| dz

1 xo — z|°|b — d
S C@S S |(b1 — p1) f1(y1)| dya S 2o (’2’_’ 2(|yi)|z fgy |J;22(3f2’ L

QSQ (3Q)c yl y2
Q e/n

< Z 3] |g‘1/’n Inte S |(b1 - pl)fl(y1)| dyl

: 3]+1Q

x| Iba(y2) = pall f2(y2)| dye

39+1Q

< CZ 3¢ H 13 HBMonzHL(logL) 3it1Q < CH (b ”BMOML(logL (f)(ﬂfo)-
=1 =1

Slmﬂarly to Ty o, we can estimate T} 3.
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It remains to discuss the contribution of T} 4. Note that
U (b1 = p1) [7°, (b2 = p2) f5°)(2) = Uy((b1 = p1) f5%, (bz p2) f5°) (o)

QI b1 — p1 | [ba y2 — ol T
|(zo — y1, 20 — y2)

<C g
(R"\3Q)?

i ’Q|€/n|bl—p1||b2(92)—ﬂ2| ol Al e
<C> | Qe H|fi (y:)| dy
=1 (304H1Q)%\(34Q)? =1

2
=C H 103l BMo M Ltog £) (f ) (o).

=1

Therefore,
2

Tya < CH ”biHBMOML(logL)(f)(x(])'

i=1
The proof for Ufy, ( f) is complete.
Next, we will prove (3.3) for Iaﬂb(f). To begin with, we split

Lo () ()

= (b1(z) — p1)(b2(x) — p2) a(f)(x) — (b () p)Ia(f1, (b2 — p2) f2)(2)
— (ba() = p2)La((b1 — p1) f1, f2)(x) + La((b1 — p1) f1, (b2 — p2) f2)(z
—(bi(@) — p1)(ba(@) — p2)Ia(f) (@) + (b1(x) — p1)IE 0 f1, F2)(2)
+ (ba(x) — p2) I,y o (f1, f2) (@) + Lo (b1 — p1) f1, (b2 — p2) f2) ().

Fix o € R" and let @ be a cube centered at xy. Let ¢; (for j = 1,2,3)
denote any constants and set ¢ := ¢; + ¢2 + ¢3. Since 0 < § < 1/m, we have

1 1/6
<@S| aHb( ) = |dz> < C(S1+ S2+ S5+ Sy),

where

B 1/5
( [ 1051(2) — 1) (bo(2) — m)\ﬂfa(f)(z)m) ,
Q

1/6

( [ 161 () — p1>f§2_p2,a<f1,f2><z>|5dz) .
Q
1/5
0= (g V10020) = )1y (1o () )
Q
(5]
Q

1/5
|1 ((b1 — p1) f1, (b2 — p2) f2)(2) — E|5dz> .

o

Let pj = (b;)3g be the average of b; on 3Q for j =1,2.
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For any 1 < rq,7r9,73 < oo with 1/r; + 1/r9 +1/r3 = 1 and 73 < €/,
Sp can be estimated by using Holder’s inequality and ([2.7)):

1 1

1 . o1 . 5y

51201 V) =7 a) ™ (5 Sioate) = pal™ ) ™
Q) Q)

1

>< (@ém(f a)

2
< CH ||bj”BMOM€(Ia(]F))(x0)'

J=1

As already noted, similarly to the argument for 15, we take 1 < t1,ts < o0
with 1 =1/t; + 1/t3 and t2 < /4. Then

1/6
(1 0 - Bl () )

S CHbl ||BMOMt25(Il?2—p27a(f1) f2))(‘7j0)
S CHbl||BMOME(II?2—p2,a(f17 fQ))(xO)

Similarly, we can estimate S3.

To analyze the contribution of Sy, we denote f? = fixsg, f° = fi — f°

and let ¢ = (1o ((b1—p1) f7, (b2—p2) £5°) (z0) +1a((b1—p1) £, (b2—p2) £3) (x0)
+ 1o ((b1 — p1) 52, (b2 — p2) f5°)(x0)) =: €1 + €2 + €3. Then Sy can be written
as

S4 < S41+ Sa2+ Sa3+ Sa4,

where
) 1/6
$10= (1 1 1ol = st 2 = DI )
Q
1 1/6
S12 = (1 | 1al(0r = )0, 0 = p2)f59)() — 11z )
Q
1 1/6
S1a= (g 1 1ol = 90 00 = g 9)(2) — otz )
Q
1 1/6
S1a= (1 L IallOr = p) 52, (0= ) i )
Q

Using Hélder’s inequality, Kolmogorov’s inequality (2.9) with p = 1/2 and
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qg=n/(2n — «a), and (2.11), we have
2
sus(g et =t G - P )

< C\QI“/” 21 Za((b1 = p1) 7, (b2 = p2) F) | s an-aro0 )
< ClQI*™2||(by — pl)f{)HLl(Q)WbQ - :02)ngL1(Q)

< C‘3Q|a/n”b1”BMOHf?”L (1o 1.2 122170 172 1| 10g 1),

< CH Hb ||BMOML (log L), (f)( )

7j=1

By the mean value theorem again, one obtains

S12 < o | Lal(by = p) 0, (b2 — p2) [5°)(2) — 1 d

IQ!

< C@ S |(b1(y1) — p1) fr(y1)] dyr
| |9€0—Z|\b2(y2)—P2Hf2(y2)\dy2

dz
(o1 =] + |22 — o 2-orFt

(3Q)¢

- J

< C (3J‘Q’1/n In—a+1 S ’(bl(yl) _pl)fl(yl)‘dyl
Jj=1 3Q

x| Iba(y2) = pal | f2(y2) | dy
3]+1Q
2

< CH Hb HBMOML (log L), (f)( )

J=1
Similarly to Sy 2, we can estimate Sy 3.
Now we estimate Sy 4. Note that

|[Za (b1 = p1) 7%, (b2 = p2) £3°)(2) = (Ia((b1 = p1) 7%, (b2 — p2) f5°)) (z0) ]

QY™ b1 (y1) — pr [ba(y .
¢ Q"™ b1 (1) mHzgnzaHpﬂH,f (0| di
|(zo — y1, 20 — Y2)|

IN

(R™\3Q)?

(9] 1/n b _ b _ 2
<C S ‘Q| | (ggng)P/Tf))lJn’_i%f) P2’ H ‘fzoo (yl)| d?j

g aey =1
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) 2
k a/n 00
< CZ 37k||b2||BMO|3k+1Q’ / H ||f] ||L(logL),3k+1Q
— j=1

< CH Hb ||BMOML (log L), (f)( )

7j=1
Therefore, Sy < C||b1lgviollb2llsroM Laog £y.o(f) (@) for i =1,...,4.
Thus we complete the proof of Proposition 3.1.
ProprosiTION 3.2 (Pointwise control of Mg(U*(f)), Mg(V*(f)),

Mg([a(f))) Let 0 <0 <e,0<d<1/mand0 < a<mn. Then there is a
constant C > 0 depending on § and € such that

(3.4) MAU*(f) (@) < CM(f)(),
(3.5) MAV*(F))(x) < CM(f)(x),
(3.6) M, (Ia())(@) < CMa(f)(@),

for all bounded fwz'th compact support.

Proof. The proof of (3.4) and (3.5) follows from similar steps in Theorem
3.2 of [19], combined with the method we used in the proof of the above
proposition; we omit the details. On the other hand, (3.6) has already been
obtained in [3, Proposition 5.2].

Now, we can obtain
THEOREM 3.1. Let 0 < p and w € As. Suppose that b € BMO™. Then

there is a constant C' independent ofI; and a constant Cq (possibly depending
on b) such that

37 Ui () (%) Pw(z) d
R» m
< CH [|b:]|BMO S (Mrogz)(f)(@)]Pw(z) dz,
=1 Rn

(38)  sup ————w({y € R": [Ufpf(y)| > t"})

1
>0 D"(1/1)

< Cysup w{y € R" : Mpaogr)(f)(y) >t"}).

1
em(1/t)
Similar results hold for Vﬁb(f).

Proof. The proof of Theorem 3.1 is now standard as in the case for
multilinear C-Z singular integral operators. We briefly indicate the argument

in the case m = 2, but, as the reader will immediately notice, an iterative
procedure using (3.1) and (3.2) can be followed to obtain the general case.
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Using the Fefferman—Stein inequality and the pointwise estimate in Pro-
position 3.1 we have

10 ()| o) < 1Ms(Ufi (1))l ooy < ClIME Ut ()| o)

2
< T Ibilleno (ML og ) ()l o) + IMET™ ()l or(w)
=1

+ C (b2 lmymo | ME (U, (P oe) + b1 3o I ME U (F)) o) -
First of all, we consider the contribution of HMg(Ub*2 ) LP(w)-

We define ¢, = Uy(f7, (b2 — p2) £5°)(20) + Uy(fi°, (b2 — p2) f3)(20) +
Un(f°; (b2 — p2) f5°)(w0) and ¢ = sup, - |cy|. Then

|Us, (F)(z) = |
2

<sup| | Kuy(zu1,02)((b2(2) — p2) — (ba(y2) — p2)) [ [ fiwi)dig + ey
>0 7 (g2 i=1

< Cloa(2) = ol UT(F1, £2)(2) + sup [Uy (fr, (b2 = p2) £2)(2) = e,
n

For arbitrary 0 < &’ < 1/2, taking 1 < t1,t2 < oo with 1 = 1/t; + 1/t5 and
to < €'/e, we have

1/e
(167 11ato) = o0 (1, o)

;)
<<|Q|S|b2<> pzlt15d2> < V1071, fo)( |d>

Q
< Cllb2[lBMmoMer (U (f1, f2))(2o0)-
Similar to the proof of Proposition 3.1, Uy (f1, (b2 — p2) f2) can be written as
Uy (f1, (b2 — p2) f2) = Uy(f7, (b2 — p2) £9) + Uy(f7, (b2 — p2) £5°)
+ U (f7°, (b2 = p2) £2) + Uy(f7°, (b2 — p2) £5°).
Taking 1 < pg < 1/(2¢) and using Holder’s inequality again, we have

1/e
(!Q\ ) Sub Uy (f1, (b2 = p2) f2)(2) — ¢ d2>

1
poe

<|Q! ) sup Uy (f1, (b2 = p2) f2) (=) - cnv’%dz)

§G1+G2+G3+G4,
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where
1

PoE

Gl <|Q SSup’U (f17( p2)f§))(z)’p05dz> )

1

<|@ U Uy (17, (b2 p2) J5°)(2) = U (1 (b2 =) 5° WO”W‘”)W’

(i

(b
e <1Q| ST 50~ p2) 5°)(2) = Uy 2 b= ) 1) )™

Ga

1

|

Q"
Ga= (g7 Vs lU 7 (b= p) )(2) =0 57 ) ) ) )
Q
)

1

A similar procedure to that for Ty in Proposition 3.1 yields

—

G1 < Cb2llpyio M7 1og 1) () (o).
By the mean value theorem, we deduce
G2 < ClballyioME iog 1) (F) (20)-

Similarly to G2, we can estimate G3. Moreover
Gy < CHbQHBMOM%(IogL)(f)('ro)'

This completes the analysis of HME(UI;'; (f))HLp(w)
Therefore, by Proposition 3.2, we have
IMEU3, (P o) < Cllbzllsmo (M) o) + 1M 1og 1y (Pl o)
< ClballBro M 1 10g 1) (F )l o)
||M£(U;l(f))|’Lp(w) can be treated in the same way as Mg(Ug;(j‘?)) The

desired inequality (3.7) now follows.
Since the main steps and ideas are almost the same as in [25], we omit

the proof of (3.8).
Proof of Theorems 1.1-1.2. Theorem 1.1 follows from

T (f) < Ui (F) () + Vi (f) (),

Theorem 3.1 and the weighted strong boundedness of M 1o, 1) proved in
[19]. Theorem 1.2 follows by repeating the same steps as in [19], [25] and
the method used in [27]. We omit the details.

Proof of Theorem 1.3. Theorem 1.3 follows by using Proposition 3.1 and
the estimate for Iga (j = 1,2) in Theorem 2.7 of [3].
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4. Weighted end-point estimates for I, p( f ). Firstly, we will con-
sider the end-point estimate for a multilinear fractional L(log L) type max-
imal operator.

PROPOSITION 4.1 (Weighted end-point estimate for Mpogr).a)- Let
D(t) = t(1 +logtt) and & € A1, ) m/(mn—a))- If 0 < a < mn, then
there is a constant C' > 0 such that

(4.1) Vf”” 7 ({ € R s Mpogpya(f)(@) > 77 )

£<7{[1+7§;k%*(fi S¢““(waﬂ/ﬂd%)]m

i=1R"

L mwwmmm%}

Jj=1R"

If 0 < aj < n for each 1 < j < m, andZ _, o = «, then there is a
constant C > 0 such that

(4.2) Vf”" 7 (fr € R Mpgognya(f)(@) > 177}

< o T [+ %ros* (IT § o 150101

j=1 i=1Rn

mn—ao

n
mn—ao

n
mn—ao

< L 113010 0) s
RTL
Proof. By homogeneity, we may assume t = 1. We first prove (4.2).
Introduce the notations
By ={z € R": Mpgogr)a(f)(x) > 1} and Eyx=EinB(0,k),

where B(0,k) = {z € R" : |z| < k}. By the monotone convergence theorem,
it suffices to estimate |Ey j|.
For any x € K, there is a cube @), such that

(4.3) 1< 1@ TT 1 g 1.0,
j=1

Hence, {Q},c o is a family of cubes covering F ;. Using a covering argu-

ment, we obtain a finite family {Q,, } of disjoint cubes whose dilations cover
E4 i, such that

(4.4) | By k| < CZ |Qz,| and 1< ’Qazz‘a/n 1_11 HfJ”L (log L),Qq, "
J
We follow the main steps first as in [25] and denote by C}"* the family
of all subsets 0 = {o(1),...,0(h)} of {1,...,m} with 1 < h < m different
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elements. Given o € (7" and a cube Q,, if |sz‘ag<j)Hfo(j)HL(logL),Qzl > 1
for j =1,...,h, we say that j € By; then |Qu,[**D|| fo() |l Log 1),@s, < 1 for
j=h+1,...,m. Denote

Ay = H QO™ | fopl L(log L),Qx,

7j=1

and Ag = 1. Then it is easy to check that if o € C}" and j € By, the for any
1 <k <m, we have A > 1 and

k
1< H ‘Q:Jcl|aa(j)/n||fo(j)HL(lOgL)’QIl = H|Q:Ez|ao(k)/nfa(k)f4k:—1H@)@gcly
j=1

or, equivalently,
(4.5)

1<

k—1
S ds(‘@:vz ’ag(k)/nfa(k) ( H |Qa:z ’aom/n Hfa(j) HL(logL),le)> .

Qq, j=1

1
|Qu |

By the equivalence

: p
flle.g =~ 1nf{ + (| f },
1flle. WbVt o QSIZ (1f1/1)
if 1 <j<m—h—1 we obtain
& (Ap—j) (H’Q |*otm= ”/nfo(m 7 Am—j— 1H¢QIZ)

Since |[||Qx, \O‘U(m—ﬂ/"fa(m_j)Am_j_lH¢ ., > 1, using the fact that @ is sub-
7 xl

multiplicative (i.e. (st) < &(s)P(t) for s,t > 0) and Jensen’s inequality one

obtains

P (Am—j) = D (|[|Qu, |/ f iy A

)

. 1 6% /T
< ¥ (1+|Q, | P(1Qu, | fa(m—j>Amjl>>
x Qz
_O|Q1 § Qa0 o) (Amj).
Y]

Qe

By iterating the inequalities above and the fact that H |Qz, \aa(i)/ "fo0) H 5.0
b zl

> 1 for j € By, &/t < @™ and ¢™ 1 < o™ for 1 < h < m and
0<j<m-—h-—1, we obtain
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(46) ¢(|Q€Bl|aa(m>/nfa(m))

< 1 S 1
@l g, Qul

x| B2 (|Quy 270" f 1)) B (A2)
Qu,

m—h—1

1 )

<(I1 iy § 9 0Qul e o))
j_o ‘le| xl

h
H " ([[1Qu* ™ for .0, )

3 5
|
T

—_

1
Qx|

IN
A/

5 éﬁ“l(\QxlI““(m—“/”fa(m1))>
Qu,

[e=]

X
—

S me_h+1(’Qxl ‘a(,(j)/nfo_(j))
" Qu

§ 27 (1Qu " 1))

—_

IN
Q

o,

I
Q
8

o

k

This implies that

(4.7) 1<CH‘Q p g S"™(|Qu, %™ f})
)
< C S O (|Quy| ™)™ ()
\Qxl!
1
<cIlig ,\Qzlwﬂ”(lﬂog*@z @) § @™ ().
j=117% Qa,
Since aj < n, there exists a constant Cy > 1 and 71, ..., 7, small enough
such that

0<n; <1—aqj/n, 1+10g+t°‘1/"§t’“ ift > Cy.
Denote n = > 1 ;. By (4.7), if |@Qq,| > Co, we have

(4.8) |Qu, [0 <OH | o (1),

Jj= 1Qzl

Therefore,

m

(m = a/n—n)log* (1Qu /") < C%L10g™ (T] | #7(fy))-
7=1Qu,
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By (4.7) again, we have

49) <[+ Dot (I § o70)} | o,
j=1

=1 Qq, Qq)

On the other hand, if |Q,,| < Cp, then it is easy to see that 1+log™ |Q., | /™
< C. Thus

(4.10) 1Qu, [0 <0H | o).

Jj= 1le
(4.9) and (4.10) yield
m—a/n . & + 4 m(r. m(f.
a1 1Qupr < e[+ Luogr (] § o)} | amip.
J=1 J=1Qq, Qa,
Finally, by (4.4) and the definition of A1, 1)n/(mn—a)), We have

mn—ao

(§ o)™

Eq

mn—o

(XYY )T

h=10€C" I€By Qq,

n—o

<o S S ()

h=10€C"1€Bs  Qu,

SC’Z Z Z ]le\m_o‘/"Hinfwj

h=1ccC" I€B, J=1

<oy Y ST s

h=10€C" I€B, j=1

gci 3 Zﬁ{l—i—o;flog

(alin[ QSZ o >}QSI T
(I}

—_

[l s >} omig

h=10€C" l€B,; j=1 Jj=1Rn Qz,
m . m
<C 1 731 +< m > m
<eTl{i+ o (IT o)} | o
j=1 J=1R" Rn

The proof of inequality (4.2) is finished.
Inequality (4.1) follows by taking a; = a/m < n in the above proof.

Proof of Theorem 1.4 and Corollary 1.1. We obtain Theorem 1.4 by
following the main steps as in [3]. Proposition 3.1 is used in the last step.
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To prove Corollary 1.1, as in the linear case [9] we define

[17%, 10i(@) = byl 5 .
\Yi d7
ym)|mnaiHlf(y)| g

(412)  Tom(f)(z) = |

(&)™ [(x —y1,...,x —

and a careful check of the proof of Theorems 1.3—1.4 shows that these theo-

—

rems still hold for I, 1ip. Noting that Mmp o (f )(2) < Lo b (| fil,-- -, [fml)(2)
implies Corollary 1.1.

Acknowledgements. The author wants to express his sincere thanks
to the unknown referee for his or her valuable remarks and pointing out a
problem in the previous version of this manuscript.

The author was partly supported by NSFC (Key program Grant No.
10931001), CPDRFSFP (Grant No. 200902070), Beijing Natural Science
Foundation (Grant 1102023), Program for Changjiang Scholars and Inno-
vative Research Teams in Universities.

References

[1] A. Bernardis, O. Gorosito and G. Pradolini, Weighted inequalities for multilinear
potential operators and its commutators, Potential Anal. 35 (2011), 253-274.
[2] X. Chen, Weighted estimates for the mazimal operator of a multilinear singular
integral, Bull. Polish Acad. Sci. Math. 58 (2010), 129-135.
[3] X. Chen and Q. Xue, Weighted estimates for a class of multilinear fractional type
operators, J. Math. Anal. Appl. 362 (2010), 355-373.
[4] M. Christ and J.-L. Journé, Polynomial growth estimates for multilinear singular
integral operators, Acta Math. 159 (1987), 51-80.
[5] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear
singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315-331.
[6] R. R. Coifman et Y. Meyer, Commutateurs d’intégrales singuliéres et opérateurs
multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 177-202.
[7] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces
in several variables, Ann. of Math. (2) 103 (1976), 611-635.
[8] C. Demeter, T. Tao and C. Thiele, Mazimal multilinear operators, Trans. Amer.
Math. Soc. 360 (2008), 4989-5042.
[9] Y. Ding, S. Lu and P. Zhang, Weak estimates for commutators of fractional integral
operators, Sci. China Ser. A (English Ser.) 44 (2001), 877-888.
[10]| C. Fefferman and E. M. Stein, H? spaces of several variables, Acta Math. 129 (1972),
137-193.
[11] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Re-
lated Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.
[12] L. Grafakos, On multilinear fractional integrals, Studia Math. 102 (1992), 49-56.
[13] L. Grafakos and N. Kalton, Multilinear Calderén—Zygmund operators on Hardy
spaces, Collect. Math. 52 (2001), 169-179.
[14] L. Grafakos, L. Liu, C. Pérez and R. H. Torres, The multilinear strong mazimal
function, J. Geom. Anal. 21 (2011), 118-149.


http://dx.doi.org/10.1007/s11118-010-9211-z
http://dx.doi.org/10.4064/ba58-2-4
http://dx.doi.org/10.1016/j.jmaa.2009.08.022
http://dx.doi.org/10.1007/BF02392554
http://dx.doi.org/10.1090/S0002-9947-1975-0380244-8
http://dx.doi.org/10.5802/aif.708
http://dx.doi.org/10.2307/1970954
http://dx.doi.org/10.1090/S0002-9947-08-04474-7
http://dx.doi.org/10.1007/BF02880137
http://dx.doi.org/10.1007/BF02392215
http://dx.doi.org/10.1007/s12220-010-9174-8

122

[15]

[16]

Q. Xue

L. Grafakos and R. H. Torres, Multilinear Calderén—Zygmund theory, Adv. Math.
165 (2002), 124-164.

L. Grafakos and R. H. Torres, On multilinear singular integrals of Calderon—Zygmund
type, in: Proc. 6th Int. Conf. on Harmonic Analysis and Partial Differential Equa-
tions (El Escorial), Publ. Mat. 2002, Vol. Extra, 57-91.

L. Grafakos and R. H. Torres, Mazimal operator and weighted norm inequalities for
multilinear singular integrals, Indiana Univ. Math. J. 51 (2002), 1261-1276.

C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math.
Res. Lett. 6 (1999), 1-15.

A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-Gonzélez, New
mazimal functions and multiple weights for the multilinear Calderén—Zygmund the-
ory, Adv. Math. 220 (2009), 1222-1264.

W. Li, Q. Xue and K. Yabuta, Multilinear Calderon—Zygmund operators on weighted
Hardy spaces, Studia Math. 199 (2010), 1-16.

W. Li, Q. Xue and K. Yabuta, Mazimal operator for multilinear Calderéon—Zygmund
singular integral operators on weighted Hardy spaces, J. Math. Anal. Appl. 373
(2011), 384-392.

K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect.
Math. 60 (2009), 213-238.

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional inte-
grals, Trans. Amer. Math. Soc. 192 (1974), 261-274.

C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct.
Anal. 128 (1995), 163-185.

C. Pérez, G. Pradolini, R. H. Torres, and R. Trujillo-Gonzalez, End-point estimates
for iterated commutators of multilinear singular integrals, arXiv:1004.4976.

M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl.
Math. 146, Dekker, New York, 1991.

P. Zhang, Weighted estimates for mazximal multilinear commutators, Math. Nachr.
279 (2006), 445-462.

Qingying Xue

School of Mathematical Sciences

Beijing Normal University

Laboratory of Mathematics and Complex Systems
Ministry of Education

Beijing, 100875, P.R. China

E-mail: qyxue@bnu.edu.cn

Received September 22, 2010
Revised version November 19, 2011 (6993)


http://dx.doi.org/10.1006/aima.2001.2028
http://dx.doi.org/10.1512/iumj.2002.51.2114
http://dx.doi.org/10.4310/MRL.1999.v6.n1.a1
http://dx.doi.org/10.1016/j.aim.2008.10.014
http://dx.doi.org/10.4064/sm199-1-1
http://dx.doi.org/10.1016/j.jmaa.2010.07.057
http://dx.doi.org/10.1007/BF03191210
http://dx.doi.org/10.1090/S0002-9947-1974-0340523-6
http://dx.doi.org/10.1006/jfan.1995.1027
http://arxiv.org/abs/1004.4976
http://dx.doi.org/10.1002/mana.200310370

	1 Introduction
	2 Definitions and some lemmas
	3 Proof of Theorems 1.1–1.3
	4 Weighted end-point estimates for I, b()
	References

