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The space of maximal Fourier multipliers as a dual space

by

Naohito Tomita (Osaka)

Abstract. Figà-Talamanca characterized the space of Fourier multipliers as the dual
space of a certain Banach space. In this paper, we characterize the space of maximal
Fourier multipliers as a dual space.

1. Introduction. Let S(Rn) and S ′(Rn) be the Schwartz spaces of all
rapidly decreasing smooth functions and tempered distributions, respec-
tively. The space Mp(R

n) of Fourier multipliers consists of all m ∈ L∞(Rn)

such that Tm is bounded on Lp(Rn), where Tm is defined by Tmf = F−1[mf̂ ]
for f ∈ S(Rn). We define the norm on Mp(R

n) by ‖m‖Mp
= sup ‖Tmf‖Lp ,

where the supremum is taken over all f ∈ S(Rn) such that ‖f‖Lp = 1. Let
C0(R

n) be the space of all continuous functions such that lim|x|→∞ f(x) = 0.
For 1<p<∞, p′ is the conjugate exponent of p (that is, 1/p + 1/p′ = 1).
Let Z and N be the sets of all integers and positive integers, respectively.
The space Ap(R

n) consists of all f ∈ C0(R
n) which can be written

as f =
∑

i∈N
fi ∗ gi in L∞(Rn), where {fi}i∈N, {gi}i∈N ⊂ S(Rn) and∑

i∈N
‖fi‖Lp‖gi‖Lp′ < ∞. Then the norm ‖f‖Ap

is the infimum of the last
sums over all representations of f .

In [6], Figà-Talamanca proved that Mp(R
n) = Ap(R

n)∗, where Ap(R
n)∗

is the dual space of Ap(R
n) (see also Larsen [10]). Berkson, Paluszyński

and Weiss applied Figà-Talamanca’s result to wavelet theory [2] (for other
applications, see Asmar, Berkson and Gillespie [1] and Figà-Talamanca and
Gaudry [7]).

Maximal functions generated by Fourier multipliers were studied by, for
example, Christ, Grafakos, Honźık and Seeger [3], Dappa and Trebels [4]
and Kenig and Tomas [9]. For m ∈ L∞(Rn), the dyadic maximal Fourier
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multiplier operator Mm is defined by

Mmf(x) = sup
j∈Z

|Tm(2j ·)f(x)| = sup
j∈Z

|F−1[m(2j·)f̂ ](x)|

for f ∈ S(Rn) ([3], [4]). We denote by maxMp(R
n) the space of all m ∈

L∞(Rn) such that Mm is bounded on Lp(Rn). We define the norm on
maxMp(R

n) by

‖m‖maxMp
= sup{‖Mmf‖Lp : f ∈ S(Rn), ‖f‖Lp = 1}.

Then maxMp(R
n) is a Banach space (Proposition 3.1). The purpose of this

paper is to characterize maxMp(R
n) as the dual space of a certain normed

space. The space Ãp(R
n) consists of all f ∈ C0(R

n) which can be written as

f =
∑

i∈N

∑

j∈Z

fi ∗ gi,j(2
j ·) in L∞(Rn),

where {fi}i∈N, {gi,j}i∈N,j∈Z ⊂ S(Rn) and
∑

i∈N

∑
j∈Z

‖fi‖Lp‖gi,j‖Lp′ < ∞.

Note that, if the last condition is satisfied, then
∑

i∈N

∑
j∈Z

fi ∗ gi,j(2
j·)

∈ C0(R
n) and

∑
i∈N

‖fi‖Lp‖{gi,j}j∈Z‖Lp′ (Rn,ℓ1(Z)) < ∞, where the norm

‖{gj}j∈Z‖Lp′ (Rn,ℓ1(Z)) is, by definition, {
T
Rn(

∑
j∈Z

|gj(x)|)
p′ dx}1/p′ . We de-

fine the norm on Ãp(R
n) by

‖f‖
Ãp

= inf
{∑

i∈N

‖fi‖Lp‖{gi,j}j∈Z‖Lp′ (Rn,ℓ1(Z)) : f =
∑

i∈N

∑

j∈Z

fi ∗ gi,j(2
j ·)

}
.

Then Ãp(R
n) is a normed space (Proposition 3.2). Also, Ap(R

n) is con-

tinuously embedded in Ãp(R
n). For m ∈ maxMp(R

n), we define a linear

functional ϕm on Ãp(R
n) by

(1) ϕm(f) =
∑

i∈N

∑

j∈Z

Tm(2j ·)fi ∗ gi,j(0)

for f =
∑

i∈N

∑
j∈Z

fi ∗ gi,j(2
j·) ∈ Ãp(R

n). We note that the right hand
side of (1) is independent of the representation of f (Lemma 3.6). Our main
result is the following.

Theorem 1. Let 1 < p < ∞. If m ∈ maxMp(R
n), then ϕm ∈ Ãp(R

n)∗

and ‖ϕm‖(Ãp)∗
= ‖m‖maxMp

. Conversely , if ϕ ∈ Ãp(R
n)∗, then there exists

m ∈ maxMp(R
n) such that ϕ = ϕm. In this sense, maxMp(R

n) = Ãp(R
n)∗.

2. Preliminaries. We define the Fourier transform Ff and the inverse
Fourier transform F−1f of f ∈ S(Rn) by

Ff(ξ) = f̂(ξ) =
\

Rn

e−iξ·xf(x) dx, F−1f(x) =
1

(2π)n

\
Rn

eix·ξf(ξ) dξ.
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We also define the Fourier transform Fu and the inverse Fourier transform
F−1u of u ∈ S ′(Rn) by

〈Fu, ψ〉 = 〈u,Fψ〉, 〈F−1u, ψ〉 = 〈u,F−1ψ〉 for all ψ ∈ S(Rn).

Note that, if u is an appropriate function, then 〈u, ψ〉 =
T
Rn u(x)ψ(x) dx. For

u ∈ S ′(Rn) and ψ ∈ S(Rn), the convolution u ∗ ψ is defined by u ∗ ψ(x) =
〈u, τxψ̌〉, where τxψ̌(y) = ψ̌(y − x) and ψ̌(y) = ψ(−y). As usual, for a
function ψ on R

n and t > 0, we write ψt(x) = t−nψ(x/t).

The Hardy–Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

1

|B(0, r)|

\
B(0,r)

|f(x− y)| dy

for all locally integrable functions f on R
n, where B(0, r) is the ball of

radius r centered at the origin and |B(0, r)| denotes the Lebesgue measure
of B(0, r). The following lemma appears as [5, Proposition 2.7].

Lemma 2.1. Let ψ be a function on R
n which is dominated by a non-

negative, radial , decreasing (as a function on (0,∞)) and integrable func-

tion. Then there exists a constant C > 0 such that

sup
t>0

|(ψt ∗ f)(x)| ≤ CMf(x)

for all locally integrable functions f .

3. Proofs. Throughout the rest of the paper, we always assume 1 <
p <∞.

Proposition 3.1. maxMp(R
n) is a Banach space.

Proof. We first check that ‖·‖maxMp
is a norm. Since ‖·‖Mp

≤ ‖·‖maxMp

and ‖ · ‖L∞ ≤ ‖ · ‖Mp
([8, p. 217]), it follows that if ‖m‖maxMp

= 0 then
m = 0. Let m,m1,m2 ∈ maxMp(R

n) and α ∈ C. Then Mαmf = |α|Mmf
and Mm1+m2f ≤ Mm1f + Mm2f give ‖αm‖maxMp

= |α| ‖m‖maxMp
and

‖m1 +m2‖maxMp
≤ ‖m1‖maxMp

+ ‖m2‖maxMp
.

We next check that maxMp(R
n) is complete. Let {mk} ⊂ maxMp(R

n)
be a Cauchy sequence. Since Mp(R

n) is complete, and ‖ · ‖Mp
≤ ‖ · ‖maxMp

,
we see that there exists m ∈ Mp(R

n) such that mk → m in Mp(R
n) as

k → ∞. From ‖ · ‖L∞ ≤ ‖ · ‖Mp
it follows that mk → m in L∞(Rn) as

k → ∞. Hence, mk → m in S ′(Rn) as k → ∞. Since mk(2
j ·) → m(2j·) in

S ′(Rn) as k → ∞ for all j ∈ Z, we see that Tmk(2j ·)f(x) → Tm(2j ·)f(x) as
k → ∞ for all f ∈ S(Rn), x ∈ R

n and j ∈ Z. This gives

|Tmk(2j ·)f(x) − Tm(2j ·)f(x)| = lim
k′→∞

|Tmk(2j ·)f(x) − Tmk′ (2
j ·)f(x)|

= lim inf
k′→∞

|Tmk(2j ·)f(x) − Tmk′ (2
j ·)f(x)| ≤ lim inf

k′→∞
Mmk−mk′

f(x),



194 N. Tomita

so Mmk−mf ≤ lim infk′→∞Mmk−mk′
f . On the other hand, since {mk} is a

Cauchy sequence, for any ε > 0 there exists N ∈ N such that

‖mk −mk′‖maxMp
= sup ‖Mmk−mk′

f‖Lp < ε

for all k, k′ ≥ N , where the supremum is taken over all f ∈ S(Rn) such that
‖f‖Lp = 1. Therefore, by Fatou’s lemma, we get

‖Mmk−mf‖Lp ≤ ‖lim inf
k′→∞

Mmk−mk′
f‖Lp ≤ lim inf

k′→∞
‖Mmk−mk′

f‖Lp ≤ ε

for all k ≥ N and f ∈ S(Rn) such that ‖f‖Lp = 1. The proof is complete.

Proposition 3.2. Ãp(R
n) is a normed space.

Proof. We only prove that, if f ∈ Ãp(R
n) and ‖f‖

Ãp
= 0, then f = 0. We

note that S(Rn) ⊂ maxMp(R
n). Indeed, from Lemma 2.1, for ψ ∈ S(Rn)

we have Mψf(x) ≤ CMf(x), where M is the Hardy–Littlewood maxi-
mal operator (see Section 2). Since M is bounded on Lp(Rn) ([5, Theo-

rem 2.5]), we see that Mψ is bounded on Lp(Rn). Let f ∈ Ãp(R
n) and

‖f‖
Ãp

= 0. For ε > 0, we can find {fε,i}, {gε,i,j} ⊂ S(Rn) such that f =
∑

i∈N

∑
j∈Z

fε,i ∗ gε,i,j(2
j ·) in L∞(Rn),

∑
i∈N

‖fε,i‖Lp‖{gε,i,j}j‖Lp′ (Rn,ℓ1(Z))

< ε and
∑

i∈N

∑
j∈Z

‖fε,i‖Lp‖gε,i,j‖Lp′ <∞. Since f ∈ C0(R
n), it is enough

to prove that 〈f, ψ〉 = 0 for all ψ ∈ S(Rn). Let ψ ∈ S(Rn). Since

〈f, ψ〉=
∑

i∈N

∑

j∈Z

\
Rn

fε,i ∗ gε,i,j(2
jx)ψ(x) dx

=
∑

i∈N

∑

j∈Z

\
Rn

( \
Rn

f∨ε,i(y − x)gε,i,j(y) dy
)
ψ2j (x) dx

=
∑

i∈N

∑

j∈Z

\
Rn

ψ2j ∗ f∨ε,i(y)gε,i,j(y) dy=
∑

i∈N

∑

j∈Z

\
Rn

T
ψ̂(2j ·)

f∨ε,i(y) gε,i,j(y) dy,

we see that

|〈f, ψ〉| ≤
∑

i∈N

\
Rn

M
ψ̂
f∨ε,i(y)

∑

j∈Z

|gε,i,j(y)| dy

≤
∑

i∈N

‖M
ψ̂
f∨ε,i‖Lp‖{gε,i,j}j‖Lp′ (Rn,ℓ1(Z))

≤ ‖ψ̂‖maxMp

∑

i∈N

‖fε,i‖Lp‖{gε,i,j}j‖Lp′ (Rn,ℓ1(Z)) < ‖ψ̂‖maxMp
ε.

Hence, the arbitrariness of ε gives 〈f, ψ〉 = 0. The proof is complete.

The following lemma appears as [8, (1.2)].

Lemma 3.3. If m ∈ Mp(R
n), then ‖ψ ∗ m‖Mp

≤ ‖ψ‖L1‖m‖Mp
for all

ψ ∈ S(Rn).



Space of maximal Fourier multipliers 195

Lemma 3.4. If m ∈ Mp(R
n), then ‖ψm‖Mp

≤ ‖F−1ψ‖L1‖m‖Mp
for all

ψ ∈ S(Rn).

Proof. Use the fact that Tψmf = [F−1ψ] ∗ Tmf .

Lemma 3.5. Let m ∈ Mp(R
n). If {fi}i∈N, {gi,j}i∈N,j∈Z ⊂ S(Rn) sat-

isfy
∑

i∈N

∑
j∈Z

‖fi‖Lp‖gi,j‖Lp′ < ∞ and
∑

i∈N

∑
j∈Z

fi ∗ gi,j(2
j·) = 0 in

L∞(Rn), then ∑

i∈N

∑

j∈Z

Tm(2j ·)fi ∗ gi,j(0) = 0.

Proof. Let m ∈Mp(R
n) and ψ be a C∞(Rn)-function such that ψ(ξ) = 1

if |ξ| ≤ 1, ψ(ξ) = 0 if |ξ| ≥ 2. Also, let ψ̃ be a radial C∞(Rn)-function such

that ψ̃(ξ) = 0 if |ξ| ≥ 1 and
T
Rn ψ̃(ξ) dξ = 1. Then we set ̺(ε) = ψ(ε·)[ψ̃ε∗m]

for ε > 0, where ψ̃ε = ε−nψ̃(·/ε). Since ψ̃ε ∗ [ψ(ε·) f ] → f in S(Rn) as ε→ 0
for all f ∈ S(Rn), we see that

T̺(ε)(2j ·)f ∗ g(0) = 〈[F−1̺(ε)]2j , f̌ ∗ ǧ〉 = 〈ψ(ε·)[ψ̃ε ∗m],F−1[f̌ ∗ ǧ(2j·)]〉(2)

→ 〈m,F−1[f̌ ∗ ǧ(2j ·)]〉 = Tm(2j ·)f ∗ g(0) as ε→ 0

for all f, g ∈ S(Rn) and j ∈ Z. Since ‖m(t·)‖Mp
= ‖m‖Mp

for all t > 0, by
Lemmas 3.3 and 3.4, we also have

‖̺(ε)(2
j·)‖Mp

= ‖̺(ε)‖Mp
≤ ‖F−1[ψ(ε ·)]‖L1‖ψ̃ε ∗m‖Mp

≤ ‖[F−1ψ]ε‖L1‖ψ̃ε‖L1‖m‖Mp
= ‖F−1ψ‖L1‖ψ̃‖L1‖m‖Mp

.

This gives

(3) |T̺(ε)(2j ·)f ∗ g(0)| ≤ ‖F−1ψ‖L1‖ψ̃‖L1‖m‖Mp
‖f‖Lp‖g‖Lp′

for all f, g ∈ S(Rn) and j ∈ Z. Let {fi}i∈N, {gi,j}i∈N,j∈Z ⊂ S(Rn) satisfy∑
i∈N

∑
j∈Z

‖fi‖Lp‖gi,j‖Lp′ <∞ and
∑

i∈N

∑
j∈Z

fi∗gi,j(2
j ·) = 0 in L∞(Rn).

By (2) and (3), we get

T̺(ε)(2j ·)fi ∗ gi,j(0) → Tm(2j ·)fi ∗ gi,j(0) as ε→ 0

and

|T̺(ε)(2j ·)fi ∗ gi,j(0)| ≤ ‖F−1ψ‖L1‖ψ̃‖L1‖m‖Mp
‖fi‖Lp‖gi,j‖Lp′

for each i ∈ N and j ∈ Z. Hence, by the Lebesgue dominated convergence
theorem, we get

lim
ε→0

∑

i∈N

∑

j∈Z

T̺(ε)(2j ·)fi ∗ gi,j(0) =
∑

i∈N

∑

j∈Z

Tm(2j ·)fi ∗ gi,j(0).

Since F−1̺(ε) ∈ L1(Rn) and
∑

i≤N

∑
|j|≤N fi ∗ gi,j(2

j·) → 0 in L∞(Rn) as
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N → ∞, we see that
∑

i∈N

∑

j∈Z

T̺(ε)(2j ·)fi ∗ gi,j(0) = lim
N→∞

∑

i≤N

∑

|j|≤N

\
Rn

[F−1̺(ε)](−x)fi ∗ gi,j(2
jx) dx

= lim
N→∞

\
Rn

[F−1̺(ε)](−x)
( ∑

i≤N

∑

|j|≤N

fi ∗ gi,j(2
jx)

)
dx = 0.

This completes the proof.

Lemma 3.6. Let m ∈ Mp(R
n). Then we can define a linear functional

ϕm on Ãp(R
n) by (1).

Proof. To define ϕm, we need to show that, if {f
(1)
i }, {f

(2)
i }, {g

(1)
i,j }, {g

(2)
i,j }

⊂ S(Rn) satisfy
∑

i∈N

∑
j∈Z

‖f
(1)
i ‖Lp‖g

(1)
i,j ‖Lp′ ,

∑
i∈N

∑
j∈Z

‖f
(2)
i ‖Lp‖g

(2)
i,j ‖Lp′

<∞ and
∑

i∈N

∑
j∈Z

f
(1)
i ∗g

(1)
i,j (2j ·) =

∑
i∈N

∑
j∈Z

f
(2)
i ∗g

(2)
i,j (2j ·) in L∞(Rn),

then ∑

i∈N

∑

j∈Z

Tm(2j ·)f
(1)
i ∗ g

(1)
i,j (0) =

∑

i∈N

∑

j∈Z

Tm(2j ·)f
(2)
i ∗ g

(2)
i,j (0).

To do this, we define {f
(3)
i }i, {{g

(3)
i,j }j}i ⊂ S(Rn) by {f

(3)
i }i = {f

(1)
1 , f

(2)
1 ,

f
(1)
2 , f

(2)
2 , . . .}, and {{g

(3)
i,j }j}i = {{g

(1)
1,j }j , {−g

(2)
1,j }j , {g

(1)
2,j}j , {−g

(2)
2,j }j , . . .}.

Then we have∑

i∈N

∑

j∈Z

‖f
(3)
i ‖Lp‖g

(3)
i,j ‖Lp′

=
∑

i∈N

∑

j∈Z

‖f
(1)
i ‖Lp‖g

(1)
i,j ‖Lp′ +

∑

i∈N

∑

j∈Z

‖f
(2)
i ‖Lp‖g

(2)
i,j ‖Lp′ <∞

and∑

i∈N

∑

j∈Z

f
(3)
i ∗ g

(3)
i,j (2j ·) =

∑

i∈N

∑

j∈Z

f
(1)
i ∗ g

(1)
i,j (2j ·) −

∑

i∈N

∑

j∈Z

f
(2)
i ∗ g

(2)
i,j (2j ·) = 0.

Hence, by Lemma 3.5, we get
∑

i∈N

∑

j∈Z

Tm(2j ·)f
(1)
i ∗ g

(1)
i,j (0) −

∑

i∈N

∑

j∈Z

Tm(2j ·)f
(2)
i ∗ g

(2)
i,j (0)

=
∑

i∈N

∑

j∈Z

Tm(2j ·)f
(3)
i ∗ g

(3)
i,j (0) = 0.

Thus, the values
∑

i∈N

∑
j∈Z

Tm(2j ·)fi ∗ gi,j(0) are independent of the repre-
sentations of f . In the same way, we can prove the linearity of ϕm.

We are now ready to prove Theorem 1 given in the introduction.

Proof of Theorem 1. We first prove that, if m ∈ maxMp(R
n), then

ϕm ∈ Ãp(R
n)∗ and ‖m‖maxMp

= ‖ϕm‖(Ãp)∗
. Let m ∈ maxMp(R

n). By
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Lemma 3.6, we see that ϕm is a linear functional on Ãp(R
n). Let f =∑

i∈N

∑
j∈Z

fi ∗ gi,j(2
j·) ∈ Ãp(R

n). Since

|ϕm(f)| ≤
∑

i∈N

\
Rn

∑

j∈Z

|Tm(2j ·)fi(x)gi,j(−x)| dx

≤
∑

i∈N

‖Mmfi‖Lp‖{gi,j}j‖Lp′ (Rn,ℓ1(Z))

≤ ‖m‖maxMp

∑

i∈N

‖fi‖Lp‖{gi,j}j‖Lp′(Rn,ℓ1(Z)),

taking the infimum over all the representations of f , we have |ϕm(f)| ≤

‖m‖maxMp
‖f‖

Ãp
, so ϕm ∈ Ãp(R

n)∗ and ‖ϕm‖(Ãp)∗
≤ ‖m‖maxMp

. To prove

‖ϕm‖(Ãp)∗
≥ ‖m‖maxMp

, we use the duality Lp
′

(Rn, ℓ1(Z))∗=Lp(Rn, ℓ∞(Z))

([12, Proposition, 2.11.1]), that is,

‖m‖maxMp
= sup ‖{Tm(2j ·)f}j∈Z‖Lp(Rn,ℓ∞(Z))

= sup
∣∣∣
\

Rn

∑

j∈Z

Tm(2j ·)f(x)gj(x) dx
∣∣∣,

where the supremum is taken over all f ∈ S(Rn) and finitely supported
sequences {gj}j∈Z ⊂ S(Rn) such that ‖f‖Lp = ‖{gj}j∈Z‖Lp′ (Rn,ℓ1(Z)) = 1.

For ε > 0, we can find fε ∈ S(Rn) and a finitely supported sequence {gε,j} ⊂
S(Rn) such that ‖fε‖Lp = ‖{gε,j}j‖Lp′ (Rn,ℓ1(Z)) = 1 and

‖m‖maxMp
− ε <

∣∣∣
\

Rn

∑

j∈Z

Tm(2j ·)fε(x)gε,j(x) dx
∣∣∣.

Since {gε,j} ⊂ S(Rn) is a finitely supported sequence, we have
∑

j∈Z
fε ∗

g∨ε,j(2
j ·) ∈ Ãp(R

n) and ‖
∑

j∈Z
fε∗g

∨
ε,j(2

j·)‖
Ãp

≤ ‖fε‖Lp‖{g∨ε,j}j‖Lp′ (Rn,ℓ1(Z)).

Hence, we get

‖m‖maxMp
<

∣∣∣
\

Rn

∑

j∈Z

Tm(2j ·)fε(x)gε,j(x) dx
∣∣∣ + ε

=
∣∣∣
∑

j∈Z

Tm(2j ·)fε ∗ g
∨
ε,j(0)

∣∣∣ =
∣∣∣ϕm

( ∑

j∈Z

fε ∗ g
∨
ε,j(2

j ·)
)∣∣∣ + ε

≤ ‖ϕm‖(Ãp)∗

∥∥∥
∑

j∈Z

fε ∗ g
∨
ε,j(2

j ·)
∥∥∥
Ãp

+ ε ≤ ‖ϕm‖(Ãp)∗
+ ε.

Hence, the arbitrariness of ε gives ‖ϕm‖(Ãp)∗
≥ ‖m‖maxMp

.

We next prove that, if ϕ ∈ Ãp(R
n)∗, then there exists m ∈ maxMp(R

n)
such that ϕ = ϕm. We note that, if f, g ∈ S(Rn) and j ∈ Z, then f ∗g(2j·) ∈

Ãp(R
n) and ‖f ∗ g(2j·)‖

Ãp
≤ ‖f‖Lp‖g‖Lp′ . For f ∈ S(Rn) and j ∈ Z, we can
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define a linear functional L
(j)
f on the dense subspace S(Rn) of Lp

′

(Rn) by

L
(j)
f (g) = ϕ(f ∗ g(2j·)) for g ∈ S(Rn). Since

|L
(j)
f (g)| = |ϕ(f ∗ g(2j·))| ≤ ‖ϕ‖

(Ãp)∗
‖f ∗ g(2j·)‖

Ãp
≤ ‖ϕ‖

(Ãp)∗
‖f‖Lp‖g‖Lp′

for all g ∈ S(Rn), it follows that L
(j)
f ∈ Lp

′

(Rn)∗ and its norm satisfies

‖L
(j)
f ‖(Lp′)∗ ≤ ‖ϕ‖(Ãp)∗ ‖f‖Lp . Since Lp

′

(Rn)∗ = Lp(Rn), we can find h
(j)
f ∈

Lp(Rn) such that ‖h
(j)
f ‖Lp = ‖L

(j)
f ‖(Lp′ )∗ and

L
(j)
f (g) =

\
Rn

h
(j)
f (x)g(x) dx for all g ∈ S(Rn).

We define a linear operator Tj from S(Rn) to Lp(Rn) by Tjf = (h
(j)
f )∨.

Then we have

‖Tjf‖Lp = ‖(h
(j)
f )∨‖Lp = ‖L

(j)
f ‖(Lp′ )∗ ≤ ‖ϕ‖

(Ãp)∗
‖f‖Lp

for all f ∈ S(Rn). That is, Tj is bounded on Lp(Rn). Since τxf ∗ g(2j·) =
f ∗ τxg(2

j·), the equations

ϕ(τxf ∗ g(2j·)) = L
(j)
τxf

(g) =
\

Rn

Tj [τxf ](y)g(−y) dy

and
ϕ(f ∗ τxg(2

j·)) = L
(j)
f (τxg) =

\
Rn

Tjf(y)[τxg](−y) dy

give Tj τx = τx Tj . Since Tj is bounded on Lp(Rn) and commutes with
translations, by [11, Chapter 1, Theorem 3.16], we can find mj ∈ L∞(Rn)
such that Tmj

= Tj . We next show that mj = m0(2
j ·) for all j ∈ Z. Since

f ∗ g(2j·) = [f2−j ∗ g(2j·)](20·), the equations

ϕ(f ∗ g(2j·)) = L
(j)
f (g) =

\
Rn

Tmj
f(x)g(−x) dx

and

ϕ([f2−j ∗ g(2j·)](20·)) = L
(0)
f
2−j

(g(2j·))

=
\

Rn

Tm0f2−j (x)g(−2jx) dx =
\

Rn

Tm0(2j ·)f(x)g(−x) dx

give mj = m0(2
j ·). We write m = m0. Then we have

(4) ϕ(f ∗ g(2j·)) =
\

Rn

Tm(2j ·)f(x) g(−x) dx = Tm(2j ·)f ∗ g(0)

for all f, g ∈ S(Rn) and j ∈ Z. To show m ∈ maxMp(R
n), we define a space

S by S = {{gj}j∈Z ⊂ S(Rn) : {gj}j∈Z is a finitely supported sequence}. We

note that, if f ∈ S(Rn) and {gj}j∈Z ∈ S, then
∑

j∈Z
f ∗ gj(2

j·) ∈ Ãp(R
n)
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and ‖
∑

j∈Z
f ∗ gj(2

j ·))‖
Ãp

≤ ‖f‖Lp‖{gj}j‖Lp′ (Rn,ℓ1(Z)). For f ∈ S(Rn), we

can define a linear functional Lf on the dense subspace S of Lp
′

(Rn, ℓ1(Z))
by Lf ({gj}j) = ϕ(

∑
j∈Z

f ∗ gj(2
j ·)) for {gj}j∈Z ∈ S. From the boundedness

of ϕ, it follows that

|Lf ({gj}j)| ≤ ‖ϕ‖
(Ãp)∗

∥∥∥
∑

j∈Z

f ∗ gj(2
j·))

∥∥∥
Ãp

≤ ‖ϕ‖(Ãp)∗‖f‖Lp‖{gj}j‖Lp′ (Rn,ℓ1(Z))

for all {gj}j∈Z ∈ S, so that Lf ∈ Lp
′

(Rn, ℓ1(Z))∗ and ‖Lf‖Lp′ (Rn,ℓ1(Z))∗ ≤

‖ϕ‖
(Ãp)∗

‖f‖Lp . By the duality Lp
′

(Rn, ℓ1(Z))∗ = Lp(Rn, ℓ∞(Z)), we can find

{hj}j∈Z ∈ Lp(Rn, ℓ∞(Z)) such that ‖{hj}j‖Lp(Rn,ℓ∞(Z)) = ‖Lf‖Lp′ (Rn,ℓ1(Z))∗

and

Lf ({gj}j) =
\

Rn

∑

j∈Z

hj(x)gj(x) dx for all {gj}j ∈ S.

Now, (4) and

ϕ(f ∗ g(2j0 ·)) = Lf ({δj,j0g}j) =
\

Rn

hj0(x)g(x) dx

give Tm(2j0 ·)f = h∨j0 for all j0 ∈ Z, where δj,j0 = 1 if j = j0 and δj,j0 = 0 if
j 6= j0. So, we get

‖Mmf‖Lp = ‖{Tm(2j ·)f}j‖Lp(Rn,ℓ∞(Z)) = ‖{h∨j }j‖Lp(Rn,ℓ∞(Z))

= ‖Lf‖Lp′ (Rn,ℓ1(Z))∗ ≤ ‖ϕ‖
(Ãp)∗

‖f‖Lp .

That is, m ∈ maxMp(R
n). Finally, we prove ϕm = ϕ. Let f ∈ S(Rn) and

{gj}j ⊂ S(Rn) satisfy ‖f‖Lp

∑
j∈Z

‖gj‖Lp′ < ∞. We note that
∑

j∈Z
f ∗

gj(2
j·) ∈ Ãp(R

n). Since
∑

|j|≤N f ∗ gj(2
j ·) →

∑
j∈Z

f ∗ gj(2
j ·) in Ãp(R

n) as

N → ∞, using the continuity and linearity of ϕ and (4), we have

(5) ϕ
( ∑

j∈Z

f ∗ gj(2
j·)

)
= lim

N→∞

∑

|j|≤N

ϕ(f ∗ gj(2
j ·))

= lim
N→∞

∑

|j|≤N

Tm(2j ·)f ∗ gj(0) =
∑

j∈Z

Tm(2j ·)f ∗ gj(0).

Let f =
∑

i∈N

∑
j∈Z

f ∗ gj(2
j ·) ∈ Ãp(R

n), where {fi}, {gi,j}i,j ⊂ S(Rn)
satisfy

∑
i∈N

∑
j∈Z

‖fi‖Lp‖gi,j‖Lp′ <∞. Since
∑

i∈N

‖fi‖Lp‖{gi,j}j‖Lp′ (Rn,ℓ1(Z)) ≤
∑

i∈N

∑

j∈Z

‖fi‖Lp‖gi,j‖Lp′ <∞,

we see that
∑

i≤N

∑
j∈Z

f ∗ gj(2
j·) → f in Ãp(R

n) as N → ∞. Hence, from
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the continuity and linearity of ϕ and (5), we get

ϕ(f) = lim
N→∞

∑

i≤N

ϕ
( ∑

j∈Z

fi ∗ gi,j(2
j·)

)

= lim
N→∞

∑

i≤N

∑

j∈Z

Tm(2j ·)fi ∗ gi,j(0) = ϕm(f).

The proof is complete.
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References

[1] N. Asmar, E. Berkson and T. A. Gillespie, Summability methods for transferring

Fourier multipliers and transference of maximal inequalities, in: Analysis and Partial
Differential Equations: A Collection of Papers Dedicated to Mischa Cotlar, ed. by
C. Sadosky, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990,
1–34.
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