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Perron's method and the method of relaxed limits for�unbounded� PDE in Hilbert spaesby
Djivede Kelome (Amherst, MA, and Montreal) and

Andrzej Święch (Atlanta, GA)Abstrat. We prove that Perron's method and the method of half-relaxed limits ofBarles�Perthame works for the so alled B-ontinuous visosity solutions of a large lass offully nonlinear unbounded partial di�erential equations in Hilbert spaes. Perron's methodextends the existene of B-ontinuous visosity solutions to many new equations that arenot of Bellman type. The method of half-relaxed limits allows limiting operations withvisosity solutions without any a priori estimates. Possible appliations of the method ofhalf-relaxed limits to large deviations, singular perturbation problems, and onvergeneof �nite-dimensional approximations are disussed.1. Introdution. In this paper we investigate the possibility of ex-tending Perron's method and the method of half-relaxed limits of Barles�Perthame to a lass of equations in in�nite-dimensional Hilbert spaes of theform(1.1) u+ 〈Ax,Du〉 + F (x,Du,D2u) = 0and their time dependent versions(1.2) {
ut + 〈Ax,Du〉 + F (t, x,Du,D2u) = 0, (t, x) ∈ (0, T ) ×H,
u(0, x) = g(x).Here H is a real separable Hilbert spae with the inner produt 〈·, ·〉 andnorm ‖ · ‖, and A is a linear, maximal monotone operator in H. The sym-bols Du,D2u denote the Fréhet derivatives of u. This is a large lass ofequations that inludes Hamilton�Jaobi�Bellman (HJB) equations for op-timal ontrol of stohasti semilinear PDE (for instane stohastially per-turbed reation-di�usion equations) and delay equations, Isaas equations,in�nite-dimensional Blak�Sholes�Barenblatt equation for option priing,and many others.2000 Mathematis Subjet Classi�ation: 49L25, 35R15, 35J60.Key words and phrases: visosity solutions, Hamilton�Jaobi�Bellman equations, Per-ron's method, relaxed limits, Hilbert spaes.A. �wi�h was supported by NSF grant DMS 0500270.[249℄



250 D. Kelome and A. �wi�hThere exists a good theory of suh equations based on the notion of theso alled B-ontinuous visosity solution [5, 6, 25℄. The theory however stilllaks several key omponents that are among the main tools of visositysolutions in �nite-dimensions, namely Perron's method and the method ofhalf-relaxed limits. Perron's method is the main tehnique for produingvisosity solutions of PDE in �nite-dimensional spaes (see [3℄). It is based onthe priniple that the supremum of the family of all visosity subsolutions ofan equation is a visosity solution and so all we need to do to prove existeneof a visosity solution is to produe one sub- and one supersolution. Despiteprevious e�orts it is still not known if a version of Perron's method an beimplemented for B-ontinuous visosity solutions of (1.1) and (1.2), even ifthe equations are of �rst order. Perron's method works with Ishii's de�nitionsof solutions [17, 18℄ (see also [23℄), but his notion of solution [18℄ does notseem easily appliable to stohasti optimal ontrol problems and is not used.Half-relaxed limits of Barles�Perthame (see [3℄) are perhaps an even morefundamental tehnique in the theory of visosity solutions that is widely usedto pass to weak limits without any a priori estimates. A huge part of thesuess of visosity solutions is based on the fat that limiting operationsare very easy in this framework. It is known that due to the lak of loalompatness in in�nite-dimensional spaes this proedure may not work ingeneral, even for simple equations with A = 0 (see [1, 26℄).In this paper we will show that both Perron's method and the methodof half-relaxed limits an be adapted for equations (1.1) and (1.2) if theoperator A satis�es a oerivity ondition (2.2). It has been notied before[2, 8, 13�16℄ that a ondition of this type leads to a stronger de�nition ofvisosity solution and this stronger de�nition will help us overome tehnialdi�ulties needed to implement both methods.Apart from providing an easy method to produe solutions another on-sequene of Perron's method will be new existene results for a large lass ofequations of the above types. Currently there exist two methods for provingexistene of B-ontinuous visosity solutions of (1.1) and (1.2): by �nite-dimensional approximations [25℄, and by using stohasti analysis to showthat the value funtion of the assoiated stohasti optimal ontrol prob-lem solves the PDE [13, 15, 16, 19℄. The �rst is limited to the ase of theoperator B (see Setion 2) being ompat, and the seond to HJB equa-tions related to optimal ontrol problems. Perron's method will allow oneto onstrut solutions for general operators B and equations that are not ofBellman type, for instane for Isaas equations related to stohasti di�eren-tial games. The method of half-relaxed limits should have signi�ant impaton the theory of PDE in Hilbert spaes, espeially sine passing to limits inin�nite-dimensional spaes is very di�ult even with good a priori estimates.Moreover we antiipate many other interesting appliations, for instane in



Perron's method and method of relaxed limits 251the theory of large deviations and risk sensitive ontrol. In these problemsone has to deal with small noise limits that orrespond to singular perturba-tion problems for the assoiated HJB equations. For instane for di�usionsdriven by stohasti PDE with additive noise these HJB equations may havethe form
(uε)t − εTr(QD2uε) + 〈Ax,Duε〉 + F (t, x,Duε) = 0for some trae lass operator Q = Q∗ ≥ 0, and one is interested in the be-havior of their solutions uε as ε→ 0. Reently Feng and Kurtz [12℄ proposeda very general framework for large deviations based on visosity solutions inabstrat spaes. However, they only use visosity solutions of the limiting�rst order equation and the rest of the method relies on onvergene of non-linear semigroups and stohasti analysis making it a little umbersome toapply. A similar approah is used in [10, 11℄ for Hilbert spae valued di�u-sions. In [11℄ Tataru's de�nition of visosity solution [27, 28, 7℄ is used for thelimiting �rst order Hamilton�Jaobi equation and the passage to the limitis based on the onvergene of generators and the omparison priniple forthe limiting Hamilton�Jaobi equation. We think that the theory of seondorder HJB equations is ruial to a good PDE approah to large deviations.The method of half-relaxed limits is a purely analytial tehnique that makespassing to singular limits almost trivial. It seems to be a perfet tool for largedeviation arguments for Hilbert spae valued di�usions, inluding exit timeproblems. We will present appliations to large deviations in a future pub-liation. Another possible appliations of the method of half-relaxed limitsinlude onvergene results for �nite-dimensional approximations that wouldgive a �Galerkin� type proedure for (1.1) and (1.2) without any a priori esti-mates. Apart from its theoretial value suh a method may for instane helpprodue numerial methods for solving in�nite-dimensional equations, andmay help develop proedures for onstruting ε-optimal feedbak ontrols.The possibilities seem wide open.Finally, we refer the reader to [9℄ for an overview of the established theoryof PDE in Hilbert spaes by methods other than visosity solutions.2. Notation and assumptions. We will always identify H with itsdual spae. With this identi�ation we an interpret the Fréhet derivatives

Du(x) and D2u(x) as respetively an element of H and a bounded, self-adjoint operator in H. We will denote the spae of bounded, self-adjointoperators in H by S(H).Throughout the paper B will be a �xed bounded, positive, self-adjointoperator suh that A∗B is bounded and(2.1) 〈(A∗B + C0B)x, x〉 ≥ 0 for some C0 > 0 and all x ∈ H.



252 D. Kelome and A. �wi�hSuh an operator always exists, for instane B = (A∗ + I)−1(A + I)−1 or
B = ((A + I)(A∗ + I))−1/2. We refer the reader to [22℄ for the proof of thelatter and to [5℄ for examples of other possible B in some partiular ases. Theoperator B de�nes spaes Hα. For α < 0 we de�ne Hα as the ompletion of
H under the norm ‖x‖α = ‖Bα/2x‖, and for α > 0, Hα = R(Bα/2) equippedwith the norm ‖x‖α = ‖B−α/2x‖. They are Hilbert spaes with the innerprodut 〈x, y〉α = 〈B−α/2x,B−α/2x〉, Hα and H−α are dual to eah other,and Bα/2 is an isometry between Hβ and Hβ+α.We will require that A satisfy the oerivity ondition(2.2) 〈A∗x, x〉 ≥ λ‖x‖2

1 for x ∈ D(A∗)for some λ > 0.The above implies in partiular that D(A∗) ⊂ H1. This assumption issatis�ed for instane for self-adjoint invertible operators A if B = A−1.We will always assume that F : [0, T ] × H × H × S(H) → R is loallyuniformly ontinuous and is degenerate ellipti, i.e.
F (t, x, p,X) ≥ F (t, x, p, Y ) when X ≤ Y.Let {e1, e2, . . .} be a basis of H−1 onsisting of elements of H. Given

N ≥ 1 let VN = span{e1, e2, . . . , eN}, and let PN denote the orthogonal pro-jetion of H−1 onto VN . Denote QN = I−PN where I is the identity in H−1.We will sometimes need several additional onditions on the Hamiltonian F .Let k ≥ 0.
(1)k There exists a radial funtion µ(x) = µ(‖x‖) satisfying the ondi-tions in De�nition 3.1(iii) below and K > 0 suh that

lim
‖x‖→∞

µ(x)

‖x‖k
= ∞and for every positive real number α, t ∈ [0, T ], x, p ∈ H, X ∈ S(H),

|F (t, x, p+ αDµ(x), X + αD2µ(x)) − F (t, x, p,X)| ≤ Kα(1 + µ(x)).

(2) For all t ∈ [0, T ], x, p ∈ H, R > 0,
sup{|F (t, x, p,X+λBQN)−F (t, x, p,X)| : ‖X‖, |λ| ≤ R, P ∗

NXPN = X}→0as N → ∞.
(3) There exist moduli ωR suh that
F (t, x,B(x− y)/ε,X) − F (t, y, B(x− y)/ε,−Y )

≥ −ωR(‖x− y‖−1(1 + ‖(x− y)‖−1/ε))whenever ‖x‖, ‖y‖ ≤ R and X,Y satisfy the inequality
(
X 0

0 Y

)
≤

2

ε

(
BPN −BPN

−BPN BPN

)
.



Perron's method and method of relaxed limits 253We point out that ondition (3) an be weakened if A and B satisfy astronger version of (2.1), namely if(2.3) 〈(A∗B + C0B)x, x〉 ≥ ‖x‖2 for some C0 > 0 and all x ∈ H.Aording to [22℄, (2.3) is always satis�ed for B = ((A+ I)(A∗ + I))−1/2if (2.2) holds, and [D(A), H]1/2 = [D(A∗), H]1/2 = H1, where [·, ·]1/2 is theinterpolation spae (see [21℄). Also it is easy to see that (2.3) holds if (2.2)holds and for instane if ‖(B1/2A∗B1/2 −A∗B)x‖ ≤ C1‖x‖−1. To see this itis enough to notie that
〈A∗Bx, x〉 ≥ 〈B1/2A∗B1/2x, x〉 − C2‖x‖−1‖x‖ ≥

λ

2
‖x‖2 − C2‖x‖

2
−1.In partiular, (2.3) holds if A is self-adjoint and invertible and B = A−1.However we will not state any results for the stronger ase (2.3).We will say that a funtion u : [0, T ]×H → R is B-upper semiontinuous(respetively, B-lower semiontinuous) if whenever tn→ t and ‖xn−x‖−1→0for a bounded sequene xn then lim supn→∞ u(tn, xn) ≤ u(t, x) (respe-tively, lim infn→∞ u(tn, xn) ≥ u(t, x)). A funtion is B-ontinuous if it isboth B-upper semiontinuous and B-lower semiontinuous. A funtion is lo-ally uniformly B-ontinuous on [0, T ] × H if it is uniformly ontinuous inthe | · | × ‖ · ‖−1 norm on bounded subsets of [0, T ] ×H.We will write u∗ and u∗ to denote the upper and lower semiontinuousenvelopes of u in the | · | × ‖ · ‖−1 norm, i.e.

u∗(t, x) = lim sup{u(s, y) : s→ t, ‖y − x‖−1 → 0},

u∗(t, x) = lim inf{u(s, y) : s→ t, ‖y − x‖−1 → 0}.For a Hilbert spae V we will be using the following funtion spaes:
C2(V ) = {u : V → R : Du,D2u are ontinuous},

C1,2((0, T ) × V ) = {u : (0, T ) × V → R : ut, Du,D
2u are ontinuous}.We will write L(V ) for the spae of bounded, linear operators in Vequipped with the operator norm.3. Visosity solutions. In order to obtain Perron's method we willhave to deal with disontinuous solutions. Therefore we need two de�nitionsof visosity solutions: the more usual one that is a stronger version of thede�nition from [25℄, and a disontinuous visosity solution that is based onthe notion given for �rst order equations by Ishii [17℄.Definition 3.1. A funtion ψ is a test funtion if ψ = ϕ ± δ(t)h(‖x‖),where:(i) ϕ ∈ C1,2((0, T ) ×H), ϕ is B-ontinuous, and ϕt, A

∗Dϕ, Dϕ, D2ϕare uniformly ontinuous on losed subsets of (0, T ) ×H.



254 D. Kelome and A. �wi�h(ii) δ ∈ C1((0, T )) and δ > 0 on (0, T ).(iii) h ∈ C2([0,∞)) and h′(0) = 0, h′′(0) > 0, h′(r) > 0 for r ∈ (0,∞).For stationary equations ϕ is independent of t and δ(t) ≡ 1.We remark that even though ‖x‖ is not di�erentiable at 0, the funtion
h(‖x‖) is in C2(H) for a test funtion h as above. Notie also that if ‖x‖ → 0then h′(‖x‖)/‖x‖ → h′′(0) > 0 so the term h′(‖x‖)/‖x‖ is bounded awayfrom 0 on bounded sets.Definition 3.2. A loally bounded B-upper semiontinuous funtion uis a visosity subsolution of (1.1) if whenever u− ψ has a loal maximum ata point x for a test funtion ψ = ϕ+ h(‖x‖) then x ∈ H1 and

u(x) + λ‖x‖2
1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉 + F (x,Dψ(x), D2ψ(x)) ≤ 0.A loally bounded B-lower semiontinuous funtion u is a visosity superso-lution of (1.1) if whenever u−ψ has a loal minimum at a point x for a testfuntion ψ = ϕ− h(‖x‖) then x ∈ H1 and

u(x) − λ‖x‖2
1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉 + F (x,Dψ(x), D2ψ(x)) ≥ 0.A visosity solution of (1.1) is a funtion whih is both a visosity subsolutionand a visosity supersolution.Definition 3.3. A loally bounded B-upper semiontinuous funtion uis a visosity subsolution of (1.2) if whenever u−ψ has a loal maximum ata point (t, x) ∈ (0, T ) ×H for a test funtion ψ(s, y) = ϕ(s, y) + δ(s)h(‖y‖)then x ∈ H1 and

ψt(t, x) + λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≤ 0.A loally bounded B-lower semiontinuous funtion u is a visosity su-persolution of (1.2) if whenever u − ψ has a loal minimum at a point
(t, x) ∈ (0, T ) × H for a test funtion ψ(s, y) = ϕ(s, y) − δ(s)h(‖y‖) then
x ∈ H1 and

ψt(t, x) − λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≥ 0.A visosity solution of (1.2) is a funtion whih is both a visosity subsolutionand a visosity supersolution.Definition 3.4. A loally bounded funtion u is a disontinuous visos-ity subsolution of (1.1) if whenever (u− h(‖ · ‖))∗ −ϕ has a loal maximum



Perron's method and method of relaxed limits 255in the topology of ‖ · ‖−1 at a point x for test funtions ϕ, h(‖y‖) suh that(3.1) u(y) − h(‖y‖) → −∞ as ‖y‖ → ∞then x ∈ H1 and
(u− h(‖ · ‖))∗(x) + h(‖x‖) + λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) ≤ 0,where ψ = ϕ+ h(‖y‖).A loally bounded funtion u is a disontinuous visosity supersolutionof (1.1) if whenever (u+ h(‖ · ‖))∗ −ϕ has a loal minimum in the topologyof ‖ · ‖−1 at a point x for test funtions ϕ, h(‖y‖) suh that(3.2) u(y) + h(‖y‖) → ∞ as ‖y‖ → ∞then x ∈ H1 and
(u+ h(‖ · ‖))∗(x) − h(‖x‖) − λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) ≥ 0,where ψ = ϕ− h(‖y‖).A disontinuous visosity solution of (1.1) is a funtion whih is both adisontinuous visosity subsolution and a disontinuous visosity supersolu-tion.Definition 3.5. A loally bounded funtion u is a disontinuous vis-osity subsolution of (1.2) if whenever (u − δ(·)h(‖ · ‖))∗ − ϕ has a loalmaximum in the topology of | · | × ‖ · ‖−1 at a point (t, x) for test funtions
ϕ, δ(s)h(‖y‖) suh that(3.3) u(s, y) − δ(s)h(‖y‖) → −∞ as ‖y‖ → ∞ loally uniformly in sthen x ∈ H1 and

ψt(t, x) + λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≤ 0,where ψ(s, y) = ϕ(s, y) + δ(s)h(‖y‖).A loally bounded funtion u is a disontinuous visosity supersolution of(1.2) if whenever (u+ δ(·)h(‖ · ‖))∗−ϕ has a loal minimum in the topologyof | · | × ‖ · ‖−1 at a point (t, x) for test funtions ϕ, δ(s)h(‖y‖) suh that(3.4) u(s, y) + δ(s)h(‖y‖) → ∞ as ‖y‖ → ∞ loally uniformly in sthen x ∈ H1 and



256 D. Kelome and A. �wi�h
ψt(t, x) − λ‖x‖2

1δ(t)
h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≥ 0,where ψ(s, y) = ϕ(s, y) − δ(s)h(‖y‖).A disontinuous visosity solution of (1.2) is a funtion whih is both adisontinuous visosity subsolution and a disontinuous visosity supersolu-tion.If a subsolution (respetively, supersolution) in De�nition 3.4 or 3.5 is B-upper semiontinuous (respetively, B-lower semiontinuous) then it is easyto see that De�nitions 3.4 and 3.5 redue to De�nitions 3.2 and 3.3 respe-tively, sine if u is B-upper semiontinuous (respetively, B-lower semiontin-uous) then (u−h(‖·‖))∗(x) = u(x)−h(‖x‖) (respetively, (u+h(‖·‖))∗(x) =
u(x) + h(‖x‖)).Lemma 3.6. Without loss of generality the maxima and minima in Def-initions 3.2 and 3.3 an be assumed to be global and strit in the | · | × ‖ · ‖norm and the maxima and minima in De�nitions 3.4 and 3.5 an be assumedto be global and strit in the | · | × ‖ · ‖−1 norm. However , it is not lear ifthey an be strit in the | · | × ‖ · ‖ norm. Finally , without loss of generalitywe an always assume that the funtions in De�nitions 3.2 and 3.3 satisfy(3.1)�(3.4). Moreover we an also assume that the funtions in De�nitions3.4 and 3.5 satisfy

(u− δ(·)h(‖ · ‖))∗(t, x) − ϕ(t, x) → −∞,

(u+ δ(·)h(‖ · ‖))∗(t, x) − ϕ(t, x) → ∞as ‖x‖ → ∞ loally uniformly in t.Proof. Let u be a B-upper semiontinuous funtion and let
(u− h− ϕ)(x) ≥ (u− h− ϕ)(y) for y ∈ BR(x)for some R > 0, i.e. u− h− ϕ has a loal maximum at x for test funtions

ϕ and h. We will show that there exist test funtions ϕ̃ and h̃ suh that
Dϕ̃(x) = Dϕ(x), D2ϕ̃(x) = D2ϕ(x), Dh̃(x) = Dh(x), D2h̃(x) = D2h(x),and u− h̃− ϕ̃ has a strit global maximum at x. Let g ∈ C2([0,∞)) be aninreasing funtion suh that

1 + r2 + sup
‖y‖≤r

|u(y)| ≤ g(r).Let g1 ∈ C2([0,∞)) be a funtion suh that
g1(r) =





0, r ≤ ‖x‖ + 1,inreasing, ‖x‖ + 1 < r < ‖x‖ + 2,

g(r), r ≥ ‖x‖ + 2.



Perron's method and method of relaxed limits 257Let ϕ1 ∈ C2([0,∞)) be de�ned by
ϕ1(r) =





r4, r ≤ 1,inreasing, 1 < r < 2,

2, r ≥ 2.Now for n ≥ 1 onsider the funtion
Φn(y) = u(y) − ϕ(y) − nϕ1(‖x− y‖−1) − h(‖y‖) − g1(‖y‖).Obviously we have

Φn(x) = u(x) − ϕ(x) − h(‖x‖).Suppose that for every n there exists yn suh that Φn(yn) ≥ Φn(x). Thenwe must have ‖x − yn‖−1 → 0 as n → ∞ and ‖yn‖ ≤ C, i.e. yn ⇀ x.Sine u is B-upper semiontinuous and ϕ is B-ontinuous, and h is stritlyinreasing, this implies that ‖yn‖ → ‖x‖, and therefore yn → x in H. Butthen yn ∈ BR(x) for large n and so we get
Φn(yn) < u(y) − ϕ(y) − h(‖y‖) ≤ u(x) − ϕ(x) − h(‖x‖),whih is a ontradition. Therefore there must exist n0 suh that Φn0

(y) <
Φn0

(x) for y 6= x. It then follows easily that Φn0+1 has a strit globalmaximum at x. Therefore the onlusion follows by setting ϕ̃(y) = ϕ(y) −

(n0 + 1)ϕ1(‖x− y‖−1) and h̃(‖y‖) = h(‖y‖) − g1(‖y‖).The fat that the maxima and minima in De�nition 3.4 an be assumedto be global and strit in the ‖ ·‖−1 norm is obvious and the �nal statementsabout the onvergenes at ∞ follow from the onstrution of ϕ̃ and h̃.Remark 3.7. There are other possibilities for the hoie of test funtionsthat would give good theory. For instane one an replae the funtions ϕ inDe�nition 3.1 by the funtions satisfying
• ϕ ∈ C1,2((0, T ) × H−1), and ϕt, Dϕ, D

2ϕ are uniformly ontinuouson losed subsets of (0, T ) ×H−1.In this ase one needs to assume that B1/2A∗B1/2 is bounded and that(2.2) is satis�ed for all x ∈ H1. (The term 〈A∗x, x〉 is now well de�ned for
x ∈ H1.) Notie that if B1/2A∗B1/2 is bounded and ψ = ϕ±δ(s)h(‖y‖) then
〈x,A∗Dψ(x)〉 is well de�ned for x ∈ H1 and so De�nitions 3.2�3.5 an besimpli�ed by replaing the terms

±λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉wherever they appear in De�nitions 3.2�3.5 by a single term 〈x,A∗Dψ(t, x)〉.Remark 3.8. It follows from the proof of Lemma 3.6 that if we know apriori that u has a ertain growth at ∞ then we an obtain the same growth(at least quadrati) for h̃. For instane, if u has a polynomial growth at
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∞ we an have h̃ whih is a polynomial of some speial form for large ‖x‖.This is important in appliations to stohasti optimal ontrol where we maywant to impose additional onditions on test funtions to be able to applystohasti alulus. In these appliations it may also be useful to assumethat h′(r)/r is globally bounded away from 0 for the radial test funtions h.To avoid tehnial di�ulties it may then be more onvenient to hoose hbelonging to one partiular lass of funtions, say ertain polynomials withgrowth depending on the growth of sub- and supersolutions we are dealingwith. All results presented in this paper would hold with an appropriateversion of suh a de�nition. This approah has been suessfully employedin [2, 13�16℄. However, for suh narrow lasses of radial test funtions theglobal and loal de�nitions of visosity solutions may no longer be equivalent.4. Comparison priniples. In this setion we prove omparison prin-iples for disontinuous visosity solutions. We begin with the omparisonresult for the stationary ase.Theorem 4.1. Let (2.1) and (2.2) hold and let F satisfy (1)0, (2), (3).Let u be a visosity subsolution and v be a visosity supersolution of (1.1) inthe sense of De�nition 3.4, and let u,−v be bounded from above. Then(4.1) lim

R↑∞
lim
r↓0

sup{u(x) − v(y) : ‖x− y‖−1 ≤ r, x, y ∈ BR} ≤ 0.In partiular u ≤ v.Remark 4.2. Theorem 4.1 shows that a bounded visosity solution of(1.1) in the sense of De�nition 3.4 is uniformly ontinuous inH−1 on boundedsubsets ofH and therefore is a visosity solution in the sense of De�nition 3.2.Proof of Theorem 4.1. We argue by ontradition. Assume that (4.1)does not hold. Then there exists a positive real number η suh that
lim
R↑∞

lim
r↓0

sup{u(x) − v(y) : ‖x− y‖−1 ≤ r, x, y ∈ BR} > 2η.Let µ(x) be the funtion satisfying (1)0. For every positive real number α,we de�ne uα(x) = u(x) − αµ(x) and vα(y) = v(y) − αµ(y). Set
m := lim

R↑∞
lim
r↓0

sup{u(x) − v(y) : ‖x− y‖−1 < r, x, y ∈ BR},

mα := lim
r↓0

sup{(uα)∗(x) − (vα)∗(y) : ‖x− y‖−1 < r}

= lim
r↓0

sup{uα(x) − vα(y) : ‖x− y‖−1 < r}

mα,ε := sup

{
(uα)∗(x) − (vα)∗(y) −

1

2ε
‖x− y‖2

−1

}
,
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m = lim

α↓0
mα,(4.2)

mα = lim
ε↓0

mα,ε.(4.3)Using perturbed optimization tehniques [24℄ (see also [6℄) we obtainsequenes pn, qn ∈ H suh that ‖pn‖ + ‖qn‖ → 0 as n→ ∞, and
(uα)∗(x) − (vα)∗(y) −

1

2ε
‖x− y‖2

−1 + 〈Bpn, x〉 + 〈Bqn, y〉ahieves a strit global maximum at some point (x, y) ∈ H×H. Convergenes(4.2)�(4.3) yield
lim
ε↓0

lim sup
n→∞

1

2ε
‖x− y‖2

−1 = 0 for every α > 0,(4.4)

lim
α↓0

lim sup
ε↓0

lim sup
n→∞

(αµ(x) + αµ(y)) = 0.(4.5)We now have
‖x− y‖2

−1 = ‖PN (x− y)‖2
−1 + ‖QN (x− y)‖2

−1and
‖QN (x− y)‖2

−1 ≤ 2〈BQN (x− y), x− y〉 + 2‖QN (x− x)‖2
−1

+ 2‖QN (y − y)‖2
−1 − ‖QN (x− y)‖2

−1with equality at x, y. Therefore de�ning
u1(x) = (uα)∗(x) − 〈BQN (x− y), x〉/ε− ‖QN (x− x)‖2

−1/ε

+ ‖QN (x− y)‖2
−1/2ε+ 〈Bpn, x〉and

v1(y) = (vα)∗(y) − 〈BQN (x− y), y〉/ε+ ‖QN (y − y)‖2
−1/ε− 〈Bqn, y〉,we see that

u1(x) − v1(y) −
1

2ε
‖PN (x− y)‖2

−1has a strit global maximum inH−1 at (x, y). At this step we need to produeappropriate test funtions to be able to use the de�nition of solution. Thisis done using partial sup-onvolution tehniques �rst introdued in [20℄ (seealso [4℄).Lemma 4.3. Given N ≥ 1 there exist funtions ϕk, ψk ∈ C2(H−1) withuniformly ontinuous derivatives suh that u1(x)− ϕk(x) has a global maxi-mum at some point xk, v1(y)+ψk(y) has a global minimum at some point yk,
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(4.6) (xk, u1(xk), Dϕk(xk), D

2ϕk(xk)) → (x, u1(x), BPN (x− y)/ε,XN ),

(4.7) (yk, v1(yk), Dψk(yk), D
2ψk(yk)) → (y, v1(y), BPN(y − x)/ε, YN ),(4.8) (

XN 0

0 YN

)
≤

2

ε

(
B −B

−B B

)
,with the onvergenes being in H × R ×H2 × L(H).Proof. Set xN = PNx, x

⊥
N = QNx, yN = PNy, y

⊥
N = QNy and de�ne

ũ1(xN ) = sup
x⊥

N
∈QN H

u1(xN + x⊥N ), ṽ1(yN ) = inf
y⊥

N
∈QN H

v1(yN + y⊥N ),the partial sup- and inf-onvolutions of u1 and v1 respetively. Then(4.9) (ũ1)
∗(xN ) − (ṽ1)∗(yN ) −

1

2ε
‖xN − yN‖2

−1has a strit global maximum over VN × VN at (xN , yN ), where (ũ1)
∗ and

(ṽ1)∗ are the upper and lower semiontinuous envelopes of ũ1 and ṽ1 in VN .Moreover we have (ũ1)
∗(xN ) = u1(x) and (ṽ1)∗(yN ) = v1(y).We an now apply the �nite-dimensional maximum priniple when weonsider VN as a spae with the topology inherited from H−1 (whih isequivalent to the topology inherited from H). Denote VN with this topol-ogy by ṼN . Therefore there exist bounded funtions ϕ̃k, ψ̃k ∈ C2(ṼN ) withuniformly ontinuous derivatives suh that (ũ1)

∗(xN ) − ϕ̃k(xN ) has a stritglobal maximum at some point (xk
N ), (ṽ1)∗(yN ) + ψ̃k(yN ) has a strit globalminimum at some point (yk

N ), and as k → ∞,
(4.10) (xk

N , (ũ1)
∗(xk

N ), DṼN

ϕ̃k(x
k
N ), D2

ṼN

ϕ̃k(x
k
N ))

→ (xN , u1(x), (xN − yN )/ε, X̃N ),

(4.11) (yk
N , (ṽ1)∗(y

k
N ), D

ṼN

ψ̃k(y
k
N ), D2

ṼN

ψ̃k(y
k
N ))

→ (yN , v1(y), (yN − xN )/ε, ỸN ),(4.12) (
X̃N 0

0 ỸN

)
≤

2

ε

(
I −I

−I I

) in H−1 ×H−1for some N × N matries X̃N and ỸN that as operators in L(H−1) satisfy
XN = PNXNPN , YN = PNYNPN and are symmetri. Furthermore we anset the above maximum and minimum to be equal to zero. (Above, thesymbolsD

ṼN

and D2
ṼN

denote the Fréhet derivatives in ṼN .) Sine in VN thetopology of H−1 is equivalent to the topology of H the above onvergeneshold in the topology of H×R×H×S(H). We now extend ϕ̃k, ψ̃k to funtionsin C2(H−1) by setting ϕk(x) = ϕ̃k(PNx) and ψk(y) = ψ̃k(PNy). Then, if
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DH−1

ϕk denotes the Fréhet derivative of ϕk in H−1 we have(4.13) Dϕk(x) = BDH−1
ϕk(x), D2ϕk(x) = BD2

H−1
ϕk(x),and the same also holds for ψk.Using a perturbed optimization result, we an �nd sequenes p̃j , q̃j ∈ Hsuh that ‖p̃j‖ + ‖q̃j‖ → 0 as j → ∞, and

u1(x) − ϕk(x) − 〈Bp̃j , x〉 has a global maximum at some xj ,(4.14)
v1(y) + ψk(y) − 〈Bq̃j , y〉 has a global minimum at some yj .(4.15)Combining (4.14) and the fat that (ũ1)

∗(xN ) − ϕ̃k(xN ) has a strit globalmaximum at xk
N , we dedue that PNxj → xk

N and u1(PNxj) → (ũ1)
∗(xk

N )as j → ∞. Similarly (4.15) and the fat that (ṽ1)∗(yN ) + ψ̃k(yN ) has astrit global minimum at some point yk
N implies that PNyj → yk

N and
v1(PNyj) → (ṽ1)

∗(yk
N ) as j → ∞. We an then selet a subsequene jk suhthat PNxjk

→ PNx and PNyjk
→ PNy, with the additional requirementsthat u1(PNxjk

) → u1(x), v1(PNyjk
) → v1(y), ϕk(PNxjk

)−ϕk(xN ) → 0 and
ψk(PNyjk

) − ψk(yN ) → 0 as k → ∞. Moreover we an hoose the subse-quene jk so that all the onvergenes in (4.10) hold when xk
N and yk

N arereplaed by PNxjk
and PNyjk

respetively. We may now repeat rather stan-dard arguments of [4℄ (see also [13, pp. 409�410℄) and use (4.14) and (4.15)to show that xjk
→ x and yjk

→ y in H−1.We now need to prove that xjk
→ x and yjk

→ y in H. To obtainthese onvergenes, it will be enough to prove that xjk
and yjk

are uniformlybounded in H1 (independently of k). First we observe that xjk
and yjk

areuniformly bounded in H (they remain in a ball whose radius depends exlu-sively on α). Using (4.14) and the de�nition of subsolution we get
(4.16) (uα)∗(xjk

) + 2αδ‖xjk
‖2
1 + αµ(xjk

)

+ 〈xjk
, A∗B(−pn + p̃jk

+QN (x− y)/ε+QN (x− xjk
)/ε) +A∗Dϕk(xjk

)〉

+ F (xjk
,−Bpn +Bp̃jk

+BQN (x− y)/ε+BQN (x− xjk
)/ε+Dϕk(xjk

)

+ αDµ(xjk
), BQN/ε+D2ϕk(xjk

) +D2µ(xjk
)) ≤ 0.Note that (uα)∗(xjk

) → (uα)∗(x) so using the loal boundedness of Fwe an dedue from the above inequality that ‖xjk
‖1 ≤ C for some positiveonstant C independent of k. A similar argument an be used to prove that

yjk
is bounded in H1. Therefore B1/2xjk

→ B1/2x, B−1/2xjk
⇀ B−1/2x andso

‖xjk
− x‖2 = 〈B−1/2(xjk

− x), B−1/2(xjk
− x)〉 → 0as k → ∞. The same argument also shows that yjk

→ y. Therefore the lemmaholds with ϕk(x) := ϕk(x) + 〈Bp̃jk
, x〉 and ψk(y) := ψk(y) − 〈Bq̃jk

, y〉.
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(uα)∗(x) + αµ(x) + 2αλ‖x‖2

1 + 〈x,A∗B(x− y)/ε〉 − 〈x,A∗Bpn〉

+ F (x, αDµ(x) −Bpn +B(x− y)/ε, αD2µ(x) +XN +BQN/ε) ≤ 0.Similarly (4.15) and De�nition 3.4 yield
(vα)∗(y) − αµ(y) − 2λα‖y‖2

1 + 〈y,A∗B(x− y)/ε〉 + 〈y,A∗Bqn〉

+ F (y,−αDµ(y) +Bqn +B(x− y)/ε,−αD2µ(y) − YN −BQN/ε) ≥ 0.We then use (1)0 and (2) to obtain
(uα)∗(x) − (vα)∗(y) ≤ σ1(N) + σ2(n) + C0‖x− y‖2

−1/ε

+ F (y,B(x− y)/ε,−YN ) − F (x,B(x− y)/ε,XN ) +Kα(2 + µ(x) + µ(y))where σ1(N) → 0 for n, ε, α �xed and σ2(n) → ∞ for α, ε �xed. Finally, (3)gives
(uα)∗(x) − (vα)∗(y) ≤ σ1(N) + σ2(n) + C0‖x− y‖2

−1/ε

+ ωR(α)(‖x− y‖−1(1 + ‖(x− y)‖−1/ε)) +Kα(2 + µ(x) + µ(y)).If m > 2η, then for ε, α su�iently small and n large enough we have
(uα)∗(x) − (vα)∗(y) > η. Therefore we get

η ≤ σ1(N) + σ2(n) + C0‖x− y‖2
−1/ε

+ ωR(α)(‖x− y‖−1(1 + ‖(x− y)‖−1/ε)) +Kα(2 + µ(x) + µ(y)).Letting now N → ∞, n → ∞, ε → 0 and α → 0 in that order we arrive at
η ≤ 0, whih is a ontradition.In the next theorem we prove a omparison result for the time dependentproblem (1.2).Theorem 4.4. Let (2.1) and (2.2) hold and let F satisfy (1)k, (2), (3)for some k ≥ 0. Let g be loally uniformly B-ontinuous and suh that(4.17) |g(x)| ≤ C(1 + ‖x‖k) for some C > 0.Let u be a visosity subsolution of (1.2), and v be a visosity supersolutionof (1.2) in the sense of De�nition 3.5 suh that

u,−v ≤ C(1 + ‖x‖k) for some C > 0,(4.18)
lim
t→0

{(u(t, x) − g(x))+ + (v(t, x) − g(x))−} = 0(4.19)uniformly on bounded sets. Then for every 0 < T1 < T ,
(4.20) lim

R↑∞
lim

(r,η)↓(0,0)
sup{u(t, x) − v(s, y) : |t− s| < η, ‖x− y‖−1 < r

x, y ∈ BR, 0 ≤ t, s ≤ T1} ≤ 0.In partiular u ≤ v.



Perron's method and method of relaxed limits 263Proof. We will just outline the proof as it is similar to the proof of Theo-rem 4.1. We argue by ontradition and assume that (4.20) is not true. Thenfor a su�iently small σ > 0 and some γ > 0 we have
(4.21) γ < lim

R↑∞
lim

(r,η)↓(0,0)
sup{uσ(t, x) − vσ(s, y) :

|t− s| < η, ‖x− y‖−1 < r, x, y ∈ BR}

= lim
R↑∞

lim
r↓0

lim
η↓0

sup{uσ(t, x) − vσ(s, y) :

|t− s| < η, ‖x− y‖−1 < r, x, y ∈ BR},where we have set
uσ(t, x) = u(t, x) −

σ

T − t
, vσ(s, y) = v(s, y) +

σ

T − s
.We de�ne

uα(t, x) = uσ(t, x) − αeKtµ(x), vα(s, y) = vσ(s, y) + αeKsµ(y),where µ(x) satis�es (1)k and K is the onstant from (1)k. Let
m := lim

R↑∞
lim
r↓0

lim
η↓0

sup{uσ(t, x) − vσ(s, y) :

‖x− y‖−1 < r, |t− s| < η, x, y ∈ BR},

mα := lim
r↓0

lim
η↓0

sup{(uα)∗(t, x) − (vα)∗(s, y) : ‖x− y‖−1 < r, |t− s| < η}

= lim
r↓0

lim
η↓0

sup{uα(t, x) − vα(s, y) : ‖x− y‖−1 < r, |t− s| < η},

mα,ε := lim
η↓0

sup

{
(uα)∗(t, x) − (vα)∗(s, y) −

1

2ε
‖x− y‖2

−1 : |t− s| < η

}
,

mα,ε,β := sup

{
(uα)∗(t, x) − (vα)∗(s, y) −

1

2ε
‖x− y‖2

−1 −
(t− s)2

2β

}
.We have

m = lim
α↓0

mα,(4.22)
mα = lim

ε↓0
mα,ε,(4.23)

mα,ε = lim
β↓0

mα,ε,β,(4.24)however m an now be ∞. Using perturbed optimization results, we an �ndsequenes an, bn ∈ R and pn, qn ∈ H suh that |an|+|bn|+‖pn‖+‖qn‖ ≤ 1/nand
(uα)∗(t, x) − (vα)∗(s, y) −

1

2ε
‖x− y‖2

−1 −
1

2β
|t− s|2

+ ant+ bns+ 〈Bpn, x〉 + 〈Bqn, y〉ahieves a strit global maximum at some point (t, s, x, y) ∈ (0, T ]× [0, T ]×
H ×H. Convergenes (4.22)�(4.24) yield
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lim
β↓0

lim sup
n→∞

1

2β
|t− s|2 = 0 for every α, ε > 0,(4.25)

lim
ε↓0

lim sup
β↓0

lim sup
n→∞

1

2ε
‖x− y‖2

−1 = 0 for every α > 0.(4.26)By the de�nition of uσ and vσ we have t < T and s < T . In light of (4.19),(4.21)�(4.26), and the uniform ontinuity of g in H−1 on bounded sets of H,we an onlude that t > 0 and s > 0 for large n and small β, ε. We de�neas before
u1(t, x) = (uα)∗(t, x) − 〈BQN (x− y), x〉/ε− ‖QN (x− x)‖2

−1/ε

+ ‖QN (x− y)‖2
−1/2ε+ ant+ 〈Bpn, x〉and

v1(s, y) = (vα)∗(s, y) − 〈BQN (x− y), y〉/ε+ ‖QN (y − y)‖2
−1/ε

+ αµ(y) − bns− 〈Bqn, y〉,so that
u1(t, x) − v1(s, y) −

1

2ε
‖PN (x− y)‖2

−1 −
1

2β
|t− s|2has a strit global maximum at (t, s, x, y). Arguing now as in the proof ofLemma 4.3 we an laim the existene of funtions ϕk, ψk ∈ C1,2((0, T ) ×

H−1) with uniformly ontinuous derivatives suh that u1(t, x)−ϕk(t, x) hasa global maximum at some point (tk, xk), v1(s, y) + ψk(s, y) has a globalminimum at some point (sk, yk), and
(4.27)

(
tk, xk, u1(tk, xk),

∂ϕk

∂t
(tk, xk), Dϕk(tk, xk), D

2ϕk(tk, xk)

)

→ (t, x, u1(t, x), (t− s)/β,BPN (x− y)/ε,XN ),

(4.28)

(
sk, yk, v1(sk, yk),

∂ψk

∂t
(sk, yk), Dψk(sk, yk), D

2ψk(sk, yk)

)

→ (s, y, v1(s, y), (s− t)/β,BPN (y − x)/ε, YN ),(4.29) (
XN 0

0 YN

)
≤

2

ε

(
B −B

−B B

)
,with the onvergenes in R ×H × R × R ×H2 × L(H).Therefore, using De�nition 3.5 we �nd as in the proof of Theorem 4.1that

(4.30)
σ

(T − t)2
− an +

t− s

β
+ αKeKtµ(x) + αeKtλ

µ′(‖x‖)

‖x‖
‖x‖2

1

+ 〈x,A∗B(x− y)/ε〉 − 〈x,A∗Bpn〉

+ F (t, x, αeKtDµ(x) −Bpn +B(x− y)/ε, αeKtD2µ(x) +XN +BQN/ε)

≤ 0
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(4.31) bn −

σ

(T − s)2
+
t− s

β
− αKeKsµ(y) − αeKsλ

µ′(‖y‖)

‖y‖
‖y‖2

1

+ 〈y,A∗B(x− y)/ε〉 + 〈y,A∗Bqn〉

+F (s, y,−αeKsDµ(y) +Bqn +B(x− y)/ε,−αeKsD2µ(y) − YN −BQN/ε)

≥ 0.Combining (4.30) and (4.31) and using assumptions (1)k, (2), and the loaluniform ontinuity of F , we have
2σ/T 2 ≤ σ1(N) + σ2(n) + C0‖x− y‖2

−1/ε− αK(eKtµ(x) + eKsµ(y))

+ F (s, y, B(x− y)/ε,−YN ) − F (t, x,B(x− y)/ε,XN )

+ αK(2 + eKtµ(x) + eKsµ(y)),where σ1(N) → 0 for n, ε, α, β �xed and σ2(n) → ∞ for α, ε, β �xed. Using
(3) and the loal uniform ontinuity of F we then onlude that

σ/T 2 ≤ σ1(N) + σ2(n) + σ3(β) + C0‖x− y‖2
−1/ε

+ ωR(α)(‖x− y‖−1(1 + ‖x− y‖−1/ε)) + 2αK,where σ3(β) → 0 for α, ε �xed. We an now let N → ∞, n → ∞, β → 0,
ε→ 0, and α→ 0 in this order to arrive at σ ≤ 0, whih is a ontradition.5. Perron's method and existene of solutions. In this setion wewill show that visosity solutions of (1.1) in the sense of De�nition 3.4 (re-spetively, visosity solutions of (1.2) in the sense of De�nition 3.5) anbe obtained by Perron's method, i.e. by taking the supremum of all suhvisosity subsolutions of (1.1) (respetively, (1.2)) provided that a visositysubsolution and a visosity supersolution exist. Therefore, if the assumptionsof Theorem 4.1 (respetively, Theorem 4.4) are satis�ed, we will dedue thatthe solution produed by this method is B-ontinuous, and so it is a visositysolution in the sense of De�nition 3.2 (respetively, De�nition 3.3). A pos-teriori this will also show that this solution is equal to the supremum of allvisosity subsolutions in the sense of De�nition 3.2 (respetively, De�nition3.3).It is onvenient to state a simple lemma for future referene.Lemma 5.1. Let (2.2) hold. Let ϕ ∈ C2(H) be B-upper semiontinuousand suh that A∗Dϕ is ontinuous, and let h ∈ C2((−∞,∞)) be even andsuh that h′(r) ≥ 0 for r ∈ (0,∞). Let w(x) = ϕ(x) − h(‖x‖) (respetively ,
w(x) = −ϕ(x) + h(‖x‖)) satisfy

w(x) + 〈x,A∗Dw(x)〉 + F (x,Dw(x), D2w(x)) ≤ 0 for x ∈ D(A∗)(respetively ,
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w(x) + 〈x,A∗Dw(x)〉 + F (x,Dw(x), D2w(x)) ≥ 0 for x ∈ D(A∗).)Then w is a visosity subsolution (respetively , supersolution) of (1.1).Proof. We will only give the proof in the subsolution ase. Sine w is B-upper semiontinuous De�nitions 3.2 and 3.4 are equivalent. Suppose that

w(y)− h1(‖y‖)− ϕ1(y) has a loal maximum at x for test funtions ϕ1, h1.Then
Dϕ(x) −

h′(‖x‖)

‖x‖
x−Dϕ1(x) −

h′1(‖x‖)

‖x‖
x = 0and

D2w(x) ≤ D2(ϕ1 + h(‖ · ‖))(x).Therefore either x = 0 or(
h′(‖x‖)

‖x‖
+
h′1(‖x‖)

‖x‖

)
x = Dϕ(x) −Dϕ1(x) ∈ D(A∗) ⊂ H1.De�ne ψ = ϕ1 + h1(‖y‖). Now, using (2.2) and the degenerate elliptiityof F , we obtain

w(x) + λ‖x‖2
1

h′1(‖x‖)

‖x‖
+ 〈x,A∗Dϕ1(x)〉 + F (x,Dψ(x), D2ψ(x))

≤ w(x) +
h′1(‖x‖)

‖x‖
〈x,A∗x〉 + 〈x,A∗Dϕ1(x)〉 + F (x,Dw(x), D2w(x))

= w(x) + 〈x,A∗Dw(x)〉 + F (x,Dw(x), D2w(x)) ≤ 0and the laim is proved.Proposition 5.2. Let (2.2) be satis�ed. Let A be a family of visositysubsolutions of (1.1) in the sense of De�nition 3.4. Suppose that the funtion(5.1) u(x) = sup{w(x) : w ∈ A}is loally bounded. Then u is a visosity subsolution of (1.1) in the sense ofDe�nition 3.4.Proof. Suppose that (u− h(‖ · ‖))∗ −ϕ has a strit (in the ‖ · ‖−1 norm)global maximum at a point x for test funtions h and ϕ. (We an assumethat (u(y) − h(‖ · ‖))∗(y) − ϕ(y) → −∞ as ‖y‖ → ∞.) Perturbed opti-mization tehniques and De�nition 3.2 then show that there exist visositysubsolutions wn of (1.1), xn ∈ H1 and pn ∈ H with ‖pn‖ ≤ 1/n suh that(5.2) B1/2xn → B1/2x, xn ⇀ x in H as n→ ∞,

(wn(y)− h(‖y‖))∗ −ϕ(y)− 〈Bpn, y〉 has a strit (in the ‖ · ‖−1 norm) globalmaximum at xn, and(5.3) (wn − h(‖ · ‖))∗(xn) → (u− h(‖ · ‖))∗(x) as n→ ∞.



Perron's method and method of relaxed limits 267Therefore, setting ψ(y) = ϕ(y) − h(‖y‖), we have
(5.4) (wn − h(‖ · ‖))∗(xn) − h(‖xn‖) + λ‖xn‖

2
1

h′(‖xn‖)

‖xn‖

+ 〈xn, A
∗Dϕ(xn)〉 + 〈xn, A

∗Bpn〉 + F (xn, Dψ(xn) +Bpn, D
2ψ(xn)) ≤ 0.Sine the xn are bounded, using the loal boundedness of F we thus obtain

‖xn‖
2
1 ≤ C for some onstant C, whih, together with (5.2), implies that

x ∈ H1, and B−1/2xn ⇀ B−1/2x as n→ ∞. Therefore, by (5.2),
‖xn − x‖2 = 〈B−1/2(xn − x), B1/2(xn − x)〉 → 0 as n→ ∞,i.e. xn → x in H. Using this, (5.3), the ontinuity of F , and the fat that

‖ · ‖1 is lower semiontinuous in H, we an now pass to lim inf as n→ ∞ in(5.4) to obtain
(u− h(‖ · ‖))∗(x) + h(‖x‖) + λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) ≤ 0,whih ompletes the proof.Proposition 5.3. Let (2.2) be satis�ed. Let u0, v0 be respetively a vis-osity subsolution and a visosity supersolution of (1.1) in the sense of Def-inition 3.4 suh that u0 ≤ v0. Then the funtion
u(x) = sup{w(x) : u0 ≤ w ≤ v0, w is a visosity subsolutionof (1.1) in the sense of De�nition 3.4}is a visosity solution of (1.1) in the sense of De�nition 3.4.Proof. The fat that u is a subsolution follows from Proposition 5.2.Suppose now that (u+h(‖ · ‖))∗−ϕ has a strit (in the ‖ · ‖−1 norm) globalminimum at a point x for test funtions h(‖y‖) and ϕ. First we notie thatif

(u+ h(‖ · ‖))∗(x) = (v0 + h(‖ · ‖))∗(x)then (v0 +h(‖ · ‖))∗−ϕ has a global minimum at x and so we are done sine
v0 is a visosity supersolution. Therefore we only need to onsider the ase

(u+ h(‖ · ‖))∗(x) < (v0 + h(‖ · ‖))∗(x).It then follows from the B-ontinuity of ϕ and the weak lower semiontinuityof ‖ · ‖ that for every R > 0,
(5.6) ε+ (u+ h(‖ · ‖))∗(x) − ϕ(x) + ϕ(y) − h(‖y‖)

< (v0 + h(‖ · ‖))∗(y) − h(‖y‖) ≤ v0(y)for y ∈ B−1(x, r) ∩B(x,R) for some small r, ε > 0. Set
w(y) = ε+ (u+ h(‖ · ‖))∗(x) − ϕ(x) + ϕ(y) − h(‖y‖).



268 D. Kelome and A. �wi�hIf the ondition for u being a visosity supersolution of (1.1) is violatedat x then either(i) x 6∈ H1, or(ii) x ∈ H1 but
(5.7) (u+ h(‖ · ‖))∗(x) − h(‖x‖) − λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) < −ν < 0,where ψ(y) = ϕ(y) − h(‖y‖), ν > 0.If (i) happens, i.e. if x 6∈ H1 then(5.8) lim inf
y→x in H−1, y∈H1

‖y‖1 = ∞.Otherwise we would have a sequene yn suh that B1/2yn → B1/2x and
‖B−1/2yn‖ ≤ C. Then for some subsequene (still denoted by yn) B−1/2yn

⇀ z for some z ∈ H. But this implies that x ∈ H1 and z = B−1/2x. By theloal boundedness of F , ondition (5.8) now implies that for every R > 0,
(5.9) w(y)−λ‖y‖2

1

h′(‖y‖)

‖y‖
+〈y,A∗Dϕ(y)〉+F (y,Dw(y), D2w(y)) < −ν/2for y ∈ B−1(x, r) ∩B(x,R) ∩H1 for some small r > 0.Suppose that (ii) is true. We will show that for every R > 0, (5.9) holdsfor y ∈ B−1(x, r) ∩ B(x,R) ∩H1 for ε = µ/4 and some small r > 0. If notthere exists a sequene xn → x in H−1 with ‖xn‖ ≤ R suh that

(5.10) w(xn) − λ‖xn‖
2
1

h′(‖xn‖)

‖xn‖
+ 〈xn, A

∗Dϕ(xn)〉

+ F (xn, Dw(xn), D2w(xn)) ≥ −ν/2.Then of ourse ‖xn‖1 ≤ C for some onstant C as otherwise (5.10) would beviolated. But then we must have B−1/2xn ⇀ B−1/2x in H and so arguing asin the proof of Proposition 5.2 we obtain xn → x. However, then (5.7) andthe lower semiontinuity of ‖ · ‖1 imply
lim sup

n→∞

(
w(xn) − λ‖xn‖

2
1

h′(‖xn‖)

‖xn‖
+ 〈xn, A

∗Dϕ(xn)〉

+ F (xn, Dw(xn), D2w(xn))

)
< −

ν

2
,whih gives a ontradition.So we have shown that in either ase, for every R > 0, (5.9) is satis�edfor y ∈ B−1(x, r) ∩B(x,R) ∩H1 for some small r, ε > 0.It follows from the fat that (u + h(‖ · ‖))∗ − ϕ has a (strit in the

‖ · ‖−1 norm) global minimum at x that for every r > 0 if ε is small enough



Perron's method and method of relaxed limits 269(depending on r) there exists a onstant µr > 0 suh that
w(y) < (u+ h(‖ · ‖))∗(y) − h(‖y‖) − µr ≤ u(y) − µr for y 6∈ B−1(x, r).Moreover it is lear by the growth ondition on the test funtion in De�nition3.4 that if R is large enough then

w(y) ≤ u(y) − 1 for y 6∈ B(x,R).Using the last two inequalities and (5.6) we onlude that there exist R, r, ε, µ
> 0 suh that(5.11) w ≤ v0 in H, w(y) < u(y) − µ for y 6∈ B−1(x, r) ∩B(x,R),and (5.9) is satis�ed for y ∈ B−1(x, r) ∩B(x,R) ∩H1.Finally, if R is large enough there exist yn ∈ B(x,R) suh that yn → xin H−1 suh that

u(yn) + h(‖yn‖) − ϕ(yn) → (u+ h(‖ · ‖))∗(x) − ϕ(x),whih means that there exist points y ∈ B−1(x, r) ∩B(x,R) for whih(5.12) u(y) < w(y).We now laim that the funtion w is a visosity subsolution of (1.1) in
B−1(x, r)∩B(x,R). (Sine w is B-upper semiontinuous De�nitions 3.2 and3.4 are equivalent, but we point out that being a visosity subsolution of(1.1) in B−1(x, r) ∩B(x,R) still requires that the maxima in De�nition 3.4be loal in the ‖ · ‖−1 norm in the whole spae.) The laim follows fromLemma 5.1 upon notiing that by (5.9) and (2.2) we have

w(y) + 〈y,A∗Dw(y)〉 + F (y,Dw(y), D2w(y))

≤ w(y) − λ‖y‖2
1

h′(‖y‖)

‖y‖
+ 〈y,A∗Dϕ(y)〉 + F (y,Dw(y), D2w(y)) < 0for y ∈ B−1(x, r) ∩B(x,R) ∩D(A∗).It now remains to show that the funtion u1 = max(w, u) is a visositysubsolution in the sense of De�nition 3.4 and u0 ≤ u1 ≤ v0. But this is learfrom Proposition 5.2 (more preisely from its proof) and the fat that wis a visosity subsolution of (1.1) in B−1(x, r) ∩ B(x,R), and (5.11). This,together with (5.12), gives us a ontradition, and the proof is omplete.Combining the above proposition with Theorem 4.1 we obtain the fol-lowing result.Theorem 5.4. Let (2.1) and (2.2) hold and let F satisfy (1)0, (2), (3).Let u0, v0 be respetively a bounded visosity subsolution and a bounded vis-osity supersolution of (1.1) in the sense of De�nition 3.4. Then the funtion

u(x) = sup{w(x) : u0 ≤ w ≤ v0, w is a visosity subsolutionof (1.1) the sense of De�nition 3.4}



270 D. Kelome and A. �wi�his the unique bounded visosity solution of (1.1) in the sense of De�nition 3.2.Moreover u is loally uniformly B-ontinuous.The same tehnique applies to the time dependent problems (1.2). Wejust state here the �nal existene result that an be proved in the same wayas Theorem 5.4.Theorem 5.5. Let (2.1) and (2.2) hold and let F satisfy (1)k, (2), (3)for some k ≥ 0. Let g be loally uniformly B-ontinuous and suh that(5.13) |g(x)| ≤ C(1 + ‖x‖k) for some C > 0.Let u0 be a visosity subsolution of (1.2), and v0 be a visosity supersolutionof (1.2) in the sense of De�nition 3.5 suh that
u0,−v0 ≤ C(1 + ‖x‖k) for some C > 0,(5.14)
lim
t→0

{|u0(t, x) − g(x)| + |v0(t, x) − g(x)|} = 0(5.15)uniformly on bounded sets. Then the funtion
u(t, x) = sup{w(t, x) : u0 ≤ w ≤ v0, w is a visosity subsolutionof (1.2) the sense of De�nition 3.5}is the unique visosity solution of (1.2) in the sense of De�nition 3.3 sat-isfying (5.14) and (5.15). Moreover u is loally uniformly B-ontinuous on

[0, T1] ×H for every 0 < T1 < T .We will onstrut a subsolution and a supersolution so that we an applyPerron's method. We remark that if supx∈H |F (x, 0, 0)| = M <∞, then thefuntions u(x) = −M and v(x) = M are respetively a visosity subsolutionand a visosity supersolution of (1.1) in the sense of De�nition 3.2. In theproposition below, we will show how the onstrution of the supersolutionan be done in the time dependent ase. The onstrution of a subsolutionis very similar.Proposition 5.6. Let (2.2) hold and let g be loally uniformly B-onti-nuous with |g(x)| ≤ µ(1+‖x‖) for x ∈ H for some positive onstant µ. Thenthere is a visosity supersolution V of equation (1.2) suh that limt↓0 V (t, x)
= g(x) uniformly on bounded sets of H.Proof. De�ne C(r) = sup{|F (t, x, p,X)| : x ∈ H, t ∈ [0, T ], ‖p‖, ‖X‖
≤ r}. Let v(t, x) = αt + 2µ

√
1 + ‖x‖2. By a time dependent version ofLemma 5.1 a ondition for v to be a visosity supersolution of (1.2) is

α+ F (t, x,Dv(t, x), D2v(t, x)) ≥ 0for all (t, x) ∈ (0, T ) × H. Sine Dv(t, x) and D2v(t, x) are bounded wean therefore selet α depending only on µ suh that the above ondition issatis�ed.



Perron's method and method of relaxed limits 271Let z ∈ H and ε > 0. We �rst hoose a onstant R = R(‖z‖) suh that
(‖x‖ − ‖z‖)4+ ≥ v(t, x) for ‖x‖ ≥ R. We then �nd M = M(‖z‖, ε) suh that

wz,ε(x) = g(z) + ε+M‖x− z‖2
−1 + (‖x‖ − ‖z‖)4+ ≥ g(x)for ‖x‖ ≤ R. Let now γ = sup{‖Dwz,ε(x)‖ + ‖D2wz,ε(x)‖ : ‖x‖ ≤ R}. Inorder for wz,ε(t, x) = βt+ wz,ε(x) to be a visosity supersolution of (1.2) in

(0, T ) ×B(0, R) we need
β + 〈x,A∗B(x− z)〉 + F (t, x,Dwz,ε(t, x), D

2wz,ε(t, x)) ≥ 0.This an be ahieved by taking β = R(R+ ‖z‖)‖A∗B‖ + C(γ).It now follows that̂
ωz,ε(t, x) = min{wz,ε(t, x), v(t, x)}is a B-lower semiontinuous visosity supersolution of (1.2) in (0, T )×H. Itis lear from the onstrution of the ω̂z,ε and the time dependent version ofProposition 5.2 for supersolutions that the funtion V (t, x) = infz,ε ω̂z,ε(t, x)is a visosity supersolution of (1.2) in the sense of De�nition 3.5 suh that

limt↓0 V (t, x) = g(x) uniformly on bounded subsets of H.6. Relaxed limits. In this setion we show how the method of half-relaxed limits of Barles�Perthame an be generalized to in�nite-dimensionalspaes. We onsider two separate ases. The �rst deals with limits of sub-and supersolutions of equations on the whole spae with operators A sat-isfying similar struture onditions. The seond deals with limits of �nite-dimensional approximations.Let Fn : [0, T ] × H × H × S(H) → R be ontinuous, loally boundeduniformly in n, and degenerate ellipti. De�ne
F+(t, x, p,X) = lim

m→∞
sup{Fn(s, y, q, Y ) : n ≥ m,

|t− s| + ‖x− y‖ + ‖p− q‖ + ‖X − Y ‖ ≤ 1/m}and
F−(t, x, p,X) = lim

m→∞
inf{Fn(s, y, q, Y ) : n ≥ m,

|t− s| + ‖x− y‖ + ‖p− q‖ + ‖X − Y ‖ ≤ 1/m}.Let An be linear, maximal monotone operators in H suh that D(A∗) ⊂
D(A∗

n) and(6.1) 〈A∗
nx, x〉 ≥ λn‖x‖

2
1 for x ∈ D(A∗

n),where lim infn→∞ λn ≥ λ. Assume moreover that(6.2) if xn → x, A∗xn → A∗x then A∗
nxn ⇀ A∗x,and that for every test funtion ϕ, the family A∗
nDϕ is loally uniformlybounded. We then have the following theorem.



272 D. Kelome and A. �wi�hTheorem 6.1. Let the assumptions of this setion be satis�ed and let
B be ompat. Let un be loally uniformly bounded visosity subsolutions(respetively , supersolutions) of(6.3) un + 〈Anx,Dun〉 + Fn(x,Dun, D

2un) = 0 in Hin the sense of De�nition 3.2. Then the funtion
u+(x) = lim

m→∞
sup{un(y) : n ≥ m, ‖x− y‖ ≤ 1/m}(respetively ,

u−(x) = lim
m→∞

inf{un(y) : n ≥ m, ‖x− y‖ ≤ 1/m})is a visosity subsolution (respetively , supersolution) of
u+ + 〈Ax,Du+〉 + F−(x,Du+, D2u+) = 0 in H(respetively ,
u− + 〈Ax,Du−〉 + F+(x,Du−, D

2u−) = 0 in H)in the sense of De�nition 3.4.Notie that u+ does not have to be B-upper semiontinuous.Proof. Let (u+ −h(‖ · ‖))∗−ϕ have a loal maximum equal to 0 at x. Inlight of Lemma 3.6 and loal uniform boundedness of the un we an assumethat the maximum is global, strit in the ‖ · ‖−1 norm, and suh that
u+(y) − h(‖y‖), (u+ − h(‖ · ‖))∗(y) − ϕ(y) → −∞,and

un(y) − h(‖y‖) − ϕ(y) → −∞as ‖y‖ → ∞, uniformly in n. Then there must exist a sequene xn suh that
‖xn − x‖−1 → 0, ‖xn‖ ≤ C, and

u+(xn) − h(‖xn‖) − ϕ(xn) ≥ −1/n.Therefore there exist yn and mn suh that(6.4) umn
(yn) − h(‖yn‖) − ϕ(yn) ≥ −2/n.Let zn be a global maximum of umn

(y)−h(‖y‖)−ϕ(y). It exists beause of thedeay of this funtion at in�nity and the fat that, beause B is ompat, B-upper semiontinuity is equivalent to weak sequential upper semiontinuity.Obviously ‖zn‖ ≤ C1 and we also have
(6.5) umn

(zn) + λmn
‖zn‖

2
1

h′(‖zn‖)

‖zn‖
+ 〈zn, A

∗
mn
Dϕ(zn)〉

+ Fmn
(zn, Dψ(zn), D2ψ(zn)) ≤ 0,where ψ(y) = h(‖y‖) − ϕ(y). Using the boundedness of zn, the fat that

h′(‖y‖)/‖y‖ > c > 0 for ‖y‖ ≤ C1, and the loal uniform boundedness of the
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Fn and A∗

mn
Dϕ, we hene obtain ‖zn‖1 ≤ C2, whih implies that zn ⇀ z in

H1 and zn → z in H for some z ∈ H1.Therefore u+(z) ≥ lim supn→∞ umn
(zn), whih yields u+(z) − h(‖z‖) −

ϕ(z) ≥ 0, i.e. z = x. Moreover it also follows that
lim

n→∞
umn

(zn) = (u+ − h(‖ · ‖))∗(x) + h(‖x‖).We an now pass to lim inf in (6.5) to onlude the proof.The following theorem is an immediate orollary of Theorems 6.1 and 4.1.Theorem 6.2. Let A satisfy (2.1) and (2.2). Let the assumptions of thissetion on An and Fn be satis�ed , and let B be ompat. Let F− = F+ =: Fsatisfy the assumptions of Theorem 4.1. Let un be loally bounded (uniformlyin n) visosity solutions of (6.3) in the sense of De�nition 3.2. Let u+ and
−u− be bounded from above. Then u+ = u− =: u, u is loally uniformly
B-ontinuous (i.e. u is weakly sequentially ontinuous), and u is the uniquebounded visosity solution of (1.1) in the sense of De�nition 3.2. Moreoverthe funtions un onverge to u pointwise as n → ∞ and the onvergene isuniform on bounded subsets of Hα for every α > 0.We point out that the limiting Hamiltonians F+ and F− may be of�rst order so the above theorems an be applied to singular perturbationproblems and small noise limits.The time dependent version of Theorem 6.2 is the following. The fun-tions u+ and u− below are now de�ned by taking lim sup and lim inf in bothvariables s and y.Theorem 6.3. Let A satisfy (2.1) and (2.2). Let the assumptions of thissetion on An and Fn be satis�ed , and let B be ompat. Let F− = F+ =: Fand let F and g satisfy the assumptions of Theorem 4.4. Let un be visositysolutions of

(un)t + 〈Anx,Dun〉 + Fn(t, x,Dun, D
2un) = 0 in (0, T ) ×Hin the sense of De�nition 3.3 and suppose that

|un(x)| ≤ C(1 + ‖x‖k) for some C > 0,(6.6)
lim
t→0

|un(t, x) − g(x)| = 0 uniformly on bounded sets,(6.7)uniformly in n. Then u+ = u− =: u, u is weakly sequentially ontinuous,and u is the unique visosity solution of (1.2) in the sense of De�nition 3.3satisfying (6.6) and (6.7). Moreover the funtions un onverge to u pointwiseas n→ ∞ and the onvergene is uniform on bounded subsets of [0, T1]×Hαfor every α > 0 and 0 < T1 < T .We lose this setion by showing how half-relaxed limits an be appliedto proving onvergene of �nite-dimensional approximations.



274 D. Kelome and A. �wi�hDenote by VN the spae spanned by the eigenvetors of B orrespondingto the eigenvalues that are greater than or equal to 1/N . Let PN be theorthogonal projetion in H onto VN . De�ne
AN = (PNA

∗PN )∗, BN = BPN .Then AN is bounded and monotone in H, AN and BN satisfy (2.1), and(6.8) 〈A∗
Nx, x〉 ≥ λ‖PNx‖

2
1 for x ∈ H.In what follows we denote QN = I − PN . We now have the following result.Theorem 6.4. Let A satisfy (2.1), (2.2), and let D(A∗) = R(B). Let Fsatisfy (1)0, (2) with λBQN replaed by λQN , (3), let supx∈H |F (x, 0, 0)| =

M <∞, and let B be ompat. Let u be the unique bounded visosity solutionof (1.1), and let uN (x) = vN (PNx), where the vN are the visosity solutionsof(6.9) vN + 〈ANx,DvN 〉 + F (x,DvN , D
2vN ) = 0 in HN .Then uN → u pointwise in H as N → ∞ and the onvergene is uniform onbounded subsets of Hα for every α > 0.Proof. Under our assumptions equation (6.9) has a unique visosity so-lution vN suh that |vN | ≤M for every N ≥ 1. Also (see [25℄) the funtions

uN are visosity solutions of
uN + 〈ANx,DuN 〉 + F (PNx, PNDuN , PND

2uNPN ) = 0 in H.Sine the above equations have only bounded terms the solutions an beinterpreted in the usual sense of [20℄, whih in partiular implies that the
uN are solutions in the sense of De�nition 3.2.We �rst observe that the AN satisfy (6.2) with strong onvergene. Thisfollows from the proof of Lemma 2.3 of [5℄ upon notiing that D(A∗) = R(B)guarantees that the operator Q = A∗B + cB has bounded inverse Q−1 =
B−1(A∗ + cI)−1 for every c > 0. This last statement is a trivial onsequeneof the losed graph theorem.We next laim that for every test funtion ϕ, the family A∗

NDϕ is loallyuniformly bounded. Indeed,
‖A∗

NDϕ(x)‖ ≤ ‖A∗BPNB
−1(A∗ + I)−1(A∗ + I)Dϕ(x)‖

≤ ‖A∗B‖ ‖B−1(A∗ + I)−1‖ ‖(A∗ + I)Dϕ(x)‖ ≤ C‖(A∗ + I)Dϕ(x)‖.However, we annot invoke Theorem 6.1 diretly as the AN only satisfy(6.8). Instead, we follow its proof pointing out the main di�erenes. Repeat-ing the previous arguments we now dedue, instead of (6.4), that there exist
yN and mN suh that

umN
(PmN

yN ) − h(‖PmN
yN‖) − ϕ(PmN

yn) ≥ −2/N.



Perron's method and method of relaxed limits 275We then take zN to be a global maximum of vmN
(y) − h(‖y‖) − ϕ(y)over HmN

. As before obviously ‖zN‖ ≤ C1 and (6.5) beomes
(6.10) vmN

(zN ) + λ‖zN‖2
1

h′(‖zN‖)

‖zN‖
+ 〈zN , A

∗
mN

Dϕ(zN)〉

+ Fmn
(zN , PmN

Dψ(zN), PmN
D2ψ(zN )PmN

) ≤ 0,where ψ(y) = h(‖y‖) − ϕ(y). This implies that (notie that zN = PmN
zN )

‖zN‖1 ≤ C2, whih gives zN ⇀ z in H1 and zN → z in H for some z ∈ H1.Therefore u+(z) ≥ lim supN→∞ umN
(zN ) = lim supN→∞ vmN

(zN ) and thisgives u+(z) − h(‖z‖) − ϕ(z) ≥ 0, i.e. z = x. We also obtain
lim

N→∞
umN

(zN ) = (u+ − h(‖ · ‖))∗(x) + h(‖x‖).We an now pass to lim inf in (6.10) using Lemma 2.8 of [25℄.In spite of the novelty of the method of half-relaxed limits in in�nite di-mensions, Theorem 6.4 is not really new under our assumptions. Convergeneof �nite-dimensional approximations was proved in [25℄ (following a similarmethod for �rst order equations of [5℄) by �rst proving uniform ontinuityestimates for the uN and then showing their loal uniform onvergene. In[25℄ assumption (2.2) was not needed but here ondition (2) is a little moregeneral. However, our new method may sueed in situations where we maynot be able to obtain uniform a priori estimates for the ontinuity of uN .Similar results an also be obtained for time dependent problems and forproblems where we do not assume that D(A∗) = R(B). We do not work outthe details here as they are tehnial and lengthy, and the �nal statementsare similar to the results of [25℄. However, there is a signi�ant di�erenebetween the approximations used in [25℄ (and in [5℄ before) and the oneswe would need here for the half-relaxed limits. In [25℄ the operator A was�rst approximated by its Yosida approximation Aλ and then by Aλ,N =
PNAλPN . We do not know if this proess would sueed here. It seems thatwe need �rst to take Aλ = A + λB−1 and then use Aλ,N = PNAλPN forthe above Aλ. This kind of approximation proedure was used in [6℄ and werefer the readers to this paper for some ideas and hints on how the proofshould proeed in our ase.
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