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Khinchin inequality and Banach–Saks type properties
in rearrangement-invariant spaces

by

F. A. Sukochev (Kensington) and D. Zanin (Bedford Park)

Abstract. We study the class of all rearrangement-invariant (= r.i.) function spaces
E on [0, 1] such that there exists 0 < q < 1 for which ‖

Pn
k=1 ξk‖E ≤ Cnq, where

{ξk}k≥1 ⊂ E is an arbitrary sequence of independent identically distributed symmetric
random variables on [0, 1] and C > 0 does not depend on n. We completely characterize
all Lorentz spaces having this property and complement classical results of Rodin and
Semenov for Orlicz spaces exp(Lp), p ≥ 1. We further apply our results to the study of
Banach–Saks index sets in r.i. spaces.

1. Introduction. A classical result of Rodin and Semenov (see [18]
or [16, Theorem 2.b.4]) says that the sequence of Rademacher functions
{rk}k≥1 on [0, 1] in a rearrangement-invariant (= r.i.) space E is equivalent
to the unit vector basis of l2 if and only if E contains (the separable part of)
the Orlicz space LN2(0, 1) (customarily denoted as exp(L2)) where N2(t) =
et

2 − 1. Here, {rk}k≥1 may be thought of as a sequence of independent
identically distributed centered Bernoulli variables on [0, 1]. A quick analysis
of the proof (see e.g. [16, p. 134]) shows that the embedding exp(L2) ⊆ E
is established there under a weaker assumption that {rk}k≥1 is a 2-Banach–
Saks sequence in E, that is, ‖

∑n
k=1 rk‖E ≤ Cn1/2, where C > 0 does not

depend on n ≥ 1. The main object of study in the present article is the class
of all r.i. spaces E such that there exists 0 < q < 1 for which

(1)
∥∥∥ n∑
k=1

ξk

∥∥∥
E
≤ Cnq,

where {ξk}k≥1 ⊂ E is an arbitrary sequence of independent identically dis-
tributed symmetric random variables on [0, 1] and C > 0 does not depend
on n. We completely characterize all Lorentz spaces from this class in Corol-
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lary 13 below. In Theorem 23 we obtain sharp estimates of type (1) for the
Orlicz spaces exp(Lp) = LNp(0, 1), 1 ≤ p < ∞, where Np(t) = et

p − 1,
complementing results of [18] (see also exposition in [11]). Our results also
have a number of interesting implications to the study of Banach–Saks type
properties in r.i. spaces.

Recall that a bounded sequence {xn} ⊂ E is called a p-BS-sequence if
for all subsequences {yk} ⊂ {xn} we have

sup
m∈N

m−1/p
∥∥∥ m∑
k=1

yk

∥∥∥
E
<∞.

We say that E has the p-BS-property and we write E ∈ BS(p) if each weakly
null sequence contains a p-BS-sequence. The set

Γ (E) = {p : p ≥ 1, E ∈ BS(p)}
is said to be the index set of E, and is of the form [1, γ] or [1, γ) for some
γ ≥ 1.

If, in the preceding definition, we replace all weakly null sequences by
weakly null sequences of independent random variables (respectively, by
weakly null sequences of pairwise disjoint elements, or by weakly null se-
quences of independent identically distributed random variables), we obtain
the set Γi(E) (respectively, Γd(E), Γiid(E)). The general problem of de-
scribing and comparing the sets Γ (E), Γi(E), Γiid(E)) and Γd(E) in various
classes of r.i. spaces was addressed in [20, 12, 22, 1, 21, 2]. In particular, it
is known [1] that 1 ∈ Γ (E) ⊆ Γi(E) ⊆ Γiid(E) ⊆ [1, 2] and Γi(E) ⊆ Γd(E)
for any r.i. space E. Moreover, the sets Γ (E) and Γi(E) coincide in many
cases but not always. For example, Γ (Lp) = Γi(Lp) = Γiid(Lp), 1 < p < ∞
(see e.g. [21, Corollary 4.4 and Theorem 4.5] and also Theorem 18 below),
whereas for the Lorentz space L2,1 generated by the function ψ(t) = t1/2, we
have Γ (L2,1) = [1, 2) and Γi(L2,1) = [1, 2] ([21, Theorem 5.9] and [1, Proposi-
tion 4.12]). It turns out that these two situations are typical [22, Theorem 9]:
under the assumption that Γ (E) 6= {1}, we have either Γi(E) \Γ (E) = ∅ or
else Γi(E) \ Γ (E) = {2}.

The present paper may also be considered as a contribution to the study
of the class of all r.i. spaces E such that Γiid(E) = Γi(E). We prove a
general theorem (see Theorem 18 below) that Γiid(E) = Γi(E) if and only
if Γiid(E) ⊆ Γd(E). It is easy to see that every Lorentz space Λ(ψ) sat-
isfies the latter condition and, using the main result described above, we
give a complete characterization of all Lorentz spaces E = Λ(ψ) such that
Γiid(E) 6= {1} (see Theorem 21 and Corollary 22).

It also pertinent to note here that if one views the Rademacher sys-
tem as a special example of sequences of independent mean zero random
variables, then a significant generalization of Khinchin inequality is due to
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W. B. Johnson and G. Schechtman [13]. They introduced the r.i. space Z2
E on

[0,∞) linked with a given r.i. space E on [0, 1] and showed that any sequence
{fk}∞k=1 of independent mean zero random variables in E is equivalent to the
sequence of its disjoint translates {fk(·) := fk(·−k+1)}∞k=1 in Z2

E , provided
that E contains an Lp-space for some p <∞. This study was taken further
in [6, 1, 4, 5], where the connection between this (generalized) Khinchin
inequality and the so-called Kruglov property was established (we explain
the latter property in the next section). We show the connection between
the class of all r.i. spaces with the Kruglov property and the estimates (1)
in Theorem 3. Recently, examples of r.i. spaces E such that Γ (E) = {1}
but Γi(E) 6= {1} have been produced in [2] under the assumption that E
has the Kruglov property. Our approach in this paper complements that
of [2]; in particular, we present examples of Lorentz and Marcinkiewicz
spaces E such that Γi(E) = Γiid(E) 6= {1} and which do not have the
Kruglov property.

Finally, we show that the equality Γiid(E) = Γi(E) fails to hold when E
is the classical space Lpq, 1 < q < p < 2.

2. Definitions and preliminaries

2.1. Rearrangement-invariant spaces. A Banach space (E, ‖·‖E) of real-
valued Lebesgue measurable functions (with identification m-a.e.) on the
interval [0, 1] will be called rearrangement-invariant (briefly, r.i.) if

(i) E is an ideal lattice, that is, if y ∈ E, and if x is any measurable
function on [0, 1] with 0 ≤ |x| ≤ |y|, then x ∈ E and ‖x‖E ≤ ‖y‖E ;

(ii) E is rearrangement-invariant in the sense that if y ∈ E, and if x
is any measurable function on [0, 1] with x∗ = y∗, then x ∈ E and
‖x‖E = ‖y‖E .

Here, m denotes Lebesgue measure and x∗ denotes the non-increasing, right-
continuous rearrangement of x given by

x∗(t) = inf{s ≥ 0 : m({u ∈ [0, 1] : |x(u)| > s}) ≤ t}, t > 0.

For basic properties of r.i. spaces, we refer to the monographs [14, 16]. We
note that for any r.i. space E we have L∞[0, 1] ⊆ E ⊆ L1[0, 1]. We will also
work with an r.i. space E(Ω,P) of measurable functions on a probability
space (Ω,P) given by

E(Ω,P) := {f ∈ L1(Ω,P) : f∗ ∈ E}, ‖f‖E(Ω,P) := ‖f∗‖X .

Here, the decreasing rearrangement f∗ is calculated with respect to the
measure P on Ω.
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Recall that for 0 < τ <∞, the dilation operator στ is defined by setting

στx(t) =
{
x(t/τ), 0 ≤ t ≤ min(1, τ),
0, min(1, τ) < t ≤ 1.

The dilation operators στ are bounded in every r.i. space E. Denoting the
space of all bounded linear operators on a Banach space E by L(E), we set

αE := lim
τ→0

ln ‖στ‖L(E)

ln τ
, βE := lim

τ→∞

ln ‖στ‖L(E)

ln τ
.

The numbers αE and βE belong to the closed interval [0, 1] and are called
the Boyd indices of E.

The Köthe dual E× of an r.i. space E on [0, 1] consists of all measurable
functions y for which

‖y‖E× := sup
{ 1�

0

|x(t)y(t)| dt : x ∈ E, ‖x‖E ≤ 1
}
<∞.

If E∗ denotes the Banach dual of E, then E× ⊂ E∗, and E× = E∗ if and
only if E is separable. An r.i. space E is said to have the Fatou property if
whenever {fn}∞n=1 ⊆ E and f measurable on [0, 1] satisfy fn → f a.e. on [0, 1]
and supn ‖fn‖E <∞, it follows that f ∈ E and ‖f‖E ≤ lim infn→∞ ‖fn‖E .
It is well-known that an r.i. space E has the Fatou property if and only if the
natural embedding of E into its Köthe bidual E×× is a surjective isometry.

Let us recall some classical examples of r.i. spaces on [0, 1]. Denote by Ψ
the set of all increasing continuous concave functions on [0, 1] with ϕ(0) = 0.
Each function ϕ ∈ Ψ generates the Lorentz space Λ(ϕ) (see e.g. [14]) en-
dowed with the norm

‖x‖Λ(ϕ) =
1�

0

x∗(t) dϕ(t)

and the Marcinkiewicz space M(ϕ) endowed with the norm

‖x‖M(ϕ) = sup
0<τ≤1

1
ϕ(τ)

τ�

0

x∗(t) dt.

The space M(ϕ) is not separable, but the space{
x ∈M(ϕ) : lim

τ→0

1
ϕ(τ)

τ�

0

x∗(t) dt = 0
}

endowed with the norm ‖ · ‖M(ϕ) is a separable r.i. space, denoted further
as (M(ϕ)0), which coincides with the closure of L∞ in (M(ϕ), ‖ · ‖M(ϕ)).

It is well known (see e.g. [14, Section II.1]) that

βM(ϕ) = 1 ⇔ αΛ(ϕ) = 0 ⇔ ∀t ∈ (0, 1) ∃(sn)n≥1 ⊆ (0, 1) : lim
n→∞

ϕ(tsn)
ϕ(sn)

= 1,

αM(ϕ) = 0 ⇔ βΛ(ϕ) = 1 ⇔ ∀τ ≥ 1 ∃(sn)n≥1 ⊆ (0, 1) : lim
n→∞

ϕ(snτ)
ϕ(sn)

= τ.
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If M(t) is a convex increasing function on [0,∞) such that M(0) = 0,
then the Orlicz space LM on [0, 1] (see e.g. [14, 16]) is an r.i. space of all
x ∈ L1[0, 1] such that

‖x‖LM := inf
{
λ : λ > 0,

1�

0

M(|x(t)|/λ) dt ≤ 1
}
<∞.

The function Np(u) = eu
p − 1 is convex for p ≥ 1 and is equivalent to a

convex function for 0 < p < 1 (see e.g. [6, 3]). The space LNp , 0 < p < ∞,
is customarily denoted exp(Lp).

2.2. The Kruglov property in r.i. spaces. Let f be a random variable on
[0, 1]. We denote by π(f) the random variable

∑N
i=1 fi, where fi’s are inde-

pendent copies of f , and N is a Poisson random variable with parameter 1
independent of the sequence {fi}.

Definition. An r.i. space E is said to have the Kruglov property if and
only if f ∈ E ⇔ π(f) ∈ E.

This property has been studied by M. Sh. Braverman [6], who uses some
earlier probabilistic constructions of V. M. Kruglov [15] and in [3, 4, 5] via
an operator approach. It was proved in [5] that an r.i. space E has the
Kruglov property if and only if for every sequence of independent mean zero
functions fn ∈ E the following inequality holds:

(2)
∥∥∥ n∑
k=1

fk

∥∥∥
E
≤ const ·

∥∥∥ n∑
k=1

fk

∥∥∥
Z2
E

.

Here, Z2
E is an r.i. space on (0,∞) equipped with the norm

‖x‖ = ‖x∗χ[0,1]‖E + ‖x∗χ[1,∞)‖L2 ,

and {fk}nk=1 ⊆ Z2
X is a sequence of disjoint translates of {fk}nk=1 ⊆ X, that

is, fk(·) = fk(· − k + 1). Note that inequality (2) has been proved earlier
in [13] (see inequality (3) there) under the more restrictive assumption that
E ⊇ Lp for some p <∞. Clearly, the latter assumption holds if αE > 0.

3. Operators An, n ≥ 0. Let Ω be the interval [0, 1] equipped with
the Lebesgue measure. Let E be an arbitrary rearrangement-invariant space
on Ω.

For every n ≥ 1, we consider the operator

An : E(Ω)→ E(Ω × · · · ×Ω︸ ︷︷ ︸
2n times

)

given by

Anf = (f ⊗ r)⊗ (1⊗ 1)⊗ · · · ⊗ (1⊗ 1) + (1⊗ 1)⊗ (f ⊗ r)⊗ · · · ⊗ (1⊗ 1)
+ · · ·+ (1⊗ 1)⊗ · · · ⊗ (1⊗ 1)⊗ (f ⊗ r),
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where r is a centered Bernoulli random variable. For brevity, we will also
use the notation

Anf = (f ⊗ r)1 + (f ⊗ r)2 + · · ·+ (f ⊗ r)n.
We set A0 = 0.

The following theorem is the main result of the present section.

Theorem 1. The following alternative is valid in an arbitrary r.i. spaceE:
either

(i) ‖An‖L(E) = n for every natural n, or
(ii) there exists a constant 1/2 ≤ q < 1 such that ‖An‖L(E) ≤ const ·nq

for all n ∈ N.
Proof. Since for all n,m ≥ 0, we have

(3) ‖An+m‖L(E) ≤ ‖An‖L(E) + ‖Am‖L(E),

and since ‖f ⊗ r‖E = ‖f‖E , we infer that ‖An‖L(E) ≤ n.
Observing that Amn(f) and Am(An(f)) are identically distributed, we

have
‖Amn(f)‖E = ‖Am(An(f))‖E , f ∈ E(Ω).

Here, we identify the element Anf ∈ E(Ω × · · · ×Ω) with an element from

E(Ω) via a measure preserving transformation Ω× 2n· · · ×Ω → Ω. Hence,

(4) ‖Amn‖L(E) ≤ ‖Am‖L(E) · ‖An‖L(E).

Thus, we have the following alternative: either

(i) ‖An‖L(E) = n for every natural n, or
(ii) there exists n0 ≥ 2 such that ‖An0‖L(E) < n0.

To finish the proof of Theorem 1, we only need to consider the second
case. Suppose there exists a constant 1/2 ≤ q < 1 such that ‖An0‖L(E) ≤ n

q
0.

By (4) we have
‖Anm0 ‖L(E) ≤ ‖An0‖mL(E) ≤ n

qm
0 , ∀m ∈ N.

Every n can be written as
∑k

i=0 ain
i
0, where 0 ≤ ai ≤ n0 − 1 and ak 6= 0.

So, using (3) and (4), we have

‖An‖L(E) ≤
k∑
i=0

‖Aaini0‖L(E) ≤
k∑
i=0

‖Aai‖L(E)n
qi
0

≤
( k∑
i=0

nqi0

)
max

1≤s≤n0

{‖As‖L(E)} ≤
nq0 · n

qk
0

nq0 − 1
max

1≤s≤n0

{‖As‖L(E)}.

Now, using the fact that q ≥ 1/2 and n0 ≥ 2, we have nq0 − 1 ≥
√

2− 1. So,
1

nq0 − 1
≤
√

2 + 1.



Khinchin inequality 107

Since nk0 ≤ n, we have

‖An‖L(E) ≤ (
√

2 + 1)nq0 max
1≤s≤n0

{‖As‖L(E)} · n
qk
0 ≤ const ·nq.

This proves the theorem.

Remark 2. We record here an important connection between the esti-
mates given in Theorem 1(ii) above and the set Γiid(E), where the r.i. space
E is separable. For 1/2 ≤ q ≤ 1 the following conditions are equivalent:

(i) ‖An‖L(E) ≤ const · nq, n ≥ 1.
(ii) 1/q ∈ Γiid(E).

Indeed, the implication (i)⇒(ii) is obvious. Now, let the probability space
(Ω,P) be the infinite direct product of the measure spaces ([0, 1],m). Fix
f ∈ E and consider the sequence {(f ⊗ r)n}n≥1 ⊂ E(Ω,P). It follows from
[22, Lemma 3.4] that this sequence is weakly null in E(Ω,P). Since the
spaces E and E(Ω,P) are isometric, we obtain the implication (ii)⇒(i) via
an application of the uniform boundedness principle.

We complete this section with an estimate of ‖An‖L(E), n ≥ 1, in general
r.i. spaces with the Kruglov property.

Theorem 3. Let E be a separable r.i. space. If βE < 1 and if E satisfies
the Kruglov property , then ‖An‖L(E) ≤ const · nq for all sufficiently large
n ≥ 1 and any βE < q < 1.

Proof. It is proved in [2, Proposition 2.2] (see also [17, Theorem 1]) that
for every r.i. space E and an arbitrary sequence of independent random vari-
ables {fk}nk=1 (n ≥ 1) from E, the right hand side of (2) can be estimated as

(5)
∥∥∥ n∑
k=1

fk

∥∥∥
Z2
E

≤ 6
∥∥∥( n∑

k=1

f2
k

)1/2∥∥∥
E
.

Now, assume in addition that the sequence {fk}nk=1 (n ≥ 1) consists
of independent identically distributed random variables, ‖f1‖E = 1. Since
βE < 1, there existN and βE <q< 1 such that for every k≥N , ‖σk‖L(E)≤kq.
Fix ε > 0 such that 1/2 + ε < q. By [22, Theorem 9], in every separable r.i.
space E, the right hand side of (5) can be estimated as

(6)
∥∥∥( n∑

k=1

f2
k

)1/2∥∥∥
E
≤ 4
ε

max
1≤k≤n

(
n

k

)1/2+ε

‖σk‖L(E) =: A, n ≥ 1.

The right hand side of (6) can be estimated as

A ≤ 4
ε
n1/2+ε max{ max

N≤k≤n
k−1/2−εkq, max

1≤k≤N
k−1/2−ε‖σk‖L(E)}(7)

=
4
ε
n1/2+ε max{nq−1/2−ε, const} ≤ const · nq.
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Recalling the definition of the operator An and combining it with (2), (5),
(6), (7) yields the assertion.

Remark 4.

(i) The assumption βE < 1 in Theorem 3 is necessary (see [1, Theorem
4.2]). For example, the space E = L1 has the Kruglov property and
βE = 1. However, ‖An‖L(L1) = n.

(ii) On the other hand, the condition that E has the Kruglov property
is not optimal. In the following section, we will show that there are
Lorentz spaces without the Kruglov property which still satisfy the
condition of Theorem 1(ii).

4. Operators An, n ≥ 1, in Lorentz spaces. We need the following
technical facts. The first lemma is elementary and its proof is omitted.

Lemma 5. Let ψ be a concave function on [0, 1]. If there are points
0 ≤ x1 ≤ · · · ≤ xn ≤ 1 such that

1
n

(ψ(x1) + · · ·+ ψ(xn)) = ψ

(
1
n

(x1 + · · ·+ xn)
)
,

then ψ is linear on [x1, xn].

Lemma 6. Let x1, . . . , xn be independent random variables. Then

E(|x1 + · · ·+ xn|) ≤ E(|x1|) + · · ·+ E(|xn|).

Moreover , equality holds if and only if all xi’s are simultaneously non-
negative (or non-positive).

Proof. We have

E(|x1|)+· · ·+E(|xn|)−E(|x1+· · ·+xn|) = E(|x1|+· · ·+|xn|−|x1+· · ·+xn|)≥ 0.

From the independence of xi’s, i = 1, . . . , n, it follows that sign(xi), i =
1, . . . , n, are independent random variables. If there exists a function xi
which is neither non-negative nor non-positive, then, for every other func-
tion xj , we have

m(xixj < 0)
= m(sign(xi) > 0, sign(xj) < 0) +m(sign(xi) < 0, sign(xj) > 0)

= m(sign(xi) > 0)m(sign(xj) < 0) +m(sign(xi) < 0)m(sign(xj) > 0) > 0.

Hence, there exists a set A of positive measure such that xixj < 0 almost
everywhere on A. This guarantees that |x1| + · · · + |xn| > |x1 + · · · + xn|
almost everywhere on A. This is sufficient for the strict inequality to hold.
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We need to consider the following properties of the function ψ:

aψ := lim sup
u→0

ψ(ku)
ψ(u)

< k,(8)

cψ := lim sup
u→0

ψ(ul)
ψ(u)

< 1,(9)

lim sup
u→0

1
ψ(u)

n∑
s=1

ψ

(
21−s

(
n

s

)
us
)
< n.(10)

Proposition 7. Suppose there exist k ≥ 2 such that (8) holds and l ≥ 2
such that (9) holds. Then (10) holds for all sufficiently large n.

Proof. Consider the sum
∑n

s=1 ψ(
(
n
s

)
21−sus). For any sufficiently large

n, we write
n∑
s=1

=
1+[n/k]∑
s=1

+
n∑

s=2+[n/k]

.

Consequently, the upper limit in (10) can be estimated as

(11) lim sup
u→0

1
ψ(u)

n∑
s=1

ψ

((
n

s

)
21−sus

)

≤ lim sup
u→0

1
ψ(u)

1+[n/k]∑
s=1

ψ

((
n

s

)
21−sus

)

+ lim sup
u→0

1
ψ(u)

n∑
s=2+[n/k]

ψ

((
n

s

)
21−sus

)
.

Consider the first upper limit in (11). Since ψ is concave, we have
1+[n/k]∑
s=1

ψ

((
n

s

)
21−sus

)
≤ (1 + [n/k])ψ

(
1

1 + [n/k]

1+[n/k]∑
s=1

(
n

s

)
21−sus

)
= (1 + [n/k])ψ

(
1

1 + [n/k]
(nu+ o(u))

)
≤ (1 + [n/k])ψ(ku(1 + o(1))).

Hence, the first upper limit in (11) is bounded from above by

(1 + [n/k])aψ = n ·
aψ
k

+ o(n).

Consider the second upper limit in (11). It is clear that for all n/k ≤
s ≤ n, (

n

s

)
21−s ≤ 2n and

(
n

s

)
21−sus ≤ 2nun/k = (2ku)n/k.
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Thus, the second upper limit in (11) can be estimated as

lim sup
u→0

1
ψ(u)

n∑
s=2+[n/k]

ψ

((
n

s

)
21−sus

)
≤ n(1− 1/k) lim sup

u→0

ψ((2ku)n/k)
ψ(u)

.

Substituting w = 2ku on the right hand side, we have the bound

n(1− 1/k) lim sup
w→0

ψ(wn/k)
ψ(2−kw)

.

By the concavity of ψ, we have ψ(2−kw) ≥ 2−kψ(w). Therefore, the second
upper limit in (11) is bounded from above by

n(1− 1/k)2k lim sup
w→0

ψ(wn/k)
ψ(w)

.

Now, we observe that

(12) lim sup
w→0

ψ(wm)
ψ(w)

≤ clog(m)/log(l)−1
ψ .

Indeed, let lr ≤ m ≤ lr+1,

ψ(wm)
ψ(w)

≤ ψ(wl
r
)

ψ(w)
=

ψ(wl
r
)

ψ(wlr−1)
· · · ψ(wl)

ψ(w)
and

lim sup
w→0

ψ(wm)
ψ(w)

≤ crψ ≤ c
log(m)/log(l)−1
ψ .

If n tends to infinity, then, thanks to the assumption cψ < 1, we have

n(1− 1/k)2k lim sup
w→0

ψ(wn/k)
ψ(w)

= o(n).

Therefore, the upper limit in (10) (see also (11)) is bounded from above by
aψ
k
n+ o(n).

Thus, the upper limit in (10) is strictly less than n for every sufficiently
large n.

Let the function gn be defined by

gn(u) :=
‖Anχ[0,u]‖Λ(ψ)

n‖χ[0,u]‖Λ(ψ)
(13)

=
1

nψ(u)

n∑
s=1

ψ(m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ s)).

It is obvious that 0 ≤ gn ≤ 1.

Remark 8. The second equality in (13) is a corollary of [14, II.5.4].
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Proposition 9. For sufficiently large n, we have gn(u) < 1 for all u ∈
(0, 1].

Proof. Since ψ is concave, we have

(14)
n∑
s=1

ψ(m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ s))

≤ nψ
(

1
n

n∑
s=1

m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ s)
)
.

Note that if a random variable ξn takes the values 0, 1, . . . , n then

(15)
n∑
s=1

m(ξn ≥ s) = E(ξn).

By (15), the right hand side of (14) equals nψ
(

1
nE(|(χ[0,u] ⊗ r)1 + · · · +

(χ[0,u] ⊗ r)n|)
)
. By Lemma 6, we have

(16)
1
n

E(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n|) < E(|χ[0,u] ⊗ r|) = u.

Applying ψ, we obtain

(17) nψ

(
1
n

E(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n|)
)
≤ nψ(E(|χ[0,u] ⊗ r|)).

The right hand side of (17) is equal to nψ(u).
Let us assume that gn(u) = 1 for some u > 0 and some n > 1. It then

follows that both inequalities (14) and (17) are actually equalities.
The equality

n∑
s=1

ψ(m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ s))

= nψ

(
1
n

n∑
s=1

m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ s)
)

implies, by Lemma 5, that ψ is linear on the interval [a1, b1] with

a1 = m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ n),

b1 = m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ 1).

Since the inequality in (17) is actually an equality, we derive from (16)
and (17) that ψ must be a constant on the interval [a2, b2] with a2 =
(1/n)E(|(χ[0,u] ⊗ r)1 + · · · + (χ[0,u] ⊗ r)n|) and b2 = E(|χ[0,u] ⊗ r|). Since
ψ is increasing and concave, it must be constant on [a2, 1].
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Since, by (15),
1
n

E(|(χ[0,u]⊗r)1+· · ·+(χ[0,u]⊗r)n|) > m(|(χ[0,u]⊗r)1+· · ·+(χ[0,u]⊗r)n| ≥ n)

and
1
n

E(|(χ[0,u]⊗r)1+· · ·+(χ[0,u]⊗r)n|)<m(|(χ[0,u]⊗r)1+· · ·+(χ[0,u]⊗r)n| ≥ 1),

we have a1 < a2 < b2. So, the intersection of the intervals [a1, b1] and [a2, 1]
contains an interval [a3, b3] with a3 < b3.

Since ψ is a linear function on [a1, b1] and is constant on [a2, 1] it must
be constant on [a1, 1], that is, on the interval

[m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ n), 1] = [21−nun, 1].

Thus, ψ is constant on the interval [21−n, 1] ⊂ [21−nun, 1], which is not the
case for sufficiently large n. So, gn(u) < 1 for all sufficiently large n.

Lemma 10. For the function gn defined in (13), we have

lim sup
u→0

gn(u) = lim sup
u→0

1
nψ(u)

n∑
s=1

ψ

(
21−s

(
n

s

)
us
)
.

Proof. For every s ≥ 1, using a formula for conditional probabilities, we
have

m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ s)

=
n∑
k=1

(
n

s

)
uk(1− u)n−km(|r1 + · · ·+ rk| ≥ s).

Actually, the summation above is taken from k = s up to n, since we have
m(|r1 + · · ·+ rk| ≥ s) = 0 for every k < s.

If now u→ 0, then, for every s ≥ 1 and k > s, we have
(
n
k

)
uk(1−u)n−k =

o(us). Therefore,

(18) m(|(χ[0,u] ⊗ r)1 + · · ·+ (χ[0,u] ⊗ r)n| ≥ s) = 21−s
(
n

s

)
us(1 + o(1)).

Since ψ is concave, we have

(19) ψ

(
1
m
u

)
≤ 1
m
ψ(u), 0 < m ≤ 1.

This implies

(20) lim
u→0

ψ(u(1 + o(1)))
ψ(u)

= 1.

After applying (18) and (20) to the definition of gn in (13), we obtain the
assertion of the lemma.

The following theorem is the main result in this section.
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Theorem 11. Let ψ ∈ Ψ. The following conditions are equivalent :

(i) ‖An‖L(Λ(ψ)) < n for all sufficiently large n.
(ii) Estimates (8) and (9) hold for some k ≥ 2 and l ≥ 2.

Remark 12. Note that condition (i) above is equivalent to the assump-
tion that ‖An0‖L(Λ(ψ)) < n0 for some n0 > 1 (see Theorem 1).

Proof of Theorem 11. We are interested in whether there exist n ∈ N
and c < n such that

(21) ‖Anf‖Λ(ψ) ≤ c‖f‖Λ(ψ), f ∈ Λ(ψ).

We will use the following known description of extreme points of the unit
ball in Λ(ψ). A function f is in extr(BΛ(ψ)(0, 1)) if and only if

|f | = χA
‖χA‖Λ(ψ)

for some measurable set A ⊂ [0, 1]. Here χA is the indicator function of the
set A. This means that f is of the form

f =
χA1 − χA2

ψ(m(A1 ∪A2))
with A1 and A2 having empty intersection. It is sufficient to verify (21) only
for functions f as above (see [14, Lemma II.5.2]).

Clearly, f ⊗ r and |f | ⊗ r are identically distributed random variables.
Therefore, An(f) and An(|f |) are also identically distributed. Furthermore,
‖Am(f)‖ = ‖Am(|f |)‖ and ‖f‖ = ‖ |f | ‖. Thus, we need to check (21) for
indicator functions only. It is sufficient to take A of the form [0, u], 0 < u ≤ 1.

Using the notation gn(·) introduced in (13), we see that (21) is equiva-
lent to
(22) sup

u
gn(u) < 1.

Now, we are ready to finish the proof of the theorem.
(i)⇒(ii). Fix n such that ‖An‖L(Λ(ψ)) < n. It follows from the argument

above that (22) holds. Now, we immediately infer from Lemma 10 and the
definition of gn(·) that

lim sup
u→0

1
nψ(u)

n∑
s=1

ψ

((
n

s

)
21−sus

)
< 1,

which is equivalent to (10). Thus,

lim sup
u→0

ψ(nu)
nψ(u)

= lim sup
u→0

ψ(21−1
(
n
1

)
u1)

nψ(u)

≤ lim sup
u→0

1
nψ(u)

n∑
s=1

ψ

(
21−s

(
n

s

)
us
)
< 1.
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Suppose that (9) fails. We have

lim sup
u→0

ψ(ul)
ψ(u)

= 1

for every l ≥ 1. Since
(
n
s

)
21−sus ≥ un+1 for every s = 1, . . . , n and every

sufficiently small u, we have

lim sup
u→0

1
nψ(u)

n∑
s=1

ψ

((
n

s

)
21−sus

)
≥ lim sup

u→0

nψ(un+1)
nψ(u)

= 1.

This contradicts (10) and completes this part of the proof.
(ii)⇒(i). Fix k ≥ 2 (respectively, l ≥ 2) such that (8) (respectively, (9))

holds. Then, for sufficiently large n, (10) also holds. By Lemma 10, we have

(23) lim sup
u→0

gn(u) < 1

for all sufficiently large n. By Proposition 9, we have gn(u) < 1 for all
sufficiently large n and for all u ∈ (0, 1]. Therefore, by (23), the inequality
(22) holds for sufficiently large n. Then (see the argument at the beginning
of the proof), ‖An‖L(Λ(ψ)) < n for sufficiently large n.

Combining Theorems 1 and 11, we have

Corollary 13. For every function ψ, one of the following two mutually
excluding alternatives holds:

(1) There exist q ∈ [1/2, 1) and C > 0 such that the operator An :
Λ(ψ)→ Λ(ψ) satisfies

‖An‖L(E) ≤ Cnq, n ≥ 1.

(2) Either for every k ∈ N,

(24) lim sup
u→0

ψ(ku)
ψ(u)

= k,

or for every l ∈ N,

(25) lim sup
u→0

ψ(ul)
ψ(u)

= 1.

Remark 14.

(i) Condition (24) is equivalent to the assumption βΛ(ψ) = 1.
(ii) Condition (25) implies (but is not equivalent to) the condition αΛ(ψ)

= 0. In the last section of this paper, we will exhibit a ψ ∈ Ψ failing
(25) such that the Lorentz space Λ(ψ) does not have the Kruglov
property.
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5. Operators An, n ≥ 1, in Orlicz spaces exp(Lp). The space
exp(Lp) has the Kruglov property if and only if p ≤ 1 (see [6, 3]). Fur-
thermore, exp(Lp) is 2-convex for all 0 < p < ∞ (see e.g. [16, 1.d]). Now,
we immediately infer from [2] that Γiid(exp(Lp)0) = Γi(exp(Lp)0) = [1, 2]
for all 0 < p ≤ 1 (here, exp(Lp)0 is the separable part of exp(Lp)). Using
Remark 2, we have ‖An‖L(exp(Lp)0) ≤ const·n1/2 for all n ≥ 1 and 0 < p ≤ 1.
It easily follows that in fact, ‖An‖L(exp(Lp)) ≤ const · n1/2 for all n ≥ 1 and
0 < p ≤ 1. In this section, we prove the estimate ‖An‖L(exp(Lp)) ≤ const·n1/2

(respectively, ‖An‖L(exp(Lp)) ≤ const ·n1−1/p) for all 1 < p ≤ 2 (respectively,
2 ≤ p <∞.) To this end, it is convenient to view exp(Lp) as a Marcinkiewicz
space M(ψp) with ψp(t) = t log1/p(e/t) (see [3, Lemma 4.3]). The following
simple lemma is crucial.

Lemma 15. There exists Ψ 3 ψ ∼ ψ2 such that the random variable
ψ′ ⊗ r is Gaussian.

Proof. Setting

F (t) :=
2√
π

∞�

t

e−z
2
dz, t ≥ 0,

and denoting its inverse by G, we clearly see that G⊗ r is Gaussian. From
the obvious inequality

c1e
−2t2 ≤ F (t) ≤ c2e−t

2
,

substituting t = G(z), we obtain

c1e
−2G2(z) ≤ z ≤ c2e−G

2(z)

or, equivalently,
1√
2

log1/2

(
c1
z

)
≤ G(z) ≤ log1/2

(
c2
z

)
.

This means

ψ(t) =
t�

0

G(z) dz ∼
t�

0

log1/2

(
e

z

)
dz ∼ t log1/2

(
e

t

)
= ψ2(t).

Theorem 16.

(i) For every 1 ≤ p ≤ 2, we have ‖An‖L(exp(Lp)) ≤ const ·
√
n.

(ii) For every 2 ≤ p ≤ ∞, we have ‖An‖L(exp(Lp)) ≤ const · n1−1/p.

Proof. (i) By Lemma 15, exp(L2) = M(ψ) for some ψ ∈ Ψ with ψ′ ⊗ r
Gaussian. Recall the following description of the extreme points of the unit
ball in Marcinkiewicz spaces (see [19]): a function f is an extreme point of
the unit ball in M(ψ) if and only if f∗ = ψ′. Since ‖Anx‖M(ψ) = ‖Anψ′‖M(ψ)
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for any x ∈ Mψ with x∗ = ψ′, we infer that ‖Anψ′‖M(ψ) = ‖An‖L(M(ψ)),
n ≥ 1. Since ψ′ ⊗ r is Gaussian, the function

(ψ′ ⊗ r)1 + · · ·+ (ψ′ ⊗ r)n√
n

is also Gaussian, in particular, its rearrangement coincides with ψ′. This
means ‖An‖L(Mψ) =

√
n. The result now follows by interpolation between

exp(L1) and exp(L2), since for every 0 < p1 ≤ p2 ≤ ∞ we have

[exp(Lp1), exp(Lp2)]θ,∞ = exp(Lp)

with 1/p = (1− θ)/p1 + θ/p2 (see, for example, [8]).
(ii) Noting that ‖An‖L(L∞) = n, n ≥ 1, we deduce the assertion from (i)

by applying the real method of interpolation to the couple (exp(L2), L∞) as
above.

6. Applications to Banach–Saks index sets. The first main result
of this section, characterizing a subclass of the class of all r.i. spaces E
such that Γiid(E) = Γi(E), is given in Theorem 18 below. We first need a
modification of the subsequence splitting result from [21, Theorem 3.2]. We
present necessary details of the proof for the convenience of the reader.

Theorem 17. Let {xn}n≥1 be a weakly null sequence of independent
functions in a separable r.i. space E with the Fatou property. Then there
exists a subsequence {yn}n≥1 ⊂ {xn}n≥1 which can be split as yn = un +
vn + wn, n ≥ 1. Here {un}n≥1 is a weakly null sequence of independent
identically distributed functions, the sequence {vn}n≥1 is also weakly null
and consists of the elements with pairwise disjoint support and ‖wn‖E → 0
as n→∞.

Proof. Let the probability space (Ω,P) be the infinite direct product
of measure spaces ([0, 1],m). Without loss of generality, we assume that
E = E(Ω) and that each function xn depends only on the nth coordinate.
That is,

xn = 1⊗ n−1· · · ⊗ 1⊗ hn ⊗ 1⊗ · · · , hn ∈ E(0, 1), n ≥ 1.

Consider the sequence {gn}n≥1 = {h∗n}n≥1 ⊂ E(0, 1). Since

‖xn‖E = ‖gn‖E ≥ ‖gnχ[0,s]‖E ≥ gn(s)‖χ[0,s]‖E , s ∈ [0, 1],

and the sequence {xn} is bounded, it follows from Helly’s selection theorem
that there exists a subsequence {g1

n} ⊂ {gn} which converges almost ev-
erywhere on [1/2, 1]. Repeating the argument, we get a subsequence {g2

n} ⊂
{g1
n} which converges almost everywhere on [1/3, 1], etc. Thus, there exists a

function h ∈ L1(0, 1) to which the diagonal sequence {gnn}n≥1 = {(hnn)∗}n≥1

converges almost everywhere. The Fatou property of E guarantees that
h ∈ E(0, 1) and ‖h‖E ≤ 1. There is an operator Pn : L1(0, 1) → L1(0, 1) of
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the form (Pnx)(t) = α(t)x(γ(t)) (here |α(t)| = 1 and γ is a measure preserv-
ing transformation of the interval (0, 1) into itself), such that Pngnn = hnn,
n ≥ 1 (see e.g. [14]). Now, put

yn := 1⊗ 1⊗ · · · ⊗ 1⊗ hnn ⊗ 1 · · · , n ≥ 1,
un := 1⊗ 1⊗ · · · ⊗ 1⊗ (Pnh)⊗ 1 · · · , n ≥ 1.

It is clear that the functions un are independent. The proof is finished by
repeating the remaining argument from [21, Theorem 3.2].

Theorem 18. For an arbitrary separable r.i. space E with the Fatou
property , we have

Γiid(E) = Γi(E) ⇔ Γiid(E) ⊆ Γd(E).

Proof. If Γiid(E) = Γi(E), then the embedding Γiid(E) ⊆ Γd(E) follows
immediately from [1, Lemma 4.1(ii)]. Suppose now that Γiid(E) ⊆ Γd(E) and
let {fk}k≥1 ⊂ E be a normalized weakly null sequence of independent ran-
dom variables on [0, 1]. Passing to a subsequence and applying the preceding
theorem, we may assume that fn = un + vn + wn, n ≥ 1, where {un}n≥1 is
a weakly null sequence of independent identically distributed functions, the
sequence {vn}n≥1 is also weakly null and consists of elements with pairwise
disjoint support, and ‖wn‖E → 0 as n → ∞. By the last convergence, we
may assume that ‖wk‖E ≤ 2−k, and so for every subsequence {zn} ⊂ {wn},
we have ∥∥∥ n∑

k=1

zk

∥∥∥
E
≤ 1.

If, in addition, 1/q ∈ Γiid(E), then our assumptions also guarantee that
there are constants C2, C3 > 0 for which∥∥∥ n∑

k=1

uk

∥∥∥
E
≤ C2n

q,
∥∥∥ n∑
k=1

vk

∥∥∥
E
≤ C3n

q.

We will illustrate the result above in the settings of: (α) r.i. spaces sat-
isfying an upper 2-estimate; (β) Lorentz spaces Λ(ϕ) and Marcinkiewicz
spaces M(ϕ)0, ϕ ∈ Ψ ; and (γ) classical Lp,q-spaces.

(α) Recall that a Banach lattice X is said to satisfy an upper 2-estimate
if there exists a constant C > 0 such that for every finite sequence (xi)ni=1

of pairwise disjoint elements in X,∥∥∥ n∑
j=1

xj

∥∥∥
X
≤ C

( n∑
j=1

‖xj‖2X
)1/2

.

Corollary 19. If E is a separable r.i. space with the Fatou property
and satisfying an upper 2-estimate, then Γiid(E) = Γi(E).



118 F. A. Sukochev and D. Zanin

Proof. The assumption that the space E satisfies an upper 2-estimate
implies immediately that 2 ∈ Γd(E) and hence [1, 2] ⊆ Γd(E). Since Γiid(E)
⊆ [1, 2] (see [1, Lemma 4.1(i)]), the result now follows from Theorem 18.

(β) Although Lorentz spaces do not satisfy an upper 2-estimate, we have

Γd(Λ(ψ)) = [1,∞)

(see e.g. the proof of [1, Corollary 4.8]) and similarly, Γd(M(ψ)0) = [1,∞)
(see e.g. [1, p. 897]) for any ψ ∈ Ψ . Although the Marcinkiewicz spaces
(M(ψ)0) do not have the Fatou property, applying a modification of The-
orem 17 similar to [1, Lemma 3.6], we obtain the following corollary from
Theorem 18.

Corollary 20. For every ψ ∈ Ψ , we have Γi(Λ(ψ)) = Γiid(Λ(ψ)) and
Γi(M(ψ)0) = Γiid(M(ψ)0).

(γ) We will now show that the equality Γi(E) = Γiid(E) fails to hold
in an important subclass of r.i. spaces which plays a significant role in in-
terpolation theory [14, 16]. Recall the definition of the Lorentz spaces Lp,q,
1 < p, q <∞: x ∈ Lp,q if and only if the quasi-norm

‖x‖p,q =
q

p

( 1�

0

(x∗(t)t1/p)q
dt

t

)1/q

is finite. The expression ‖ · ‖p,q is a norm if 1 ≤ q ≤ p and is equivalent to a
(Banach) norm if q > p.

We will now show that Γi(Lp,q) 6= Γiid(Lp,q) provided 1 < q < p < 2. To
this end, we first observe that every normalized sequence {vn}n≥1 ⊂ Lp,q of
functions with disjoint supports contains a subsequence spanning the space
lq (see [9, Lemma 2.1]). In particular, Γd(Lp,q) ⊂ Γ (lq) = [1, q] and so, by [1,
Lemma 4.1(ii)], we have Γi(Lp,q) ⊆ [1, q]. Next, it is proved in [10, Corollary
3.7] (see also [7, Corollary 5.2]) that if p < 2 then for every sequence of
identically distributed independent random variables we have∥∥∥ n∑

k=1

xk

∥∥∥
Lp,q

= o(n1/p),

which implies, in particular, that [1, p] ⊆ Γiid(Lp,q). This shows that (q, p] ⊆
Γiid(Lp,q) \ Γi(Lp,q) as soon as 1 < q < p < 2. We observe that a combina-
tion of Theorem 18 above with the results given in [10] and [21, Section 5]
provides a tool for a complete characterization of the sets Γi(Lp,q), Γiid(Lp,q)
and Γd(Lp,q) for all pairs (p, q). However, such a characterization is beyond
the scope of the present paper.

Our second main result in this section completely characterizes the sub-
class of all Lorentz spaces Λ(ψ), ψ ∈ Ψ , whose Banach–Saks index set
Γi(Λ(ψ)) is non-trivial.
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Theorem 21. Γiid(Λ(ψ)) 6= {1} if and only if the function ψ satisfies
conditions (8) and (9) for some k, l ≥ 2.

Proof. Let {fk}k≥1 ⊂ Λ(ψ) be a normalized weakly null sequence of
independent identically distributed random variables on [0, 1]. Note that we
automatically have

	1
0 fk dm = 0, k ≥ 1.

Using the standard symmetrization trick, we consider another sequence
{f ′k}k≥1 of independent random variables (which is also independent with
respect to the sequence {fk}k≥1) such that f ′k is equidistributed with fk,
and define hk := fk − f ′k, k ≥ 1. Clearly, {hk}k≥1 is a sequence of indepen-
dent symmetric identically distributed random variables. Note that, by [6,
Proposition 11, p. 6], we have∥∥∥ n∑

k=1

fk

∥∥∥
Λ(ψ)
≤ const ·

∥∥∥ n∑
k=1

hk

∥∥∥
Λ(ψ)

, n ≥ 1.

Now, if ψ satisfies conditions (8) and (9), then it follows from Corollary
13 that ‖

∑n
k=1 hk‖Λ(ψ) ≤ const · nq for some q ∈ (0, 1) and hence 1/q ∈

Γiid(Λ(ψ)).
Conversely, let 1/q ∈ Γiid(Λ(ψ)) for some q ∈ (0, 1). Fix f ∈ Λ(ψ) and

consider the sequence {(f ⊗ r)n}n≥1 ⊂ Λ(ψ)(Ω,P), where the probability
space (Ω,P) is the infinite direct product of measure spaces ([0, 1],m). Since
the Lorentz spaces Λ(ψ)(Ω,P) and Λ(ψ)(0, 1) are isometric, and since the
sequence {(f ⊗ r)n}n≥1 is weakly null in Λ(ψ)(Ω,P) (see e.g. [22, Lemma
3.4]), we have

sup
n≥1

1
nq
‖(f ⊗ r)1 + (f ⊗ r)2 + · · ·+ (f ⊗ r)n‖Λ(ψ) ≤ C(f).

Setting Bn := (1/nq)An, n ≥ 1, we have ‖Bnf‖Λ(ψ) ≤ C(f) for every n ≥ 1.
By the uniform boundedness principle, we have ‖Bn‖L(Λ(ψ)) ≤ C <∞ for all
n ≥ 1, or equivalently, ‖An‖L(Λ(ψ)) ≤ Cnq, n ≥ 1. Corollary 9 now implies
that the function ψ satisfies conditions (8) and (9).

The following corollary follows immediately from the above combined
with Corollary 20.

Corollary 22. Γi(Λ(ψ)) 6= {1} if and only if the function ψ ∈ Ψ
satisfies conditions (8) and (9) for some k, l ≥ 2.

We complete this section with the description of Γi(exp(Lp)0), 1≤ p<∞.

Theorem 23. For every 1≤ p≤ 2, we haveΓiid(exp(Lp)0) = Γi(exp(Lp)0)
= [1, 2]. For every 2 ≤ p < ∞, we have Γiid(exp(Lp)0) = Γi(exp(Lp)0) =
[1, p/(p− 1)].
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Proof. The first assertion follows from Remark 2, Theorem 16 and Corol-
lary 20. The same argument shows that Γi(exp(Lp)0) ⊇ [1, p/(p− 1)] for
every 2 ≤ p < ∞. The equality Γi(exp(Lp)0) = [1, p/(p− 1)] follows from
the fact that the estimate

‖Anχ[0,1]‖exp(Lp)0 ≤ const · n1−1/p, n ≥ 1,

is the best possible (see [18, Theorem 8] or [11, Theorem 15]).

7. Concluding remarks and examples. The preceding theorem shows
that the set Γi(exp(Lp)0) is non-trivial for all 1 ≤ p <∞, whereas exp(Lp)
has the Kruglov property if and only if 0 < p ≤ 1. This result extends
and complements [2], where examples of r.i. spaces E with the Kruglov
property such that Γ (E) = {1} and Γi(E) 6= {1} are built. We now present
an example of a Lorentz space Λ(ψ) such that Γi(Λ(ψ)) 6= {1} and which
does not have the Kruglov property.

Example 24. Let ψ ∈ Ψ be given by the condition

ψ(t) :=
1

log1/2(1/t)
, t ∈ [0, e−3/2],

and be linear on [e−3/2, 1]. The space Λ(ψ) does not have the Kruglov prop-
erty, although Γi(Λ(ψ)) 6= {1}.

Proof. Since for every k, l > 1 we have

lim
u→0

ψ(ku)
ψ(u)

= lim
u→0

(
log(u)
log(ku)

)1/2

= 1 < k,

lim
u→0

ψ(ul)
ψ(u)

= lim
u→0

(
log(u)
log(ul)

)1/2

=
1
l1/2

< 1

we see that Γi(Λ(ψ)) 6= {1} by Corollary 22.
By [1, Theorem 5.1] a Lorentz space Λ(φ), φ ∈ Ψ , has the Kruglov

property if and only if

sup
t>0

1
φ(t)

∞∑
n=1

φ

(
tn

n!

)
<∞.

In our case, for every fixed t ≤ e−3/2,
∞∑
n=1

ψ

(
tn

n!

)
=

∞∑
n=1

1
(log(n!) + n log(1/t))1/2

=
∞∑
n=1

1
(n log(n)(1 + o(1)))1/2

=∞.
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