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Abstract. Given a subset A of a topological space X, a locally convex space Y , and
a family C of subsets of Y we study the problem of the existence of a linear C-extender
u : C∞(A, Y ) → C∞(X,Y ), which is a linear operator extending bounded continuous
functions f : A → C ⊂ Y , C ∈ C, to bounded continuous functions f = u(f) : X →
C ⊂ Y . Two necessary conditions for the existence of such an extender are found in
terms of a topological game, which is a modification of the classical strong Choquet game.
The results obtained allow us to characterize reflexive Banach spaces as the only normed
spaces Y such that for every closed subset A of a GO-space X there is a C-extender
u : C∞(A, Y )→ C∞(X,Y ) for the family C of closed convex subsets of Y . Also we obtain
a characterization of Polish spaces and of weakly sequentially complete Banach lattices in
terms of extenders.

Introduction. In this paper, given a subspace A of a topological space
X and a locally convex [ordered] space Y we study the problem of exis-
tence (or rather non-existence) of a linear [monotone] operator that extends
bounded continuous Y -valued functions from A to X. The results obtained
have a dual nature: on the one hand, selecting a suitable pair (X,A) we can
characterize certain important properties of locally convex spaces Y (like re-
flexivity, finite-dimensionality or weak sequential completeness) in terms of
extenders (see Theorems 4.1, 5.1, 9.1), and on the other hand, selecting a
suitable locally convex space Y , we can characterize topological properties
of the pair (X,A) in terms of extenders (see Theorems 3.2, 7.1).

By definition, a (linear) operator u : F (A, Y ) → F (X,Y ) defined on a
(linear) subspace F (A, Y ) ⊂ Y A and taking values in a (linear) subspace
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F (X,Y ) ⊂ Y X is called a (linear) extender if for any function f ∈ F (A, Y )
the function f = u(f) ∈ F (X,Y ) extends f in the sense that f |A = f .

If the space Y is partially ordered, then so are the function spaces Y A

and Y X . In this case we define an extender u : F (A, Y ) → F (X,Y ) to be
monotone if u(f) ≤ u(g) for any functions f ≤ g in F (A, Y ).

Given a collection C of subsets of Y we define an extender u : F (A, Y )→
F (X,Y ) to be a C-extender if u(F (A, Y )∩CA) ⊂ CX for every C ∈ C. This
is equivalent to saying that for every function f : A→ Y the image f (X) of
the extended function f : X → Y lies in the C-hull

hullC(f(A)) =
⋂
{C ∈ C : f(A) ⊂ C}

of f(A) in Y (here we assume that
⋂
∅ = Y ). Three collections C of subsets

of Y will be of special importance for us:

• conv(Y ), the collection of convex subsets of Y ,
• conv(Y ), the collection of closed convex subsets of Y ,
• wcc(Y ), the collection of weakly compact convex subsets of Y .

If Y = Z∗ is a dual space, then we shall also consider the collection

• conv∗(Y ) of all convex subsets of Y , closed in the weak-star topology
of Y .

The corresponding C-extenders will be called conv-, conv-, wcc-, and conv∗-
extenders.

The inclusions wcc(Y ) ⊂ conv(Y ) ⊂ conv(Y ) yield the trivial implica-
tions:

conv-extender ⇒ conv-extender ⇒ wcc-extender.

In the role of linear subspaces F (X,Y ) we shall consider the spaces:

• l∞(X,Y ) of all bounded functions from X to Y ,
• C(X,Y ) of all continuous functions from X to Y ,
• CA(X,Y ) of all functions f : X → Y that are continuous on a subset
A ⊂ X,
• C∞(X,Y ) = C(X,Y ) ∩ l∞(X,Y ) of all bounded continuous functions

from X to Y .

A function f : X → Y is called bounded if its image f(X) is bounded in Y .
The latter means that for every neighborhood U of the origin in Y there is
a real number r with f(X) ⊂ rU .

The space l∞(X,Y ) will be considered as a locally convex space endowed
with the topology of uniform convergence. If Y is a Banach space with norm
‖ · ‖, then the topology of l∞(X,Y ) is generated by the sup-norm ‖f‖∞ =
supx∈X ‖f(x)‖.
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If Y is the real line R, then we omit the symbol R and write l∞(X),
C(X), CA(X), and C∞(X) instead of l∞(X,R), C(X,R), CA(X,R), and
C∞(X,R).

A classical result on conv-extenders belongs to J. Dugundji [Dug].

Theorem 0.1 (Dugundji). For every closed subspace A of a metrizable
space X and every locally convex space Y there is a linear conv-extender
u : Y A → Y X such that u(C(A, Y )) ⊂ C(X,Y ).

In [Bor] C. Borges has shown that Dugundji’s Theorem is still true for any
closed subspace A of a stratifiable space X. On the other hand, R. W. Heath
and D. J. Lutzer [HL] discovered that for the Michael line RQ and its closed
subspace Q even a weaker form of the Dugundji Theorem is not true: no
linear conv-extender C(Q) → C(RQ) exists. Afterwards it was found that
even a monotone extender C(Q) → C(RQ) does not exist (see [vD1], [SV],
[GHO]).

The Michael line RQ is a particular case of the following construction
due to Bing [Bi] and Hanner [Han] (see [Eng, 5.1.22]). Given a subspace A
of a topological space X let XA denote the set X endowed with the Hanner
topology

τA = {D ∪ U : D ⊂ X \A and U is open in X},

which is discrete on X \A but coincides with the original topology at A. The
space XA is sometimes called the Hannerization of X with respect to A.

Observe that each function f : X → Y continuous at all points of the set
A is (globally) continuous with respect to the Hanner topology τA. This is
important because it allows us to reduce the study of extenders C(A, Y )→
CA(X,Y ) to studying extenders of the form C(A, Y )→ C(XA, Y ).

In spite of the fact that no linear conv-extender C(Q) → C(RQ) exists,
a linear conv-extender C∞(Q)→ C∞(RQ) for bounded continuous functions
does exist. This is a particular case of the following result of R. W. Heath
and D. J. Lutzer [HL].

Theorem 0.2 (Heath–Lutzer). For a closed subset A of a GO-space X
there is a linear conv-extender u : C∞(A)→ C∞(X).

We recall that a topological space X is called a generalized ordered space
(briefly, a GO-space) if X is Hausdorff and for a suitable linear order ≤ on
X the space X has a base of the topology consisting of order-convex sets
(see [Lu]). The Michael line RQ is a typical example of a GO-space.

In light of the Dugundji Theorem it was natural to ask about possi-
ble generalizations of the Heath–Lutzer Theorem to locally convex spaces
(see Question (2) in [HL]). In this paper we give many different answers to
this question. Moreover, we show that various properties of locally convex
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(ordered) spaces Y and pairs (X,A) can be characterized with the help of
extenders (see Theorems 1.1, 1.4, 4.1, 5.1, 7.1, 9.1).

For the convenience of the reader we first survey the principal results
of the paper and their interplay with known results, and also prove some
easy immediate corollaries. Afterwards we present proofs of more difficult
theorems.

When working with different topologies on a set Y , we shall write Yτ to
specify a chosen topology τ on Y .

1. Characterizing pairs (X,A) admitting various C-extenders.
In this section we search for conditions on a pair (X,A) guaranteeing the
existence of a (linear) C-extender u : C∞(A, Y ) → C∞(X,Y ) for a given
locally convex space Y . We start with a [probably known] characterization of
pairs (X,A) admitting a (linear) conv-extender u : C∞(A, Y ) → C∞(X,Y )
for every locally convex space Y .

For a Tikhonov space X let P (βX) denote the space of probability mea-
sures on the Stone-Čech compactification of X. The space P (βX) can be
identified with the set of all positive norm-one linear functionals on the Ba-
nach lattice C(βX) = C∞(X) of bounded continuous functions on X. The
space P (βX) is endowed with the weak-star topology induced from C∗(βX).
It is well-known that this topology is generated by the subbase consisting of
the sets {µ ∈ P (βX) : µ(U) > a} where a ∈ R and U runs over the topology
of X. The support supp(µ) of a measure µ ∈ P (βX) is the smallest closed
subset F ⊂ βX with µ(F ) = 1. Five subspaces of P (βX) will be of interest:

P2(βX) = {µ ∈ P (βX) : |supp(µ)| ≤ 2},
Pω(X) = {µ ∈ P (βX) : µ(F ) = 1 for some finite subset F ⊂ X},
PR(X) = {µ ∈ P (βX) : µ(K) = 1 for some σ-compact subset K ⊂ X},
Pτ (X) = {µ ∈ P (βX) : µ(K) = 0 for every compact subset K ⊂ βX \X},
Pσ(X) = {µ ∈ P (βX) : µ(K) = 0 for every closed Gδ-subset K ⊂ βX

with K ∩X = ∅}.
Measures from the sets PR(X), Pτ (X), and Pσ(X) are called Radon, τ -
additive, and σ-additive measures on X, respectively. By [Fe, §1], measures
from the set Pσ(X) can be identified with σ-additive probability measures
on X. This justifies the choice of notation. A more detailed information on
the spaces PR(X) and Pτ (X) can be found in [Vr] and [Ba1], [Ba2].

Quite often, it happens that Pτ (X) = Pσ(X). In particular, this equality
holds for all Lindelöf spacesX (or, more generally, for all paracompact spaces
not containing a closed discrete subset of Ulam-measurable cardinality; see
[BCF, §2]). On the other hand, PR(X) = Pσ(X) for all Polish spaces X
(more generally, for universally measurable spaces; see [BCF, §2]).
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A Tikhonov subspace A of a topological space X is called a Pβ-valued
retract ofX if there is a continuous map r : X → P (βA) such that supp(r(a))
= {a} for every a ∈ A. The latter means that r(a) coincides with the Dirac
measure δa at a. If r(X) ⊂ P2(βA) then we say that A is a P2β-valued retract
of X. If r(X) ⊂ Pω(A), then A is called a Pω-valued retract of X. By analogy
we define PR-valued, Pτ -valued, and Pσ-valued retracts of X.

We recall that CA(X,Y ) stands for the space of functions from X to Y
that are continuous at each point of the subset A ⊂ X.

Theorem 1.1. For a Tikhonov subspace A of a topological space X the
following conditions are equivalent :

(1) For every linear space Y there is a linear conv-extender u : Y A→ Y X

such that u(C∞(A, Yτ )) ⊂ C∞(X,Yτ ) for any locally convex linear
topology τ on Y .

(2) There is a conv-extender u : C∞(A, Y )→ C∞(X,Y ) for Y = C∗∞(A)
endowed with the weak-star topology.

(3) A is a Pω-valued retract of X.

Proof. The implication (1)⇒(2) is trivial.
To prove that (2)⇒(3), fix a conv-extender u : C∞(A, Y ) → C∞(X,Y )

where Y = C∗∞(A) with the weak-star topology. Consider the bounded con-
tinuous map δ : A → C∗∞(A) assigning to each point a ∈ A the Dirac
measure δa. Let r = u(δ) : X → Y be the continuous extension of δ given
by the conv-extender u. It follows that r(X) ⊂ conv(δ(A)) = Pω(A), which
means that r : X → Pω(A) is the required Pω-valued retraction of X onto A.

(3)⇒(1). Fix a Pω-valued retraction r : X → Pω(A). For every x ∈ X
the measure µx = r(x) ∈ Pω(X) can be uniquely written as the convex
combination µx =

∑
a∈Sx µx(a)δa where Sx = {a ∈ A : µx(a) > 0} is the

(finite) support of µx.
Now given a linear space Y , define a linear conv-extender u : Y A → Y X

assigning to each function f : A→ Y the function f : X → Y defined by

f (x) =
�

A

f dµx =
∑
a∈Sx

µx(a) · f(a) for x ∈ X.

It is a standard exercise to check that for every locally convex linear topol-
ogy τ on Y , we get u(C∞(A, Yτ )) ⊂ C∞(X,Yτ ) (see also the proof of the
corresponding implication in Theorem 1.4).

For Pσ-valued retracts we have a slightly weaker result that will be ap-
plied in the proof of Theorem 7.1.

Proposition 1.2. If a Tikhonov subspace A of a topological space X is
a Pσ-valued retract of X, then for every separable Banach space Y there is
a linear conv-extender u : C∞(A, Y )→ C∞(X,Y ).
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Proof. Let r : X → Pσ(A) be a Pσ-valued retraction of X onto A. Given
any bounded continuous function f : A→ Y , consider the closed convex hull
K of f(A) in Y . For the Polish spaceK we have the equality PR(K) = Pσ(K)
and we can also consider the continuous map b : PR(K) → K assigning to
each measure µ ∈ PR(K) its barycenter b(µ) ∈ K (see [Kh1], [Kh2], [Ba2]).
The continuous map f : A→ K induces a continuous map Pσ(f) : Pσ(A)→
Pσ(K) = PR(K). Then the composition b ◦ Pσ(f) : Pσ(A) → K ⊂ Y is
continuous and so is the composition f = b ◦ Pσ(f) ◦ r : X → Y . Observe
that for every a ∈ A we get f (a) = b ◦ Pσ(f) ◦ r(a) = a, which means that
the operator u : C∞(A, Y )→ C∞(X,Y ), u : f 7→ f , is a conv-extender. The
linearity of u follows from the observation that

b ◦ Pσ(f)(µ) =
�

A

f dµ, µ ∈ Pσ(A),

and the linearity of the vector integral.

Question 1.3. Is a Tikhonov subspace A of a topological space X a
Pσ-valued retract in X if for each (separable) Banach space Y there is a
linear conv-extender u : C∞(A, Y )→ C∞(X,Y )?

Next, in terms of Pβ-valued retracts we characterize pairs (X,A) admit-
ting a (linear) conv-extender u : C∞(A, Y )→ CA(X,Y ) for each semireflex-
ive locally convex space Y .

A locally convex space Y is called semireflexive if each bounded closed
convex subset of Y is compact in the weak topology of Y . For a Banach
space semireflexivity is equivalent to reflexivity (see [HHZ, Th. 65]). By the
Banach–Steinhaus Uniform Boundedness Principle each dual Banach space
Y ∗ endowed with the weak-star topology is semireflexive.

We define a linear topological space Y to be countably semireflexive if⋂
n∈ω Cn 6= ∅ for any decreasing sequence (Cn)n∈ω of non-empty bounded

closed convex subsets of Y . It is clear that each semireflexive locally convex
space is countably semireflexive. By the Shmul’yan Theorem 1.13.6 in [Me],
the converse is true for normed spaces: A normed space is (semi)reflexive if
and only if it is countably semireflexive.

A linear topology τ on a locally convex space Y will be called admissible
if τ is stronger than the weak topology and for each neighborhood U ∈ τ of
zero in Y there is a convex neighborhoodW ∈ τ whose closure in Y lies in U .
The space Y endowed with an admissible topology τ will be denoted by Yτ .

Theorem 1.4. For a Tikhonov subspace A of a topological space X the
following conditions are equivalent :

(1) For every semireflexive locally convex space Y there is a linear conv-
extender u : l∞(A, Y ) → l∞(X,Y ) such that u(C∞(A, Yτ )) ⊂
CA(X,Yτ ) for every admissible topology τ on Y .
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(2) There is a conv-extender u : C∞(A, Y )→ CA(X,Y ) for Y = C∗∞(A)
with the weak-star topology.

(3) A is a Pβ-valued retract of XA.

Since the norm topology is admissible for the weak-star topology on a
dual Banach space, Theorem 1.4 implies

Corollary 1.5. Assume that a Tikhonov subspace A of a topological
space X is a Pβ-valued retract of X. Then for every dual Banach space
Y ∗ there is a linear conv∗-extender u : l∞(A, Y ∗) → l∞(X,Y ∗) such that
u(C∞(A, Y ∗)) ⊂ CA(X,Y ∗).

In its turn, the above corollary will be applied to construct linear wcc-
extenders for functions with values in Banach spaces Y that are norm-one
complemented in their biduals Y ∗∗. The class of such Banach spaces includes
all dual Banach spaces [Me, 3.2.23] and also some non-dual spaces like L1.
The latter fact follows from Theorem 1.c.4 of [LT] asserting that each weakly
sequentially complete Banach lattice (in particular, each Banach lattice of
the form L1(µ)) is norm-one complemented in its bidual. On the other hand,
c0 is not complemented in l∞ = (c0)∗∗ (see [Me, 3.2.22]).

Theorem 1.6. Assume that a Banach space Y is norm-one comple-
mented in Y ∗∗ and a Tikhonov subspace A ⊂ X is a Pβ-valued retract of X.
Then there is a linear wcc-extender u : l∞(A, Y ) → l∞(X,Y ) with ‖u‖ = 1
such that u(C∞(A, Y )) ⊂ CA(X,Y ).

Proof. Let P : Y ∗∗ → Y be a linear projector with ‖P‖ = 1. It induces
a norm-one linear operator PX : l∞(X,Y ∗∗) → l∞(X,Y ) assigning to each
bounded function f : X → Y ∗∗ the function PX(f) = P ◦ f . The continuity
of P implies that PX(C∞(XA, Y

∗∗)) ⊂ C∞(XA, Y ).
By Corollary 1.5, there is a linear conv∗-extender u : l∞(A, Y ∗∗) →

l∞(X,Y ∗∗) with unit norm such that u(C∞(A, Y ∗∗)) ⊂ C∞(XA, Y
∗∗). Now

consider the norm-one linear operator v = PX ◦ u : l∞(A, Y ) → l∞(X,Y ),
which assigns to each f ∈ l∞(A, Y ) ⊂ l∞(A, Y ∗∗) the function PX ◦ u(f) :
X → Y . It follows that v(C∞(A, Y )) ⊂ C∞(XA, Y ). If K is a weakly com-
pact convex subset of Y , then K is weak-star closed in Y ∗∗, and consequently
u(l∞(A,K)) ⊂ l∞(X,K). Since PX(f) = f for each f ∈ l∞(X,Y ), we con-
clude that v(l∞(A,K)) ⊂ l∞(X,K), which means that v is a wcc-extender.

Question 1.7. Is there a linear (continuous) extender u : C∞(Q, c0)→
C∞(RQ, c0)?

2. Linear extenders on ordered spaces. In this section we shall
construct nice linear extenders on linearly ordered topological spaces (briefly
LOTS). Those are topological spaces X carrying the interval topology with
respect to some linear order ≤ on X. The interval topology is generated by



130 I. Banakh et al.

the subbase consisting of left and right rays (←, a) = {x ∈ X : x < a}
and (a,→) = {x ∈ X : x > a} for a ∈ X. A Hausdorff topology on (X,≤)
having a base consisting of order-convex sets is called a GO-topology . It can
be shown that the interval topology is the weakest GO-topology on (X,≤).

A set A with the discrete topology will be denoted by Ad.
The principal result of this section is the following

Theorem 2.1. Let A be a non-empty subset of a linearly ordered space
(X,≤), and let i : Ad → A denote the identity map.

(1) There is a function r : X → P2(βAd) such that r(a) = δa, a ∈ A,
and for every GO-topology g 3 X \ A on X, the map P (βi) ◦ r :
Xg → P2(βAg) is continuous.

(2) For any semireflexive locally convex space Y there is a linear conv-
extender u : l∞(A, Y ) → l∞(X,Y ) such that u(C∞(Ag, Yτ )) ⊂
C∞(Xg, Yτ ) for every GO-topology g 3 X \ A on X and every ad-
missible topology τ on Y .

(3) For every dual Banach space Y ∗ there is a linear conv∗-extender
u : l∞(A, Y ∗)→ l∞(X,Y ∗) such that u(C∞(Ag, Y ∗)) ⊂ C∞(Xg, Y

∗)
for every GO-topology g 3 X \A on X.

(4) For any Banach space Y that is norm-one complemented in Y ∗∗ there
is a linear wcc-extender u : l∞(A, Y )→ l∞(X,Y ) with ‖u‖ = 1 such
that u(C∞(Ag, Y )) ⊂ C∞(Xg, Y ) for every GO-topology g 3 X \ A
on X.

Applying this theorem to GO-spaces, we obtain a less complicated corol-
lary generalizing the Heath–Lutzer Theorem 0.2.

Corollary 2.2. Let A be a closed subset of a GO-space X.

(1) A is a P2β-valued retract of X.
(2) For any semireflexive locally convex space Y there is a linear conv-

extender u : l∞(A, Y )→ l∞(X,Y ) such that u(C∞(A, Y ))⊂C∞(X,Y ).
(3) For every dual Banach space Y ∗ there is a linear conv∗-extender

u : l∞(A, Y ∗)→ l∞(X,Y ∗) such that u(C∞(A, Y ∗)) ⊂ C∞(X,Y ∗).
(4) For any Banach space Y that is norm-one complemented in Y ∗∗ there

is a linear wcc-extender u : l∞(A, Y )→ l∞(X,Y ) such that ‖u‖ = 1
and u(C∞(A, Y )) ⊂ C∞(X,Y ).

3. The strong Choquet properties and games. In this section we
shall introduce the so-called strong Choquet property of a subset A in a topo-
logical space X, which is necessary for the existence of a linear conv-extender
u : C∞(A, Y ) → C∞(XA, Y ) for functions with values in non-reflexive Ba-
nach spaces Y . This will prove that the semireflexivity assumption cannot
be removed from Theorems 1.4 and 2.1.
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We shall need two modifications of the classical strong Choquet game
introduced by G. Choquet to give a convenient game characterization of
Polish spaces (see [Ch, Th. 8.7] and also [Ke, §8]).

Our modifications, called the strong Choquet game Gs(A,X) and the rel-
ative strong Choquet game Gr(A,X), are played by two players, I and II, for
a subset A of a topological space X. The games Gs(A,X) and Gr(A,X) are
played in the same manner and differ only by the definition of the outcome.

Player I starts the game selecting a point a0 ∈ A and a neighborhood U0

of a0 inX. Player II responds with a neighborhood V0 ⊂ U0 of a0. Continuing
in this fashion, at the nth inning player I selects a point an ∈ Vn−1∩A and a
neighborhood Un ⊂ Vn−1 of an while player II responds with a neighborhood
Vn ⊂ Un of an. Thus the players construct a sequence of points {an}n∈ω ⊂ A
and two sequences of open subsets (Un)n∈ω and (Vn)n∈ω of X such that an ∈
Vn ⊂ Un ⊂ Vn−1 for all n ∈ N. Player I is declared the winner in the game
Gs(A,X) (resp. Gr(A,X)) if

⋂
n∈ω Un = ∅ (resp. ∅ 6=

⋂
n∈ω Un ⊂ X \ A).

Otherwise, player II wins.

Definition 3.1. If player II has a winning strategy in the gameGr(A,X)
(resp. Gs(A,X)), then we shall say that the subset A is strong Choquet in X
(resp. the space X is strong Choquet at A). A topological space X is strong
Choquet if X is strong Choquet at X.

Let us observe that our definition of a strong Choquet space is equivalent
to the classical definition from [Ke, 8.14]. This justifies our choice of the
terminology.

According to Choquet’s Theorem 8.18 in [Ke], a Tikhonov (metrizable
separable) space X is strong Choquet if (and only if) X is Čech complete.
The latter means that X is a Gδ-set in its Stone–Čech compactification βX.

The following theorem, which is one of the main results of this article,
shows that the (countable) semireflexivity necessarily appears as soon as we
consider linear conv-extenders.

Theorem 3.2. If for a Tikhonov subspace A of a topological space X and
a linear topological space Y there is a linear conv-extender u : C∞(A, Y )→
CA(X,Y ), then either Y is countably semireflexive or the subset A is strong
Choquet in X.

In light of Theorem 3.2 it is important to study strong Choquet subsets
in more detail. This is done in the following

Theorem 3.3. Let A be a subspace of a topological space X.

(1) If X is strong Choquet , then X is strong Choquet at A.
(2) X is strong Choquet at A if and only if XA is strong Choquet at A

if and only if XA is strong Choquet.
(3) If A is strong Choquet , then A is strong Choquet in X.
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(4) The space A is strong Choquet if X is strong Choquet at A and A
is strong Choquet in X.

Now we give a simple condition guaranteeing that a space X is strong
Choquet at a subset A ⊂ X.

Definition 3.4. We shall say that a space X is complete at A if there
is a countable family {Un}n∈N of covers of A by open subsets of X such
that a decreasing sequence (Vn)n∈N of open subsets of X has non-empty
intersection

⋂
n∈N Vn provided for every n ∈ N the following conditions are

satisfied: (i) Vn ∩A 6= ∅, (ii) Vn+1 ⊂ Vn, and (iii) Vn ⊂ U for some U ∈ Un.

Proposition 3.5. Assume that a Tikhonov space X is complete at a
subset A ⊂ X. Then

(1) The space X is strong Choquet at A.
(2) The space A is strong Choquet if and only if A is strong Choquet

in X.
(3) The space A is strong Choquet if there is a linear conv-extender

u : C∞(A, Y )→ CA(X,Y ) for a linear topological space Y that fails
to be countably semireflexive.

Proof. (1) We need to describe a winning strategy for player II in the
game Gs(A,X). Let (Un)n∈N be a sequence of covers of A witnessing that
X is complete at A. To win the game Gs(A,X), player II at an nth inning
should select a neighborhood Vn of the point an given by player I such that
an ∈ Vn ⊂ Vn ⊂ Un ∩ U for some set U ∈ Un. Such a choice guarantees the
victory of player II because

⋂
n∈ω Vn 6= ∅.

(2) The second item follows from the first one and Proposition 3.3(3, 4).
(3) The third item follows from the second one and Theorem 3.2.

Next, we show that the notion of a total π-base considered in [SV] also
leads to strong Choquet subsets. Following [SV, 1.3], we say that a family B
of open subsets of a topological space X is a total π-base at a subset A ⊂ X if

(1) each B ∈ B meets A;
(2) each open subset U ⊂ X meeting A contains a set B ∈ B;
(3) each decreasing sequence B1 ⊃ B2 ⊃ B3 ⊃ · · · of elements of B has

non-empty intersection.

Proposition 3.6. Assume that a topological space X has a total π-base
at a subset A ⊂ X. If the space A is not Baire, then player I has a winning
strategy in the game Gr(A,X) and hence A fails to be strong Choquet in X.

Proof. The space A is not Baire and hence contains an open non-empty
subspace W ⊂ A of the first Baire category. Write W =

⋃
n∈ωWn where

(Wn)n∈ω is an increasing sequence of nowhere dense subsets in W .
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Now we describe a wining strategy of player I in the game Gr(A,X). To
start the game she selects an open set U0 ∈ B and a point x0 ∈ A such that
x0 ∈ U0∩A ⊂W \W0. At the nth inning she receives an open neighborhood
Vn−1 ⊂ Un−1 of xn−1 from player II and then chooses a set Un ∈ B and a
point xn ∈ Un∩A such that Un ⊂ Vn−1\Wn. The existence of Un follows from
the nowhere density of Wn in W and the definition of the total π-base B.

This strategy of player I is winning because
⋂
n∈ω Un is not empty and

avoids A.

Applying this proposition and [SV] to the Michael line, we obtain

Corollary 3.7. The subset Q is not strong Choquet in the Michael
line RQ.

Remark 3.8. Proposition 3.6 shows that various spaces X, besides GO-
spaces, have no linear conv-extender u : C∞(A, Y ) → CA(X,Y ) for a non-
reflexive Banach space Y . For example, the set X = 2ω1 with the count-
able box topology has a total π-base at the closed subset A = {(tα)α<ω1 :
|{α < ω1 : tα 6= 0}| < ℵ0} which is of the first Baire category [SV]
and hence fails to be strong Choquet in X. This implies that the linear
conv-extender property for bounded vector-valued functions can fail in ωµ-
metrizable spaces X.

4. Characterizing reflexive Banach spaces with the help of lin-
ear conv-extenders. Since for normed spaces (countable) semireflexivity
coincides with the usual reflexivity (see [Me, 1.13.6]), we can combine The-
orems 1.4, 3.2 and Corollary 2.2 to obtain the following characterization of
reflexivity in Banach spaces.

Theorem 4.1. For a normed space Y the following conditions are equiv-
alent :

(1) Y is reflexive.
(2) For every GO-space X and a closed subspace A ⊂ X there is a linear

conv-extender u : l∞(A, Y ) → l∞(X,Y ) such that u(C∞(A, Y )) ⊂
C∞(X,Y ).

(3) For every topological space X and a Tikhonov subspace A ⊂ X
that is a Pβ-valued retract of X there is a linear conv-extender
u : l∞(A, Y )→ l∞(X,Y ) such that u(C∞(A, Y )) ⊂ CA(X,Y ).

(4) There is a linear conv-extender u : C∞(A, Y )→ CA(X,Y ) for some
topological space X and some Tikhonov subspace A ⊂ X that is not
strong Choquet in X.

(5) There is a linear conv-extender u : C∞(Q, Y )→ C(RQ, Y ).

Proof. The implication (1)⇒(2, 3) follows from Corollary 2.2 and The-
orem 1.4; (2)⇒(5) is trivial and (3)⇒(5) follows from Corollary 2.2(1). The
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implication (5)⇒(4) follows from Corollary 3.7 while (4)⇒(1) follows from
Theorem 3.2 and the reflexivity of countably semireflexive normed spaces
guaranteed by the Shmul’yan Theorem 1.13.6 of [Me].

5. Characterizing finite-dimensional Banach spaces with the
help of extenders. By Theorem 4.1, the reflexivity of a Banach space
Y is equivalent to the existence of a linear conv-extender u : C∞(Q, Y ) →
C∞(RQ, Y ). Now we shall construct a space Π containing a countable closed
discrete subset N ⊂ Π for which the existence of a linear extender u :
C∞(N,Y )→ C∞(Π,Y ) characterizes finite-dimensional Banach spaces Y .

In the Stone–Čech compactification βN of the set N of positive integers,
take any free ultrafilter p ∈ βN \ N and consider the subspace N ∪ {p} with
a unique non-isolated point p.

Let [0, ω1) stand for the space of all countable ordinals with the order
topology. Let N = N×{ω1} and Π = N× [0, ω1]∪{p}× [0, ω1) be subspaces
of the product (N ∪ {p})× [0, ω1].

Theorem 5.1. For a normed space Y the following conditions are equiv-
alent :

(1) There is a linear conv-extender u : C∞(N,Y )→ C∞(Π,Y ).
(2) There is an extender u : C∞(N,Y )→ C(Π,Y ).
(3) Y is finite-dimensional.

Proof. The implication (1)⇒(2) is trivial.
(2)⇒(3). If Y is infinite-dimensional, then we can find a homeomorphism

f : N → Y onto a bounded closed discrete subset of Y . We claim that there
is no continuous map f : Π → Y with f |N = f . Supposing that such a
continuous map exists, we can use the metrizability of Y to find a countable
ordinal α such that f (n, α) = f (n, ω1) for all n ∈ N. Now the continuity
of f at the point (p, α) would imply that f (p, α) is a limit point of the set
f (N×{α}) = f(N), which contradicts the choice of f(N) as a closed discrete
subset of Y .

(3)⇒(1). If Y is finite-dimensional, then each bounded map f : N → Y
can be extended to a continuous map βf : βN → Y defined on βN =
βN×{ω1}. Now extend f to a continuous map f : Π → Y letting f (x, α) =
βf(x) for (x, α) ∈ Π ⊂ βN × [0, ω1]. Observe that f (Π) ⊂ f(N). Con-
sequently, the operator u : C∞(N,Y ) → C∞(Π,Y ), f 7→ f , is a linear
conv-extender.

Remark 5.2. Since Π = N × [0, ω1] ∪ {p} × [0, ω1) is the union of two
orderable spaces, we see that Corollary 2.2 cannot be generalized to spacesX
that are unions of two orderable spaces.
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6. Monotone extenders for functions with values in pospaces.
It turns out that the method of proof of Theorem 3.2 can be modified
to yield the non-existence of monotone extenders for functions with val-
ues in pospaces. As a result we obtain a general theorem that generalizes
many known results on the non-existence of extenders (see [vD1], [HL],
[SV], [GHO]).

By a pospace we understand a topological space Y endowed with a partial
order ≤. For y ∈ Y and B ⊂ Y let

↑y = {x ∈ Y : x ≥ y} and ↑B =
⋃
b∈B
↑b

be the upper cones of y and B in Y .
Observe that a subset B has an upper bound in Y if and only if⋂

b∈B ↑b 6= ∅.
We shall say that a subset B ⊂ Y is almost upper bounded in Y if⋂

b∈B ↑Gb 6= ∅ for any family {Gb}b∈B of Gδ-subsets of Y with b ∈ Gb, b ∈ B.
It is clear that each upper bounded set B ⊂ Y is almost upper bounded

while the converse is true if each point b ∈ B has countable pseudocharacter
in Y . In particular, each almost upper bounded subset in a metrizable space
is upper bounded.

By an ω-increasing ray in a pospace Y we shall understand a continuous
map γ : [0,∞) → Y such that γ(n) ≤ γ(t) for any integer n ∈ ω and real
t ≥ n.

Theorem 6.1. If for a subspace Y0 of a pospace Y and a Tikhonov sub-
space A of a topological space X there is a monotone extender u : C(A, Y0)→
CA(X,Y ), then either A is strong Choquet in X or else for each ω-increasing
ray γ : [0,∞)→ Y0 the set γ(ω) is almost upper bounded in Y .

Applying this theorem to the real line R, we obtain the following corollary
generalizing Theorem 1.4 of [SV].

Corollary 6.2. A Tikhonov subspace A of a topological space X is
strong Choquet in X if there is a monotone extender u : C(A)→ CA(X).

Applying Theorem 6.1 to the Banach lattice c0 (endowed with the natural
partial order), we obtain another non-existence result. Here we remark that
each linear conv-extender u : C∞(A, c0)→ C∞(X, c0) is monotone.

Corollary 6.3. A Tikhonov subspace A of a topological space X is
strong Choquet in X if there is a monotone extender u : C∞(A, c0) →
CA(X, c0).

Proof. Denote by (en)n∈N the standard basis of c0. Let γ : [0,∞) → c0
be the increasing piecewise linear function such that γ(n) =

∑n
i=1 ei for all

n ∈ N. It is clear that the set γ(ω) is norm-bounded but has no upper bound
in c0. Applying Theorem 6.1 we conclude that A is strong Choquet in X.
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Surprisingly, we do not know if the same result is true for the Banach
lattice c of all convergent sequences.

Question 6.4. Is there a monotone extender u : C∞(Q, c)→ C(RQ, c)?

7. Characterizing Polish spaces with the help of extenders. In
this section we unify all results proved in the preceding sections and obtain
the following characterization of Polish spaces.

Theorem 7.1. For a metrizable separable space A the following condi-
tions are equivalent :

(1) A is Polish.
(2) A is strong Choquet.
(3) A is a Pω-valued retract in each normal space X containing A as a

closed subspace.
(4) A is a Pσ-valued retract in some topological space X ⊃ A that is

strong Choquet at A.
(5) For every locally convex linear topological space Y and every normal

space X containing A as a closed subspace there is a linear conv-
extender u : C(A, Y )→ C(X,Y ).

(6) For some infinite-dimensional Banach space Y and some topological
space X ⊃ A that is strong Choquet at A there is a conv-extender
u : C∞(A, Y )→ CA(X,Y ).

(7) For some topological space X ⊃ A that is strong Choquet at A and
some separable non-reflexive Banach space Y there is a linear conv-
extender u : C∞(A, Y )→ CA(X,Y ).

(8) For some topological space X ⊃ A that is strong Choquet at A there
is a monotone extender u : C(A)→ CA(X).

(9) For some topological space X ⊃ A that is strong Choquet at A there
is a monotone extender u : C∞(A, c0)→ CA(X, c0).

Proof. We shall establish the implications (2)⇒(1)⇒(5)⇒(3, 6)⇒(4)⇒
(7)⇒(2) and (5)⇒(7, 8, 9)⇒(2).

The implication (2)⇒(1) is due to G. Choquet (see [Ke, 8.18]).
(1)⇒(5). Assume that A is a Polish space. By [Ke, 4.17], A admits a

closed embedding e : A → Rω. Given any normal subspace X containing
A as a closed subset, we can apply the Tietze–Urysohn Theorem to find a
continuous map g : X → Rω extending e. By the Dugundji Theorem 0.1, for
every locally convex space Y there is a linear conv-extender v : C(e(A), Y )→
C(Rω, Y ). Now define a linear conv-extender u : C(A, Y )→ C(X,Y ) by the
formula u(f) = v(f ◦ e−1) ◦ g : X → Y .

(5)⇒(3). LetX be a normal space containing A as a closed subspace. Let
Y = C∗∞(A) with the weak-star topology. By (5), there is a conv-extender u :
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C∞(A, Y ) → C∞(X,Y ). Then the embedding δ : A → Pω(A) ⊂ C∗∞(A) as-
signing δa to each a ∈ A has a continuous extension r = u(δ) : X → Y given
by the conv-extender u. It follows that r(X) ⊂ conv(δ(A)) = Pω(A), which
means that r : X → Pω(A) is the required Pω-valued retraction of X onto A.

The implications (3)⇒(4) and (5)⇒(6–9) will follow as soon as we find a
normal space X ⊃ A that is strong Choquet at A. For this take any metriz-
able compactification K of A and consider the space KA. The compactness
of K implies the completeness of KA at A. By Proposition 3.5(1), the space
KA is strong Choquet at A. The normality of KA follows from [Eng, 5.1.22].

To prove the implication (6)⇒(4), assume that for some infinite-dimen-
sional Banach space Y and some topological space X ⊃ A that is strong
Choquet at A there exists a conv-extender u : C∞(A, Y ) → C(XA, Y ). Let
K be any metrizable compactification of the separable metrizable space A
and let P (K) be the space of probability measures on K. Let δ : A→ P (K)
be the embedding assigning δx to each x ∈ A. Observe that Pω(A) coincides
with the convex hull of δ(A) in P (K).

According to [BP, §III.2], there is a continuous affine embedding e :
P (K) → Y . Consider the map g = e ◦ δ : A → Y and its continuous exten-
sion g = u(g) : XA → Y . Since u is a conv-extender, g(X) ⊂ conv(g(A)) =
e(Pω(A)). It is clear that the map r = e−1 ◦ g : XK → Pω(A) is contin-
uous and r|A = δ, which means that A is a Pω-valued retract of XA. By
Theorem 3.3(2), the space XA is strong Choquet at A.

The implication (4)⇒(7) follows from Proposition 1.2, and (7, 8, 9)⇒(2)
from Theorem 3.2 and Corollaries 6.2, 6.3, respectively.

8. Monotone extenders for functions with values in Banach lat-
tices. In light of Corollary 6.3 it is natural to ask about the existence of
linear monotone extenders u : C∞(A, Y ) → C∞(X,Y ) for functions taking
their values in a (non-reflexive) Banach lattice Y . Many classical Banach
spaces like c0, lp, Lp, C(K) have the natural structure of a Banach lattice.

We recall that a Banach lattice is a real Banach space (Y, ‖ · ‖) endowed
with a partial order ≤ satisfying the following four axioms (see [LT]):

• x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ Y ;
• a · x ≥ 0 for any x ≥ 0 in Y and any real number a ≥ 0;
• any two points x, y ∈ Y have the largest lower and smallest upper

bounds x ∧ y and x ∨ y in Y ;
• ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y| where the absolute value |x| of x ∈ Y is

defined by |x| = −x ∨ x.
Let us remark that the dual Banach space Y ∗ to a Banach lattice Y is

a Banach lattice with respect to the partial order ≤ defined by declaring
x∗ ≤ y∗ for x∗, y∗ ∈ Y ∗ iff x∗(z) ≤ y∗(z) for all z ≥ 0 in Y .
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We shall say that a Banach lattice Y is positively norm-one complemented
in its bidual Y ∗∗ if there is a linear monotone projector P : Y ∗∗ → Y with
‖P‖ = 1. The class of such Banach lattices includes all dual Banach lattices
and also all weakly sequentially complete Banach lattices (like L1(µ)) (see
[LT, 1.c.4]).

The following theorem is a monotone version of Theorem 1.6 and can be
proved by analogy.

Theorem 8.1. For any Pβ-valued retract A of a topological space X
and every Banach lattice Y that is positively norm-one complemented in Y ∗∗
there is a linear monotone wcc-extender u : l∞(A, Y )→ l∞(X,Y ) such that
‖u‖ = 1 and u(C∞(A, Y )) ⊂ CA(X,Y ).

The same concerns the following corollary that can be derived from The-
orem 2.1(2).

Corollary 8.2. For every subset A of a linearly ordered space (X,≤)
and every Banach lattice Y that is positively norm-one complemented in Y ∗∗
there is a linear monotone wcc-extender u : l∞(A, Y )→ l∞(X,Y ) such that
‖u‖ = 1 and u(C∞(Ag, Y )) ⊂ C∞(Xg, Y ) for any GO-topology g 3 X \ A
on X.

Now we are going to characterize the σ-complete Banach lattices Y ad-
mitting a linear monotone extender u : C∞(A, Y ) → C∞(X,Y ) for any
closed subset A of a GO-space X. The characterization Theorem 9.1 below
relies on the notion of a ⊥-extender defined as follows.

Two elements x, y of a Banach lattice Y are called disjoint if |x|∧ |y| = 0.
For any point y ∈ Y the set

y⊥ = {x ∈ Y : |x| ∧ |y| = 0}

of elements disjoint from y is a closed linear subspace in Y called the polar
of y (see [LT]). For a subset B ⊂ Y the closed linear subspace

B⊥ =
⋂
b∈B

b⊥

is called the polar of B, and B⊥⊥ = (B⊥)⊥ is the bipolar of B. It is clear
that B⊥⊥ is a closed linear subspace of Y , containing B.

An extender u : C∞(A, Y ) → Y X will be called a ⊥-extender if u is
a C-extender for the collection C = {B⊥ : B ⊂ Y } of polar sets. It is
easy to see that an extender u : C∞(A, Y ) → C∞(X,Y ) is a ⊥-extender
if and only if for every bounded function f : A → Y the image f (X) of
the extended function f = u(f) : X → Y lies in the bipolar f(A)⊥⊥. An
extender which is simultaneously a ⊥-extender and a wcc-extender will be
called a ⊥-wcc-extender.
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Now we shall derive from Theorem 6.1 a necessary condition for the
existence of a monotone extender.

Theorem 8.3. Assume that a Tikhonov subspace A of a topological space
X is not strong Choquet in X. If for a Banach lattice Y there is a monotone
extender u : C∞(A, Y ) → CA(X,Y ) (which is a ⊥-extender), then each
countable norm-bounded upward directed subset D ⊂ Y has an upper bound
in Y (in D⊥⊥).

Proof. Let D = {yn : n ∈ N} ⊂ Y be a countable norm-bounded upward
directed subset. Since D is upward directed, by induction we can construct
an increasing sequence {zn}n∈ω ⊂ D such that zn ≥ yi for all i ≤ n. Then
each upper bound for the set E = {zn}n∈ω is also an upper bound for D.
Consider the piecewise linear map γ : [0,∞) → Y defined by γ(k) = zk
for all k ∈ ω. It follows that γ is an ω-increasing ray with bounded range
B = γ([0,∞)). Consequently, C(A,B) ⊂ C∞(A, Y ) and the restriction
v = u|C(A,B) : C(A,B) → CA(X,Y ) is a well-defined monotone exten-
der. Applying Theorem 6.1, we conclude that the set γ(ω) = E is (almost)
upper bounded in Y .

Now assume that u : C∞(A, Y ) → CA(X,Y ) is a ⊥-extender and thus
u(C∞(A,D⊥⊥)) ⊂ CA(X,D⊥⊥).

Observe that E⊥⊥ ⊃ E is a linear subspace of Y and thus B = γ([0,∞))
⊂ conv(γ(ω)) ⊂ conv(E) ⊂ E⊥⊥ ⊂ D⊥⊥. Then C(A,B) ⊂ C∞(A,D⊥⊥)
and we can consider the monotone extender v = u|C(A,B) : C(A,B) →
CA(X,D⊥⊥). By Theorem 6.1 the set E = γ(ω) is (almost) upper bounded
in D⊥⊥.

9. Characterizing weakly sequentially complete Banach lattices.
In this section we characterize weakly sequentially complete Banach lattices
with the help of monotone extenders.

We recall that a Banach lattice Y is called

• σ-complete if each upper bounded increasing sequence {yn}n∈ω ⊂ Y
has the smallest upper bound ∨n∈ωyn;
• order continuous if each downward directed subsetD ⊂ Y with ∧D = 0

contains zero in its closure.

For example, c0 is σ-complete but not order continuous while c is not σ-
complete. By [LT, 1.a.8] each order continuous Banach lattice is σ-complete.

Theorem 9.1. For a Banach lattice Y the following conditions are equiv-
alent :

(1) Y is weakly sequentially complete.
(2) Y does not contain a copy of c0.
(3) Norm-bounded increasing sequences in Y converge.
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(4) Y is order continuous and there is a monotone extender u :C∞(A, Y )
→ CA(X,Y ) for some topological space X and a Tikhonov subspace
A ⊂ X, which is not strongly Choquet in X.

(5) Y is σ-complete, does not contain a copy of l∞, and there is a mono-
tone extender u : C∞(A, Y ) → CA(X,Y ) for some topological space
X and a Tikhonov subspace A ⊂ X, which is not strongly Choquet
in X.

Moreover , if dens(Y ) < c, then conditions (1)–(5) are equivalent to:

(6) For every subset A of a linearly ordered space (X,≤) there is a linear
monotone ⊥-wcc-extender u : l∞(A, Y )→ l∞(X,Y ) such that ‖u‖= 1
and u(C∞(Ag, Y )) ⊂ C∞(Xg, Y ) for every GO-topology g 3 X \ A
on X.

(7) There is a monotone ⊥-extender u : C∞(A, Y ) → CA(X,Y ) for
some topological space X and a Tikhonov subspace A ⊂ X, which is
not strongly Choquet in X.

Proof. The equivalence of the first three conditions is well-known and
can be found in [LT, 1.c.4].

(2)⇒(5). Assume that Y does not contain a copy of c0. Then it does not
contain a copy of l∞ either. By [LT, 1.c.4, 1.a.8], Y is σ-complete, and by
[LT, 1.c.4], it is positively norm-one complemented in its bidual space. By
Corollary 8.2, there is a monotone extender u : C∞(Q, Y ) → C∞(RQ, Y ).
By Corollary 3.7, Q is not strong Choquet in RA. Thus (5) follows.

(5)⇒(4). Assume that Y is σ-complete but contains no copy of l∞. By
Propositions 1.a.7 and 1.a.8 of [LT], Y is order continuous.

(4)⇒(3). By Theorem 8.3, norm-bounded increasing sequences in Y are
upper-bounded and thus converge by the order continuity of Y .

Now assume that dens(Y ) < c.
(1)⇒(6). Assume that Y is weakly sequentially complete, and let A be

a subset of a linearly ordered space (X,≤).
By Theorem 2.1(2), there is a linear conv∗-extender u : l∞(A, Y ∗∗) →

l∞(X,Y ∗∗) such that u(C∞(Ag, Y ∗∗))⊂ C∞(Xg, Y
∗∗) for every GO-topology

g 3 X \ A on (X,≤). Since the positive cone Y ∗∗+ = {y∗∗ ∈ Y ∗∗ : y∗∗ ≥ 0}
is convex and closed in the weak-star topology of Y ∗∗, we conclude that
u(l∞(A, Y ∗∗+ )) ⊂ l∞(X,Y ∗∗+ ), which implies that u is monotone.

By Theorem 1.c.4 of [LT], the weak sequential completeness of Y implies
the existence of a monotone norm-one projector P : Y ∗∗ → Y whose kernel
coincides with Y ⊥ ⊂ Y ∗∗. Consequently, Y ∗∗ can be identified with Y ⊕Y ⊥.
By analogy with the proof of Theorem 1.6, we can consider the extender
v : l∞(A, Y ) → l∞(X,Y ) assigning to each f ∈ l∞(A, Y ) the function
P ◦ u(f) : X → Y and prove that v is a wcc-extender with v(C∞(A, Y )) ⊂
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C∞(X,Y ). Being the composition of two monotone norm one operators, the
extender v is monotone and has norm ‖v‖ = 1.

It remains to prove that v is a ⊥-extender. Given any B ⊂ Y we should
prove that v(f)(X) ⊂ B⊥ ⊂ Y for every bounded function f : A → B⊥.
Since B⊥ =

⋂
b∈B b

⊥, it suffices to check that v(f)(X) ⊂ b⊥ for every b ∈ B.
By Proposition 1.a.9 of [LT], Y = Y1 ⊕ Y2 where Y1 = b⊥ and Y2 = b⊥⊥.

Consequently, Y ∗∗ = Y ∗∗1 ⊕Y ∗∗2 and Y ∗∗1 is weak-star closed in Y ∗∗. The sub-
lattices Y1, Y2 of Y are weakly sequentially complete and by Theorem 1.c.4
of [LT], their biduals decompose as Y ∗∗i = Yi ⊕ Y ⊥i where the polar set
Y ⊥i is taken in Y ∗∗i . Consequently, Y ∗∗ = Y1 ⊕ Y2 ⊕ Y ⊥1 ⊕ Y ⊥2 = Y ⊕ Y ⊥
and P (Y ∗∗1 ) ⊂ Y1. Since u is a conv∗-extender, u(f)(X) ⊂ conv∗(f(A)) ⊂
conv∗(Y1) ⊂ Y ∗∗1 and then v(f)(X) = P (u(f)(X)) ⊂ P (Y ∗∗1 ) ⊂ Y1 = b⊥.

The implication (6)⇒(7) follows from Corollary 3.7.
It remains to prove that (7)⇒(2). By Theorem 8.3, condition (7) implies

that each norm-bounded countable upward directed subset D ⊂ Y has an
upper bound in D⊥⊥. Suppose that Y contains a copy of c0. By the proof
of Theorem 1.a.5 in [LT] (see remark after Theorem 1.c.4 there), Y contains
c0 as a sublattice. Denote by (en)n∈N the standard basis of c0 and let c =
infn∈N ‖en‖ > 0 where ‖ · ‖ stands for the norm of Y .

For every A ⊂ N consider the countable upward directed subset DA =
{
∑

i∈F ei : F ⊂ A is finite}. By Theorem 8.3, this set has an upper bound
bA ∈ D⊥⊥A ⊂ Y .

Let us show that ‖bA − bB‖ ≥ c for any distinct A,B ⊂ N. Without loss
of generality, there is an n ∈ B \ A. Since en ∈ D⊥A and bA ∈ D⊥⊥A , we see
that bA and en are disjoint and hence bA ∧ en = |bA| ∧ |en| = 0. Now we see
that

(bB − bA) ≥ (bB − bA) ∧ en = bB ∧ en − bA ∧ en = bB ∧ en − 0 = en

and hence ‖bB − bA‖ ≥ ‖en‖ ≥ c. Consequently, {bA : ∅ 6= A ⊂ N} is
a discrete subset of size continuum in Y , which is not possible because
dens(Y ) < c.

Remark 9.2. For a subset A of a topological space X and a Banach
lattice Y consider the following three properties:

(1) There is a linear conv-extender u : C∞(A, Y )→ C∞(X,Y ).
(2) There is a norm-one linear extender u : C∞(A, Y )→ C∞(X,Y ).
(3) There is a monotone linear extender u : C∞(A, Y )→ C∞(X,Y ).

It is clear that (1)⇒(2, 3). In [vD1] and [vD2] E. K. van Douwen asked if for
Y = R there are other implications among these conditions. The results of
this paper show that (1) does not follow from (2, 3). Indeed, by Theorem 9.1,
for Y = l1 and the Michael line X = RQ there is a monotone norm-one linear
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extender u : C∞(A, l1) → C∞(RQ, l1) for every closed subset A ⊂ RQ. Yet,
by Theorem 4.1, no linear conv-extender u : C∞(Q, l1)→ C∞(RQ, l1) exists.

10. Proof of Theorem 1.4. Let A be a Tikhonov subspace of a topo-
logical space X.

The implication (1)⇒(2) will follow as soon as we show that Y = C∗∞(A)
with the weak-star topology is semireflexive. But this follows from the
Banach–Steinhaus Uniform Boundedness Principle (see [HHZ, Th. 58]).

To prove that (2)⇒(3), fix a conv-extender u : C∞(A, Y ) → CA(X,Y )
where Y = C∗∞(A) with the weak-star topology. Since each f ∈ C∞(A)
admits a unique continuous extension to βA, we can identify C∞(A) with
C(βA) and Y with C∗(βA). Consider the bounded continuous map δ : A→
C∗(βA) assigning δa to each a ∈ A. Let r = u(δ) : XA → Y = C∗(βA) be
the continuous extension of δ given by the conv-extender u. It follows that
r(X) ⊂ conv(δ(A)) = P (βA), which means that r : XA → P (βA) is the
required Pβ-valued retraction of XA onto A.

(3)⇒(1). Fix a Pβ-valued retraction r : XA → P (βA). Denote by Ad the
space A endowed with the discrete topology. The identity map i : Ad → A is
continuous and hence extends to a continuous surjective map βi : βAd → βA.
This map induces a surjective continuous map P (βi) : P (βAd) → P (βA).
The surjectivity of P (βi) allows us to select a (generally discontinuous) func-
tion s : X → P (βAd) such that P (βi) ◦ s = r and s(a) = δa for all a ∈ A.

Now, given a locally convex semireflexive space Y , we are ready to define a
linear conv-extender u : l∞(A, Y )→ l∞(X,Y ). Given any bounded function
f : A→ Y , consider the closed convex hull Kw ⊂ Yw of f(A), endowed with
weak topology. The semireflexivity of Y guarantees that Kw is compact. Let
βfd : βAd → Kw be the continuous extension of fd = f ◦ i : Ad → Kw.

For every x ∈ X consider the probability measure µx = s(x) and the
Pettis integral

(1) u(f)(x) =
�

βAd

(βfd) dµx ∈ Kw ⊂ Yw,

which is well-defined because Kw is weakly compact and convex (see
[DU, § II.3]).

The linearity of the Pettis integral implies that u : C∞(A, Y ) → Y X ,
f 7→ u(f), is a well-defined linear conv-extender.

It remains to check that for any admissible topology τ on Y the function
u(f) : X → Yτ is continuous at A provided f : A→ Yτ is continuous. Given
any a ∈ A and an open convex neighborhood O ⊂ Yτ of zero we should
find a neighborhood W ⊂ X of a such that u(f)(W ) ⊂ f(a) + O. Since τ
is admissible, there is an open convex symmetric neighborhood U ⊂ Yτ of
zero whose closure U in Y lies in 1

3O. By the Hahn–Banach Theorem, the
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set U , being closed and convex, is weakly closed. Now the continuity of βf :
βA→ Yw implies that F = (βf)−1(f(a) + U) is closed in βA. On the other
hand, the continuity of f : A→ Yτ implies that V = f−1(f(a) + U) is open
in A. It follows from the regularity of βA that V ⊂ F is a neighborhood of a
in βA. Consequently, F is a neighborhood of a in βA and F ′ = (βi)−1(F ) ⊂
βAd is a neighborhood of a in βAd.

Since f : A → Yτ is bounded, there is a number m so large that
f(A) ⊂ mU . Then Kw = conv(f(A)) ⊂ mU and Kw − f(a) ∈ mU −mU =
2mU . It follows that V = {µ ∈ P (βA) : µ(F ) > 1 − 1/m} is a neighbor-
hood of δa in P (βA). Since the Pβ-valued retraction r is continuous at a,
there is a neighborhood W ⊂ X of a such that r(W ) ⊂ V. We claim that
u(f)(W ) ⊂ f(a) +O.

Take any x ∈ W and consider the measures r(x) ∈ V and µx = s(x) ∈
P (βAd). It follows from P (βi)(µx) = P (βi)(s(x)) = r(x) that µx(F ′) >
1− 1/m. Then

u(f)(x)− f(a) =
�

βAd

(βfd − f(a)) dµx

=
�

βAd\F ′
(βfd − f(a)) dµx +

�

F ′

(βfd − f(a)) dµx

∈ µx(βAd \ F ′) · (Kw − f(a)) + µx(F ′) · U

⊂ 1
m

2mU + U = 3U ⊂ O.

11. Proof of Theorem 2.1. Let A be a non-empty subset of a linearly
ordered space (X,≤). By [Lu, 2.9], the linearly ordered topological space
(X,≤) has a linearly ordered compactification (X,≤).

(1) Let Ad be A with the discrete topology and i : Ad → A be the
identity map. We shall construct a function r : X → P2(βAd) such that
r(a) = δa and for every GO-topology g 3 X \ A on X the composition
P (βi) ◦ r : Xg → P2(βAg) is continuous.

Let A be the closure of A in X and βi : βAd → A be the Stone-Čech
extension of i. We shall identify βAd with the set of Dirac measures in
P2(βAd). For every a ∈ A select an ultrafilter ua ∈ βAd such that βi(ua) = a
and ua = a if a ∈ A.

Write X \ A as the disjoint union
⋃
C of the family C of order-convex

components of X \ A. Those are maximal order-convex subsets of X \ A.
For each C ∈ C we define an order-convex set C̃ ⊃ C and a continuous map
rC : C̃ → P2(βAd) as follows.

If C = (←,minA), then we put C̃ = (←,minA] and bC = uminA, and
we let rC : C̃ → {bC} ⊂ βAd ⊂ P2(βA) be the constant map.
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If C = (maxA,→), then we put C̃ = [maxA,→) and aC = umaxA, and
we let rC : C̃ → {aC} ⊂ βAd ⊂ P2(βA) be the constant map.

In the remaining case, C = (a, b) for some a < b in A. Let aC = ua and
bC = ub. Using the normality of the compact space X, find a continuous
function λC : X → [0, 1] such that λC(a) = 0 and λC(b) = 1. Finally, define
rC : C̃ → P2(βAd) by the formula

rC(x) = (1− λC(x)) · aC + λC(x) · bC , x ∈ C.
Putting together the maps rC , C ∈ C, define a function r : X → P2(βAd)

by the formula

r(x) =
{
ux if x ∈ A,
rC(x) if x ∈ C ∈ C.

Observe that r|C̃ is continuous for every C ∈ C. It remains to prove that r
has the continuity property required in item (1) of Theorem 2.1. We shall
return to this problem after establishing item (2).

(2) Given a semireflexive locally convex space Y , we shall define a linear
conv-extender v : l∞(A, Y ) → l∞(X,Y ). Take any bounded function f :
A→ Y and set fd = f ◦i : Ad → Y . The semireflexivity of Y guarantees that
the closed convex hullKw of f(A) is compact in the weak topology of Y . Then
fd : Ad → Kw has a continuous extension βfd : βAd → Kw. For every x ∈ X
we can integrate this function against the measure µx = r(x) ∈ P2(βAd) to
obtain the value f (x) =

	
βAd

(βfd) dµx of the function v(f) = f at the point
x ∈ X.

It is clear that the so-defined operator v : l∞(A, Y )→ l∞(X,Y ), f 7→ f
= v(f), is a linear conv-extender. It induces a linear conv-extender u :
l∞(A, Y )→ l∞(X,Y ), f 7→ u(f)|X.

To finish the proof of Theorem 2.1(2), it remains to show u(C∞(Ag, Yτ ))
⊂ C∞(Xg, Yτ ) for every GO-topology g 3 X \A on (X,≤) and every admis-
sible topology τ on Y . Take any f ∈ C∞(Ag, Yτ ) and f = v(f) : X → Y . It
follows from the definition of f that f |C̃ is continuous for every C ∈ C. So
it remains to check the continuity of u(f) = f |X at each x0 ∈ A ∩X.

It suffices to prove that the restrictions of f to the closed subsets

X−g = (←, x0] ∩Xg and X+
g = [x0,→) ∩Xg

are continuous at x0. We shall do that for X+
g ; the argument for X−g is

analogous. If x0 is isolated in X+
g , then there is nothing to prove: f |X+

g is
trivially continuous at x0.

So suppose that x0 is not isolated in X+
g . First we consider the case

x0 ∈ A \ A. Since A is closed in Xg, there is an order-convex open set
U ⊂ X+

g such that x0 ∈ U ⊂ X+
g \ A. Since x0 is not isolated in X+

g , there
is a point x1 ∈ U . It follows that (x0, x1) ∩ A = ∅ and hence (x0, x1) ⊂ C
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and [x0, x1) ⊂ C̃ for some C ∈ C. Now the continuity of f |[x0, x1) follows
from the continuity of f |C̃.

Next, suppose that x0 ∈ A. Given any open neighborhood O ⊂ Yτ of zero,
we should find a neighborhood W ⊂ X+

g of x0 such that f (W ) ⊂ f(a) +O.
Since the topology τ is admissible, there is an open convex neighborhood
U ⊂ Yτ whose closure U in Y lies in O.

The continuity of f : A→ Yτ yields an open order-convex subset V ⊂ X+
g

such that x0 ⊂ V ∩ A ⊂ f−1(U). Since x0 is not isolated in X+
g , there is a

point x1 > x0 in V . If [x0, x1) ⊂ C̃ for some component C ∈ C, then the
continuity of f |X+

g at x0 follows from the continuity of f |C̃. In the other
case, (x0, x1) contains a point x2 ∈ A. Let F be the closure of [x0, x2] ∩ A
in βAd. The continuity of βi : βAd → A implies that (βi)−1([x0, x2]∩A) = F .
Consequently, ua ∈ F for every a ∈ [x0, x2] ∩ A. Then aC , bC ∈ F for every
component C ⊂ [x0, x2].

On the other hand, the continuity of βfd : βAd → Yw and the inclu-
sion βfd([x0, x2] ∩A) ⊂ f(x0) +U imply βfd(F ) ⊂ f(x0) + U ⊂ f(x0) +O.
Now looking at the definition of f = u(f), we see that f ([x0, x2]) ⊂
conv{βfd(ua) : a ∈ [x0, x2] ∩A} ⊂ conv(βfd(F )) ⊂ f(x0) + U ⊂ f(x0) +O.
Then W = [x0, x2) ∩ X is the required neighborhood of x0 in X+

g with
f (W ) ⊂ f(x0)+U ⊂ f(x0)+O. This completes the proof of Theorem 2.1(2).

(1′) Now we shall finish the proof of item (1), establishing the continuity
property of r : X → P2(βAd). Let g 3 X \A be any GO-topology on (X,≤).
Let Y = C∗(βAg) with the weak-star topology and let u : l∞(A, Y ) →
l∞(X,Y ) be the linear conv-extender constructed in (2). It has the property
that u(C∞(Ag, Y )) ⊂ C∞(Xg, Y ).

Consider the Dirac embedding δ : Ag → P (βAg) ⊂ C∗(βAg) = Y and
its continuous extension δ = u(δ) : Xg → Y given by the extender u. The
definition of u implies that δ is equal to the composition P (βi) ◦ r of the
maps r : X → P2(βAd) and P (βi) : P (βAd) → P (βAg). Consequently,
P (βi) ◦ r : Xg → P2(βAg) is continuous.

(3) The third item follows from the second one and the fact that the
norm-topology of a dual Banach space Y ∗ is admissible for the weak-star
topology on Y ∗.

(4) The fourth item can be derived from the third one by the argument
of the proof of Theorem 1.6.

12. Proof of Theorem 3.2. Assume that for a subspace A of a Tikho-
nov space X and a linear topological space Y there is a linear conv-extender
u : C∞(A, Y )→ CA(X,Y ). Assuming that Y is not countably semireflexive,
we shall prove that the subset A is strong Choquet in X. We should describe
a winning strategy for player II in the game Gr(A,X).
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Since Y is not countably semireflexive, there is a decreasing sequence
(Kn)∞n=1 of non-empty closed bounded convex subsets of Y with

⋂∞
n=1Kn= ∅.

Let y0 = 0 and yn ∈ Kn for every n ∈ N. For every m ∈ N consider the
finite-dimensional linear subspace Lm of Y spanned by y0, . . . , ym. Since
the union L =

⋃
m∈ω Lm has countable pseudocharacter, we can select a

decreasing sequence (On)n∈ω of open neighborhoods of zero in Y such that
L∩
⋂
n∈ω On = {0}. Since u is a linear conv-extender, for every bounded con-

tinuous function f : A→ Ln the extension f = u(f) has range f (X) ⊂ Ln.
Now we (somewhat informally) describe a winning strategy of player II

in the game Gr(A,X). The point is that at his nth inning player II chooses
a neighborhood Vn ⊂ Un of the point an given by the first player with the
help of a continuous function λn : A→ [0, 1] such that

(2) an ∈ Vn ∩A ⊂ λ−1
n (1) ⊂ λ−1

n (0, 1] ⊂ Un ⊂ Vn−1

and keeps the functions λi from the previous innings in his memory.
Therefore players I and II will consecutively choose the pairs

I: (U1, a1)

@
@R

(U2, a2)

@
@R

(U3, a3)

@
@R

· · ·

II: (V1, λ1)

�
��

(V2, λ2)

�
��

(V3, λ3)

so that condition (2) is satisfied.
Now we explain how to select the function λn and the neighborhood Vn

at the nth inning. After receiving the point an ∈ A and the neighborhood
Un ⊂ X of an from the first player, player II uses the Tikhonov property of
A to find a continuous function λn : A → [0, 1] such that λn(A \ Un) ⊂ {0}
and an lies in the interior Wn of λ−1

n (1) in A. Now for every k ≤ n consider
the bounded continuous function fk =

∑k
i=1 λi · (yi− yi−1) : A→ Ln and its

extension f k = u(fk) : X → Lk ⊂ Y given by the linear conv-extender u.
It follows from an ∈ Wn ⊂ Vi ∩ A ⊂ λ−1

i (1), i < n, that f k(an) = fk(an) ∈
fk(Wn) ⊂ {yk} for all k ≤ n. Using the continuity of f k at an, choose a
neighborhood Vn ⊂ Un of an with Vn ∩A ⊂Wn such that f k(Vn) ⊂ yk +On
for all k ≤ n. Finally, player II presents the set Vn to player I as his nth move.

We claim that player II wins the game Gr(A,X) if he chooses the sets Vn
according to the strategy described above. Otherwise player I wins, which
means that ∅ 6=

⋂∞
n=1 Un =

⋂∞
n=1 Vn ⊂ X \ A. It follows from the last

inclusion that the formula

f∞(x) =
∞∑
i=1

λi(x) ·(yi−yi−1) =
∞∑
i=1

(λi(x)−λi+1(x)) ·yi ∈ conv{yi}∞i=1 ⊂ K1

determines a well-defined continuous bounded function f∞ : A → Y . Con-
sider its extension f∞ = u(f∞) and pick a point c ∈

⋂∞
n=1 Vn.
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We claim that f k(c) = yk for all k ∈ N. Indeed, for every n ≥ k, the
choice of Vn guarantees that f k(c) ∈ f k(Vn) ⊂ yk+On and thus f k(c)−yk ∈
Lk ∩

⋂
n≥k On = {0}.

For every n ∈ N consider the function

gn = f∞−fn+yn = yn+
∑
i>n

λi ·(yi−yi−1) = (1−λn+1)·yn+
∑
i>n

(λi−λi+1)·yi

and observe that gn(A) ⊂ conv{yi}i≥n ⊂ Kn. Since u is a linear conv-
extender, we get u(gn)(c) ∈ Kn and by the linearity of u,

Kn 3 u(gn)(c) = f∞(c)− fn(c) + yn = f∞(c) + 0,

which implies that
⋂∞
n=1Kn contains the point f∞(c) and thus is not empty.

This contradiction completes the proof of Theorem 3.2.

13. Proof of Theorem 6.1. Assume that Y0 is a subspace of a po-
space Y , and A is a Tikhonov subspace of a topological space X.

Assuming that there is a monotone extender u : C(A, Y0) → CA(X,Y ),
we should prove that A is strong Choquet in X or else for each ω-increasing
ray γ : [0,∞) → Y0 the set γ(ω) is almost upper bounded in Y . Sup-
pose that the latter condition does not hold, i.e., there is an ω-increasing
ray γ : [0,∞) → Y0 such that γ(ω) is not almost upper bounded in Y .
The latter means that for some Gδ-sets Gn ⊂ Y with γ(n) ∈ Gn, n ∈ ω,
the intersection

⋂
n∈ω ↑Gn is empty. For every n ∈ ω select a decreas-

ing sequence (Om(yn))m≥n of open neighborhoods of yn = γ(n) such that⋂
m≥nOm(yn)⊂Gn.
Now we modify the winning strategy constructed in the proof of Theo-

rem 3.2 and describe a winning strategy of player II in the game Gr(A,X).
The key idea is the same: in his nth inning player II chooses a neighborhood
Vn ⊂ Un of the point an with the help of a continuous function λn : A→ [0, 1]
such that

(3) an ∈ Vn ∩A ⊂ λ−1
n (1) ⊂ λ−1

n (0, 1] ⊂ Un ⊂ Vn−1

and keeps the functions λi from the previous innings in his memory.
The choice of λn : A→ [0, 1] is the same as in the proof of Theorem 3.2

while the choice of the neighborhood Vn ⊂ λ−1(1) of an is a bit different. For
every 0 ≤ k ≤ n consider the continuous function sk =

∑k
i=1 λi : A→ [0,∞)

(for k = 0, we put s0 ≡ 0). Then fk = γ ◦ sk : A → Y0 is continuous and
hence its extension f k = u(fk) : X → Y given by the monotone extender
u is continuous at A. It follows from an ∈ Wn ⊂ Vi ∩ A ⊂ λ−1

i (1), i < n,
that f k(an) = fk(an) = γ(k) = yk for all k ≤ n. Using the continuity of f k
at an, choose a neighborhood Vn ⊂ Un of an with Vn ∩ A ⊂ Wn such that
f k(Vn) ⊂ On(yk) for all k ≤ n. Finally, player II presents the set Vn as his
nth move in the game Gr(A,X).
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We claim that player II wins Gr(A,X) if he chooses the sets Vn as above.
Otherwise player I wins, which means that ∅ 6=

⋂∞
n=1 Un =

⋂∞
n=1 Vn ⊂ X \A.

It follows from the last inclusion that the formula s∞(a) =
∑∞

i=1 λi(a),
a ∈ A, determines a well-defined continuous function s∞ : A→ [0,∞). Then
the function f∞ = γ ◦s∞ : A→ Y0 is also continuous. Consider its extension
f∞ = u(f∞) : X → Y and pick a point c ∈

⋂∞
n=1 Vn.

We claim that f k(c) ∈ Gk for all k ∈ N. Indeed, for every n ≥ k, the
choice of Vn guarantees that f k(c) ∈ f k(Vn) ⊂ On(yk) and thus f k(c) ∈⋂
n≥k On(yk) ⊂ Gk.
The ω-increasing property of the ray γ implies that f∞ ≥ fk for all k ≥ 0.

Now the monotonicity of the extender u guarantees that f∞(c) ≥ f k(c) ∈ Gk
and thus f∞(c) ∈

⋂
n∈ω ↑Gn, which contradicts the choice of the Gδ-sets Gn.

This contradiction completes the proof of Theorem 6.1.

14. Proof of Theorem 3.3. (1, 2) The first two items easily follow
from the definitions.

(3) We need to prove that a subset A of a topological space X is strong
Choquet in X provided A is strong Choquet as a topological space.

The latter means that player II has a winning strategy in the game
Gs(A,A). We shall prove that this winning strategy induces a winning strat-
egy in Gr(A,X) and even in a more difficult (for player II) game G′r(A,X)
which differs from Gr(A,X) in the definition of the result of the game.
In G′r(A,X) player II is declared the winner if

⋂
n∈ω Vn meets A; other-

wise player I wins. It is clear that if player II wins G′r(A,X), then he also
wins Gr(A,X).

To win G′r(A,X) player II simultaneously plays Gs(A,A) for himself and
for player I and transforms his moves in Gs(A,A) suggested by the winning
strategy into moves in G′r(A,X).

Namely, after receiving the nth move (Un, an) of player II in the nth
inning, player I declares that (Un ∩ A, an) is her nth move in the auxiliary
game Gs(A,A). Then the winning strategy in Gs(A,A) instructs player II
to select a neighborhood Vn ⊂ Un∩A of an in A. Player II enlarges Vn to an
open subset Ṽn ⊂ Un in X such that Ṽn ∩A = Vn and makes Ṽn his move in
the nth inning of the game G′r(A,X).

In such a way players I and II choose sequences (Un, an), (Un ∩ A, an),
(Vn) and (Ṽn). Since the sets Vn, n ∈ N, are chosen according to the winning
strategy of player II in Gs(A,A), we get

⋂
n∈N Vn 6= ∅. Then A∩

⋂
n∈N Ṽn =⋂

n∈N Vn 6= ∅, so we conclude that player II also wins G′r(A,X).
(4) Assume that a topological space X is strong Choquet at A and A

is strong Choquet in X. We should prove that A is strong Choquet. In the
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language of strategies this means that given winning strategies of player II
in the games Gs(A,X) and Gr(A,X) we should describe a winning strategy
for player II in Gs(A,A).

Repeating the argument from the preceding item, we can prove that
player II has a winning strategy in Gs(A,A) if and only if he has a winning
strategy in G′r(A,X) described above. So it suffices to describe a winning
strategy for player II in G′r(A,X).

Fix winning strategies of player II in Gs(A,X) and Gr(A,X). To win
G′r(A,X), player II plays simultaneously two auxiliary games Gs(A,X) and
Gr(A,X) as follows. In the nth inning of G′r(A,X) he receives from the first
player a point an ∈ A and a neighborhood Un ⊂ X of an and declares that
(Un, an) is the nth move of player I in the auxiliary game Gs(A,X). The
winning strategy of player II in Gs(A,X) instructs him to make the nth
move by choosing a neighborhood Wn ⊂ Un of an.

Then player II declares that (Wn, an) is the nth move of the first player
in Gr(A,X) and selects a neighborhood Vn ⊂ Wn of an according to the
winning strategy in Gr(A,X).

The neighborhood Vn is the nth move of the second player in G′r(A,X).
Let us show that if player II plays according to this strategy, then he wins
the game G′r(A,X). Playing three games simultaneously, players I and II
construct the sequences (Un, an), (Wn), and (Vn). The choice of the sets Wn

according to the winning strategy in Gs(A,X) guarantees that
⋂∞
n=1Wn is

not empty. Taking into account that Wn ⊂ Un ⊂ Vn ⊂ Wn−1 for all n,
we conclude that also

⋂∞
n=1 Vn is not empty. Since player II won Gr(A,X),

the intersection
⋂∞
n=1 Vn, being non-empty, must meet A. This means that

player II has won the game G′r(A,X) too.
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