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Abstract. This paper is devoted to several questions concerning linearizations of
function spaces. We first consider the relation between linearizations of a given space
when it is viewed as a function space over different domains. Then we study the problem
of characterizing when a Banach function space admits a Banach linearization in a nat-
ural way. Finally, we consider the relevance of compactness properties in linearizations,
more precisely, the relation between different compactness properties of a mapping, and
compactness of its associated linear operator.

Introduction. Let F(U) be a linear space of continuous complex-valued
functions on a topological space U . By a linearization of F(U) over U
we understand a pair (Z, e), where Z is a locally convex vector space and
e : U → Z is a continuous map satisfying

(i) For every continuous linear functional L ∈ Z ′ we have L ◦ e ∈ F(U).
(ii) For each f ∈ F(U) there exists a unique continuous linear func-

tional Lf ∈ Z ′ such that f = Lf ◦ e, that is, the following diagram
commutes:

U

e

��

f // C

Z

Lf

??~~~~~~~

In this way, F(U) is identified algebraically with the dual space of Z.
Linearization can be a useful tool for the study of function spaces, since it
enables the application of linear functional analysis to problems concerning
non-linear functions.

Tensor products are a typical example of such an object, but many other
linearizations have been constructed for various kinds of function spaces. For
example, when F(U) is the space of Lipschitz functions on a metric space U ,
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182 J. Á. Jaramillo et al.

the classical Arens–Eells construction provides a linearization of F(U) (see
[23, Theorem 2.2.4]). For the space of continuous homogeneous polynomials
on a Banach space, a linearization has been given by Ryan [21]. In the
holomorphic setting, linearizations have been constructed by Mazet [15] and
by Mujica and Nachbin [18] for spaces of holomorphic functions on finite- or
infinite-dimensional domains. The case of bounded holomorphic functions
was considered by Mujica [16], and the space of holomorphic functions of
bounded type was studied by Galindo, Garćıa and Maestre [11] and by
Mujica [17] (see also [3]). Some related work can be seen in [2]. Linearizations
of several spaces of holomorphic functions have also been considered in [4],
[5], and [12], where various properties of the corresponding linearizations are
studied in connection with properties of the underlying spaces.

In [6] Carando and Zalduendo develop a general linearization procedure
by constructing a canonical linearization (F∗(U), e) for any linear space of
continuous functions F(U), which encompasses the above mentioned ex-
amples. This linearization also produces a factorization for vector-valued
mappings in the following way. If F is a locally convex space we denote
by ωF(U,F ) the space of all continuous mappings f : U → F such that
ϕ ◦ f ∈ F(U) for every continuous linear functional ϕ ∈ F ′. It is proved in
[6, Theorem 3] that for each f ∈ ωF(U,F ) there exists a continuous linear
operator Lf : F(U)→ F such that the following diagram commutes:

U

e
��

f // F

F∗(U)
Lf

<<yyyyyyyyy

In this way, we can identify algebraically ωF(U,F ) with the space of con-
tinuous linear operators L(F∗(U), F ).

One of the purposes of this paper is to explore the relationship between
compactness and linearizations, in particular, the relationship between dif-
ferent compactness properties of a mapping f : U → F and compactness
(or weak compactness) of the corresponding operator Lf : F∗(U)→ F . This
problem has been studied by Pe lczyński [20], Ryan [22], Aron and Schot-
tenholer [1], and Mujica [16] for spaces of polynomials and holomorphic
mappings in infinite dimensions. We provide here a general approach which
extends and unifies some previous results.

For convenience, we begin by recalling the linearization procedure in [6].
We fix a topological space U and a linear space F(U) of complex-valued
continuous functions defined over U .

Consider first the vector space C(U) of finitely supported families of
U -indexed complex numbers. A typical element will be denoted by s =∑

x∈U axex, with ex(y) = δxy. Note that the sum is finite. For any given
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f ∈ F(U), define the seminorm

pf (s) =
∣∣∣∑
x∈U

axf(x)
∣∣∣,

and
N = {s ∈ C(U) : pf (s) = 0 for all f ∈ F(U)}.

Now define
X = C(U)/N .

Continue to denote the class of ex by ex, and the class of s by s =
∑

x∈U axex.
Note that now this way of writing the class of s need not be unique. However,
the seminorms on X, coming from |

∑
x∈U axf(x)| (which we continue to

denote pf ) are well-defined and provide a Hausdorff locally convex space
structure for X. Also, define

e : U → X, e(x) = ex.

It is clear that a function f ∈ F(U) factors through e in the following way:

U

e

��

f // C

X

Lf

>>~~~~~~~

where Lf is the continuous linear form defined by Lf (s) =
∑

x axf(x) if
s =

∑
x axex. The pairing 〈X,F(U)〉 given by 〈s, f〉 = Lf (s) is a dual

pairing, so algebraically we have X ′ = F(U) (see [14]).
Consider now the topology τ on X defined by means of the seminorms

pf , where f ranges over all functions of F(U). There are of course many
topologies on X which are compatible with τ (i.e., topologies with the same
continuous linear functionals). For any one of them the dual space X ′ is
identified algebraically with F(U).

Define on X the strongest locally convex topology compatible with τ for
which the map e : U → X is continuous. We call it the α-topology on X. Now
F∗(U) is defined to be the completion of (X,α). This is the construction
in [6]. Note that, as shown in [6], all the linearizations mentioned above
are particular cases of this abstract linearization. We will use a few results
from [6]. First, we have a characterization of the α-topology:

Fact 0.1 ([6, Proposition 3]). The topology α on F∗(U) is the topol-
ogy of uniform convergence on the equicontinuous pointwise compact disks
of F(U).

The following uniqueness result will be also useful:

Fact 0.2 ([6, Corollary 2]). If (Y, ê) is a linearization of F(U) and Y is
a Fréchet space, then there exists a topological isomorphism T : F∗(U)→ Y
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such that the following diagram commutes.

U
e

yyrrrrrrr be
##GGGGGG

F∗(U) T // Y

Now suppose that F(U) is endowed with a locally convex topology. A
linearization (Z, e) of F(U) is said to be strong if F(U) is topologically
isomorphic to the strong dual (Z ′, β). The next result gives a sufficient
condition for F∗(U) to be strong.

Recall from [6] that a subset B ⊂ X is called F-bounded if it is bounded
in the α-topology (or any compatible topology), while a subset A ⊂ U is
called F-bounding if every f ∈ F(U) is bounded on A. We say that U has the
BBF-property if for each F-bounded subset B of X, there is an F-bounding
subset A of U and an r > 0 such that

B ⊂ r · coe(e(A)),
where coe(e(A)) denotes the closed absolutely convex hull of e(A). Then we
have

Fact 0.3 ([6, Theorem 1]). Suppose that F(U) is barreled , and its topol-
ogy is that of uniform convergence on F-bounding subsets of U . Then

(i) F(U) is isomorphic to the strong dual (F∗(U)′, β),
(ii) U has the BBF-property.

The contents of the paper are as follows. Since many spaces can be mod-
eled as function spaces in several different ways, we begin in Section 1 by
studying the linearizations obtained when considering the same function
space over several different domains. In Section 2 we consider the follow-
ing problem: when F(U) is a Banach space of continuous funtions on U ,
a linearization is in general only a locally convex space. We are interested
in giving conditions under which F(U) has a strong Banach linearization.
Of course F(U) must be a dual Banach space, but we will see that this is
not enough; a Banach space may have a Banach predual without having a
linearizing Banach predual. We obtain a characterization in terms of com-
pactness of the unit ball of F(U) for pointwise and compact-open topologies.
This is akin to the Dixmier–Ng Theorem [19], but the result presented here is
independent. In Section 3 we focus on the relationship between compactness
properties of a mapping and compactness of its linearization. Apart from
the usual definition of compactness, we also consider what we call boundedly
compact mappings.

1. Function spaces over different domains. Many spaces can be
viewed as spaces of continuous functions over several different domains,
which can give rise to different linearizations.
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Example 1. Consider the Banach space L1[0, 1]. Any Banach space E
may be viewed as a space of continuous functions on (BE′ , ω∗), by identi-
fying each x ∈ E with x̂ where x̂(γ) = γ(x) for every γ ∈ BE′ . Thus in
particular

L1[0, 1] = F(BL∞).

If E is any Banach space with a Schauder basis (vk)k∈N, we denote by
(v′k)k∈N the corresponding coordinate functionals, i.e. x =

∑∞
k=1 v

′
k(x)vk for

each x ∈ E. We may then consider E as a space of (continuous) functions
over N by identifying each element x ∈ E with the sequence of its coordi-
nates (v′1(x), v′2(x), . . .). In this way we see that

L1[0, 1] = F(N).

Finally, if A,B ∈ B (the Borel σ-algebra of [0,1]), put d(A,B) =
m(A4B), and A ∼ B if d(A,B) = 0. Then d is a metric on B/∼, and
each f ∈ L1[0, 1] may be identified with the following map on B/∼, which
is continuous:

A 7→
�

A

f dm.

In this way we find that

L1[0, 1] = F(B/∼).

The construction of the linearization F∗(U) corresponding to F(U) heav-
ily depends on the domain U , and even on the topology of U , as the following
simple example shows.

Example 2. Let E be a Banach space, and consider the two topological
spaces U = (E,w) and V = (E, ‖ ‖). The dual E′ may then be viewed as

E′ = F(U): the space of weakly continuous linear forms on E, or
E′ = G(V ): the space of norm continuous linear forms on E.

On linearizing, one obtains F∗(U) = U = (E,w) and G∗(V ) = V = (E, ‖ ‖).

We must, therefore, consider linearizations of function spaces over differ-
ent domains, and ask ourselves when such linearizations coincide. We have
the following result.

Proposition 1.1. Let U and V be topological spaces, F(U) and G(V )
linear spaces of functions which are continuous over U and V respectively ,
and ϕ : V → U continuous and such that f ◦ ϕ ∈ G(V ) for each f ∈ F(U).
Suppose that the transpose ϕt : F(U) → G(V ) given by ϕt(f) = f ◦ ϕ is an
algebraic isomorphism, and F∗(U) is a Fréchet space. Then there exists a
topological isomorphism Tϕ : G∗(V ) → F∗(U) such that following diagram
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commutes:
V

eV

��

ϕ // U

eU

��
G∗(V )

Tϕ // F∗(U)

Proof. In what follows, we index with U and V objects appearing in
the constructions of F(U) and G(V ) respectively. Define ϕ̃ : C(V ) → C(U)

by ϕ̃(
∑

y∈V ayey) =
∑

y∈V ayeϕ(y). It is easily seen that ϕ̃ passes to the
quotient, producing a map

ϕ : XV → XU

for which Lf ◦ϕ = Lf◦ϕ. Also, this map is continuous for the corresponding
α-topologies in XV and XU . To see this, it will be enough to check that
given any equicontinuous U -pointwise compact disk A ⊂ F(U), the set
ϕt(A) = {f ◦ ϕ : f ∈ A} is an equicontinuous V -pointwise compact disk
in G(V ). It is clearly a disk, and pointwise compactness follows from the
continuity (in the pointwise topologies) of ϕt : F(U) → G(V ). To see the
equicontinuity, fix y ∈ V and ε > 0. There is a neighborhood W of ϕ(y)
such that for all x ∈ W and f ∈ A, |f(ϕ(y)) − f(x)| < ε. Thus for all z in
the neighborhood ϕ−1(W ) of y, and for all f ∈ A,

|f(ϕ(y))− f(ϕ(z))| < ε.

Thus a map ϕ : G∗(V ) → F∗(U) is induced which is linear and continuous,
and such that the transpose ϕt “coincides” with ϕt in the sense that

ϕt(Lf ) = Lf ◦ ϕ = Lf◦ϕ = Lϕt(f).

Now, since ϕt : F(U) → G(V ) is an algebraic isomorphism, so is ϕt :
F∗(U)′ → G∗(V )′. Then considering for each f ∈ F(U) the commutativ-
ity of the diagram

V

eU◦ϕ
��

f◦ϕ // C

F∗(U)
Lf

<<yyyyyyyyy

we see that (F∗(U), eU◦ϕ) is a linearization of G(V ). Since F∗(U) is a Fréchet
space, Fact 0.2 gives the desired isomorphism Tϕ : G∗(V )→ F∗(U).

A situation where Proposition 1.1 applies is the following. Let U be an
open connected subset of a locally convex space and F(U) a linear space
of holomorphic functions on U such that F∗(U) is a Fréchet space. If now
V ⊂ U is any non-empty open subset, let us consider the inclusion map
ι : V ↪→ U and the space

G(V ) = {f |V : f ∈ F(U)}.
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Since U is connected, the restriction map F(U) → G(V ) is an algebraic
isomorphism and thus G∗(V ) is topologically isomorphic to F∗(U) through
the associated Tι which makes the corresponding diagram commutative.

2. Banach linearization. Suppose that (F(U), ‖ ·‖) is a Banach space
of continuous functions on a topological space U . In this section we consider
the problem of when F(U) admits a strong Banach linearization (Z, e).
Recall that this means that Z is isomorphic to a Banach space and the
Banach dual Z ′ is isomorphic to F(U). In particular, we study when F∗(U)
is a strong Banach linearization. Note that the topology of F(U) plays no
role whatsoever in the construction of F∗(U), so in order to obtain our results
relating the topologies of F∗(U) and F(U), we must necessarily impose some
topological conditions on F(U).

For the case in which U is a k-space, we obtain the following sufficient
condition. Here, we denote by τco the compact-open topology and by τp the
pointwise topology on F(U).

Theorem 2.1. Let U be a k-space and (F(U), ‖ · ‖) a Banach space of
continuous functions on U . If the ball of F(U) is τco-compact , then F∗(U)
is a strong Banach linearization.

Proof. Let B be the unit ball of F(U), which is τco-compact. For each
s ∈ X, we may consider s : F(U)→ C given by s(f) = Lf (s). In this way, s
can be seen as a σ(F(U), X)-continuous linear functional, so by compactness
|s| attains its maximum on B. Define

‖s‖B = max
B
|s|.

This defines a norm on X. Note that for each x ∈ U , if f ∈ F(U) and f 6= 0,
we have

|ex(f)| = ‖f‖ ·
∣∣∣∣ex( f

‖f‖

)∣∣∣∣ ≤ ‖f‖ · ‖ex‖B.
This shows that ex ∈ F(U)′. We claim that e : U → (F(U)′, ‖ · ‖) is con-
tinuous. Since U is a k-space, it is enough to show that for each compact
subset K ⊂ U , e|K : K → (F(U)′, ‖ · ‖) is continuous. By the Ascoli–Arzelà
Theorem, B|K is equicontinuous on K. Hence, for every ε > 0 and every
x ∈ K, there exists a neighborhood W x such that if y ∈ K ∩W x, then

sup{|f(x)− f(y)| : f ∈ B} < ε;

thus,
‖ex − ey‖F(U)′ = sup

f∈B
|ex(f)− ey(f)| < ε.

This establishes the claim.
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As a consequence, B is in fact equicontinuous as a set of functions on U .
Indeed, for ε > 0 and every x ∈ U , there exists a neighborhood V x such
that if y ∈ V x, then

sup
f∈B
|f(x)− f(y)| = sup

f∈B
|ex(f)− ey(f)| = ‖ex − ey‖F(U)′ < ε.

In this way we see that, since B is an equicontinuous τp-compact disk,
the norm ‖ · ‖B is continuous for the α-topology. If we denote by Y the
completion of (X, ‖ · ‖B) we find that e : U → (X,α) → Y is continuous.
Furthermore, each f ∈ F(U) linearizes through Y ; indeed,

|Lf (s)| = |s(f)| = ‖f‖
∣∣∣∣s( f

‖f‖

)∣∣∣∣ ≤ ‖f‖ · ‖s‖B,
so Lf is ‖·‖B-continuous. Now by Fact 0.2 we conclude that F∗(U) is isomor-
phic to the Banach space Y . Next, we are going to see that F∗(U) is strong.
Note that F(U) can be algebraically identified with the dual space Y ′, and
we can consider on F(U) the norm ‖ · ‖d which is dual to the norm of Y . It
is clear that for every x ∈ U and every f ∈ F(U),

|f(x)| ≤ ‖ex‖B · ‖f‖d.

As a consequence, the topology induced by ‖ · ‖d on F(U) is finer than the
τp-topology. On the other hand, as we have seen above, for every x ∈ U and
every f ∈ F(U),

|f(x)| ≤ ‖ex‖B · ‖f‖,

so the topology induced by ‖ · ‖ on F(U) is also finer than the τp-topology.
Now, by applying the Closed Graph Theorem we find that, in fact, ‖ · ‖d is
equivalent to ‖ · ‖ on F(U).

In the next theorem, by an equivalent ball in F(U) we mean the unit
ball of a norm in F(U) which is equivalent to the original norm. We have
to consider equivalent balls since, in general, a dual Banach space may have
equivalent norms which are not dual norms (see, e.g., [10]).

Theorem 2.2. Let (F(U), ‖ · ‖) be a Banach space of continuous func-
tions on U . The following conditions are equivalent.

(i) F(U) admits a strong Banach linearization.
(ii) F∗(U) is a strong Banach linearization.

(iii) F(U) admits an equicontinuous and τp-compact equivalent ball.
(iv) F(U) admits an equivalent ball which is τp-compact , and the evalu-

ation map δ : U → (F(U)′, ‖ · ‖) is continuous.

Furthermore, all of these conditions imply

(v) F(U) admits a τco-compact equivalent ball.
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Proof. (i)⇔(ii) follows from Fact 0.2.
(ii)⇒(iii): Consider F(U) as the dual space of the Banach space F∗(U),

endowed with the dual norm. The w∗-topology on F(U) is finer than
σ(F(U), X), that is, the identity mapping

(F(U), w∗)→ (F(U), σ(F(U), X))

is continuous. Note that the topology σ(F(U), X) coincides with τp on
F(U). Since the unit ball B of F(U) is w∗-compact, it is τp-compact. On
the other hand, B is equicontinuous as a set of functions on F∗(U); since
e : U → F∗(U) is continuous, B is an equicontinuous subset of F(U), con-
sidered as a set of functions on U .

(iii)⇒(ii): We follow the lines of Theorem 2.1. Let B be an equivalent
ball in F(U) which is equicontinuous and τp-compact, and thus σ(F(U), X)-
compact. Each s ∈ X can be viewed as a σ(F(U), X)-continuous linear
functional s : F(U)→ C, given by s(f) = Lf (s). So |s| attains its maximum
on B. Define

‖s‖B = max
B
|s|.

This is a norm on X and we denote the corresponding completion of X by Y .
First, we check that F∗(U) is isomorphic to the Banach space Y . Note that
the norm ‖·‖B is continuous for the α-topology, since B is an equicontinuous
τp-compact disk. Therefore, the map e : U → Y is continuous. Also, each
f ∈ F(U) linearizes through Y : if f ∈ F(U), and f 6= 0, then for some c > 0
we have f/c‖f‖ ∈ B, and

|Lf (s)| = |s(f)| = c · ‖f‖ ·
∣∣∣∣s( f

c‖f‖

)∣∣∣∣ ≤ c · ‖f‖ · ‖s‖B,
so Lf is ‖ · ‖B-continuous. Now by Fact 0.2, F∗(U) is isomorphic to Y .
Finally, it can be proved as in Theorem 2.1 that F∗(U) is, in fact, a strong
linearization.

(iii)⇔(iv): Let B be a τp-compact equivalent ball in F(U). Each eval-
uation functional δx : F(U) → C is bounded on B and therefore norm-
continuous, where δx(f) = f(x) for each x ∈ U and f ∈ F(U). It is clear
that the evaluation map

δ : U → (F(U)′, ‖ · ‖)
is continuous if and only if B is an equicontinuous set of functions on U .

(iii)⇒(v): This is clear, since on an equicontinuous set, the topologies
τp and τco coincide.

Two direct consequences are the following.

Corollary 2.3. If U is a k-space, (i) through (v) in Theorem 2.2 above
are all equivalent.
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Corollary 2.4. Let K be an infinite compact set , and F(K) an infinite-
dimensional closed subspace of (C(K), ‖ · ‖∞). Then F(K) does not admit
a Banach linearization.

Proof. Since K is a compact set, τco = ‖ · ‖∞ on C(K). Now if F(K)
admits a Banach linearization (Z, e), then F(K) can be algebraically iden-
tified with the dual space Z ′, and we can consider on F(K) the norm ‖ · ‖
which is dual to the norm of Z. By Theorem 2.2, since (Z, e) is a strong
Banach linearization of (F(K), ‖ · ‖), this space admits an equivalent ball B
which is compact for τco = ‖ · ‖∞. In particular, B is ‖ · ‖∞-bounded and by
the Open Mapping Theorem, ‖ · ‖ is equivalent to ‖ · ‖∞. The compactness
of B implies that F(K) is finite-dimensional.

Note, however, that when K is hyperstonean, C(K) is a dual Banach
space by the Dixmier–Grothendieck Theorem [13]. Thus, admitting a strong
Banach linearization is strictly stronger than admitting a Banach predual.
A further example in this line is the following. We can consider any Banach
space E = F(BE′) as a space of continuous functions on the dual unit
ball BE′ with the w∗-topology, through the canonical inclusion map E ↪→
C(BE′). Now, E = F(BE′) admits a Banach predual whenever E is a dual
space. Nevertheless, by Corollary 2.4, F(BE′) admits a Banach linearization
only when E is finite-dimensional.

As mentioned before, many Banach spaces E may be viewed as a space
of functions F(U) in different ways. In particular, if E is a Banach space
with Schauder basis (vk)k∈N and we denote by (v′k)k∈N the coordinate func-
tionals, we may consider E = F(N) as a space of (continuous) functions
over N by identifying each element x ∈ E with the sequence of its co-
ordinates (v′1(x), v′2(x), . . .). Note that, in this case, the evaluation map
δ : N→ (F(N)′, ‖ · ‖) is well-defined and continuous.

We ask when F∗(N) is a strong Banach linearization. This is not always
the case as, for example, when F(N) = c0. Indeed, if B is a ball equiva-
lent to the unit ball of c0, then B contains a sequence of the form xn =
(a, (n). . . , a, 0, . . .) (where a 6= 0, and there are n a’s, followed by 0’s). This
sequence converges pointwise to x = (a, a, a, . . .), which is not an element
of c0, so B is not pointwise compact. More generally, we have the follow-
ing corollary. Here, (iii)⇒(i) is essentially Alaoglu’s Theorem (Theorem 6.10
in [10]).

Corollary 2.5. Let E be a Banach space with a Schauder basis (vk)k∈N,
and consider E = F(N) as before. The following conditions are equivalent.

(i) F∗(N) is a strong Banach linearization.
(ii) Some equivalent ball of E is τp-compact.

(iii) (vk)k∈N is boundedly complete.
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Proof. (i)⇔(ii) follows from Theorem 2.2.
To prove (ii)⇔(iii), suppose (ii) holds and let ‖ · ‖ be an equivalent norm

on E whose unit ball B is τp-compact. Let (zn) be a sequence of complex
numbers such that

sup
n

∥∥∥ n∑
k=1

zkvk

∥∥∥ <∞.
We may—by normalizing—suppose this supremum to be 1. The sequence
(xn) given by xn =

∑n
k=1 zkvk is in B and for each k, v′k(xn)→ zk as n→∞

(indeed, the sequence is eventually zk). By compactness, there is a subnet
xni that converges pointwise to some z ∈ B. For each k, v′k(xni) → v′k(z),
so that v′k(z) = zk, and the series

∑∞
k=1 zkvk converges, for this is just the

series of z.
Suppose now that (iii) holds, and renorm E so that the basis (vk)k∈N is

monotone. Let B be the unit ball of this norm ‖ · ‖. Since B is τp-bounded,
we only have to prove its pointwise closedness. Let (xi) ⊂ B be a net such
that for each k, v′k(xi)→i zk, and consider any n ∈ N and ε > 0. Then

∥∥∥ n∑
k=1

zkvk

∥∥∥ ≤ ∥∥∥ n∑
k=1

(zk − v′k(xi))vk
∥∥∥+

∥∥∥ n∑
k=1

v′k(xi)vk
∥∥∥ ≤ ε+ 1,

where i is large enough. Since (vk) is boundedly complete,
∑∞

k=1 zkvk con-
verges, say to z ∈ E. Now

‖z‖ = lim
n→∞

∥∥∥ n∑
k=1

zkvk

∥∥∥ ≤ ε+ 1

as before, and therefore z ∈ B.

In the remainder of this section we will consider a Banach space of con-
tinuous functions (F(U), ‖ · ‖) satisfying the following two conditions:

(a) the norm ‖ · ‖ is finer than the pointwise topology τp on F(U),
(b) the evaluation map δ : U → (F(U)′, ‖ · ‖) is continuous.

Note that, in this case, the unit ball B of (F(U), ‖ · ‖) is an equicontinuous
τp-bounded set. Our purpose is to construct a Banach space containing
F(U) which admits a strong Banach linearization and which is minimal in
some sense. By analogy with [7], we define Fpb(U) as the space of functions
on U which are approximable pointwise by bounded nets in F(U). Each
f ∈ Fpb(U) is then the pointwise limit of an equicontinuous net of functions
on U and is therefore also continuous on U .

For f ∈ Fpb(U) we define the triple norm |||f ||| as follows. Let

Bpb = {f : U → C : f is a pointwise limit of a net (fi) ⊂ B}.
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Thus,
Fpb(U) =

⋃
r>0

rBpb

and Bpb is a convex, balanced, absorbing subset of Fpb(U). We let ||| · ||| be
its Minkowski functional, i.e., |||f ||| is the infimum of the constants c > 0
such that there is a net in cB converging pointwise to f on U . Now, the
following observations will be useful.

(i) When considering f ∈ Bpb as the pointwise limit of a net (fi)i∈I ⊂ B,
the same index set I may be used for all f . Indeed, if each f ∈ Bpb(U) is
f = limi∈If fi, take

I =
∏

f∈Bpb

If , ordered by i ≥ j ⇔ if ≥ jf for all f ∈ Bpb.

Now if f = limj∈If fj , define hi = fif , and we have f = limi∈I hi.
(ii) Conditions (a) and (b) above also hold for (Fpb(U), ||| · |||):
For (a), if fn → 0 in ||| · |||, let x ∈ U and ε > 0. Choose nε so that

|||fn||| <
ε

2‖δx‖
for all n ≥ nε.

For each n, take a net (fn,i) ⊂ ε
2||δx||B converging pointwise to fn. Then

|fn(x)| ≤ |fn(x)− fn,i(x)|+ |fn,i(x)| = |fn(x)− fn,i(x)|+ |δx(fn,i)|
≤ |fn(x)− fn,i(x)|+ ‖δx‖ · ‖fn,i‖,

but the second term is smaller than ε/2 for n ≥ nε, and the first is also less
than ε/2 for i ≥ i(n, ε). Thus δ : U → (Fpb(U), ||| · |||)′ is well-defined.

To see (b), fix x ∈ U and ε > 0. There is a neighborhood Vx of x such
that ‖δx − δy‖ < ε/3 in (F(U), ‖ · ‖)′ for all y ∈ Vx. Now for any f with
|||f ||| < 1, let (fi) ⊂ B converge pointwise to f . Then for any y ∈ Vx,

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)|
≤ |f(x)− fi(x)|+ |(δx − δy)(fi)|+ |fi(y)− f(y)|
≤ |f(x)− fi(x)|+ ‖δx − δy‖+ |fi(y)− f(y)|.

Now, the second term is smaller than ε/3 for all y ∈ Vx, independently of f ,
while the first and last terms can be made smaller than ε/3 for sufficiently
large i.

(iii) The inclusion (Fpb(U), ||| · |||) → (C(U), τco) is continuous: for any
compact subset K of U , and ε > 0,

‖f‖K = sup
x∈K
|δx(f)| ≤ sup

x∈K
‖δx‖ · |||f ||| = CK |||f |||.

(iv) Bpb is the closed unit ball of the norm ||| · |||. Indeed, since this norm
is the Minkowski functional of Bpb, one has

{f ∈ Fpb(U) : |||f ||| < 1} ⊂ Bpb ⊂ {f ∈ Fpb(U) : |||f ||| ≤ 1};
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but Bpb is pointwise closed, and (Fpb(U), ||| · |||)→ (Fpb(U), τp) is continu-
ous, so Bpb is ||| · |||-closed, and is therefore equal to the closed ||| · |||-ball.

We also have

Proposition 2.6. (Fpb(U), ||| · |||) is a Banach space, and the inclusion
mapping ι : (F(U), ‖ · ‖) ↪→ (Fpb(U), ||| · |||) is continuous.

Proof. First, we check the completeness. So let (fn) be a ||| · |||-Cauchy
sequence in Fpb(U). By passing to a subsequence we may suppose that
|||fn − fn+1||| < 1/2n for all n. Note also that for each x ∈ U , (fn(x)) is
Cauchy, so the fn’s converge pointwise to a function f ∈ Fpb(U). We must
show that it converges also in ||| · |||.

We define inductively a sequence of nets in F(U) as follows: for n = 1 let
(f1,i) be a bounded net converging pointwise to f1. Suppose we have defined
nets (f1,i), . . . , (fn,i) such that for each k = 2, . . . , n we have (fk−1,i−fk,i) ⊂
(1/2k−1)B and (fk,i) converges pointwise to fk. Now since |||fn − fn+1||| <
1/2n, there is a net (hn,i) ⊂ (1/2n)B converging pointwise to fn− fn+1. We
define fn+1,i = fn,i − hn,i. Thus fn+1,i converges pointwise to fn − (fn −
fn+1) = fn+1, and (fn,i − fn+1,i) ⊂ (1/2n)B. Now, for each fixed i, the
sequence (fn,i) is ‖ · ‖-Cauchy in F(U). Indeed, if m > n,

‖fn,i − fm,i‖ ≤ ‖fn,i − fn+1,i‖+ ‖fn+1,i − fn+2,i‖+ · · ·+ ‖fm−1,i − fm,i‖

≤ 1
2n

+
1

2n+1
+ · · ·+ 1

2m

<
∞∑
k=n

1
2k

=
1

2n−1
.

Since F(U) is a Banach space, (fn,i) converges in the ‖ · ‖-norm, as n→∞,
to a function fi ∈ F(U). From this and ‖fn,i−fm,i‖ < 1/2n−1 for all m > n,
we deduce that ‖fn,i − fi‖ ≤ 1/2n−1 for all i. Note also that the net (fi)
converges pointwise to f . Indeed, fix x ∈ U and ε > 0. Then

|f(x)− fi(x)| ≤ |f(x)− fn(x)|+ |fn(x)− fn,i(x)|+ |fn,i(x)− fi(x)|
= |f(x)− fn(x)|+ |fn(x)− fn,i(x)|+ |δx(fn,i − fi)|
≤ |f(x)− fn(x)|+ |fn(x)− fn,i(x)|+ ‖δx‖ · ‖fn,i − fi‖

≤ |f(x)− fn(x)|+ |fn(x)− fn,i(x)|+ ‖δx‖
1

2n−1
.

Choose n so large that the first and last terms are smaller than ε/3; then
the middle term will also be smaller than ε/3 for i ≥ i(n, x).

Thus, for each n, we have a net (fn,i−fi) converging pointwise to fn−f ,
and such that (fn,i − fi) ⊂ (1/2n−1)B, in other words, |||fn − f ||| ≤ 1/2n−1.
Hence (Fpb(U), ||| · |||) is a Banach space.

Finally, it is clear that F(U) ⊂ Fpb(U) and |||f ||| ≤ ‖f‖ for every f
in F(U).
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Corollary 2.7. The space (Fpb(U), ||| · |||) always admits a strong Ba-
nach linearization. Moreover , (F(U), ‖·‖) admits a strong Banach lineariza-
tion if and only if F(U) = Fpb(U).

Proof. The unit ball Bpb of Fpb(U) is τp-compact, since it is the τp-
closure of the ball B of F(U). Since Fpb(U) satisfies condition (b), a direct
application of Theorem 2.2 shows that Fpb(U) admits a strong Banach lin-
earization.

On the other hand, if F(U) admits a strong Banach linearization, it
has an equivalent τp-compact unit ball, so Bpb = B and F(U) = Fpb(U).
Conversely, if this equality holds, by the Open Mapping Theorem, the norms
‖ · ‖ and ||| · ||| are equivalent and the result follows.

The minimality of Fpb(U) has to be understood in the following sense.

Proposition 2.8. Let G(U) be a Banach space of continuous functions
on U containing F(U) with continuous inclusion ι : F(U) ↪→ G(U). If G(U)
admits a strong Banach linearization, then G(U) also contains Fpb(U) with
continuous inclusion.

Proof. By Theorem 2.2, we can consider an equivalent norm ‖ · ‖G on
G(U), whose unit ball is τp-compact. By the continuity of ι, there exists
C > 0 such that ‖f‖G ≤ C‖f‖ for any f ∈ F(U). Now, each f ∈ Fpb(U)
belongs to G(U), as f is the τp-limit of a ‖ · ‖G-bounded net in F(U). Finally,
it is easy to see that ‖f‖G ≤ C|||f ||| for every f ∈ Fpb(U).

In this sense, for Banach spaces of continuous functions satisfying con-
ditions (a) and (b), to admit a strong Banach linearization is equivalent to
being saturated with respect to the pointwise limits of bounded nets. This is
the case for the spaces of k-homogeneous polynomials on a Banach space, the
space of Lipschitz functions on a metric space, and the space of bounded
holomorphic functions on the unit ball of a Banach space (endowed with
their natural norms). Nevertheless, if we consider, as in [7], a dual Banach
space Z and the uniform algebra A(B) generated by the weak-star continu-
ous linear functionals on the closed unit ball B of Z, this is a non-saturated
subalgebra of H∞(B). In this case, Apb(B) = H∞(B) only under certain
assumptions on Z (for example, when Z has the metric approximation prop-
erty; see [7, Theorem 4.4]).

Finally, we mention the case of Banach spaces E = F(N). Those which
admit a strong Banach linearization are those saturated with respect to the
pointwise limits of bounded nets (for example, `∞). As mentioned before,
c0 does not admit a strong Banach linearization and it is non-saturated.

3. Compactness properties. We now focus on compactness proper-
ties of mappings and of their linearizations. In this section, F(U) denotes
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a locally convex space of continuous functions on U , which need not be a
Banach space. We begin with the definition of several kinds of compactness.

Definition. Let U be a topological space, and E and F locally convex
spaces. We say that a mapping f : U → F is compact if for every x ∈ U
there is a neighborhood Ux of x such that f(Ux) is precompact. Similarly, a
linear operator L : E → F is compact if there is a neighborhood V of 0 such
that L(V ) is precompact.

We say that a mapping f : U → F is F-boundedly compact if for every
F-bounding subset A ⊂ U , f(A) is precompact. Similarly, a linear operator
L : E → F will be called boundedly compact if for all bounded subsets
B ⊂ E, L(B) is precompact.

Clearly, compact linear operators are boundedly compact, and the two
notions coincide when E is a Banach space.

We are going to see that F-bounded compactness of f is equivalent
to bounded compactness of Lf in quite general situations. We suppose
that F(U) is barreled and has the topology of uniform convergence on F-
bounding subsets of U in order to apply Fact 0.3.

For a linear operator L : E → F we denote its transpose by Lt : F ′ →
E′. In a similar way, for f ∈ wF(U,F ), we denote by f t : F ′ → F(U)
the transpose of f defined by f t(ϕ) = ϕ ◦ f . The following result relates
bounded compactness of a mapping, of its linearization, and of its transpose.
Here we denote by β and τco the strong and the compact-open topologies,
respectively.

Theorem 3.1. Suppose F(U) is barreled and has the topology of uniform
convergence on F-bounding subsets of U . Let F be a locally convex space
and f ∈ wF(U,F ). The following conditions are equivalent.

(i) The mapping f : U → F is F-boundedly compact.
(ii) The linearization Lf ∈ L(F∗(U), F ) is boundedly compact.

If , in addition, F is a complete barreled space, these conditions are also
equivalent to the following :

(iii) The transpose operator (Lf )t : (F ′, β) → (F∗(U)′, β) is boundedly
compact.

(iv) The transpose map f t : (F ′, β)→ F(U) is boundedly compact.
(v) The transpose map f t : (F ′, τco)→ F(U) is continuous.

Proof. (i)⇒(ii): Let f be F-boundedly compact and B⊂F∗(U) bounded.
By Fact 0.3, U has the BBF-property, that is, there exist an F-bounding
subset A ⊂ U and an r > 0 such that B ⊂ r coe(e(A)). Then

Lf (B) ⊂ Lf (r coe(e(A))) = r coe(Lf (e(A))) = r coe(f(A)),

which is precompact, since f(A) is. Thus Lf is boundedly compact.
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(ii)⇒(i): Suppose Lf is boundedly compact and A ⊂ U F-bounding.
Since for any Lg ∈ F∗(U)′, Lg(e(A)) = g(A) is bounded, e(A) is F-bounded
in F∗(U). Thus f(A) = Lf (e(A)) is precompact, and f is boundedly com-
pact.

(ii)⇔(iii): If F is barreled, it follows from Proposition 2.1 in [8] that Lf
is boundedly compact if, and only if, (Lf )t is boundedly compact. Note that
in [8] boundedly compact operators are called bpc-operators.

(iii)⇔(iv): Note that for every γ ∈ F ′ we have γ◦Lf = Lγ◦f . Since F(U)
is isomorphic to (F∗(U)′, β) by Fact 0.3, we can identify f t with (Lf )t, and
the result follows.

(i)⇒(v): Suppose f is F-boundedly compact and letB be an F-bounding
subset of U . Since f(B) is precompact, its closure K is a compact subset of
the complete space F for which

sup
x∈B
{|f t(ϕ)(x)|} = sup

x∈B
{|(ϕ ◦ f)(x)|} ≤ |ϕ|K := sup

x∈K
{|ϕ(x)|} for all ϕ ∈ F ′.

This proves the continuity of f t.
(v)⇒(i): If f t is τco-continuous, then for any F-bounding subset B of U

there exist a compact set K ⊂ F and C > 0 so that

sup
x∈B
{|(ϕ ◦ f)(x)|} ≤ C|ϕ|K for all ϕ ∈ F ′.

This implies that f(B) ⊂ C coe(K) and f is F-boundedly compact

The above result applies, for example, to the Fréchet space F(U) =
Hb(U), the space of holomorphic functions of bounded type on a balanced
open subset U of a Banach space; to F(U) = P(kE), the space of continuous
k-homogeneous polynomials on a Banach space E; and to F(U) = H∞(U),
the space of bounded holomorphic functions on an open subset of a Banach
space. (See Examples 1, 3 and 4 in [6].)

As an application, we have the following characterization of C∗(K).

Corollary 3.2. C∗(K) is the space of regular Borel measures on K
with the topology of uniform convergence over compact subsets of C(K).

Proof. Consider F(K) = C(K), and take F = C∗(K). It is clear that
e : K → C∗(K) is F-boundedly compact. By Theorem 3.1, the linearization
Le = id : C∗(K) → C∗(K) is boundedly compact, and hence C∗(K) is
semi-Montel, and thus semireflexive. Hence, algebraically C∗(K) = C(K)′ =
M(K), the space of regular Borel measures on K. C∗(K) is then the space
of regular Borel measures on K with the α-topology: uniform convergence
over compact subsets of C(K).

A result analogous to Theorem 3.1, but for true compactness, seems to
require more of the functions in F(U), and certainly does not hold for the
space of all continuous functions:
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Example 3. Consider F(K) = C(K), and F = C∗(K) as in Corol-
lary 3.2. It is clear that e : K → C∗(K) is compact. Nevertheless, the lin-
earization Le = id : C∗(K)→ C∗(K) is compact only when dimC∗(K) <∞,
or equivalently, when K is finite.

In the context of holomorphic functions, we have the following theorem.

Theorem 3.3. Suppose that E and F are locally convex spaces, U is
a connected open subset of E, and F(U) is a linear space of holomorphic
functions on U . For f ∈ wF(U,F ), the following are equivalent.

(i) The mapping f : U → F is compact.
(ii) For every x ∈ U there is a neighborhood W of x such that the lin-

earization Lf |W ∈ L(F∗(W ), F ) is compact , where F(W ) = {g|W :
g ∈ F(U)}.

Proof. (i)⇒(ii): Let W be a neighborhood of x such that f(W ) is pre-
compact. Note that since U is connected, we can identify F(U) = F(W ) and
therefore (F∗(W ), e) can be seen as a linearization of F(U). Denote by ∆
the closed unit disk in C, and define

D = {g ∈ F(U) : g(W ) ⊂ ∆}.
We begin by noting that D is an equicontinuous τp-compact disk of F(W )
([9, Lemma 3.25]). Thus, the set V = D◦ is a neighborhood of zero in the
α-topology, by [6]. Note that e(W )◦ = D, so V = e(W )◦◦ = coe(e(W )) by
the bipolar theorem. Denote by Lf the linearization of f by F∗(W ). Now

Lf (V ) = Lf (coe(e(W ))) = coe(Lf (e(W ))) = coe(f(W ))

is precompact (see, e.g., [14]). Hence Lf is compact.
(ii)⇒(i): For each x ∈ U let W be as in (ii), and Lf the compact lin-

earization of f by F∗(W ). Suppose V is a neighborhood of 0 such that Lf (V )
is precompact, and take Wx = e−1(ex+V ). Then Wx is a neighborhood of x,
and

f(Wx) = (Lf ◦ e)(e−1(ex + V )) ⊂ Lf (ex + V ) = f(x) + Lf (V )

is precompact.

For the space P(kE,F ) of continuous k-homogeneous polynomials be-
tween Banach spaces and for others with Banach linearizations, such as
H∞(U), a bit more can be said:

Corollary 3.4. Suppose U is a connected open subset of a Banach
space, F(U) is a linear space of holomorphic functions on U , and F∗(U) is
a Fréchet space. Let F be a locally convex space and f ∈ wF(U,F ). The
following are equivalent.

(i) The mapping f : U → F is compact.
(ii) The linearization Lf ∈ L(F∗(U), F ) is compact.
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Proof. Simply apply Theorem 3.3 and Proposition 1.1.

It is easily seen that the above corollary is false without the Fréchet
condition on F∗(U):

Example 4. Take as U any locally compact space and F(U) an infinite-
dimensional space of holomorphic functions on U (for example, F(U) =
H(C), the entire functions on the complex plane). Choose F to be F∗(U).
Then e : U → F∗(U) is compact, but its linearization is the identity I :
F∗(U)→ F∗(U), which cannot be compact.

Remark. Note that in the previous corollary, analyticity of the functions
in F(U) was used only to prove that the set D= {g ∈F(U) : g(W )⊂∆} is
equicontinuous. There are other spaces F(U) where this is so, and therefore
the theorem is also valid for them. A case in point is the space Lip(U) of
Lipschitz functions on a metric space U , endowed with its natural norm.

We now combine our results with factorization theorems for linear op-
erators to obtain the following result, which should be compared with [22].
Here, we say that a mapping f : U → F is weakly compact if for every
x ∈ U there is a neighborhood Ux of x such that f(Ux) is weakly precom-
pact. Similarly, a linear operator L : E → F is weakly compact if there is a
neighborhood V of 0 such that L(V ) is weakly precompact.

Corollary 3.5. Suppose U is a connected open subset of a Banach
space, F(U) is a linear space of holomorphic functions on U , and F∗(U) is
a Fréchet space. Let F be a Fréchet space and f ∈ wF(U,F ). The following
are equivalent.

(i) The mapping f : U → F is weakly compact.
(ii) The linearization Lf ∈ L(F∗(U), F ) is weakly compact.

(iii) The mapping f : U → F factors through a reflexive Banach space.
That is, there exist a reflexive Banach space Z, a mapping g ∈
wF(U,Z), and a continuous linear operator T : Z → F such that

f = T ◦ g.
Proof. The equivalence between (i) and (ii) holds for every locally con-

vex space F , and follows from Corollary 3.4 applied to the space (F,weak).
To prove (ii)⇒(iii), we apply the Davis–Figiel–Johnson–Pe lczyński factor-
ization theorem for linear operators (see e.g. [14, Theorem 17.2.9]). It yields
a reflexive Banach space Z and continuous linear operators S : F∗(U)→ Z
and T : Z → F such that Lf = T ◦ S. Then f factors through Z since
f = T ◦ (S ◦ e) and S ◦ e ∈ wF(U,Z). Finally, (iii)⇒(i) is clear.
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[8] S. Dierolf and P. Domański, Factorization of Montel operators, Studia Math. 107
(1993), 15–32.

[9] S. Dineen, Complex Analysis in Infinite Dimensional Spaces, Springer Monogr.
Math., Springer, London, 1999.
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