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Some locally mean ergodic theorems

by

Ping Kwan Tam (Hong Kong) and Kok-Keong Tan (Halifax)

Abstract. The notion of local mean ergodicity is introduced. Some general locally
mean ergodic theorems for linear and affine operators are presented. Locally mean ergodic
theorems for affine operators whose linear parts are compact or similar to subnormal
operators on a Hilbert space are given.

1. Introduction and preliminaries. Let H (respectively, X) be a
Hilbert space (respectively, normed space). We shall denote by B(H) (re-
spectively, B(X)) the space of all bounded linear operators on H (respec-
tively, on X). If A ∈ B(H) (respectively, A ∈ B(X)), σ(A) denotes the
spectrum of A and rσ(A) := limn→∞ ‖An‖1/n denotes the spectral radius
of A. An operator A ∈ B(H) is subnormal if there exists a Hilbert space K
and a normal operator Ã ∈ B(K) such that K contains H as a (closed) sub-
space, and Ã = A on H (cf. [C, p. 42] for a characterization). It is easy to see
that an operator B which is similar to a normal (respectively, subnormal)
operator need not be normal (respectively, subnormal).

Let X be a normed space and T : X → X. Then T is said to have the
boundedness stability property [ERT, p. 111], or T has (BSP) or T ∈ BSP for
short, if for each x ∈ X, the sequence (T nx)∞n=1 is bounded whenever it has
a bounded subsequence. It is clear from the definition that if S, T ∈ B(X)
are similar and T has (BSP), then S also has (BSP).

If X is a linear space, then T : X → X is affine if AT : X → X defined
by ATx = Tx − T0 for all x ∈ X is linear. In this case, AT is called the

2000 Mathematics Subject Classification: Primary 47A35, 47B20.
Key words and phrases: subnormal operator, normal operator, boundedness stability

property, similar, compact operator, spectrum, mean ergodic theorem, fixed point.
Research of both authors is partially supported by a grant from The Chinese Univer-

sity of Hong Kong, Hong Kong.
Research of K. K. Tan is partially supported by NSERC of Canada under Grant No.

A-8096.

[1]



2 P. K. Tam and K. K. Tan

linear part of T . If a = T0, it is easily verified that for each z ∈ X,

(1.1) Tnz = AnT z +
n∑

k=1

Ak−1
T a for all n ≥ 1.

Thus, if X is a normed space, T is affine and (
∑n
k=1 A

k
Ta)∞n=1 is bounded,

then AT has (BSP) if and only if T has (BSP).
The following is Corollary 2 in [ERT, p. 120]:

Lemma A. Let H be a Hilbert space and A ∈ B(H) be similar to a
subnormal operator. Then A has (BSP).

In the literature, mean ergodic theorems for linear operators (respectiv-
ely, for affine operators) usually deal with operators which are (respectively,
whose linear parts are) power bounded (see, e.g., [YK] and [Z], respectively,
[E]). In this paper, we introduce the notion of local mean ergodicity. Some
general locally mean ergodic theorems are then given. Locally mean ergodic
theorems for linear operators (respectively, affine operators whose linear
parts are) similar to subnormal operators on a Hilbert space are presented. A
result on affine operators whose linear parts are compact is also established.

2. Locally mean ergodic theorems. Let X be a non-empty set and
T : X → X. Then x ∈ X is a fixed point of T if T (x) = x. We shall denote
by Fix(T ) the set of all fixed points of T in X.

The following can be easily verified:

Lemma 2.1. Let X be a vector space, T : X → X be affine and a = T0.
Then Fix(AT ) = ker(I−AT ) and Fix(T ) = (I−AT )−1({a}) = ξ+ Fix(AT )
for any ξ ∈ Fix(T ), where I denotes the identity operator on X. Moreover ,
Fix(T ) 6= ∅ if and only if a ∈ (I − AT )X.

We now introduce the notion of local mean ergodicity as follows:

Definition 2.2. Let X be a normed space and A : X → X. Then A is
said to be locally mean ergodic, or A is LME or A ∈ LME for short, if for
each x ∈ X, the sequence (n−1∑n

k=1 A
kx)∞n=1 converges in X whenever the

sequence (Anx)∞n=1 contains a bounded subsequence.

Let X be a normed space. It is clear from the definition that if A :X→X
is an arbitrary mapping such that ‖Anx‖ → ∞ for each x ∈ X, then A ∈
LME. Also, if A,B ∈ B(X) are similar and A is locally mean ergodic, then
B is also locally mean ergodic.

The following result is Theorem 2.4 of [RTT]:

Lemma 2.3. Let X be a Banach space and A ∈ B(X) be compact. Let
x ∈ X be such that a subsequence of (Anx)∞n=1 is bounded. Then the sequence
(n−1∑n

k=1 A
kx)∞n=1 converges to a fixed point of A. In particular , A ∈ LME.
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Lemma 2.4. Let X be a normed space, T : X → X be a continuous
affine operator , x ∈ X and xn = n−1∑n

k=1 T
kx for n = 1, 2, . . . Suppose

any one of the following conditions is satisfied :

(a) (Tnx)∞n=1 is bounded and a subsequence (xni)
∞
i=1 of (xn)∞n=1 is weakly

convergent to some x in X,
(b) the sequence (xn)∞n=1 is weakly convergent to some x in X.

Then x ∈ Fix(T ).

Proof. Suppose the condition (a) is satisfied. Since T is weakly continu-
ous, (Txni)

∞
i=1 converges weakly to Tx. Note that

Txni =
1
ni

ni∑

k=1

T k+1x =
1
ni

[( ni∑

k=1

T kx
)

+ Tni+1x− Tx
]

= xni +
1
ni

(Tni+1x)− 1
ni
Tx→ x+ 0− 0 = x weakly as i→∞

as the sequence (Tnx)∞n=1 is bounded. Therefore Tx = x.
Now suppose the condition (b) is satisfied. Since T is weakly continuous,

(Txn)∞n=1 converges weakly to Tx. Note that

Txn =
1
n

n∑

k=1

T k+1x =
n+ 1
n

(
1

n+ 1

n+1∑

k=1

T kx

)
− 1
n
Tx

=
n+ 1
n

xn+1 −
1
n
Tx→ x− 0 = x weakly as n→∞.

Therefore Tx = x.

Lemma 2.4(a) improves Theorem 1(1) of [TT] where “(
∑n
k=1 A

k
T a)∞n=1

is bounded where a = T0” is additionally assumed.
As an immediate consequence of Lemma 2.4(a), we have the following

result which is Theorem 5 of [ET]; for its generalization to semigroups, we
refer to Theorem 5′ of [ET].

Corollary 2.5. Let X be a reflexive Banach space and T : X → X be
a continuous affine operator. If (Tnx)∞n=1 is bounded for some x ∈ X, then
Fix(T ) 6= ∅.

Proof. Since (Tnx)∞n=1 is bounded, the sequence (xn)∞n=1 is also bounded
where xn = n−1∑n

k=1 T
kx for n = 1, 2, . . . Since X is reflexive, there is a

subsequence (xni)
∞
i=1 of (xn)∞n=1 that weakly converges to some x ∈ X. By

Lemma 2.4(a), Tx = x.

As another immediate consequence of Lemma 2.4(b), we have

Corollary 2.6. Let X be a normed space and T : X → X be a contin-
uous affine operator such that T ∈ LME. For each x ∈ X, if (T nx)∞n=1 has



4 P. K. Tam and K. K. Tan

a bounded subsequence, then (n−1∑n
k=1 T

kx)∞n=1 converges to a fixed point
of T in X.

We now present a very general locally mean ergodic theorem for affine
operators:

Theorem 2.7. Let X be a normed space and T : X → X be an affine
operator (not necessarily continuous) such that AT ∈ LME and Fix(T ) 6= ∅.
Then T ∈ LME.

Proof. Suppose x ∈ X is such that (Tnx)∞n=1 contains a bounded subse-
quence. Since Fix(T ) 6= ∅, choose any x ∈ X such that Tx = x.

By (1.1), for each n ≥ 1,

(2.2) AnT (x− x) = AnTx− AnTx = Tnx− Tnx = Tnx− x.
Thus the sequence (AnT (x− x))∞n=1 has a bounded subsequence. Since AT ∈
LME, n−1∑n

k=1 A
k
T (x − x) converges, say to x̂ ∈ X. Now (2.2) implies

n−1∑n
k=1 T

kx − x = n−1∑n
k=1 A

k
T (x − x) → x̂ so that n−1∑n

k=1 T
kx →

x̂+ x. Therefore T ∈ LME.

Corollary 2.8. Let X be a normed space, T : X → X be a continuous
affine operator such that AT ∈ LME and for some x ∈ X, (Tnx)∞n=1 has a
bounded subsequence. Then Fix(T ) 6= ∅ if and only if (n−1∑n

k=1 T
kx)∞n=1

is convergent.

Proof. Suppose (n−1∑n
k=1 T

kx)∞n=1 is convergent to x ∈ X. Then by
Lemma 2.4(b), x ∈ Fix(T ) so that Fix(T ) 6= ∅.

Conversely, suppose Fix(T ) 6= ∅. Then by Theorem 2.7, T ∈ LME. Since
(Tnx)∞n=1 has a bounded subsequence, it follows from local mean ergodicity
of T that (n−1∑n

k=1 T
kx)∞n=1 is convergent.

Theorem 2.9. Let X be a normed space and T : X → X be an affine
operator (not necessarily continuous) such that AT ∈ LME and I − T has a
closed range, where I denotes the identity operator on X. Then T ∈ LME.

Proof. Suppose Fix(T ) = ∅. Then by Theorem 2 of [ET], for each x ∈ X,
‖Tnx‖ → ∞ as n→∞. Thus T ∈ LME.

On the other hand, if Fix(T ) 6= ∅, then T ∈ LME by Theorem 2.7.

The following is the locally mean ergodic theorem for affine operators
whose linear parts are compact:

Theorem 2.10. Let X be a Banach space and T : X → X be a contin-
uous affine operator such that AT is compact. Then T ∈ LME.

Proof. Since AT is compact, AT ∈ LME by Lemma 2.3 and I−AT has a
closed range (cf. [R, p. 101]). Hence I−T has a closed range. Thus T ∈ LME
by Theorem 2.9.
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Theorem 2.10 improves Theorem 5 of [TT] where “(
∑n
k=1 A

k
T a)∞n=1 is

bounded where a = T0” is additionally assumed.
The following is another locally mean ergodic theorem for an affine op-

erator:

Theorem 2.11. Let X be a reflexive Banach space and T : X → X be
a continuous affine operator such that AT ∈ LME. Suppose any one of the
following conditions is satisfied :

(a) T ∈ BSP,
(b) the sequence (

∑n
k=1 A

k
Ta)∞n=1 is bounded where a = T0.

Then T ∈ LME.

Proof. Suppose the condition (a) is satisfied. Let x ∈ X be such that
(Tnx)∞n=1 contains a bounded subsequence. Since T ∈ BSP, (T nx)∞n=1 is
itself bounded. By Corollary 2.5, Fix(T ) 6= ∅. By Theorem 2.7, T ∈ LME.

Next suppose (b) is satisfied. Note that (T n0)∞n=1 = (
∑n−1
k=0 A

k
T a)∞n=1

is bounded. By Corollary 2.5, Fix(T ) 6= ∅. Now Theorem 2.7 implies that
T ∈ LME.

To end this section, we have the following strengthened converse of The-
orem 2.11(b) (here X is not assumed to be reflexive):

Theorem 2.12. Let X be a normed space and T : X → X be a con-
tinuous affine operator such that (

∑n
k=1 A

k
Ta)∞n=1 is bounded in X, where

a = T0. If T is locally mean ergodic, then AT is locally mean ergodic and
Fix(T ) 6= ∅.

Proof. Let x ∈ X be such that (AnTx)∞n=1 contains a bounded subse-
quence (AniT x)∞i=1. Then by (1.1) the subsequence (T nix)∞i=1 of (Tnx)∞n=1
is bounded. Hence by Corollary 2.6, the sequence (xn)∞n=1 converges to
some x ∈ Fix(T ), where xn = n−1∑n

k=1 T
kx. By (1.1) again, we have

AkTx = x−∑k−1
l=0 A

l
T a = x− T k0 for k ≥ 1 so that

1
n

n∑

k=1

AkTx = x− 1
n

n∑

k=1

T k0.

Since (Tn0)∞n=1 = (
∑n−1
k=0 A

k
T a)∞n=1 is bounded and T ∈ LME, it follows

that (n−1∑n
k=1 T

k0)∞n=1 converges, say to x̂ ∈ X. Thus (n−1∑n
k=1 A

k
Tx)∞n=1

converges to x− x̂. Therefore AT is locally mean ergodic.

3. Subnormal operators. The following result is a mean ergodic the-
orem for an operator which is similar to a subnormal operator on a Hilbert
space:
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Theorem 3.1. Let H be a Hilbert space and A ∈ B(H) be similar to
a subnormal operator. Let x ∈ H be such that a subsequence of (xn)∞n=1,
where xn = n−1∑n

k=1 A
kx for all n = 1, 2, . . . , is bounded. Then

(1) the sequence (xn)∞n=1 converges to a fixed point x̂ of A in H, and
(2) for each y ∈ H with x− x̂ = (I − A)y, where I denotes the identity

operator on H, the sequence (Any)∞n=1 is also bounded.

Proof. Case 1. Suppose A is a subnormal operator.
First consider the case where H is complex. Let K be a complex Hilbert

space containing H (as a subspace), and Ã ∈ B(K) be normal with Ã = A

on H. Let σ = σ(Ã) and let Ã =
�
σ
λdPλ be the spectral representation of

Ã. Then for any x ∈ H and any k = 1, 2, . . . , Akx =
�
σ
λk dPλx, so that for

each n = 1, 2, . . . ,

xn =
1
n

n∑

k=1

Akx = �
σ

fn(λ) dPλx, where fn(λ) =
1
n

n∑

k=1

λk.

Let σ0 = {λ ∈ σ : |λ| ≤ 1 and λ 6= 1}, σ1 := {λ ∈ σ : λ = 1}, and
σ2 := {λ ∈ σ : |λ| > 1}. Since for each n = 1, 2, . . . and for each λ 6= 1,

fn(λ) =
λ(1− λn)
n(1− λ)

=
λ

n
(1 + λ+ . . .+ λn−1),

we have |fn(λ)| ≤ 1 on σ0; fn(λ) = 1 on σ1; and

|fn(λ)| ≥ |λ|(|λ|
n − 1)

n(|λ|+ 1)
≥ (n− 1)(1/p)2

2(1 + ‖Ã‖)
if |λ| ≥ 1+

1
p

for some p = 1, 2, . . .

Thus
�
σ0∪σ1

|fn(λ)|2 d(Pλx |x) is uniformly bounded (w.r.t. n ∈ N); since a
subsequence of (xn)∞n=1 is bounded, and since

‖xn‖2 = �
σ0∪σ1

|fn(λ)|2 d(Pλx |x) + �
σ2

|fn(λ)|2 d(Pλx |x),

we must have (P (σ2)x |x) = 0, i.e., P (σ2)x = 0. Thus xn =
�
σ1
dPλx +�

σ0
fn(λ) dPλx. As |fn(λ)| ≤ 1 and limn→∞ fn(λ) = 0 for each λ ∈ σ0, by

[DS, Corollary 8(iii), p. 899] we have xn → x̂ where x̂ :=
�
σ1

dPλx. Since
xn ∈ H, we also have x̂ ∈ H. Now Ax̂ =

�
σ
λχσ1(λ) dPλx =

�
σ1
dPλx = x̂,

so (1) is established.
To establish (2), let B := χσ2(Ã). Then Bx =

�
σ2
dPλx = P (σ2)x = 0

and Bx̂ =
�
σ
χσ2(λ)χσ1(λ) dPλx = 0. Suppose y ∈ H is such that x − x̂ =

(I−A)y. Then 0 = B(x− x̂) = B(I− Ã)y = (I− Ã)By, so that ÃBy = By.
Hence for all n = 1, 2, . . . , ÃnBy = By and

‖ÃnBy‖ = ‖By‖ =
[ �
σ2

d(Pλy | y)
]1/2

= ‖P (σ2)y‖ ≤ ‖y‖,
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also

‖Ãn(I −B)y‖ =
[ �
σ0∪σ1

|λ|2n d(Pλy | y)
]1/2

≤ ‖P (σ0 ∪ σ1)y‖ ≤ ‖y‖.

Hence ‖Any‖ ≤ ‖ÃnBy‖+ ‖Ãn(I −B)y‖ ≤ 2‖y‖ and (2) is established.
Consider now the case of a real Hilbert space H, and let A ∈ B(H) be

subnormal. Let x ∈ H be such that a subsequence of (xn)∞n=1 is bounded.
Let Hc, respectively, Ac, be the complexification of H, respectively, A.
Then Ac is subnormal (see, e.g., [ERT, p. 119], or verified directly) and
‖n−1∑n

k=1A
k
c (x, 0)‖ = ‖n−1∑n

k=1 A
kx‖, n = 1, 2, . . . By the preceding re-

sult for the complex case, (n−1∑n
k=1 A

kx, 0)∞n=1 = (n−1∑n
k=1 A

k
c (x, 0))∞n=1

converges to a fixed point ̂(x, 0) of Ac in Hc. Hence (n−1∑n
k=1 A

kx)∞n=1 (is

Cauchy in H, so it) converges to some x̂ in H, and ̂(x, 0) = (x̂, 0). Hence
(Ax̂, 0) = Ac(x̂, 0) = (x̂, 0), and x̂ is a fixed point of A. Moreover if y ∈ H
satisfies x− x̂ = (I −A)y, then (x, 0)− ̂(x, 0) = (x− x̂, 0) = (Ic −Ac)(y, 0),
so that by the result for the complex case, (Anc (y, 0))∞n=1 is bounded. But
‖Any‖ = ‖Anc (y, 0)‖ for all n = 1, 2, . . . , so (Any)∞n=1 is also bounded.

Case 2. Now suppose A is similar to a subnormal operator B ∈ B(H).
Let R ∈ B(H) be invertible such that A = RBR−1 or B = R−1AR.

Let z = R−1x and zn := n−1∑n
k=1 B

kz = R−1xn for each n ≥ 1. Since a
subsequence of (xn)∞n=1 is bounded, a subsequence of (zn)∞n=1 is bounded.
By Case 1, (zn)∞n=1 converges to a fixed point ẑ of B in H. Hence (xn)∞n=1 =
(Rzn)∞n=1 converges to x̂ = Rẑ in H. But Ax̂ = (RBR−1)Rẑ = RBẑ = Rẑ
= x̂; i.e., x̂ is a fixed point of A. Moreover, for y ∈ H with x− x̂ = (I−A)y,
we have z − ẑ = R−1(x − x̂) = R−1(I − A)y = (I − B)R−1y so that by
Case 1, (BnR−1y)∞n=1 is bounded. But then (Any)∞n=1 = (RBnR−1y)∞n=1 is
bounded.

The following locally mean ergodic theorem for linear operators which are
similar to subnormal operators is an immediate consequence of Theorem 3.1
and Lemma A:

Theorem 3.2. Let H be a Hilbert space and A ∈ B(H) be similar to a
subnormal operator. Let x ∈ H be such that a subsequence of (Anx)∞n=1 is
bounded. Then

(1) the sequence (n−1∑n
k=1 A

kx)∞n=1 converges to a fixed point x̂ of A
in H, and

(2) for each y ∈ H with x− x̂ = (I − A)y, where I denotes the identity
operator in B(H), the sequence (Any)∞n=1 is also bounded.

In particular , A ∈ LME.
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Corollary 3.3. Let H be a Hilbert space and B ∈ B(H) be similar
to a subnormal operator in B(H). For a ∈ H, define T : H → H by
Tz = (I − B)z + a for each z ∈ H where I is the identity operator on
H. Suppose the sequence (

∑n
k=1(I − B)ka)∞n=1 contains a bounded subse-

quence and for some x ∈ H, the sequence (Tnx)∞n=1 is bounded. Then the
sequence (n−1∑n

k=1 T
kx)∞n=1 converges in H to a solution of the equation

Bz = a.

Proof. Let A = I −B; then AT = A. Since B is similar to a subnormal
operator, A is also similar to a subnormal operator so that A ∈ LME by
Theorem 3.2.

By (1.1), a subsequence of (Anx)∞n=1 is bounded. By Lemma A, the whole
sequence (Anx)∞n=1 is bounded. Hence (

∑n
k=1 A

ka)∞n=1 is bounded by (1.1).
By Theorem 2.11(b), T ∈ LME so that the sequence (n−1∑n

k=1 T
kx)∞n=1

converges to some x ∈ Fix(T ) by Corollary 2.6. It follows that Bx = a.

Remark 3.4. Corollary 3.3 has an obvious counterpart for the case
where I − B is compact; its statement is omitted (use Theorem 2.10 and
Lemma 2.4(b); in fact, it is sufficient to assume that the sequence (T nx)∞n=1
contains a bounded subsequence).

Finally, we have the following locally mean ergodic theorem for affine
operators whose linear parts are similar to subnormal operators:

Theorem 3.5. Let H be a Hilbert space and T : H → H be a continuous
affine operator whose linear part AT is similar to a subnormal operator in
B(H). Suppose any one of the following conditions is satisfied :

(1) The sequence (
∑n
k=1 A

k
T a)∞n=1 is bounded where a = T0.

(2) 1 6∈ σ(AT ).

(3) 1 is an isolated point of σ(ÂT ), where ÂT is the complexification of
AT when H is real , and ÂT = AT when H is complex.

Then T is locally mean ergodic.

Proof. When AT satisfies condition (1), the conclusion follows from The-
orems 3.2 and 2.11(b). If AT satisfies (2), then Fix(T ) 6= ∅ by Lemma 2.1 so
that T ∈ LME by Theorems 3.2 and 2.7. Finally, if AT satisfies (3), then T
has (BSP) by [ERT, Corollary 4 and the remark following its proof, p. 121]
so that by Theorems 3.2 and 2.11(a), T ∈ LME.
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