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Nonlocal Poincaré inequalities on Lie groups with
polynomial volume growth and Riemannian manifolds

by

Emmanuel Russ and Yannick Sire (Marseille)

Abstract. Let G be a real connected Lie group with polynomial volume growth
endowed with its Haar measure dx. Given a C2 positive bounded integrable function M
on G, we give a sufficient condition for an L2 Poincaré inequality with respect to the
measure M(x) dx to hold on G. We then establish a nonlocal Poincaré inequality on G
with respect to M(x) dx. We also give analogous Poincaré inequalities on Riemannian
manifolds and deal with the case of Hardy inequalities.

1. Introduction. Let G be a unimodular connected Lie group endowed
with a measure M(x) dx where M ∈ L1(G) and dx stands for the Haar
measure on G. By “unimodular”, we mean that the Haar measure is left- and
right-invariant. We always assume that M is bounded and M = e−v where
v is a C2 function on G. If we denote by G the Lie algebra of G, we consider
a family

X = {X1, . . . , Xk}
of left-invariant vector fields on G satisfying the Hörmander condition, i.e. G
is the Lie algebra generated by the Xi’s. A standard metric on G , called the
Carnot–Carathéodory metric, is naturally associated with X and is defined
as follows. Let ` : [0, 1]→ G be an absolutely continuous path. We say that `
is admissible if there exist measurable functions a1, . . . , ak : [0, 1]→ C such
that, for almost every t ∈ [0, 1],

`′(t) =
k∑
i=1

ai(t)Xi(`(t)).

If ` is admissible, its length is defined by

|`| =
1�

0

( k∑
i=1

|ai(t)|2 dt
)1/2

.
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For all x, y ∈ G, define d(x, y) as the infimum of the lengths of all admis-
sible paths joining x to y (such a curve exists by the Hörmander condition).
This distance is left-invariant. For short, we denote by |x| the distance be-
tween e, the neutral element of the group, and x, so that the distance from
x to y is equal to |y−1x|.

For all r > 0, denote by B(x, r) the open ball in G with respect to the
Carnot–Carathéodory distance and by V (r) the Haar measure of any ball.
There exists d ∈ N∗ (called the local dimension of (G,X)) and 0 < c < C
such that, for all r ∈ (0, 1),

crd ≤ V (r) ≤ Crd

(see [NSW]). When r > 1, two situations may occur (see [G]):

• There exist c, C,D > 0 such that, for all r > 1,

crD ≤ V (r) ≤ CrD

where D is called the dimension at infinity of the group (note that,
unlike d, D does not depend on X). The group is then said to have
polynomial volume growth.
• There exist c1, c2, C1, C2 > 0 such that, for all r > 1,

c1e
c2r ≤ V (r) ≤ C1e

C2r.

The group is then said to have exponential volume growth.

When G has polynomial volume growth, it is plain that there exists C > 0
such that, for all r > 0,

(1.1) V (2r) ≤ CV (r),

which implies that there exist C > 0 and κ > 0 such that, for all r > 0 and
all θ > 1,

(1.2) V (θr) ≤ CθκV (r).

Denote by H1(G, dµM ) the Sobolev space of functions f ∈ L2(G, dµM )
such that Xif ∈ L2(G, dµM ) for all 1 ≤ i ≤ k. We are interested in L2

Poincaré inequalities for the measure dµM . In order to state sufficient con-
ditions for such an inequality to hold, we introduce the operator

LMf = −M−1
k∑
i=1

Xi{MXif}

for all f such that

f ∈D(LM ) :=
{
g ∈H1(G, dµM ) :

1√
M
Xi{MXig} ∈L2(G, dx), ∀1≤ i≤ k

}
.
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One therefore has, for all f ∈ D(LM ) and g ∈ H1(G, dµM ),

�

G

LMf(x)g(x) dµM (x) =
k∑
i=1

�

G

Xif(x) ·Xig(x) dµM (x).

In particular, the operator LM is symmetric on L2(G, dµM ).
Following [BBCG], say that a C2 function W : G → R is a Lyapunov

function if W (x) ≥ 1 for all x ∈ G and there exist constants θ > 0, b ≥ 0
and R > 0 such that, for all x ∈ G,

(1.3) − LMW (x) ≤ −θW (x) + b1B(e,R)(x),

where, for all A ⊂ G, 1A denotes the characteristic function of A. We first
claim:

Theorem 1.1. Assume that G is unimodular and that there exists a
Lyapunov function W on G. Then dµM satisfies the following L2 Poincaré
inequality: there exists C > 0 such that, for every function f ∈ H1(G, dµM )
with

	
G f(x) dµM (x) = 0,

(1.4)
�

G

|f(x)|2 dµM (x) ≤ C
k∑
i=1

�

G

|Xif(x)|2 dµM (x).

Let us give, as a corollary, a sufficient condition on v for (1.4) to hold:

Corollary 1.2. Assume that G is unimodular and there exist constants
a ∈ (0, 1), c > 0 and R > 0 such that, for all x ∈ G with |x| > R,

(1.5) a
k∑
i=1

|Xiv(x)|2 −
k∑
i=1

X2
i v(x) ≥ c.

Then (1.4) holds.

Notice that, if (1.5) holds with a ∈ (0, 1/2), then the Poincaré inequal-
ity (1.4) admits the following improvement:

Proposition 1.3. Assume that G is unimodular and there exist con-
stants c > 0, R > 0 and ε ∈ (0, 1) such that, for all x ∈ G,

(1.6)
1− ε

2

k∑
i=1

|Xiv(x)|2 −
k∑
i=1

X2
i v(x) ≥ c whenever |x| > R.

Then there exists C > 0 such that, for every function f ∈ H1(G, dµM ) with	
G f(x) dµM (x) = 0,

(1.7)
�

G

|f(x)|2
(

1 +
k∑
i=1

|Xiv(x)|2
)
dµM (x) ≤ C

k∑
i=1

�

G

|Xif(x)|2 dµM (x).
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Observe that conditions (1.5) and (1.6) are satisfied for instance, when
M = exp(−|x|2/2) is a Gaussian measure, but also when M(x) = e−|x|, and
more generally when M(x) = e−|x|

α with α ≥ 1.
Finally, we obtain Poincaré inequalities for dµM involving a nonlocal

term.

Main Theorem 1.4. Let G be a unimodular Lie group with polynomial
growth. Let dµM = Mdx be a measure absolutely continuous with respect to
the Haar measure on G where M = e−v ∈ L1(G) is assumed to be bounded
and v ∈ C2(G).

(i) Assume that there exist constants a ∈ (0, 1), c > 0 and R > 0 such
that, for all x ∈ G with |x| > R, (1.5) holds. Let α ∈ (0, 2). Then
there exists λα(M) > 0 such that, for every function f ∈ D(G)
satisfying

	
G f(x) dµM (x) = 0,

(1.8)
�

G

|f(x)|2 dµM (x) ≤ λα(M)
� �

G×G

|f(x)− f(y)|2

V (|y−1x|)|y−1x|α
dx dµM (y).

(ii) Assume that there exist constants c > 0, R > 0 and ε ∈ (0, 1) such
that (1.6) holds. Let α ∈ (0, 2). Then there exists λα(M) > 0 such
that, for every function f ∈ D(G) satisfying

	
G f(x) dµM (x) = 0,

(1.9)
�

G

|f(x)|2
(

1 +
k∑
i=1

|Xiv(x)|2
)α/2

dµM (x)

≤ λα(M)
� �

G×G

|f(x)− f(y)|2

V (|y−1x|)|y−1x|α
dx dµM (y).

Note that (1.8) (resp. (1.9)) is an extension of (1.4) (resp. (1.7)) in terms
of fractional nonlocal quantities. The proof follows the same lines as in [MRS]
but we concentrate here on a more geometric context.

Before describing our method, let us give some motivation for obtain-
ing fractional Poincaré inequalities. Fractional diffusions naturally appear in
many models, ranging from plasma turbulence [DCL] or geostrophic flows
[CV] in fluid dynamics, grazing collisions in kinetic theory (cf. the Boltz-
mann equation for long-range interactions [VI, M, MS, GS]), all the way
to stockmarket modeling based on Lévy processes [DOP]. They also appear
naturally in mathematics: in probability they appear in the important class
of infinitely divisible Markov processes (cf. the Lévy–Khinchin representa-
tion [FE]); in analysis they naturally appear in the study of singular integral
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operators (e.g. for the Boltzmann equation, cf. references above) as well
as in the so-called “Dirichlet-to-Neumann” boundary value problem and in
the Signorini (obstacle) problem [SIG] (see for instance among other refer-
ences [SIL] and [CF]). The search for a Poincaré inequality for the nonlocal
fractional energy associated with fractional diffusion is therefore a natural
and interesting question since this inequality governs the spectral gap of
the underlying operator and the speed of (fractional) diffusion towards an
equilibrium.

In order to prove Theorem 1.4, we need to introduce fractional powers
of LM . This is the object of the following developments. Since the operator
LM is symmetric and nonnegative on L2(G, dµM ), we can define the usual
power LβM for any β ∈ (0, 1) by means of spectral theory.

Section 2 is devoted to the proof of Theorem 1.1 and Corollary 1.2. Then,
in Section 3, we check L2 “off-diagonal” estimates for the resolvent of LM
and use them to establish Theorem 1.4.

Analogous results can be obtained on Riemannian manifolds (under cer-
tain assumptions) and we refer the reader to Section 4 for a complete de-
scription. Finally the last section deals with Hardy inequalities.

2. A proof of the Poincaré inequality for dµM . We follow closely
the approach of [BBCG]. Recall first that the following L2 local Poincaré
inequality holds on G for the measure dx: for all R > 0, there exists CR > 0
such that, for all x ∈ G, all r ∈ (0, R), every ball B := B(x, r) and every
function f ∈ C∞(B),

(2.1)
�

B

|f(x)− fB|2 dx ≤ CRr2
k∑
i=1

�

B

|Xif(x)|2 dx,

where fB := V (r)−1 	
B f(x) dx. In the Euclidean context, Poincaré inequali-

ties for vector fields satisfying Hörmander conditions were obtained by Jeri-
son [J]. A proof of (2.1) in the case of unimodular Lie groups can be found
in [SA], but the idea goes back to [VA]. A nice survey of this topic can be
found in [HK]. Notice that no global growth assumption on the volume of
balls is required for (2.1) to hold.

The proof of (1.4) relies on the following inequality:

Lemma 2.1. Assume that W is a Lyapunov function. For every function
f ∈ H1(G, dµM ) on G,

(2.2)
�

G

LMW

W
(x)f(x)2 dµM (x) ≤

k∑
i=1

�

G

|Xif(x)|2 dµM (x).



110 E. Russ and Y. Sire

Proof. Assume first that f is compactly supported on G. Using the def-
inition of LM , one has

�

G

LMW

W
(x)f(x)2 dµM (x) =

k∑
i=1

�

G

Xi

(
f2

W

)
(x) ·XiW (x) dµM (x)

= 2
k∑
i=1

�

G

f

W
(x)Xif(x) ·XiW (x) dµM (x)

−
k∑
i=1

�

G

f2

W 2
(x)|XiW (x)|2 dµM (x)

=
k∑
i=1

�

G

|Xif(x)|2 dµM (x)

−
k∑
i=1

�

G

∣∣∣∣Xif −
f

W
XiW

∣∣∣∣2(x) dµM (x)

≤
k∑
i=1

�

G

|Xif(x)|2 dµM (x).

Notice that all the above integrals are finite because of the support condition
on f . Now, if f is as in Lemma 2.1, consider a nondecreasing sequence of
smooth compactly supported functions χn satisfying

1B(e,nR) ≤ χn ≤ 1 and |Xiχn| ≤ 1 for all 1 ≤ i ≤ k.

Applying (2.2) to fχn and letting n go to +∞ yields the desired conclusion,
by use of the monotone convergence theorem on the left-hand side and the
dominated convergence theorem on the right-hand side.

Let us now establish (1.4). Let g be a smooth function on G and let
f := g − c on G where c is a constant to be chosen. By assumption (1.3),

(2.3)
�

G

f(x)2 dµM (x)

≤
�

G

f(x)2
LMW

θW
(x) dµM (x) +

�

B(e,R)

f(x)2
b

θW
(x) dµM (x).

Lemma 2.1 shows that (2.2) holds. Let us now turn to the second term on
the right-hand side of (2.3). Fix c such that

	
B(e,R) f(x) dµM (x) = 0. By

(2.1) applied to f on B(e,R) and the fact that M is bounded from above
and below on B(e,R), one has

�

B(e,R)

f(x)2 dµM (x) ≤ CR2
k∑
i=1

�

B(e,R)

|Xif(x)|2 dµM (x)
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where the constant C depends on R and M . Therefore, as W ≥ 1 on G,

(2.4)
�

B(e,R)

f(x)2
b

θW
(x) dµM (x) ≤ CR2

k∑
i=1

�

B(e,R)

|Xif(x)|2 dµM (x)

where the constant C depends on R,M, θ and b. Gathering (2.3), (2.2) and
(2.4) yields

�

G

(g(x)− c)2 dµM (x) ≤ C
k∑
i=1

�

G

|Xig(x)|2 dµM (x),

which easily implies (1.4) for the function g (and the same dependence for
the constant C).

Proof of Corollary 1.2. According to Theorem 1.1, it is enough to find a
Lyapunov function W . Define

W (x) := eγ(v(x)−infG v)

(remember thatM , and therefore v, are bounded) where γ > 0 will be chosen
later. Since

−LMW (x) = γ
( k∑
i=1

X2
i v(x)− (1− γ)

k∑
i=1

|Xiv(x)|2
)
W (x),

W is a Lyapunov function for γ := 1 − a because of the assumption on v.
Indeed, one can take θ = cγ and b = maxB(e,R){−LMW + θW} (recall that
M is a C2 function).

Let us now prove Proposition 1.3. Observe first that, since v is C2 on G
and (1.6) holds, there exists α ∈ R such that, for all x ∈ G,

(2.5)
1− ε

2

k∑
i=1

|Xiv(x)|2 −
k∑
i=1

X2
i v(x) ≥ α.

Let f be as in the statement of Proposition 1.3 and let g := fM1/2. Since,
for all 1 ≤ i ≤ k,

Xif = M−1/2Xig −
1
2
gM−3/2XiM,

inequality (2.5) yields two positive constants β, γ such that

(2.6)
k∑
i=1

�

G

|Xif(x)|2(x) dµM (x)

=
k∑
i=1

�

G

(
|Xig(x)|2 +

1
4
g(x)2|Xiv(x)|2 + g(x)Xig(x)Xiv(x)

)
dx
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=
k∑
i=1

�

G

(
|Xig(x)|2 +

1
4
g(x)2|Xiv(x)|2 +

1
2
Xi(g2)(x)Xiv(x)

)
dx

≥
k∑
i=1

�

G

g(x)2
(

1
4
|Xiv(x)|2 − 1

2
X2
i v(x)

)
dx

≥
k∑
i=1

�

G

f(x)2(β|Xiv(x)|2 − γ) dµM (x).

The conjunction of (1.4), which holds because of (1.6), and (2.6) yields the
desired conclusion.

3. Proof of Theorem 1.4. We divide the proof into several steps.

3.1. Rewriting the Poincaré inequalities. The first step in the proof
of 1.4 consists in rewriting the “initial” Poincaré inequality in terms of oper-
ators. Let us first consider item (i). By the definition of LM , inequality (1.4)
means, in terms of operators in L2(G, dµM ), that, for some λ > 0,

(3.1) LM ≥ λI,
where I is the identity operator. Using a functional calculus argument (see
[D, p. 110]), one deduces from (3.1) that, for any α ∈ (0, 2),

L
α/2
M ≥ λα/2I,

which implies, thanks to the fact Lα/2M = (Lα/4M )2 and the symmetry of Lα/4M

on L2(G, dµM ), that�

G

|f(x)|2 dµM (x) ≤ C
�

G

|Lα/4M f(x)|2 dµM (x) = C‖Lα/4M f‖2L2(G,dµM ).

As far as item (ii) is concerned, the conclusion of Proposition 1.3 means that

(3.2) LM ≥ λµ
for some λ > 0, where µ is the multiplication operator by 1 +

∑k
i=1 |Xiv|2.

Arguing similarly, one deduces from (3.2) that, for any α ∈ (0, 2),

L
α/2
M ≥ λα/2µα/2,

which implies now that
�

G

|f(x)|2
(

1 +
k∑
i=1

|Xiv(x)|2
)α/2

dµM (x)

≤ C
�

G

|Lα/4M f(x)|2 dµM (x) = C‖Lα/4M f‖2L2(G,dµM ).

Therefore, the conclusions of Theorem 1.4 will follow by estimating the quan-
tity ‖Lα/4M f‖2L2(G,dµM ).
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3.2. Off-diagonal L2 estimates for the resolvent of LM . The cru-
cial estimates to derive the desired inequality are some L2 “off-diagonal”
estimates for the resolvent of LM , in the spirit of [G]. This is the object of
the following lemma.

Lemma 3.1. There exists C with the following property: for all closed
disjoint subsets E,F ⊂ G with d(E,F ) =: d > 0, every function f ∈
L2(G, dµM ) supported in E and all t > 0,

‖(I + tLM )−1f‖L2(F,dµM ) + ‖tLM (I + tLM )−1f‖L2(F,dµM )

≤ 8e−Cd/
√
t‖f‖L2(E,dµM ).

Proof. We argue as in [AHLMT, Lemma 1.1]. From the fact that LM is
self-adjoint on L2(G, dµM ) we have

‖(LM − µ)−1‖L2(G,dµM )→L2(G,dµM ) ≤
1

dist(µ,Σ(LM ))

where Σ(LM ) denotes the spectrum of LM , and µ 6∈ Σ(LM ). Then we deduce
that (I + tLM )−1 is bounded with norm less than 1 for all t > 0, and it is
clearly enough to consider the case 0 <

√
t < d.

In the following computations, we will make explicit the dependence of
the measure dµM on M for clarity. Define ut = (I + tLM )−1f , so that, for
every function v ∈ H1(G, dµM ),

(3.3)
�

G

ut(x)v(x)M(x) dx+ t

k∑
i=1

�

G

Xiut(x) ·Xiv(x)M(x) dx

=
�

G

f(x)v(x)M(x) dx.

Fix now a nonnegative function η ∈ D(G) vanishing on E (by D(G) we de-
note the space of C∞ functions on G with compact support). Since f is sup-
ported in E, applying (3.3) with v = η2ut (remember that ut ∈ H1(G, dµM ))
yields�

G

η(x)2|ut(x)|2M(x) dx+ t

k∑
i=1

�

G

Xiut(x) ·Xi(η2ut)M(x) dx = 0,

which implies
�

G

η(x)2|ut(x)|2M(x) dx+ t
�

G

η(x)2
k∑
i=1

|Xiut(x)|2M(x) dx

= −2t
k∑
i=1

�

G

η(x)ut(x)Xiη(x) ·Xiut(x)M(x) dx

≤ t
�

G

|ut(x)|2
k∑
i=1

|Xiη(x)|2M(x) dx+ t
�

G

η(x)2
k∑
i=1

|Xiut(x)|2M(x) dx,
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hence

(3.4)
�

G

η(x)2|ut(x)|2M(x) dx ≤ t
�

G

|ut(x)|2
k∑
i=1

|Xiη(x)|2M(x) dx.

Let ζ be a nonnegative smooth function on G such that ζ = 0 on E, and let
λ > 0 be so chosen that η := eλ ζ − 1 ≥ 0 and η vanishes on E. Choosing
this particular η in (3.4) with λ > 0 gives

�

G

|eλζ(x) − 1|2|ut(x)|2M(x) dx

≤ λ2t
�

G

|ut(x)|2
k∑
i=1

|Xiζ(x)|2 e2λζ(x)M(x) dx.

Taking λ = 1/(2
√
t‖
∑k

i=1 |Xiζ|2‖1/2∞ ), one obtains
�

G

|eλ ζ(x) − 1|2|ut(x)|2M(x) dx ≤ 1
4

�

G

|ut(x)|2e2λζ(x)M(x) dx.

Since the norm of (I+ tLM )−1 is bounded by 1 uniformly in t > 0, this gives

‖eλζ ut‖L2(G,dµM ) ≤ ‖(eλζ − 1)ut‖L2(G,dµM ) + ‖ut‖L2(G,dµM )

≤ 1
2
‖eλζ ut‖L2(G,dµM ) + ‖f‖L2(G,dµM ),

therefore �

G

|eλζ(x)|2|ut(x)|2M(x) dx ≤ 4
�

G

|f(x)|2M(x) dx.

We now choose ζ such that ζ = 0 on E as before and additionally that ζ = 1
on F . It can furthermore be chosen with maxi=1,...,k ‖Xiζ‖∞ ≤ C/d, which
yields the desired conclusion for the L2 norm of (I+tLM )−1f with a factor 4
on the right-hand side. Since tLM (I + tLM )−1f = f − (I + tLM )−1f , the
desired inequality with a factor 8 readily follows.

3.3. Control of ‖Lα/4M f‖L2(G,dµM ) and conclusion of the proof of
Theorem 1.4. This is now the heart of the proof to reach the conclusion
of Theorem 1.4. The following first lemma is a standard quadratic estimate
on powers of subelliptic operators. It is based on spectral theory.

Lemma 3.2. Let α ∈ (0, 2). There exists C > 0 such that, for all f ∈
D(LM ),

(3.5) ‖Lα/4M f‖2L2(G,dµM ) ≤ C
∞�

0

t−1−α/2‖tLM (I + tLM )−1f‖2L2(G,dµM ) dt.

We now come to the desired estimate.
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Lemma 3.3. Let α ∈ (0, 2). There exists C > 0 such that, for all
f ∈ D(G),

∞�

0

t−1−α/2‖tLM (I + tLM )−1f‖2L2(G,dµM ) dt

≤ C
� �

G×G

|f(x)− f(y)|2

V (|y−1x|)|y−1x|α
M(x) dx dy.

Proof. Fix t ∈ (0,+∞). Following Lemma 3.2, we give an upper bound of

‖tLM (I + tLM )−1f‖2L2(G,dµM )

involving first order differences for f . Using (1.1), one can pick a countable
family xtj , j ∈ N, such that the balls B(xtj ,

√
t) are pairwise disjoint and

(3.6) G =
⋃
j∈N

B(xtj , 2
√
t).

By Lemma 6.1 in Appendix A, there exists a constant C̃ > 0 such that
for all θ > 1 and all x ∈ G, there are at most C̃θ2κ indices j such that
|x−1xtj | ≤ θ

√
t where κ is given by (1.2).

For fixed j, one has

tLM (I + tLM )−1f = tLM (I + tLM )−1gj,t

where, for all x ∈ G,
gj,t(x) := f(x)−mj,t

and mj,t is defined by

mj,t :=
1

V (2
√
t)

�

B(xtj ,2
√
t)

f(y) dy.

Note that, here, the mean value of f is computed with respect to the Haar
measure on G. Since (3.6) holds, one clearly has

‖tLM (I+ tLM )−1f‖2L2(G,dµM ) ≤
∑
j∈N
‖tLM (I+ tLM )−1f‖2

L2(B(xtj ,2
√
t),dµM )

=
∑
j∈N
‖tLM (I+ tLM )−1gj,t‖2

L2(B(xtj ,2
√
t),dµM )

,

and we are left with the task of estimating

‖tLM (I + tLM )−1gj,t‖2
L2(B(xtj ,2

√
t),dµM )

.

For that purpose, set

Cj,t0 = B(xtj , 4
√
t) and Cj,tk = B(xtj , 2

k+2
√
t) \B(xtj , 2

k+1
√
t), ∀k ≥ 1,

and gj,tk := gj,t 1
Cj,tk

, k ≥ 0. Since gj,t =
∑

k≥0 g
j,t
k one has
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(3.7) ‖tLM (I + tLM )−1gj,t‖L2(B(xtj ,2
√
t),dµM )

≤
∑
k≥0

‖tLM (I + tLM )−1gj,tk ‖L2(B(xtj ,2
√
t),dµM )

and, using Lemma 3.1, one obtains (for some constants C, c > 0)

(3.8) ‖tLM (I + tLM )−1gj,t‖L2(B(xtj ,2
√
t),dµM )

≤ C
(
‖gj,t0 ‖L2(Cj,t0 ,dµM )

+
∑
k≥1

e−c2
k‖gj,tk ‖L2(Cj,tk ,dµM )

)
.

By Cauchy–Schwarz’s inequality, we deduce (for another constant C ′ > 0)

(3.9) ‖tLM (I + tLM )−1gj,t‖2
L2(B(xtj ,2

√
t),dµM )

≤ C ′
(
‖gj,t0 ‖

2
L2(Cj,t0 ,dµM )

+
∑
k≥1

e−c2
k‖gj,tk ‖

2
L2(Cj,tk ,dµM )

)
.

As a consequence, we have

(3.10)
∞�

0

t−1−α/2‖tLM (I + tLM )−1f‖2L2(G,dµM ) dt

≤ C ′
∞�

0

t−1−α/2
∑
j≥0

‖gj,t0 ‖
2
L2(Cj,t0 ,dµM )

dt

+ C ′
∞�

0

t−1−α/2
∑
k≥1

e−c2
k
∑
j≥0

‖gj,tk ‖
2
L2(Cj,tk ,dµM )

dt.

The proof of the following lemma is postponed to Appendix B:

Lemma 3.4. There exists C̄ > 0 such that, for all t > 0 and all j ∈ N:

(A) For the first term:

‖gj,t0 ‖
2
L2(Cj,t0 ,M)

≤ C̄

V (
√
t)

�

x∈B(xtj ,4
√
t)

�

y∈B(xtj ,4
√
t)

|f(x)− f(y)|2 dµM (x) dy.

(B) For all k ≥ 1,
‖gj,tk ‖

2
L2(Cj,tk ,dµM )

≤ C̄

V (
√
t)

�

x∈B(xtj ,2
k+2
√
t)

�

y∈B(xtj ,2
k+2
√
t)

|f(x)− f(y)|2 dµM (x) dy.

We now finish the proof of the theorem. Using Lemma 3.4(A), summing
up on j ≥ 0 and integrating over (0,∞), we get
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∞�

0

t−1−α/2
∑
j≥0

‖gj,t0 ‖
2
L2(Cj,t0 ,dµM )

dt =
∑
j≥0

∞�

0

t−1−α/2‖gj,t0 ‖
2
L2(Cj,t0 ,dµM )

dt

≤ C̄
∑
j≥0

∞�

0

t−1−α/2

V (
√
t)

( �

B(xtj ,4
√
t)

�

B(xtj ,4
√
t)

|f(x)− f(y)|2 dµM (x) dy
)
dt

≤ C̄
∑
j≥0

� �

(x,y)∈G×G

|f(x)− f(y)|2M(x)

×
( �

t≥max{|x−1xtj |2/16; |y−1xtj |2/16}

t−1−α/2

V (
√
t)
dt

)
dx dy.

The Fubini theorem now shows∑
j≥0

�

t≥max{|x−1xtj |2/16; |y−1xtj |2/16}

t−1−α/2

V (
√
t)
dt

=
∞�

0

t−1−α/2

V (
√
t)

∑
j≥0

1(max{|x−1xtj |2/16; |y−1xtj |2/16},+∞)(t) dt.

Observe that, by Lemma 6.1, there is a constant N ∈ N such that, for
all t > 0, there are at most N indices j such that |x−1xtj |2 < 16t and
|y−1xtj |2 < 16t, and for those j, one has |x−1y| < 8

√
t. Therefore∑

j≥0

1(max{|x−1xtj |2/16; |y−1xtj |2/16},+∞)(t) ≤ N 1(|x−1y|2/64,+∞)(t),

so that, by (1.1),

(3.11)
∞�

0

t−1−α/2
∑
j

‖gj,t0 ‖
2
L2(Cj,t0 ,dµM )

dt

≤ C̄N
� �

G×G
|f(x)− f(y)|2M(x)

( ∞�

|x−1y|2/64

t−1−α/2

V (
√
t)
dt

)
dx dy

≤ C̄N
� �

G×G

|f(x)− f(y)|2

V (|x−1y|)|x−1y|α
dµM (x) dy.

Using Lemma 3.4(B), we obtain, for all j ≥ 0 and all k ≥ 1,
∞�

0

t−1−α/2
∑
j≥0

‖gj,tk ‖
2
2 dt

≤ C̄
∑
j≥0

∞�

0

t−1−α/2

V (
√
t)

( � �

B(xtj ,2
k+2
√
t)×B(xtj ,2

k+2
√
t)

|f(x)−f(y)|2M(x) dx dy
)
dt
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≤ C̄
∑
j≥0

� �

x,y∈G
|f(x)− f(y)|2M(x)

×
(∞�

0

t−1−α/2

V (
√
t)

1(max{|x−1xtj |2/4k+2,|y−1xtj |2/4k+2},+∞)(t) dt
)
dx dy.

But, given t > 0, x, y ∈ G, by Lemma 6.1 again, there exist at most C̃ 22kκ

indices j such that

|x−1xtj | ≤ 2k+2
√
t and |y−1xtj | ≤ 2k+2

√
t,

and for those j, |x−1y| ≤ 2k+3
√
t. As a consequence of these observations

and (1.2),

(3.12)
∞�

0

t−1−α/2

V (
√
t)

∑
j≥0

1(max{|x−1xtj |2/4k+2,|x−1xtj |2/4k+2},+∞)(t) dt

≤ C̃ 22kκ
�

t≥|x−1y|2/4k+3

t−1−α/2

V (
√
t)
dt

≤ C̃ 23kκ
�

t≥|x−1y|2/4k+3

t−1−α/2

V (2k
√
t)
dt ≤ C̃ ′ 2k(3κ+α)

V (|x−1y|)|x−1y|α
,

for some other constant C̃ ′ > 0, and therefore

∞�

0

t−1−α/2

V (
√
t)

∑
j

‖gj,tk ‖
2
L2(Cj,t0 ,dµM )

dt

≤ C̄C̃ ′ 2k(3κ+α)
� �

G×G

|f(x)− f(y)|2

V (|x−1y|)|x−1y|α
M(x) dx dy.

We can now conclude the proof of Lemma 3.3, using Lemma 3.2, (3.8),
(3.11) and (3.12). We have proved, by reconsidering (3.10),

(3.13)
∞�

0

t−1−α/2‖tLM (I + tLM )−1f‖2L2(G,dµM ) dt

≤ C ′C̄N
� �

G×G

|f(x)− f(y)|2

V (|x−1y|)|x− y|α
M(x) dx dy

+
∑
k≥1

C ′C̄C̃ ′ 2k(3κ+α)e−c2
k

� �

G×G

|f(x)− f(y)|2

V (|x−1y|)|x−1y|α
M(x) dx dy
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and we deduce that
∞�

0

t−1−α/2‖tLM (I + tLM )−1f‖2L2(G,dµM ) dt

≤ C
� �

G×G

|f(x)− f(y)|2

V (|x−1y|)|x−1y|α
dµM (x) dy

for some constant C as claimed in the statement.

Remark 3.5. In the Euclidean context, Strichartz [STR] proved that,
when 0 < α < 2, for all p ∈ (1,+∞),

(3.14) ‖(−∆)α/4f‖Lp(Rn) ≤ Cα,p‖Sαf‖Lp(Rn)

where

Sαf(x) =
(∞�

0

( �

B

|f(x+ ry)− f(x)| dy
)2 dr

r1+α

)1/2

,

and also [STE]

(3.15) ‖(−∆)α/4f‖Lp(Rn) ≤ Cα,p‖Dαf‖Lp(Rn)

where

Dαf(x) =
( �

Rn

|f(x+ y)− f(x)|2

|y|n+α
dy

)1/2

.

In [CRT], these inequalities were extended to the setting of a unimodular
Lie group endowed with a sublaplacian ∆, relying on semigroup techniques
and Littlewood–Paley–Stein functionals. In particular, in [CRT], the authors
use pointwise estimates of the kernel of the semigroup generated by ∆. In
the present paper, we deal with the operator LM for which these pointwise
estimates are not available, but it turns out that L2 off-diagonal estimates
are enough for our purpose. Note that we do not obtain Lp inequalities here.

4. The case of Riemannian manifolds. Let M be a Riemannian
manifold, denote by n its dimension, by dµ its Riemannian measure and by
∆ the Laplace–Beltrami operator. For all x ∈M and all r > 0, let B(x, r) be
the open geodesic ball centered at x with radius r, and V (x, r) its measure.

In order to apply our method, we will need to be able to control from
below the volume of any geodesic ball B(x, r) by a quantity of the type rp.
The goal of the next paragraph is to give sufficient assumptions on M such
that this control occurs.

The first one is a Faber–Krahn inequality onM. For any bounded open
subset Ω ⊂ M, denote by λD1 (Ω) the principal eigenvalue of −∆ on Ω
under the Dirichlet boundary condition. If p ≥ n, consider the following



120 E. Russ and Y. Sire

Faber–Krahn inequality: there exists C > 0 such that

(4.1) λD1 (Ω) ≥ Cµ(Ω)2/p for all bounded subsets Ω ⊂M.

Let Λp > 0 be the greatest constant C for which (4.1) is satisfied. In other
words,

Λp = inf
λD1 (Ω)
µ(Ω)2/p

,

where the infimum is taken over all bounded subsets Ω ⊂ M. The Faber–
Krahn inequality (4.1) is satisfied in particular when an isoperimetric in-
equality holds onM, namely there exist C > 0 and p ≥ n such that, for any
bounded smooth subset Ω ⊂M,

(4.2) σ(∂Ω) ≥ Cµ(Ω)1−1/p,

where σ(∂Ω) denotes the surface measure of ∂Ω. IfM has nonnegative Ricci
curvature, then (4.2) with p = n and (4.1) with p = n are equivalent. More
generally, ifM has Ricci curvature bounded from below by a constant, then
(4.1) with p > 2n implies (4.2) with p/2 in place of p ([CA1, Proposition 3.1],
see also [CO] where the injectivity radius of M is furthermore assumed to
be bounded). Note that there exists a Riemannian manifold satisfying (4.1)
for some p ≥ n but for which (4.2) does not hold for any p ≥ n ([CA1,
Proposition 3.4]).

It is a well-known fact that (4.1) implies a lower bound for the volume of
geodesic balls in M. Namely ([CA1, Proposition 2.4]), if (4.1) holds, then,
for all x ∈M and all r > 0,

(4.3) V (x, r) ≥
(
Λp

2p+2

)p/2
rp.

We will also need another assumption on the volume growth of balls
in M, already encountered in the present work in the case of Lie groups.
Say thatM has the doubling property if there exists C > 0 such that, for all
x ∈M and all r > 0,

(D) V (x, 2r) ≤ CV (x, r).

There is a wide class of manifolds on which (D) holds. First, as already
said in the introduction (see (1.1)), it is true on Lie groups with polynomial
volume growth (in particular on nilpotent Lie groups). Next, (D) is true ifM
has nonnegative Ricci curvature thanks to the Bishop comparison theorem
(see [BC]). Recall also that (D) remains valid if M is quasi-isometric to
a manifold with nonnegative Ricci curvature, or is a cocompact covering
manifold whose deck transformation group has polynomial growth, [CSC].
Unlike the doubling property, the nonnegativity of the Ricci curvature is not
stable under quasi-isometry.
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The last assumption we need onM is a local L2 Poincaré inequality on
balls for the Riemannian measure. Namely, if R > 0, say that M satisfies
(PR) if there exists CR > 0 such that, for all x ∈M, all r ∈ (0, R) and every
function f ∈ C∞(B(x, r)),

(PR)
�

B(x,r)

|f(x)− fB(x,r)|2 dµ(x) ≤ CRr2
�

B(x,r)

|∇f(x)|2 dµ(x).

Note that (2.1) shows that, on a unimodular Lie group G equipped with
vector fields as in the introduction, such a Poincaré inequality always holds.
Recall that (PR) always holds for all R > 0 for instance when M has non-
negative Ricci curvature ([B]).

Under these assumptions, the proof developed above in the context of
groups can be adopted verbatim to give the following result.

Main Theorem 4.1. Let M be a complete noncompact Riemannian
manifold. Assume that (4.1) holds, M has the doubling property and (PR)
holds for some R > 0. Let v be a C2 function onM and M = e−v.

(i) Assume that there exists x0 ∈M and constants a ∈ (0, 1) and c > 0
such that, for all x ∈ G with d(x, x0) > R,

(4.4) a|∇v(x)|2 −∆v(x) ≥ c.

Then there exists C > 0 such that, for every f ∈ H1(M,Mdµ) with	
M f(x)M(x) dµ = 0, and for all α ∈ (0, 2),

(4.5)
�

M
f(x)2M(x) dµ(x)≤C

� �

M×M

|f(y)−f(x)|2

d(x, y)p+α
M(x) dµ(x) dµ(y).

(ii) Assume there exist x0 ∈M and constants c > 0 and ε ∈ (0, 1) such
that, for all x ∈M,

(4.6)
1− ε

2
|∇v(x)|2 −∆v(x) ≥ c whenever d(x, x0) > R.

Then there exists C > 0 such that, for every f ∈ H1(M,Mdµ) with	
M f(x)M(x) dµ = 0, and for all α ∈ (0, 2),

(4.7)
�

M
f(x)2(1 + |∇v|2)α/2M(x) dµ(x)

≤ C
� �

M×M

|f(y)− f(x)|2

d(x, y)p+α
M(x) dµ(x) dµ(y).

5. Hardy inequalities. One can also use the previous method to obtain
a nonlocal version of Hardy inequalities. The simplest Hardy inequality on Rn
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asserts that, if n ≥ 3,

(5.1)
�

Rn

u(x)2

|x|2
dx .

�

Rn
|∇u(x)|2 dx = ‖u‖Ḣ1(Rn), ∀u ∈ D(Rn).

A nonlocal version of (5.1) can be given, where the Ḣ1 norm on the right
hand side is replaced by an Ḣs norm for 0 < s < n/2 (see [BCG]):

(5.2)
�

Rn

u(x)2

|x|2s
dx . ‖u‖2

Ḣs(Rn)
, ∀u ∈ D(Rn).

When 0 < s < 1, it is well-known (see for instance [A]) that ‖u‖Ḣs(Rn) can be
represented by means of an integral quantity involving first order differences
of u, and (5.2) can therefore be rewritten as

(5.3)
�

Rn

u(x)2

|x|2s
dx .

� �

Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy.

These Hardy inequalities (i.e. the local and the nonlocal version) were trans-
posed to the framework of the Heisenberg group in [BCG, BCX]. More pre-
cisely, in the Heisenberg group Hd (d ≥ 1), the following Hardy inequality
was established in [BCX]:

(5.4)
�

Hd

u(x)2

ρ(x)2
dx . ‖∇Hu‖22, ∀u ∈ D(Hd),

where ρ(x) denotes the distance of x to the origin and ∇H stands for the
gradient associated to the vector fields Z1, . . . , Z2d (see [BCX] and the no-
tations therein). The nonlocal version of (5.4), which was proven in [BCG]
(where it was derived from precise inequalities involving Besov norms) says
that, for 0 < s < d+ 1,

(5.5)
�

Hd

u(x)2

ρ(x)2s
dx . ‖u‖2

Ḣs , ∀u ∈ D(Hd).

When 0 < s < 1, an integral representation for the fractional Sobolev homo-
geneous norm was proven in [CRT] (note that an analogous representation
holds in any connected Lie group with polynomial volume growth, and even
in any unimodular Lie group if one works with the inhomogeneous version
of this norm), so that (5.5) can be rewritten as

(5.6)
�

Hd

u(x)2

ρ(x)2s
dx .

� �

Hd×Hd

|u(x)− u(y)|2

ρ(y−1x)2d+2+2s
dx dy.

Hardy inequalities in local versions on more general Lie groups, namely
Carnot groups, were obtained in [KO]. The Lie group G is called a Carnot
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group if G is simply connected and the Lie algebra of G admits a stratifica-
tion, i.e. there exist linear subspaces V1, . . . , Vk of G such that

G = V1 ⊕ · · · ⊕ Vk with [V1, Vi] = Vi+1

for i = 1, . . . , k − 1 and [V1, Vk] = 0. By [V1, Vi] we mean the subspace of G
generated by the elements [X,Y ] where X ∈ V1 and Y ∈ Vi. Recall that the
class of Carnot groups is a strict subclass of nilpotent groups. Moreover, if
G is a Carnot group, there exists n ∈ N, called the homogeneous dimension
of G, such that, for all r > 0,

(5.7) V (r) ∼ rn

(see [FS]). The Heisenberg group Hd is a Carnot group with n = 2d+ 2.
Let G be a Carnot group, denote by δ the Dirac distribution supported

at the origin and let u be a solution of

−∆Gu = δ.

Define N(x) = u(x)1/(2−n) for x 6= 0 and N(0) = 0. The function N is a
homogeneous norm on N by [FO]. Kombe [KO] proved the following Hardy
inequality on G: for α > 2−n, there exists C > 0 such that, for all functions
u ∈ D(G \ {0}),

(5.8)
(
n+ α− 2

2

)2 �

G

u(x)2
|∇GN(x)|2

|N(x)|2
N(x)α dx

≤ C
�

G

|∇Gu(x)|2N(x)α dx.

Using the same method as before, we obtain the following nonlocal version
of (5.8):

Main Theorem 5.1. Let G be a Carnot group with homogeneneous di-
mension n ≥ 3. Then for all α > 2− n and all s ∈ (0, 2),

(5.9)
�

G

u(x)2
(
|∇GN(x)|
|N(x)|

)s
N(x)α dx

.
� �

G×G

|u(x)− u(y)|2

|y−1x|n+s
N(x)α dx dy, ∀u ∈ D(G \ {0}).

As far as Riemannian manifolds are concerned, a general principle was
developed in [CA2] to derive Hardy inequalities. Let us recall here an ex-
ample of such an inequality. LetM be a complete noncompact Riemannian
manifold as in Section 4. Below, we use the same notation, as well as d for
exterior differentiation. Assume that ρ :M→ [0,+∞) satisfies
(5.10) |dρ| ≤ 1 onM,
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and
(5.11) ∆ρ ≥ C/ρ in the distribution sense,
where C > 0. Then, for all α > 1− C, and all u ∈ D(M\ ρ−1(0)),

(5.12)
(
C + α− 1

2

)2 �

M

(
u

ρ

)2

(x)ρ(x)α dx ≤
�

M
|du(x)|2ρ(x)α dx.

Moreover, if the codimension of ρ−1(0) is greater than 2 − α, (5.12) holds
for every function u ∈ D(M) (see [CA2, Théorème 1.4 and Remarque 1.5],
see also [KOZ]).

Remark 5.2. Observe that, in the Euclidean context, (5.8) and (5.12)
amount to the same inequality. Indeed, on the one hand, when G = Rn, one
has N(x) = |x|, and (5.8) exactly means that(

n+ α− 2
2

)2 �

Rn
u(x)2|x|α−2 dx ≤

�

Rn
|∇u(x)|2|x|α dx

as soon as α > 2− n. On the other hand, when M = Rn, assumption (5.10)
is satisfied with ρ(x) = |x| and C = n− 1, so that (5.12) means that(

n+ α− 2
2

)2 �

Rn
u(x)2|x|α−2 dx ≤

�

Rn
|∇u(x)|2|x|α dx

whenever α > 2− n.
Always using the same method, we obtain:

Main Theorem 5.3. Let M be a complete noncompact Riemannian
manifold. Assume that (4.1) holds andM has the doubling property. Assume
also that C > 0 and ρ :M→ [0,+∞) are such that (5.10) and (5.11) hold.
Then, if α > 1−C and ρ−1(0) has codimension greater than 2−α, one has,
for all s ∈ (0, 2),

(5.13)
�

M
u(x)2ρ(x)α−s dx

.
� �

M×M

|u(y)− u(x)|2

d(x, y)p+s
ρ(x)α dx dy, ∀u ∈ D(M\ ρ−1(0)).

6. Appendix A: Technical lemma. We prove the following lemma.

Lemma 6.1. Let G and the xtj be as in the proof of Lemma 3.3. Then
there exists a constant C̃ > 0 with the following property: for all θ > 1 and
all x ∈ G, there are at most C̃θ2κ indices j such that |x−1xtj | ≤ θ

√
t.

Proof. The argument is very simple (see [KA]) and we give it for the sake
of completeness. Let x ∈ G and denote

I(x) := {j ∈ N : |x−1xtj | ≤ θ
√
t}.
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Since, for all j ∈ I(x),

B(xtj ,
√
t) ⊂ B(x, (1 + θ)

√
t), B(x,

√
t) ⊂ B(xtj , (1 + θ)

√
t),

by (1.2) and since the balls B(xtj ,
√
t) are pairwise disjoint one has

|I(x)|V (x,
√
t) ≤

∑
j∈I(x)

V (xtj , (1 + θ)
√
t) ≤ C(1 + θ)κ

∑
j∈I(x)

V (xtj ,
√
t)

≤ C(1 + θ)κV (x, (1 + θ)
√
t) ≤ C(1 + θ)2κV (x,

√
t),

and we obtain the desired conclusion.

7. Appendix B: Estimates for gtj. We prove Lemma 3.4. For all
x ∈ G,

gj,t0 (x) = f(x)− 1
V (2
√
t)

�

B(xtj ,2
√
t)

f(y) dy

=
1

V (2
√
t)

�

B(xtj ,2
√
t)

(f(x)− f(y)) dy.

By the Cauchy–Schwarz inequality and (1.1), it follows that

|gj,t0 (x)|2 ≤ C

V (
√
t)

�

B(xtj ,4
√
t)

|f(x)− f(y)|2 dy.

Therefore,

‖gj,t0 ‖
2
L2(Cj,t0 ,M)

≤ C

V (
√
t)

�

B(xtj ,4
√
t)

�

B(xtj ,4
√
t)

|f(x)− f(y)|2 dµM (x) dy,

which shows assertion (A). We argue similarly for (B) and obtain
‖gj,tk ‖

2
L2(Cj,tk ,M)

≤ C

V (2k
√
t)

�

x∈B(xtj ,2
k+2
√
t)

�

y∈B(xtj ,2
k+2
√
t)

|f(x)− f(y)|2 dµM (x) dy,

which ends the proof.

Acknowledgements. The authors are grateful to the referee for many
interesting remarks and suggestions.

References

[A] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl.
Math. 140, Elsevier/Academic Press, Amsterdam, 2003.

[AHLMT] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and P. Tchamitchian, The
solution of the Kato square root problem for second order elliptic operators
on Rn, Ann. of Math. (2) 156 (2002), 633–654.

http://dx.doi.org/10.2307/3597201


126 E. Russ and Y. Sire

[BCG] H. Bahouri, J.-Y. Chemin and I. Gallagher, Precised Hardy inequalities, Ann.
Scuola Norm. Sup. Pisa 5 (2006), 375–391.

[BCX] H. Bahouri, J.-Y. Chemin and C. J. Xu, Trace and trace lifting theorems in
weighted Sobolev spaces, J. Inst. Math. Jussieu 4 (2005), 509–552.

[BBCG] D. Bakry, F. Barthe, P. Cattiaux and A. Guillin, A simple proof of the Poincaré
inequality for a large class of probability measures including the log-concave
case, Electron. Comm. Probab. 13 (2008), 60–66.

[BC] R. Bishop and R. Crittenden, Geometry of Manifolds, Academic Press, New
York, 1964.

[B] P. Buser, A note on the isoperimetric constant , Ann. Sci. École Norm. Sup.
(4) 15 (1982), 213–230.

[CF] L. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional
obstacle problem, preprint.

[CV] L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion
and the quasi-geostrophic equation, Ann. of Math. 171 (2010), 1903–1930.

[CA1] G. Carron, Inégalités isopérimétriques de Faber–Krahn et conséquences, in:
Actes de la table ronde de géométrie différentielle (Luminy, 1992), Sémin.
Congr. 1, Soc. Math. France, 1996, 205–232.

[CA2] —, Inégalités de Hardy sur les variétés riemanniennes non compactes, J. Math.
Pures Appl. 76 (1997), 883–891.

[CO] T. Coulhon, Sobolev inequalities on graphs and on manifolds, in: Harmonic
Analysis and Discrete Potential Theory, Plenum Press, New York, 1992,
207–214.

[CRT] T. Coulhon, E. Russ and V. Tardivel-Nachef, Sobolev algebras on Lie groups
and Riemannian manifolds, Amer. J. Math. 123 (2001), 283–342.

[CSC] T. Coulhon et L. Saloff-Coste, Variétés riemanniennes isométriques à l’infini ,
Rev. Mat. Iberoamer. 11 (1995), 687–726.

[D] E. B. Davies, One-Parameter Semigroups, 2nd ed., London Math. Soc. Mo-
nogr. 15, Academic Press, London, 1980.

[DCL] D. del-Castillo-Negrete, B. A. Carreras and V. E. Lynch, Nondiffusive trans-
port in plasma turbulence: a fractional diffusion approach, Phys. Rev. Lett. 94
(2005), 065003.

[DOP] G. Di Nunno, B. Øksendal and F. Proske,Malliavin Calculus for Lévy Processes
with Applications to Finance, Universitext, Springer, Berlin, 2003.

[FE] W. Feller, An Introduction to Probability Theory and its Applications. Vol. II ,
2nd ed., Wiley, New York, 1971.

[FO] G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups,
Ark. Mat. 13 (1975), 161–207.

[FS] G. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton
Univ. Press, 1982.

[G] M. P. Gaffney, The conservation property of the heat equation on Riemannian
manifolds, Comm. Pure Appl. Math. 12 (1959), 1–11.

[GS] P. Gressman and R. Strain, Global classical solutions of the Boltzmann equa-
tion with long-range interactions, Proc. Nat. Acad. Sci. U.S.A. 107 (2010),
5744–5749.

[G] Y. Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques,
Bull. Soc. Math. France 101 (1973), 333–379.

[HK] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145
(2000), no. 688.

http://dx.doi.org/10.1017/S1474748005000150
http://dx.doi.org/10.4007/annals.2010.171.1903
http://dx.doi.org/10.1016/S0021-7824(97)89976-X
http://dx.doi.org/10.1353/ajm.2001.0009
http://dx.doi.org/10.1007/BF02386204
http://dx.doi.org/10.1002/cpa.3160120102
http://dx.doi.org/10.1073/pnas.1001185107


Nonlocal Poincaré inequalities 127

[J] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s
condition, Duke Math. J. 53 (1986), 503–523.

[KA] M. Kanai, Rough isometries and combinatorial approximations of geometries of
noncompact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), 391–413.

[KO] I. Kombe, Rellich and uncertainty principle inequalities on Carnot groups,
Comm. Appl. Anal. 14 (2010), 251–271.

[KOZ] I. Kombe and M. Ozaydin, Improved Hardy and Rellich inequalities on Rie-
mannian manifolds, Trans. Amer. Math. Soc. 361 (2009), 6191–6203.

[M] C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Lan-
dau operators, Comm. Partial Differential Equations 31 (2006), 1321–1348.

[MRS] C. Mouhot, E. Russ and Y. Sire, Fractional Poincaré inequalities for general
measures, J. Math. Pures Appl. 95 (2011), 72–84.

[MS] C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized
Boltzmann collision operators without angular cutoff , J. Math. Pures Appl. 87
(2007), 515–535.

[NSW] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields
I: Basic properties, Acta Math. 155 (1985), 103–147.

[SA] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order
differential operators, Potential Anal. 4 (1995), 429–467.

[SIG] A. Signorini, Questioni di elasticità non linearizzata semilinearizzata, Rend.
Mat. Appl. (5) 18 (1959), 95–139.

[SIL] L. Silvestre, Regularity of the obstacle problem for a fractional power of the
Laplace operator , Comm. Pure Appl. Math. 60 (2007), 67–112.

[STE] E. M. Stein, The characterization of functions arising as potentials I , Bull.
Amer. Math. Soc. 67 (1961), 102–104.

[STR] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16
(1967), 1031–1060.

[VA] N. T. Varopoulos, Fonctions harmoniques sur les groupes de Lie, C. R. Acad.
Sci. Paris Sér. I Math. 304 (1987), 519–521.

[VI] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltz-
mann and Landau equations, Arch. Ration. Mech. Anal. 143 (1998), 273–307.

Emmanuel Russ, Yannick Sire
Université Paul Cézanne
LATP
Faculté des Sciences et Techniques
Case cour A
Avenue Escadrille Normandie-Niemen
F-13397 Marseille Cedex 20, France
and
CNRS, LATP, CMI
39 rue F. Joliot-Curie
F-13453 Marseille Cedex 13, France
E-mail: emmanuel.russ@univ-cezanne.fr

sire@cmi.univ-mrs.fr

Received March 25, 2010
Revised version January 17, 2011 (6843)

http://dx.doi.org/10.1215/S0012-7094-86-05329-9
http://dx.doi.org/10.2969/jmsj/03730391
http://dx.doi.org/10.1090/S0002-9947-09-04642-X
http://dx.doi.org/10.1080/03605300600635004
http://dx.doi.org/10.1016/j.matpur.2010.10.003
http://dx.doi.org/10.1016/j.matpur.2007.03.003
http://dx.doi.org/10.1007/BF02392539
http://dx.doi.org/10.1007/BF01053457
http://dx.doi.org/10.1002/cpa.20153
http://dx.doi.org/10.1090/S0002-9904-1961-10517-X
http://dx.doi.org/10.1007/s002050050106



	Introduction
	A proof of the Poincaré inequality for dM
	Proof of Theorem 1.4
	Rewriting the Poincaré inequalities
	Off-diagonal L2 estimates for the resolvent of LM
	Control of "026B30D LM/4f"026B30D L2(G,dM) and conclusion of the proof of Theorem 1.4

	The case of Riemannian manifolds
	Hardy inequalities
	Appendix A: Technical lemma
	Appendix B: Estimates for gjt

