STUDIA MATHEMATICA 203 (2) (2011)

Quasiconformal mappings and
exponentially integrable functions

by
FERNANDO FARRONI and RAFFAELLA GIOVA (Napoli)
Abstract. We prove that a K-quasiconformal mapping f : R? — R? which maps the
unit disk D onto itself preserves the space EXP(ID) of exponentially integrable functions

over I, in the sense that v € EXP(D) if and only if w o f~' € EXP(D). Moreover, if f is
assumed to be conformal outside the unit disk and principal, we provide the estimate

1 uo f~ |lexpm)
< <14 KlogK
1+ KlogK lul|exe @) &

for every u € EXP(D). Similarly, we consider the distance from L* in EXP and we prove
that if f : 2 — 2" is a K-quasiconformal mapping and G CC {2, then

i diStEXP(f(G))(U S f_ly L= (f(G)))
K

IA

. <K
distgxp(f(a)) (u, L= (G)) -

for every u € EXP(G). We also prove that the last estimate is sharp, in the sense that

there exist a quasiconformal mapping f : D — D, a domain G CC D and a function
u € EXP(G) such that

diStExp(f(G))(u o fﬁl, L™ (f(G))) = f(diStExp(f(G))(’u,7 L (G))

1. Introduction and main results. Let 2 and 2 be domains in R".
A homeomorphism f : 2 — (' is a K-quasiconformal mapping for a con-
stant K > 1if f € W2 (2, 02') and

|IDf(z)|" < KJg(xz) ae x€ 2,
where D f stands for the differential of f, the norm |Df| of Df is defined
as
[Df(z)l = sap |Df(z)E],
§ER™, [¢]=1

and Jy denotes the jacobian determinant of f,

Jp(x) = det D f(x).
When K =1 we say that f is conformal in 2.
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If G is a bounded domain in R" with measure |G| the space EXP(G) is
the set of measurable functions u : G — R such that there exists A > 0 for
which

g exp M dr < o0,
A
G
where the mean value notation §, = |G|™! {, is used. We recall (see e.g. [3])
that EXP(G) is a Banach space equipped with the norm

G\ ',
(L.1) lullexp(@) = sup (1+10g|t|> u*(t),
0<t<|G|

where u* is the non-increasing rearrangement of u,
(1.2) u*(t) =sup{T > 0: p,(7) >t} Vte(0,|G]),
and p,, is the distribution function of u,

(1) =z € G : |u(z)] > 7} V7 >0.

In this paper we consider the problem of composing functions in EXP(G)
with quasiconformal mappings and we deal with the case of dimension n = 2.
The results of this paper are in the spirit of the following theorem of H. M.
Reimann [I2], featuring the class of functions of bounded mean oscillation.

THEOREM 1.1 ([12]). Let 2 and 2" be domains in R™ and let f : 2 — (
be a K-quasiconformal mapping. Then there exists a constant C' which de-
pends only on n and K such that

1 _
6HU||BMO(G) <Jluo fHemoe < Cllullsmoe)s
for every subdomain G of 2 and for every u € BMO(G), with G' = f(G).

We recall that a locally integrable function v : G — R has bounded mean
oscillation, w € BMO(G), if

(1.3) lullBmoe) = SgP& lu(x) — uqldr < oco.
Q

The supremum in (|1.3]) is taken over all open cubes @ of G with sides parallel
to the axes, and the notation

ug = § u(x) dx
Q

is used.

We also recall a similar result which holds for the space VVﬁ)Cn :if (2 and
(2 are bounded domains in R"™ and f : 2 — (2’ is a K-quasiconformal
mapping, then

1 _
% IVullin@) = [V(uo f Mm@y < KlIVull e
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for every subdomain G of {2 and for every u € VV&:(Q), with G’ = f(G).
The proof of this result can be found in [4}, 8, 10, 13} 14].

We denote by D the unit disk {z € R? : |z| < 1} and we prove the
following result.

THEOREM 1.2. Let f : R? — R? be a K -quasiconformal principal map-
ping that is conformal outside D and maps D onto itself. Then

! -1
T Kiog & Mlexe@) < llue £ lexe)

(1.4)
< (1 + Klog K)||ullgxpm)
for every u € EXP(D).

Here and in what follows we call a quasiconformal mapping f : R? — R?
principal if it is conformal outside D and satisfies the following normaliza-
tion:

|f(z) — 2| =O@/]z]) if |z > 1.

Observe that our result gives that if f is a conformal mapping, then (|1.4))

reduces to the equality
uo f lpxpm) = llullexpm) for every u € EXP(D).
The Luzemburg norm of a function u € EXP(G) is defined as

(15) ||u||SXP(G) = lﬂf{)\ >0: &E‘:Xpm(;j” dx S 2}

G
We recall that (see e.g. [3] and [I1I]) the Luxemburg norm is equivalent
to the norm defined in (L.I). We also remark that L>(G) is not a dense
subspace of EXP(G) (see e.g. [I1]). Appealing to the results in [5] and [7],
we find that the distance to L*°(G) in EXP(G) evaluated with respect to
the Luxemburg norm is given by

distexp(a) (u, L7(G)) = inf{)\ >0: &exp W(;:U” dr < oo}
G

for every u € EXP(G).
Our next result compares the distances from L of u and uwo f~. We
note that the estimates we provide are sharp (see Example below).

THEOREM 1.3. Let 2 and §2' be bounded domains in R? and let f:2— (2’
be a K -quasiconformal mapping. Then

(1.6) distpxp(an(uo [, L2(G") < K distpxp(a)(u, L=(G))
and
1 . . _
(1.7) I distpxp(c) (u, L2(G)) < distgxp(gn(uo f, L®(G")),
for every subdomain G of 2 and for every u € EXP(G), with G' = f(G).
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As for Theorem [1.2} if f is a conformal mapping then (|1.6) and (1.7
reduce to the equality

distpxp(cy(uo f71, L™(G")) = distpxp () (u, L®(G))
for every u € EXP(G).

2. Preliminary results. We review some of the standard facts on qua-
siconformal mappings in dimension n = 2. OQur main sources are [2, [10} 13].

From now on {2 and 2’ are domains in RZ%. It is well-known that if
f: 02 — 2 is a K-quasiconformal mapping then it is differentiable a.e., the
inverse f~! is a K-quasiconformal mapping and for a.e. x € £2,

Df ' (f(z)) = (Df(x))",
and
1

It will be convenient to recall the following version of the change of variables
formula.

LEMMA 2.1. Let £2 and §2' be domains in R? and let f : 2 — §2' be a
K -quasiconformal mapping. If w € L'(£2') then (wo f)J; € L*(2) and

(22) Jw(f(2)Jp(z) dz = § w(y) dy.
(9} o
For later use, we recall K. Astala’s theorem on the distortion of area
under a quasiconformal mapping (see [I]), in the form appropriate for our
purposes (see [0]).

THEOREM 2.2 ([1, [6]). Let f : R? — R? be a K-quasiconformal prin-
cipal mapping, that is, conformal outside the unit disk . Then, for every
measurable subset E C D,

(2.3) F(B)] < Kx'~VK|E[VE,

All constants in ([2.3]) are sharp. We also recall that if f is a quasiconfor-
mal mapping defined in a planar domain {2 then
(2.4) Jr e Ly, (02) ifp<pg= K_1
and the exponent px = K/(K — 1) is the best possible. This is a direct
consequence of the area distortion estimate (see again [1]).

3. Proofs of Theorems [1.2] and Before we give the proofs of
Theorems and we recall the following fundamental lemma which
provides a precise connection between the spaces BMO(G) and EXP(G) for
G a bounded domain in R".
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LeEMMA 3.1 ([9]). Let G be a bounded domain in R"™ and let u: G — R
be a measurable function. Then uw € EXP(G) if and only there exists v €
BMO(G) such that

lu(z)| <v(z) ae xe€G.
Moreover, there exists a constant C' which depends only on n such that
[vllBmo(e) < Cdistgxp(a) (u, L2(G)).

Theorem [I.1] and Lemma [3.1] are the key ingredients in the proof of the
following result, which is the starting point of our study.

LEMMA 3.2. Let {2 be a domain in R™ and let f : {2 — R™ be a quasicon-
formal mapping. Let G be any bounded subdomain of 2 and let G' = f(Q).
Then u € EXP(G) if and only if uo f~1 € EXP(G").

Proof. Since both f and f~! are quasiconformal mappings it is sufficient
to prove that u o f~1 € EXP(G’) if u € EXP(G). From Lemma to the
function v € EXP(G) there corresponds a function v € BMO(G) such that
lu(z)| < v(zx) for a.e. x € G. As a consequence of Theorem [1.1] the function
vo f~1 belongs to BMO(G"). Clearly |u(f~1(y))| < v(f~1(y)) fora.e. y € G'.
The result immediately follows from Lemma "

Proof of Theorem [1.3. The proof is based on Theorem [2.2] Let u €
EXP(D). First, we notice that for every 7 > 0,

{yeD: [u(f ()l >7}=f{z eD:fu(z)| > 7}).

We compare the distribution functions of v and u o f~! by means of the
area distortion estimate (2.3) and we obtain

puop-1(1) = {y € D= [u(f(y))| > 7}
= |f{z eD: fu(x)] > 7})]

< Kﬂ_lfl/K,uu(T)l/K.

Since for every t € (0, 7),

tK
{720 pyop1(r) >t} C {T >0 pu(7) > I{Kﬂ.K—l}

it follows from the definition of non-increasing rearrangement ([1.2)) that

K
(3.1) (wo f7H (1) < u* (KK’;K)
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We deduce directly from the definition of the norm ((1.1)) that

K i
u* <KK7TK—1> < lullexpm) (1 + log tK>

KE K1

T
= [lullexp(m) (1 + Klog Kt>

T
= |lullexpm) <1 + Klog K 4+ Klog t)'

Thus, from (3.1]) we get

IR T
(1o 1)) < lullxee) (1 + Klog K + Kog ).

Our aim is to prove that there exists a constant ¢ = ¢(K') which depends on
K such that

(3.2) 1 —i—KlogK%—Klog% < c(K)<1 + log 7;) vt € (0, ).

It will be sufficient to prove that the function
1+ Klog K + Klog §
V() = 14+logZ
&%
is bounded in the interval (0, 7) by some constant which only depends on K.
To this end, we observe that
i 1+ KlogK — K

vt € (0,m),

v (t) Vit € (0,m).
t(14log ™)’
We define
Y(K)=1+KlogK — K VK € [1,00).
Since
P(K)=1logK >0 VK €[l,00),
we have

Y(K)>¢9(1)=0 VK €[1,00),
and therefore v is increasing in (0, 7). Then
v(t) <xy(m) =1+ Klog K Vte (0,7),
and inequality holds with
c¢(K)=1+ Klog K.
Therefore gives

s 7r
(o S () < (1t Klog K)ulxeey (14108 ) vt € (0.m),



Quasiconformal mappings 201

Hence, the inequality
(3.3) luo fexp) < (1+ Klog K)|lullexpp)  Vu € EXP(D)

holds if f is a K-quasiconformal principal mapping. Recalling that the in-
verse of a K-quasiconformal principal mapping is also a K-quasiconformal
principal mapping, it follows that

(3.4) [vo fllexpmy < (1+ Klog K)|[v|lgxpm) Vv € EXP(D).

If we substitute v = uo f~! with « € EXP(D) into (3.4) (observe that v
belongs to EXP (D) by Lemma [3.2)), we have

(3.5) lullexpm) < (1+ Klog K)|luo fpxpm)  Yu € EXP(D).

Inequalities (3.3) and (3.5 show that (1.4) holds, completing the proof. =
Proof of Theorem[1.3. Let X be such that

(3.6) A > pl distgxp(a) (v, L7(G)),

where

1+1 1 d 1<p<
-+ == an .
p p p K-—-1

@)\ u(@)]
(exp \ = exp )\/p’ R
from (3.6|) it follows that
(3.7) exp ‘Z| e L (G).

Since

Recalling that Jy € LP(G) (see (2.4)), we deduce from (3.7)) that
expqu e LYG).

It follows directly from the change of variables formula (2.2)) and also from
the identity (2.1]) that
-1
[ exp u(f /\(y))\dy — [ exp
G’ G

|u(2)|
A

J¢(r)de < oo.

Therefore

(3.8) distgxp(gr)(u o fThL(@E) <y distgpxp(a)(u, L2(G)).
Passing to the limit in for p approaching K/(K — 1) we finally get
. Recalling that the inverse of a K-quasiconformal mapping is also a
K-quasiconformal mapping, it follows that
(3.9)

diStEXP(G) (’U ] f, LOO(G)) < KdiStEXP(G/) (’U, LOO(G,)) Yu € EXP(G/)
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If we substitute the function v = wo f~! with v € EXP(G) into (3.9)
(observe that v € EXP(G’) by Lemma [3.2), we have

distpxp(e)(u, L(G)) < K distpxpgn(uo f~1, L®(G)) Vu € EXP(G),
and this proves (1.7]). =

Now we prove, by means of an example, that equality can occur in in-
equality (|1.6]).
EXAMPLE 3.3. Here and in what follows let 0 < R <1 and
Dg = {z € R?: |z| < R}.

For every K > 1 we show that there exist a K-quasiconformal mapping
f:D — D and a function u € EXP(Dg) such that

(3.10) distpxp(fmp) (wo f71, LO(f(Dr))) = K distexpmy) (u, L (Dg)).

Let f: D — D be the K-quasiconformal mapping defined as
z

f(z) = W;
and let
u(x) = —2log |z|.
Then u € EXP(Dg) and
distexp(my) (v, L(DR)) = 1.
This follows from the fact that if A > 1 then

A
@A gy — N
S e e — 7 < 00,
o (A —1)R?/

while el“l/* ¢ LY (Dg) for 0 < A < 1. We notice that the inverse of f is given
by
) =yl
Therefore, the function v = wo f~! is given by
v(y) = —2Klog|yl.
Then v € EXP(Dg) and arguing as for u one has

distgxpg) (v, L7(f(Dr))) = K.
This proves ((3.10]).
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