Convergence of multiple ergodic averages along cubes for several commuting transformations

by
Qing Chu (Marne-la-Vallée)

Abstract

We prove the norm convergence of multiple ergodic averages along cubes for several commuting transformations, and derive corresponding combinatorial results. The method we use relies primarily on the "magic extension" established recently by B. Host.

1. Introduction

1.1. Results. By a system, we mean a probability space endowed with a single or several commuting measure preserving transformations. We prove the following result regarding the convergence of multiple ergodic averages along cubes for several commuting transformations:

Theorem 1.1. Let $d \geq 1$ be an integer and $\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a system. Let $f_{\epsilon}, \epsilon \in\{0,1\}^{d} \backslash\{00 \ldots 0\}$, be $2^{d}-1$ bounded measurable functions on X. Then the averages

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n_{i} \in\left[M_{i}, N_{i} \\ i=1, \ldots, d\right.}} \prod_{\substack{\epsilon \in\{0,1\}^{d} \\ \epsilon \neq 00 \ldots 0}} T_{1}^{n_{1} \epsilon_{1}} \cdots T_{d}^{n_{d} \epsilon_{d}} f_{\epsilon} \tag{1}
\end{equation*}
$$

converge in $L^{2}(\mu)$ for all sequences of intervals $\left[M_{1}, N_{1}\right), \ldots,\left[M_{d}, N_{d}\right)$ whose lengths $N_{i}-M_{i}(1 \leq i \leq d)$ tend to ∞.

To illustrate, when $d=2$, the average (1) is

$$
\begin{equation*}
\frac{1}{\left(N_{1}-M_{1}\right) \cdot\left(N_{2}-M_{2}\right)} \sum_{\substack{n_{1} \in\left[M_{1}, N_{1}\right) \\ n_{2} \in\left[M_{2}, N_{2}\right)}} T_{1}^{n_{1}} f_{10} \cdot T_{2}^{n_{2}} f_{01} \cdot T_{1}^{n_{1}} T_{2}^{n_{2}} f_{11} \tag{2}
\end{equation*}
$$

When Theorem 1.1 is restricted to the case that each function f_{ϵ} is the indicator function of a measurable set, we have the following lower bound for these averages:

[^0]Theorem 1.2. Let $\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a system and let $A \in \mathcal{B}$. Then the limit of the averages

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n_{i} \in\left[M_{i}, N_{i}\right) \\ i=1, \ldots, d}} \mu\left(\bigcap_{\epsilon \in\{0,1\}^{d}} T_{1}^{-n_{1} \epsilon_{1}} \cdots T_{d}^{-n_{d} \epsilon_{d}} A\right) \tag{3}
\end{equation*}
$$

exists and is greater than or equal to $\mu(A)^{2^{d}}$ for all sequences of intervals $\left[M_{1}, N_{1}\right), \ldots,\left[M_{d}, N_{d}\right)$ whose lengths $N_{i}-M_{i}(1 \leq i \leq d)$ tend to ∞.

Recall that the upper density $d^{*}(A)$ of a set $A \subset \mathbb{Z}^{d}$ is defined to be

$$
d^{*}(A)=\limsup _{\substack{N_{i} \rightarrow \infty \\ 1 \leq i \leq d}} \prod_{i=1}^{d} \frac{1}{N_{i}}\left|A \cap\left(\left[1, N_{1}\right] \times \cdots \times\left[1, N_{d}\right]\right)\right|
$$

A subset E of \mathbb{Z}^{d} is said to be syndetic if \mathbb{Z}^{d} can be covered by finitely many translates of E.

We have the following corresponding combinatorial result:
Theorem 1.3. Let $A \subset \mathbb{Z}^{d}$ with $d^{*}(A)>\delta>0$. Then the set of $n=$ $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$ such that

$$
d^{*}\left(\bigcap_{\epsilon \in\{0,1\}^{d}}\left\{A+\left(n_{1} \epsilon_{1}, \ldots, n_{d} \epsilon_{d}\right)\right\}\right) \geq \delta^{2^{d}}
$$

is syndetic.
1.2. History of the problem. In the case where $T_{1}=\cdots=T_{d}=T$, the average (1) is

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n_{i} \in\left[M_{i}, N_{i}\right) \\ i=1, \ldots, d}} \prod_{\substack{\in \in\{0,1\}^{d} \\ \epsilon \neq 00 \ldots 0}} T^{n_{1} \epsilon_{1}+\cdots+n_{d} \epsilon_{d}} f_{\epsilon} . \tag{4}
\end{equation*}
$$

The norm convergence of (4) was proved by Bergelson for $d=2$ in [4], and more generally, by Host and Kra for $d>2$ in [7]. The related pointwise convergence problem was studied by Assani who showed in [1] that the averages (4) converge a.e.

Some lower bounds for the average (3) were provided by Leibman in 8 . In the same paper, he gave an example showing that the average (2) can diverge if the transformations do not commute.

However, Assani showed in [1] that the averages

$$
\frac{1}{N^{2}} \sum_{n, m=1}^{N} f\left(T_{1}^{n} x\right) g\left(T_{2}^{m} x\right) h\left(T_{3}^{n+m} x\right)
$$

do converge a.e. even if the transformations do not necessarily commute. He extended this result to the case of six functions in [2].

The norm convergence of multiple ergodic averages with several commuting transformations of the form

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{n} f_{1} \cdot \ldots \cdot T_{d}^{n} f_{d} \tag{5}
\end{equation*}
$$

was proved by Conze and Lesigne [5] when $d=2$. The general case was originally proved by Tao [9], and subsequent proofs were given by Austin [3], Host [6] and Towsner [10].
1.3. Methods. The main tools we use in this paper are the seminorms and the existence of "magic extensions" for commuting transformations established by Host [6]. The magic extensions can be viewed as a concrete form of the pleasant extensions built by Austin in [3].

2. Seminorms and upper bound

2.1. Notation and definitions. Given a probability space (X, \mathcal{B}, μ), in general we omit the σ-algebra from our notation and write (X, μ).

For an integer $d \geq 1$, we write $[d]=\{1, \ldots, d\}$ and identify $\{0,1\}^{d}$ with the family of subsets of $[d]$. Therefore, the assertion " $i \in \epsilon$ " is equivalent to $\epsilon_{i}=1$. In particular, \emptyset is the same as $00 \ldots 0 \in\{0,1\}^{d}$. We write $|\epsilon|=\sum_{i} \epsilon_{i}$ for the number of elements in ϵ.

Let $\left(X, \mu, T_{1}, \ldots, T_{d}\right)$ be a system. For each $n=\left(n_{1}, \ldots, n_{d}\right), \epsilon=$ $\left\{i_{1}, \ldots, i_{k}\right\} \subset[d]$, and for each integer $1 \leq k \leq d$, we write

$$
T_{\epsilon}^{n}=T_{i_{1}}^{n_{i_{1}}} \cdots T_{i_{k}}^{n_{i_{k}}} .
$$

For any transformation S of some probability space, we denote by $\mathcal{I}(S)$ the σ-algebra of S-invariant sets.

We define a measure μ_{1} on X^{2} by

$$
\mu_{1}=\mu \times_{\mathcal{I}\left(T_{1}\right)} \mu_{1} .
$$

This means that for $f_{0}, f_{1} \in L^{\infty}(\mu)$, we have

$$
\int\left(f_{0} \otimes f_{1}\right)\left(x_{0}, x_{1}\right) d \mu_{1}\left(x_{0}, x_{1}\right)=\int \mathbb{E}\left(f_{0} \mid \mathcal{I}\left(T_{1}\right)\right) \cdot \mathbb{E}\left(f_{1} \mid \mathcal{I}\left(T_{1}\right)\right) d \mu
$$

For $2 \leq k \leq d$, we define a measure μ_{k} (see [6]) on $X^{2^{k}}$ by

$$
\mu_{k}=\mu_{k-1} \times_{\mathcal{I}\left(T_{k}^{\Delta}\right)} \mu_{k-1}, \quad \text { where } \quad T_{k}^{\Delta}:=\underbrace{T_{k} \times \cdots \times T_{k}}_{2^{k-1}} .
$$

We write $X^{*}=X^{2^{d}}$, and points of X^{*} are written as $x=\left(x_{\epsilon}: \epsilon \subset[d]\right)$. We write $\mu^{*}:=\mu_{d}$.

For $f \in L^{\infty}(\mu)$, define

$$
\|f\|_{T_{1, \ldots}, T_{d}}:=\left(\int_{\epsilon \in\{0,1\}^{d}} f\left(x_{\epsilon}\right) d \mu^{*}(x)\right)^{1 / 2^{d}} .
$$

It was shown in Proposition 2 of [6] that $\|\cdot \cdot\|_{T_{1}, \ldots, T_{d}}$ is a seminorm on $L^{\infty}(\mu)$. We call this the box seminorm associated to T_{1}, \ldots, T_{d}.

For $\epsilon \subset[d], \epsilon \neq \emptyset$, we write $\|\cdot\|_{\epsilon}$ for the seminorm on $L^{\infty}(\mu)$ associated to the transformations $T_{i}, i \in \epsilon$. For example, $\|\cdot\|_{110 \ldots 00}$ is the seminorm associated to T_{1}, T_{2} because $\epsilon=110 \ldots 0 \in\{0,1\}^{d}$ is identified with $\{1,2\} \subset[d]$.

By Proposition 3 in [6], if we rearrange the order of the digits in ϵ, the seminorm $\|\cdot\|_{\epsilon}$ remains unchanged.
2.2. Upper bound. In the following, we assume that all functions f_{ϵ}, $\epsilon \subset[d]$, are real-valued and satisfy $\left|f_{\epsilon}\right| \leq 1$.

Proposition 2.1. Under the above notation and hypotheses,

$$
\begin{align*}
& \limsup _{\substack{N_{i}-M_{i} \rightarrow \infty \\
i=1, \ldots, d}}\left\|\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)}} \prod_{\substack{\epsilon \subset[d] \\
\epsilon \neq \emptyset}} T_{\epsilon}^{n} f_{\epsilon}\right\|_{L^{2}(\mu)} \tag{6}\\
& \leq \min _{\substack{\epsilon \subset[d] \\
\epsilon \neq \emptyset}}\left\|f_{\epsilon}\right\|_{T_{1} \ldots T_{d}}
\end{align*}
$$

Proof. We proceed by induction on d. For $d=1$, we have

$$
\left\|\frac{1}{N_{1}-M_{1}} \sum_{n_{1} \in\left[M_{1}, N_{1}\right)} T_{1}^{n_{1}} f_{1}\right\|_{L^{2}(\mu)}^{2} \rightarrow \int \mathbb{E}\left(f_{1} \mid \mathcal{I}\left(T_{1}\right)\right)^{2} d \mu=\left\|f_{1}\right\|_{T_{1}}^{2}
$$

Let $d \geq 2$ and assume that (6) is established for $d-1$ transformations. We show that for every $\alpha \subset[d], \alpha \neq \emptyset$, the limsup on the left hand side of (6) is bounded by $\left\|f_{\alpha}\right\|_{T_{1}, \ldots, T_{d}}$. By a permutation of digits if needed, we can assume that $\alpha \neq 0 \ldots 01$ ($d-1$ zeros). The square of the norm on the left hand side of $(\sqrt{6})$ is equal to

$$
\begin{aligned}
& \| \frac{1}{N_{d}-M_{d}} \sum_{n_{d} \in\left[M_{d}, N_{d}\right)} T_{d}^{n_{d}} f_{0 \ldots 01} \\
& \cdot \prod_{i=1}^{d-1} \frac{1}{N_{i}-M_{i}} \sum_{m \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{d-1}, N_{d-1}\right)} \prod_{\substack{\eta \subset[d-1] \\
\eta \neq \emptyset}} T_{\eta}^{m}\left(f_{\eta 0} \cdot T_{d}^{n_{d}} f_{\eta 1}\right) \|_{L^{2}(\mu)}^{2} .
\end{aligned}
$$

By the Cauchy-Schwarz inequality, this is less than or equal to

$$
\begin{align*}
\frac{1}{N_{d}-M_{d}} & \sum_{n_{d} \in\left[M_{d}, N_{d}\right)} \| \prod_{i=1}^{d-1} \frac{1}{N_{i}-M_{i}} \tag{7}\\
& \cdot \sum_{m \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{d-1}, N_{d-1}\right)} \prod_{\substack{\eta \subset[d-1] \\
\eta \neq \emptyset}} T_{\eta}^{m}\left(f_{\eta 0} \cdot T_{d}^{n_{d}} f_{\eta 1}\right) \|_{L^{2}(\mu)}^{2}
\end{align*}
$$

By the induction hypothesis, when $N_{i}-M_{i} \rightarrow \infty, i=1, \ldots, d-1$, the limsup of the square of the norm in (7) is less than or equal to

$$
\min _{\substack{\eta \subset[d-1] \\ \eta \neq \emptyset}}\left\|f_{\eta 0} \cdot T_{d}^{n_{d}} f_{\eta 1}\right\|_{T_{1}, \ldots, T_{d-1}}^{2}
$$

where $\|\cdot\|_{T_{1}, \ldots, T_{d-1}}$ is the seminorm associated to the $d-1$ transformations T_{1}, \ldots, T_{d-1}.

Note that α is equal to $\eta 0$ or $\eta 1$ for some $\eta \subset[d-1]$, and by the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& \quad \lim _{N_{d}-M_{d} \rightarrow \infty} \frac{1}{N_{d}-M_{d}} \sum_{n_{d} \in\left[M_{d}, N_{d}\right)}\left\|f_{\eta 0} \cdot T_{d}^{n_{d}} f_{\eta 1}\right\|_{T_{1}, \ldots, T_{d-1}}^{2^{d-1}} \\
& \quad=\lim _{N_{d}-M_{d} \rightarrow \infty} \frac{1}{N_{d}-M_{d}} \sum_{n_{d} \in\left[M_{d}, N_{d}\right)} \bigotimes_{\eta \subset[d-1]}\left(f_{\eta 0} \cdot T_{d}^{n_{d}} f_{\eta 1}\right) d \mu_{d-1} \\
& \quad=\int \mathbb{E}\left(\bigotimes_{\eta \subset[d-1]} f_{\eta 0} \mid \mathcal{I}\left(T_{d}^{\triangle}\right)\right) \cdot \mathbb{E}\left(\bigotimes_{\eta \subset[d-1]} f_{\eta 1} \mid \mathcal{I}\left(T_{d}^{\triangle}\right)\right) d \mu_{d-1} \\
& \quad \leq\left(\int\left|\mathbb{E}\left(\bigotimes_{\alpha \subset[d]} f_{\alpha} \mid \mathcal{I}\left(T_{d}^{\triangle}\right)\right)\right|^{2} d \mu_{d-1}\right)^{1 / 2}=\left(\int \bigotimes_{\alpha \subset[d]} f_{\alpha} d \mu^{*}\right)^{1 / 2}=\| \| f_{\alpha} \|_{T_{1}, \ldots, T_{d}}^{d-1} .
\end{aligned}
$$

This completes the proof.
The following is a generalization of Proposition 2.1, although its proof depends upon that result.

Proposition 2.2. Let r be an integer with $1 \leq r \leq d$. Then
(8) $\limsup _{\substack{N_{i}-M_{i} \rightarrow \infty \\ i=1, \ldots, d}}\left\|\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)}} \prod_{\substack{\epsilon \subset[d] \\ 0<|\epsilon| \leq r}} T_{\epsilon}^{n} f_{\epsilon}\right\|_{L^{2}(\mu)} \leq \min _{\substack{\epsilon \subset[d] \\|\epsilon|=r}}\left\|f_{\epsilon}\right\|_{\epsilon}$.

Proof. We show that for every $\alpha \subset[d]$ with $|\alpha|=r$, the limsup in (8) is bounded by $\left\|f_{\alpha}\right\|_{\alpha}$.

By a permutation of digits we can restrict to the case that

$$
\alpha=\underbrace{11 \ldots 1}_{r} 00 \ldots 0 .
$$

Q. Chu

We show that

$$
\begin{equation*}
\limsup _{\substack{N_{i}-M_{i} \rightarrow \infty \\ i=1, \ldots, d}}\left\|\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)} \prod_{\substack{\epsilon \subset[d] \\ 0<|\epsilon| \leq r}} T_{\epsilon}^{n} f_{\epsilon}\right\|_{L^{2}(\mu)} \leq\left\|f_{\alpha}\right\|_{\alpha} \tag{9}
\end{equation*}
$$

The norm in (9) is equal to

$$
\begin{align*}
& \| \prod_{i=r+1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{m \in\left[M_{r+1}, N_{r+1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)}} \prod_{\epsilon \subset\{r+1, \ldots, d\}} T_{\epsilon}^{m} f_{\epsilon} \cdot \prod_{j=1}^{r} \frac{1}{N_{j}-M_{j}} \tag{10}\\
& \sum_{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{r}, N_{r}\right)}\left(\prod_{\substack{\eta \subset[r] \\
\eta \neq \emptyset}} T_{\eta}^{n} \prod_{\substack{\theta \subset[d-r] \\
|\eta \theta| \leq r}} T_{r+\theta}^{n} f_{\eta \theta}\right) \cdot\left(T_{1}^{n_{1}} \cdots T_{r}^{n_{r}} f_{\alpha}\right) \|_{L^{2}(\mu)}
\end{align*}
$$

where $r+\theta=\{r+k: k \in \theta\}$. Let

$$
g_{\eta}= \begin{cases}\prod_{\theta \subset[d-r]} T_{r+\theta}^{n} f_{\eta \theta}, & 0<|\eta|<r \\ |\eta \theta| \leq r \\ f_{\alpha}, & |\eta|=r\end{cases}
$$

Then 10 is equal to

$$
\begin{align*}
& \| \prod_{i=r+1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{m \in\left[M_{r+1}, N_{r+1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)}\left(\prod_{\epsilon \subset\{r+1, \ldots, d\}} T_{\epsilon} T_{\epsilon}^{m} f_{\epsilon}\right) \tag{11}\\
& \quad \cdot \prod_{j=1}^{r} \frac{1}{N_{j}-M_{j}} \sum_{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{r}, N_{r}\right)}\left(\prod_{\substack{\eta \subset[r] \\
\eta \neq \emptyset}} T_{\eta}^{n} g_{\eta}\right) \|_{L^{2}(\mu)} .
\end{align*}
$$

By the Cauchy-Schwarz inequality, the square of (11) is less than or equal to

$$
\begin{equation*}
\prod_{i=r+1}^{d} \frac{1}{N_{i}-M_{i}} \tag{12}
\end{equation*}
$$

$$
\sum_{m \in\left[M_{r+1}, N_{r+1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)}\left\|\prod_{j=1}^{r} \frac{1}{N_{j}-M_{j}} \sum_{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{r}, N_{r}\right)} \prod_{\substack{\eta \subset[r] \\ \eta \neq \emptyset}} T_{\eta}^{n} g_{\eta}\right\|_{L^{2}(\mu)}^{2}
$$

By Proposition 2.1, the $\lim \sup$ of 12 as $N_{i}-M_{i} \rightarrow \infty, i=1, \ldots, r$, is bounded by

$$
\prod_{i=r+1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n_{i} \in\left[M_{i}, N_{i}\right) \\ i=r+1, \ldots, d}}\left\|f_{\alpha}\right\|_{T_{1}, \ldots, T_{r}}^{2}=\left\|f_{\alpha}\right\|_{T_{1}, \ldots, T_{r}}^{2}
$$

This completes the proof.
3. The case of the magic extension. We recall the definition of a "magic" system.

Definition 3.1 (Host [6]). A system $\left(X, \mu, T_{1}, \ldots, T_{d}\right)$ is called magic if whenever $f \in L^{\infty}(\mu)$ is such that $\mathbb{E}\left(f \mid \bigvee_{i=1}^{d} \mathcal{I}\left(T_{i}\right)\right)=0$, then $\|f\|_{T_{1}, \ldots, T_{d}}=0$.

Given a system $\left(X, \mu, T_{1}, \ldots, T_{d}\right)$, let X^{*} and μ^{*} be defined as in Section 2.1. We denote by T_{i}^{*} the side transformations of X^{*}, given by

$$
\text { for every } \epsilon \in\{0,1\}^{d}, \quad\left(T_{i}^{*} x\right)_{\epsilon}= \begin{cases}T_{i} x_{\epsilon} & \text { if } \epsilon_{i}=0 \\ x_{\epsilon} & \text { if } \epsilon_{i}=1\end{cases}
$$

By Theorem 2 in [6], $\left(X^{*}, \mu^{*}, T_{1}^{*}, \ldots, T_{d}^{*}\right)$ is a magic system, and admits $\left(X, \mu, T_{1}, \ldots, T_{d}\right)$ as a factor.

For $\epsilon \subset[d], \epsilon \neq \emptyset$, we write $\|\cdot\|_{\epsilon}^{*}$ for the seminorm on $L^{\infty}\left(\mu^{*}\right)$ associated to the transformations $T_{i}^{*}, i \in \epsilon$. Moreover, we define the σ-algebra

$$
\mathcal{Z}_{\epsilon}^{*}:=\bigvee_{i \in \epsilon} \mathcal{I}\left(T_{i}^{*}\right)
$$

of $\left(X^{*}, \mu^{*}\right)$. For example, $\mathcal{Z}_{\{1,2, d\}}^{*}=\mathcal{I}\left(T_{1}^{*}\right) \vee \mathcal{I}\left(T_{2}^{*}\right) \vee \mathcal{I}\left(T_{d}^{*}\right)$.
We prove Theorem 1.1 for the magic system $\left(X^{*}, \mu^{*}, T_{1}^{*}, \ldots, T_{d}^{*}\right)$.
Theorem 3.2. Let $f_{\epsilon}, \epsilon \subset[d]$, be functions on X^{*} with $\left\|f_{\epsilon}\right\|_{L^{\infty}\left(\mu^{*}\right)} \leq 1$ for every ϵ. Then the averages

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)} \prod_{\substack{\epsilon \subset[d] \\ \epsilon \neq \emptyset}} T_{\epsilon}^{* n} f_{\epsilon} \tag{13}
\end{equation*}
$$

converge in $L^{2}\left(\mu^{*}\right)$ for all sequences of intervals $\left[M_{1}, N_{1}\right), \ldots,\left[M_{d}, N_{d}\right)$ whose lengths $N_{i}-M_{i}(1 \leq i \leq d)$ tend to ∞.

Since the system $\left(X^{*}, \mu^{*}, T_{1}^{*}, \ldots, T_{d}^{*}\right)$ admits $\left(X, \mu, T_{1}, \ldots, T_{d}\right)$ as a factor, Theorem 3.2 implies our main result, Theorem 1.1 .

Theorem 3.3. For every $\epsilon \subset[d], \epsilon \neq \emptyset$, and every function $f \in L^{\infty}\left(\mu^{*}\right)$,

$$
\begin{equation*}
\text { if } \quad \mathbb{E}_{\mu^{*}}\left(f \mid \mathcal{Z}_{\epsilon}^{*}\right)=0, \quad \text { then } \quad\|f\|_{\epsilon}^{*}=0 \tag{14}
\end{equation*}
$$

Proof. Assume $|\epsilon|=r>0$. By a permutation of digits we can assume that

$$
\epsilon=\{d-r+1, d-r+2, \ldots, d\}
$$

We define a new system $\left(Y, \nu, S_{1}, \ldots, S_{r}\right)$, where $Y=X^{2^{d-r}}$ and $\nu=$ μ_{d-r}, the $d-r$ step measure associated to $T_{1}^{*}, \ldots, T_{d-r}^{*}$. Define

$$
S_{i}=\underbrace{T_{d-r+i} \times \cdots \times T_{d-r+i}}_{2^{d-r}}
$$

on Y for $i=1, \ldots, r$. Note that by definition, $Y^{*}=X^{2^{d}}=X^{*}$, and

$$
S_{i}^{*}=T_{d-r+i}^{*}, \quad S_{i}^{\triangle}=T_{d-r+i}^{\triangle}
$$

for $i=1, \ldots, r$. Moreover,

$$
\nu_{1}=\nu \times_{\mathcal{I}\left(S_{1}\right)} \nu=\mu_{d-r} \times_{\mathcal{I}\left(T_{d-r+1}\right)}^{\Delta} \mu_{d-r}=\mu_{d-r+1}
$$

By induction,

$$
\nu_{i+1}=\nu_{i} \times_{\mathcal{I}\left(S_{i+1}\right)}^{\Delta} \nu_{i}=\mu_{d-r+i} \times_{\mathcal{I}\left(T_{d-r+i+1}\right)}^{\Delta} \mu_{d-r+i}=\mu_{d-r+i+1}
$$

for $i=1, \ldots, r-1$. Therefore $\left(X^{*}, \mu^{*}, T_{d-r+1}^{*}, \ldots, T_{d}^{*}\right)$ is just the magic extension $\left(Y^{*}, \nu^{*}, S_{1}^{*}, \ldots, S_{r}^{*}\right)$ of $\left(Y, \nu, S_{1}, \ldots, S_{r}\right)$. So

$$
\mathcal{Z}_{\epsilon}^{*}=\bigvee_{i \in \epsilon} \mathcal{I}\left(T_{i}^{*}\right)=\bigvee_{i=1}^{r} \mathcal{I}\left(S_{i}^{*}\right):=\mathcal{W}_{Y}^{*}
$$

If $f \in L^{\infty}\left(\mu^{*}\right)$ with $\mathbb{E}_{\mu^{*}}\left(f \mid \mathcal{Z}_{\epsilon}^{*}\right)=0$, this is equivalent to $\mathbb{E}_{\mu^{*}}\left(f \mid \mathcal{W}_{Y}^{*}\right)$ $=0$, and by Theorem 2 in [6], we have $\|f\|_{S_{1}^{*}, \ldots, S_{r}^{*}}^{*}=0$. Thus $\|f\|_{\epsilon}^{*}=$ $\|f\|_{S_{1}^{*}, \ldots, S_{r}^{*}}^{*}=0$

Proposition 3.4. Let $f_{\epsilon}, \epsilon \subset[d]$, be functions on X^{*} with $\left\|f_{\epsilon}\right\|_{L^{\infty}\left(\mu^{*}\right)}$ ≤ 1 for every ϵ. Let r be an integer with $1 \leq r \leq d$. Then the averages

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{n \in\left[M_{1}, N_{1}\right) \times \cdots \times\left[M_{d}, N_{d}\right)} \prod_{\substack{\epsilon \subset[d] \\ 0<|\epsilon| \leq r}} T_{\epsilon}^{* n} f_{\epsilon} \tag{15}
\end{equation*}
$$

converge in $L^{2}\left(\mu^{*}\right)$ for all sequences of intervals $\left[M_{1}, N_{1}\right), \ldots,\left[M_{d}, N_{d}\right)$ whose lengths $N_{i}-M_{i}(1 \leq i \leq d)$ tend to ∞.

We remark that Theorem 3.2 follows immediately from this proposition when $r=d$.

Proof. We proceed by induction on r. When $r=1$, the average (15) is

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n_{i} \in\left[M_{i}, N_{i}\right) \\ i=1, \ldots, d}} T_{1}^{* n_{1}} f_{10 \ldots 0} \cdots T_{d}^{* n_{d}} f_{0 \ldots 01} \tag{16}
\end{equation*}
$$

By the Ergodic Theorem, this converges to

$$
\mathbb{E}\left(f_{10 \ldots 0} \mid \mathcal{I}\left(T_{1}^{*}\right)\right) \cdots \mathbb{E}\left(f_{0 \cdots 01} \mid \mathcal{I}\left(T_{d}^{*}\right)\right)
$$

Assume $r>1$, and that the proposition is true for $r-1$ transformations.
For $\alpha \subset[d],|\alpha|=r$, if $\mathbb{E}_{\mu^{*}}\left(f_{\alpha} \mid \mathcal{Z}_{\alpha}^{*}\right)=0$, then by Theorem 3.3, we have $\left\|f_{\alpha}\right\|_{\alpha}^{*}=0$. By Proposition 2.1. the average (15) converges to 0. Otherwise, by a density argument, we can assume that

$$
f_{\alpha}=\prod_{i \in \alpha} f_{\alpha, i}
$$

where $f_{\alpha, i}$ is T_{i}^{*}-invariant. Then

$$
T_{\alpha}^{* n} f_{\alpha}=\prod_{i \in \alpha} T_{\alpha \backslash\{i\}}^{* n} f_{\alpha, i}
$$

Thus

$$
\prod_{\substack{\epsilon \subset[d] \\ 0<|\epsilon| \leq r}} T_{\epsilon}^{* n} f_{\epsilon}=\prod_{\substack{\eta \subset[d] \\ 0<|\eta| \leq r-1}} T_{\eta}^{* n} g_{\eta}
$$

where

$$
g_{\eta}= \begin{cases}f_{\eta} & |\eta|<r-1 \\ f_{\eta} \prod_{i \notin \eta} f_{\eta \cup i, i} & |\eta|=r-1\end{cases}
$$

Therefore (15) converges by the induction hypothesis.

4. Combinatorial interpretation

Proof of Theorem 1.2. Apply Theorem 1.1 to the indicator function $\mathbf{1}_{A}$. We know that the limit of the averages

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{1}{N_{i}-M_{i}} \sum_{\substack{n_{i} \in\left[M_{i}, N_{i}\right) \\ i=1, \ldots, d}} \int \prod_{\epsilon \in\{0,1\}^{d}} T_{1}^{n_{1} \epsilon_{1}} \cdots T_{d}^{n_{d} \epsilon_{d}} \mathbf{1}_{A} d \mu \tag{17}
\end{equation*}
$$

exists. By Lemma 1 in [6], if we take the limit as $N_{1}-M_{1} \rightarrow \infty$, then as $N_{2}-M_{2} \rightarrow \infty, \ldots$, and then as $N_{d}-M_{d} \rightarrow \infty$, the average (17) converges to $\left\|\mathbf{1}_{A}\right\|_{T_{1}, \ldots, T_{d}}^{2^{d}}$. Thus the limit of the average 17$)$ is $\left\|\mathbf{1}_{A}\right\|_{T_{1}, \ldots, T_{d}}^{2^{d}}$. Since

$$
\begin{aligned}
\|f\|_{T_{1}, \ldots, T_{d}}^{2^{d}} & =\left\|\mathbb{E}\left(\bigotimes_{\epsilon \subset[d-1]} f \mid \mathcal{I}\left(T_{d}^{\triangle}\right)\right)\right\|_{L^{2}\left(\mu_{d-1}\right)}^{2} \\
& \geq\left(\int \bigotimes_{\epsilon \subset[d-1]} f d \mu_{d-1}\right)^{2}=\|f\|_{T_{1}, \ldots, T_{d-1}}^{2^{d}}
\end{aligned}
$$

we have $\left\|\mathbf{1}_{A}\right\|_{T_{1}, \ldots, T_{d}} \geq\left\|\mathbf{1}_{A}\right\|_{T_{1}} \geq \int \mathbf{1}_{A} d \mu=\mu(A)$, and the result follows.
Theorem 1.2 has the following corollary:
Corollary 4.1. Let $\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a system, where T_{1}, \ldots, T_{d} are commuting measure preserving transformations, and let $A \in \mathcal{B}$. Then for any $c>0$, the set of $n \in \mathbb{Z}^{k}$ such that

$$
\mu\left(\bigcap_{\epsilon \in\{0,1\}^{d}} T_{1}^{-n_{1} \epsilon_{1}} \cdots T_{d}^{-n_{d} \epsilon_{d}} A\right) \geq \mu(A)^{2^{d}}-c
$$

is syndetic.
The proof is exactly the same as for Corollary 13.8 in [7].
Theorem 1.3 follows by combining Furstenberg's correspondence principle and Corollary 4.1.

Acknowledgements. This paper was written while the author was visiting the Mathematical Sciences Research Institute and the author is grateful for their kind hospitality. The author also thanks the referee for remarks.

References

[1] I. Assani, Pointwise convergence of ergodic averages along cubes, J. Anal. Math., to appear.
[2] -, Averages along cubes for not necessarily commuting measure preserving transformations, in: Ergodic Theory and Related Fields, Contemp. Math. 430, Amer. Math. Soc., 2007, 1-19.
[3] T. Austin, On the norm convergence of nonconventional ergodic averages, Ergodic Theory Dynam. Systems, to appear.
[4] V. Bergelson, The multifarious Poincaré recurrence theorem, in: Descriptive Set Theory and Dynamical Systems (Marseille-Luminy, 1996), M. Foreman et al. (eds.), London Math. Soc. Lecture Note Ser. 277, Cambridge Univ. Press, Cambridge, 2000, 31-57.
[5] J.-P. Conze et E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), 143-175.
[6] B. Host, Ergodic seminorms for commuting transformations and applications, Studia Math. 195 (2009), 31-49.
[7] B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. 161 (2005), 397-488.
[8] A. Leibman, Lower bounds for ergodic averages, Ergodic Theory Dynam. Systems 22 (2002), 863-872.
[9] T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, ibid. 28 (2008), 657-688.
[10] H. Towsner, Convergence of diagonal ergodic averages, ibid., to appear.
Qing Chu
Laboratoire d'Analyse et de mathématiques appliquées
Université Paris-Est
UMR CNRS 8050
5 bd Descartes
77454 Marne-la-Vallée Cedex 2, France
E-mail: qing.chu@univ-mlv.fr

[^0]: 2010 Mathematics Subject Classification: 37A05, 37A30.
 Key words and phrases: averages along cubes, commuting transformations, magic system, ergodic seminorms.

