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Biseparating maps on generalized Lipschitz spaces

by

Denny H. Leung (Singapore)

Abstract. Let X, Y be complete metric spaces and E, F be Banach spaces. A bi-
jective linear operator from a space of E-valued functions on X to a space of F -valued
functions on Y is said to be biseparating if f and g are disjoint if and only if Tf and Tg
are disjoint. We introduce the class of generalized Lipschitz spaces, which includes as spe-
cial cases the classes of Lipschitz, little Lipschitz and uniformly continuous functions. Lin-
ear biseparating maps between generalized Lipschitz spaces are characterized as weighted
composition operators, i.e., of the form Tf(y) = Sy(f(h−1(y))) for a family of vector
space isomorphisms Sy : E → F and a homeomorphism h : X → Y . We also investigate
the continuity of T and related questions. Here the functions involved (as well as the
metric spaces X and Y ) may be unbounded. Also, the arguments do not require the use
of compactification of the spaces X and Y .

1. Introduction. In his classical treatise, Théorie des Opérations Liné-
aires [9], Banach proved that the linear isometric structure of the Banach
space C(X) of continuous functions on a compact metric space determines
the space X up to homeomorphism. The result was generalized by Stone
[31] to general compact Hausdorff spaces X. Subsequently, Gelfand and
Kolmogorov [16] and Kaplansky [25] showed that X is also determined up
to homeomorphism by the algebraic structure and the lattice structure of
C(X) respectively. In the intervening decades, these types of results have
been generalized to many other classes of function spaces and also to spaces
of vector-valued functions. The classic monograph [17] considers the relation-
ship between the algebraic structure of spaces of continuous functions on X
and the space X itself for general classes of topological spaces. The work
[10] uses the Banach–Stone theory of vector-valued continuous functions
C(X,E) as a tool to study the Banach space E itself, leading to the theory
of M - and L-structures of Banach spaces. For the general theory of isome-
tries on Banach spaces, we refer the reader to the two-volume monograph
of Fleming and Jamison [11]. For a survey on various aspects of research
surrounding Banach–Stone type theorems, see [13].
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A useful unifying notion that has been introduced into the theory is that
of separating or biseparating maps. Two functions f and g defined on the
same domain X with values in a vector space are said to be disjoint if for all
x ∈ X, either f(x) = 0 or g(x) = 0. A map T between vector-valued function
spaces is separating (also called disjointness preserving or a Lamperti oper-
ator) if T maps disjoint functions to disjoint functions. It is biseparating if
T is invertible and both T and T−1 are separating. Clearly, algebraic or lat-
tice homomorphisms (isomorphisms) are separating (biseparating). In many
instances, isometries between Banach function spaces can also be shown to
be biseparating. This explains the interest and amount of work devoted to
the characterization of separating or biseparating operators. See, e.g., [1–5,
7, 8, 15, 18, 27].

The study of Lipschitz spaces can be traced back to de Leeuw [26] and
Sherbert [29, 30] for the scalar case, and Johnson [24] for the vector-valued
case. A survey on the algebra of Lipschitz functions can be found in [32].
Recent work on separating and biseparating maps on Lipschitz spaces and
spaces of uniformly continuous functions includes [6, 12, 14, 19, 20, 22, 23].
In particular, characterizations of biseparating maps on spaces of bounded
Lipschitz or little Lipschitz functions are obtained in [6, 22, 23].

In this paper, we consider spaces of functions determined by the “mod-
ulus of continuity” and call such classes generalized Lipschitz spaces. This
notion serves to unify the study of spaces of Lipschitz, little Lipschitz and
uniformly continuous functions. One of the main aims of this paper is to
characterize all biseparating operators between generalized Lipschitz spaces.
We make use of a new approach that bypasses the usual compactification
procedures, and is rather more closely tied to the metric structure of the
underlying spaces. (See §2.) The second critical ingredient in our argument
is the construction of “bump” functions (Lemma 6). Taking advantage of
such “bumps” allows us to complete the characterization of biseparating
maps as weighted composition operators (Theorem 16). In §3, we consider
questions connected with automatic continuity.

Let (X, d) be a complete metric space and E be a real or complex Banach
space. For a function f : X → E, its modulus of continuity is the function
ωf : [0,∞)→ [0,∞] defined by

ωf (ε) = sup{‖f(x1)− f(x2)‖ : d(x1, x2) ≤ ε}.
Note that f is uniformly continuous on X if and only if ωf is continuous
at 0. In general, we say that σ : [0,∞) → [0,∞] is a modulus function if σ
is nondecreasing, σ(0) = 0 and σ is continuous at 0. A nonempty set Σ of
modulus functions is called a modulus set if:

(MS1) For any σ1, σ2 in Σ, there exist σ ∈ Σ and K < ∞ such that
σ1 + σ2 ≤ Kσ.
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(MS2) For every sequence (σn) in Σ and every nonnegative summable
real sequence (an), there are σ ∈ Σ and K < ∞ such that∑
an(σn ∧ 1) ≤ Kσ.

Let Σ be a modulus set. Define the generalized Lipschitz space LipΣ(X,E)
to be the set of all functions f : X → E such that ωf ≤ Kσ for some
σ ∈ Σ and K <∞. Since ωcf1+f2 ≤ |c|ωf1 +ωf2 , it follows from (MS1) that
LipΣ(X,E) is a vector space. We reiterate that all functions in LipΣ(X,E)
are necessarily uniformly continuous. Also, LipΣ(X,E) always contains all
constant functions. When E=R or C, LipΣ(X,E) is abbreviated to LipΣ(X).
To justify the introduction of this new class of spaces, let us look at a few
examples.

Examples.

(1) If Σ consists of the identity function σ(t) = t only, then LipΣ(X,E)
is the class Lip(X,E) of Lipschitz functions. Observe that if 0<α< 1
and we let Xα be the space X with the metric dα, then Lip(Xα, E)
is the class Lipα(X,E) of Lipschitz functions (on (X, d)) of order α.

(2) If Σ consists of all modulus functions σ such that σ(t) ≤ t for all
t ≥ 0 and limt→0 σ(t)/t = 0, then LipΣ(X,E) is the small Lipschitz
class lip(X,E). Again, for 0 < α < 1, lipα(X,E) = lip(Xα, E).

(3) If Σ is the set of all modulus functions, then LipΣ(X,E) is the space
U(X,E) of uniformly continuous functions from X to E.

(4) If Σ is a modulus set and Σb = {σ ∧ 1 : σ ∈ Σ}, then LipΣb(X,E)
is the set of all bounded functions in LipΣ(X,E).

A generalized Lipschitz space LipΣ(X) is said to be Lipschitz normal
if for every pair of subsets U, V of X with d(U, V ) > 0, there exists f ∈
LipΣ(X), 0 ≤ f ≤ 1, such that f = 0 on U and f = 1 on V . We will say
that LipΣ(X,E) is Lipschitz normal if LipΣ(X) is. For any metric space X,
the spaces Lip(X), lip(Xα), 0 < α < 1, and U(X) are Lipschitz normal.
Another example is the following: lip(∆) is Lipschitz normal, where ∆ is
the Cantor set with the usual metric. In this paper, all generalized Lipschitz
spaces considered are assumed to be Lipschitz normal.

If f belongs to LipΣ(X,E), let C(f) be the set {x ∈ X : f(x) 6= 0} and
denote its closure by C(f). If (Y, d′) is a complete metric space, F is a Banach
space and Σ′ is a modulus set, we may define the space LipΣ′(Y, F ) as above.
A linear map T : LipΣ(X,E) → LipΣ′(Y, F ) is said to be biseparating if T
is a bijection and, for all f, g ∈ LipΣ(X,E),

C(f) ∩ C(g) = ∅ if and only if C(Tf) ∩ C(Tg) = ∅.

2. The Boolean algebra of closures of open sets. Let X be a
complete metric space with metric d. Denote by D(X) the collection of all
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subsets A of X such that A = intA. Equivalently, A ∈ D(X) if and only if A
is the closure of an open subset of X. In particular, C(f) ∈ D(X) for every
f ∈ LipΣ(X,E). Moreover, D(X) is a Boolean algebra under the order of
set inclusion, with lattice operations

A ∨B = A ∪B and A ∧B = intA ∩ intB

for all A,B ∈ D(X). The 0 and 1 elements of D(X) are ∅ and X respectively;
the complement of A ∈ D(X) is

¬A = Ac,

where Ac is the set-theoretic complement of A. For basic properties of
Boolean algebras we refer the reader to [28]. We begin with a simple but
fundamental observation.

Proposition 1. Let ϕ be a function in LipΣ(X) with values in [0, 1]
and let f ∈ LipΣ(X,E) be such that ‖f(x)‖ ≤ M for all x ∈ C(ϕ). Then
ϕf ∈ LipΣ(X,E) and ωϕf ≤ ωf +Mωϕ.

Proof. Suppose that d(x1, x2) ≤ ε. If neither x1 nor x2 lies in C(ϕ), then
‖(ϕf)(x1)− (ϕf)(x2)‖ = 0. Otherwise, we may assume that x2 ∈ C(ϕ) and
hence ‖f(x2)‖ ≤M . Therefore,

‖(ϕf)(x1)− (ϕf)(x2)‖ ≤ |ϕ(x1)| ‖f(x1)− f(x2)‖+ |ϕ(x1)− ϕ(x2)| ‖f(x2)‖
≤ ωf (ε) +Mωϕ(ε).

The next lemma is similar to Lemma 4.2 in [1].

Lemma 2. Let T : LipΣ(X,E) → LipΣ′(Y, F ) be a biseparating map. If
f, g ∈ LipΣ(X,E) and C(f) ⊆ C(g), then C(Tf) ⊆ C(Tg).

Proof. Suppose that y /∈ C(Tg). There exists ε > 0 so that B(y, ε) ∩
C(Tg) = ∅ and that Tf is bounded on B(y, ε). Let ψ be a [0, 1]-valued
function in LipΣ′(Y ) so that ψ = 1 on B(y, ε/2) and ψ = 0 outside B(y, ε).
Then ψTf ∈ LipΣ′(Y, F ) by Proposition 1 and C(ψTf) ∩C(Tg) = ∅. Thus
C(T−1(ψTf))∩C(g) = ∅. Since C(T−1(ψTf)) is an open set, it follows that
C(T−1(ψTf)) ∩ C(g) = ∅, and hence C(T−1(ψTf)) ∩ C(f) = ∅. Therefore,
C(ψTf)∩C(Tf) = ∅. In particular, since ψ(y) 6= 0, we must have Tf(y) = 0.
So y /∈ C(Tf).

Lemma 3. For each open subset U of X, there exists f ∈ LipΣ(X,E)
such that C(f) = U .

Proof. For each n ∈ N, let Un be the set of all x ∈ X such that d(x, U c) ≥
1/n. Since LipΣ(X,E) is Lipschitz normal, there exists ϕn ∈ LipΣ(X) with
values in [0, 1] so that ϕn = 0 on U c and ϕn = 1 on Un. Take σn ∈ Σ and
Kn <∞ so that ωϕn ≤ Knσn. Note that ωϕn ≤ 1 as well. So, by redefining
the constant Kn if necessary, we may assume that ωϕn ≤ Kn(σn ∧ 1). The
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function ϕ =
∑
ϕn/(n2(Kn + 1)) converges on X. Also,

ωϕ ≤
∑ ωϕn

n2(Kn + 1)
≤
∑ σn ∧ 1

n2
≤ Kσ

for some σ ∈ Σ and K <∞ by condition (MS2) in the definition of modulus
sets. Thus ϕ ∈ LipΣ(X). Clearly, C(ϕ) = U . Finally, choose any nonzero
u ∈ E and f(x) = ϕ(x)u is a function with the desired properties.

Proposition 4. Let T : LipΣ(X,E) → LipΣ′(Y, F ) be a biseparating
map. For each A ∈ D(X), let θ(A) = C(Tf) for some f ∈ LipΣ(X,E)
such that C(f) = intA. Then θ is a well-defined Boolean isomorphism from
D(X) onto D(Y ). Moreover, for any f ∈ LipΣ(X,E) and any A ∈ D(X),
f = 0 on A if and only if Tf = 0 on θ(A).

Proof. The fact that θ is well defined follows from Lemmas 2 and 3. By
Lemma 2, θ preserves order. Analogously, we can define τ : D(Y ) → D(X)
by τ(B) = C(T−1g) for some g ∈ LipΣ′(Y, F ) such that C(g) = intB. If
A ∈ D(X) and f ∈ LipΣ(X,E) with C(f) = intA, then θ(A) = C(Tf). Let
g ∈ LipΣ′(Y, F ) be such that C(g) = int θ(A). By Lemma 2 applied to T−1,
C(f) = C(T−1g). Thus A = C(f) = τ(θ(A)). Similarly, θ(τ(B)) = B for all
B ∈ D(Y ). Hence τ = θ−1. Since both θ and θ−1 are order preserving, θ is
a Boolean isomorphism.

If f ∈ LipΣ(X,E) and f = 0 on A ∈ D(X), then C(f) ∩ C(f ′) = ∅
for any f ′ ∈ LipΣ(X,E) with C(f ′) = intA. Hence C(Tf) ∩ C(Tf ′) = ∅.
By continuity of Tf , Tf = 0 on C(Tf ′) = θ(A). The converse follows by
symmetry.

3. Characterization of biseparating maps. Let X and Y be com-
plete metric spaces, E and F be Banach spaces, and Σ and Σ′ be two
modulus sets. The closed unit ball of F is denoted by BF . We begin with
an easy observation.

Lemma 5. For any a > 0, the retraction r : F → aBF defined by

r(v) =
{
v if v ∈ aBF ,
av/‖v‖ otherwise,

is a Lipschitz map with ωr(t) ≤ 2t.

Lemma 6. Let g be a function in LipΣ′(Y, F ). For all a > 0 and all
b ≥ 2a, there is a function g̃ ∈ LipΣ′(Y, F ) with ωg̃ ≤ 3ωg such that

g̃(y) =
{
g(y) if ‖g(y)‖ ≤ a,
0 if ‖g(y)‖ ≥ b.

Proof. Let r : F → aBF be the retraction defined in Lemma 5. Then
ωr◦g ≤ 2ωg and r ◦ g is bounded in norm by a. For any b ≥ 2a, the function
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γ : [0,∞)→ [0, 1] defined by

γ(t) =


1 if t ∈ [0, a],
b− t
b− a

if t ∈ (a, b),

0 if t ∈ [b,∞)
satisfies ωγ(t) ≤ t/a. Let g̃(y) = γ(‖g(y)‖)r(g(y)). Clearly, g̃(y) = g(y) if
‖g(y)‖ ≤ a and 0 if ‖g(y)‖ ≥ b. For all y1, y2 ∈ Y with d′(y1, y2) ≤ ε,

‖g̃(y1)− g̃(y2)‖ ≤ γ(‖g(y1)‖)‖r(g(y1))− r(g(y2))‖
+ |γ(‖g(y1)‖)− γ(‖g(y2)‖)| ‖r(g(y2))‖

≤ ωr◦g(ε) +
1
a

∣∣‖g(y1)‖ − ‖g(y2)‖
∣∣a ≤ 3ωg(ε).

Thus ωg̃ ≤ 3ωg and g̃ ∈ LipΣ′(Y, F ).

Lemma 7. Let (fn) be a pairwise disjoint sequence of functions from X
into E. Assume that there is a modulus function σ such that ωfn ≤ σ for
all n. Then the pointwise sum f =

∑
fn satisfies ωf ≤ 2σ.

Proof. For any x1, x2 ∈ X, either there exists n1 such that f(xi) =
fn1(xi), i = 1, 2, or there are n1 and n2 so that f(xi) = (fn1 + fn2)(xi),
i = 1, 2. It follows that ωf ≤ 2 supn ωfn ≤ 2σ.

For the rest of the section, we consider a linear biseparating map T :
LipΣ(X,E) → LipΣ′(Y, F ). Let θ be the associated Boolean isomorphism
from Proposition 4. If u is a vector in E or F , denote by û the constant
function (defined on X or Y ) with value u. The next proposition is a key to
subsequent arguments.

Proposition 8. For any x0 ∈ X, there exists f ∈ LipΣ(X,E) such that
f(x0) 6= 0 and Tf is bounded on Y .

Proof. Suppose that the proposition fails. We have x0 ∈ X so that Tf
is unbounded whenever f(x0) 6= 0. Pick any u ∈ E \ {0} and let g = T û.
First we need two lemmas.

Lemma 9. For all a > 0 and all ε > 0, θ−1({‖g‖ > a}) ∧B(x0, ε) 6= 0.

Proof. Suppose that θ−1({‖g‖ > a}) ∧ B(x0, ε) = 0 for some a, ε > 0.
Let V = ¬({‖g‖ > a}). Then

intV ∩ int {‖g‖ > a} = ∅ ⇒ intV ⊆{‖g‖ ≤ a} ⇒ V = intV ⊆{‖g‖≤ a}.
Since g is uniformly continuous, we have d′(V, {‖g‖ ≥ 2a}) > 0. Hence there
exists ψ ∈ LipΣ′(Y ) such that 0 ≤ ψ ≤ 1, ψ = 1 on V and ψ = 0 on
{‖g‖ ≥ 2a}. Note that g is bounded on C(ψ) and hence ψg ∈ LipΣ′(Y, F )
by Proposition 1. As ψg = g on V , we have T−1(ψg) = T−1g = û on
θ−1(V ) by Proposition 4. From θ−1({‖g‖ > a}) ∧B(x0, ε) = 0, and keeping
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in mind the definition of V , we see that B(x0, ε) ⊆ θ−1(V ). In particular,
T−1(ψg)(x0) = u 6= 0. By assumption, ψg is unbounded on Y . But this is
clearly false since ‖(ψg)(y)‖ ≤ 2a for all y ∈ Y .

Lemma 10. For all a > 0 and all ε > 0, there exists b > a so that
θ−1({‖g‖ ∈ (a, b)}) ∧B(x0, ε) 6= 0.

Proof. For each n ∈ N, let Vn = {‖g‖ ∈ (a, a+ n)}. The sequence (Vn)
increases to {‖g‖>a} in D(Y ). Hence (θ−1(Vn)) increases to θ−1({‖g‖>a})
in D(X). If the lemma fails, θ−1(Vn) ⊆ ¬(B(x0, ε)) for all n and thus
θ−1({‖g‖ > a}) ⊆ ¬(B(x0, ε)), contrary to Lemma 9.

We now continue the proof of Proposition 8. Let (εn) be a positive null se-
quence and set a1 = 1. By Lemma 6, there exist b1 > a1 and g̃1 ∈ LipΣ′(Y, F )
with ωg̃1 ≤ 3ωg such that

g̃1(y) =
{
g(y) if ‖g(y)‖ ≤ a1,

0 if ‖g(y)‖ ≥ b1.
In general, after an, bn have been determined, use Lemma 10 to choose
an+1 > bn such that θ−1({‖g‖ ∈ (bn, an+1)}) ∧ B(x0, εn) 6= 0. Then apply
Lemma 6 to obtain bn+1 > an+1 and g̃n+1 ∈ LipΣ′(Y, F ) with ωg̃n+1 ≤ 3ωg
so that

g̃n+1(y) =
{
g(y) if ‖g(y)‖ ≤ an+1,

0 if ‖g(y)‖ ≥ bn+1.
For each n, let Gn = g̃2n − g̃2n−1. Then Gn ∈ LipΣ′(Y, F ) and ωGn ≤ 6ωg.
Also, Gn(y) = 0 if ‖g(y)‖ /∈ (a2n−1, b2n) and Gn(y) = g(y) if ‖g(y)‖ ∈
[b2n−1, a2n]. In particular, C(Gn) and C(Gm) are disjoint if n 6= m. Thus the
pointwise sum G =

∑
G2m−1 is well defined and ωG ≤ 12ωg by Lemma 7.

Hence G ∈ LipΣ′(Y, F ). For each m, let Vm = {‖g‖ ∈ (b2m−1, a2m)}. By
the choice of a2m, one can find xm ∈ θ−1(Vm) ∩ B(x0, ε2m−1). Now G =
G2m−1 = g on V2m−1 and G = 0 on V2m for all m. Hence T−1G = T−1g = û
on θ−1(V2m−1) and T−1G = 0 on θ−1(V2m) by Proposition 4. In particular,
T−1G(x2m−1) = u 6= 0 and T−1G(x2m) = 0 for all m. Since the sequence
(xm) converges to x0 and T−1G is continuous, we have reached a contradic-
tion. This completes the proof of Proposition 8.

Lemma 11. For any x0 ∈ X,
⋂
ε>0 θ(B(x0, ε)) contains at most one

point.

Proof. Suppose on the contrary that y1 and y2 are distinct points in the
intersection. Let f ∈ LipΣ(X,E) be such that f(x0) 6= 0 and set g = Tf .
Choose δ > 0 so that d′(y1, y2) > 3δ and that g is bounded on B(y1, 2δ). Pick
ψ ∈ LipΣ′(Y ) so that ψ = 1 on B(y1, δ) and ψ = 0 outside B(y1, 2δ). Since g
is bounded on C(ψ), ψg ∈ LipΣ′(Y, F ). As ψg = g on B(y1, δ), T−1(ψg) = f

on θ−1(B(y1, δ)). Similarly, T−1(ψg) = 0 on θ−1(B(y2, δ)). For i = 1, 2 and
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any ε > 0, θ(B(x0, ε))∧B(yi, δ) 6= 0 and hence B(x0, ε)∧ θ−1(B(yi, δ)) 6= 0.
By continuity of T−1(ψg) and f , we conclude that T−1(ψg)(x0) = f(x0)
and T−1(ψg)(x0) = 0, thus reaching a contradiction.

Lemma 12. Assume that x0 ∈ X is an accumulation point. Let (Un) =
(B(xn, εn)) be a sequence of pairwise disjoint sets, where (xn) converges
to x0 and (εn) is a positive null sequence. If (yn) is a sequence such that
yn ∈ int θ(Un) for each n, then (yn) has a Cauchy subsequence.

Proof. If the lemma fails, by passing to a subsequence if necessary, we
may assume that there exists δ > 0 such that d′(ym, yn) > 3δ whenever
m 6= n. There exists a [0, 1]-valued ψ ∈ LipΣ′(Y ) such that ψ = 1 on
B(yn, δ) for all odd n and ψ = 0 on B(yn, δ) for all even n. According to
Proposition 8, there exists f ∈ LipΣ(X,E) such that f(x0) 6= 0 and Tf is
bounded on Y . Then g = ψTf ∈ LipΣ′(Y, F ). Now g = Tf on B(yn, δ) for all
odd n and g= 0 on B(yn, δ) for all even n. Hence T−1g= f on θ−1(B(yn, δ))
for all odd n and T−1g = 0 on θ−1(B(yn, δ)) for all even n. Since θ(Un) ∧
B(yn, δ) 6= 0 for all n, Un ∧ θ−1(B(yn, δ)) 6= 0 for all n. Therefore, we can
find a sequence (zn) such that zn ∈ Un for all n, T−1g(zn) = f(zn) for
odd n and T−1g(zn) = 0 for even n. This is impossible since T−1g and f
are continuous, f(x0) 6= 0 and (zn) converges to x0.

Proposition 13. For any x0 ∈ X,
⋂
ε>0 θ(B(x0, ε)) contains exactly

one point.

Proof. In view of Lemma 11, it suffices to prove that the intersection
in question is nonempty. If x0 is an isolated point, then {x0} ∈ D(X) and
θ({x0}) ⊆

⋂
ε>0 θ(B(x0, ε)). So the proposition holds in this case.

Assume that x0 is an accumulation point. Let (Un) = (B(xn, εn)) be a
sequence of pairwise disjoint sets, where (xn) converges to x0 and (εn) is a
positive null sequence. Pick a sequence (yn) with yn ∈ int θ(Un) for each n.
By Lemma 12, (yn) has a Cauchy subsequence. Relabeling, we may assume
that (yn) is Cauchy and hence converges to some y0 ∈ Y . For any ε > 0,
there exists n0 such that Un ⊆ B(x0, ε) for all n ≥ n0. Thus yn ∈ θ(Un) ⊆
θ(B(x0, ε)) for all n ≥ n0. Since the latter set is closed, y0 ∈ θ(B(x0, ε)).

Define h(x0) to be the unique point in
⋂
ε>0 θ(B(x0, ε)) for all x0 ∈ X.

Similarly, we may define k : Y → X by setting k(y0) to be the unique point
in
⋂
δ>0 θ

−1(B(y0, δ)).

Proposition 14. The map h is a homeomorphism whose inverse is k.

Proof. Suppose that x0 ∈ X and h(x0) = y0. For any ε, δ > 0, B(y0, δ)∧
θ(B(x0, ε)) 6= 0 and hence θ−1(B(y0, δ)) ∧ B(x0, ε) 6= 0. In particular, for
any δ > 0, we can find xn ∈ θ−1(B(y0, δ)) ∧ B(x0, 1/n) for each n. Since
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θ−1(B(y0, δ)) is closed, x0 ∈ θ−1(B(y0, δ)). As δ > 0 is arbitrary, this shows
that k(y0) = x0. By symmetry, h(k(y0)) = y0 for all y0 ∈ Y .

It remains to prove the continuity of h. The continuity of k follows by
symmetry. Let x0 be a point in X. Since h is trivially continuous at an
isolated point, we may assume that x0 is an accumulation point. Let (xn)
be a pairwise distinct sequence converging to x0. Choose a positive null se-
quence (εn) so that (Un) = (B(xn, εn)) is pairwise disjoint. For each n,
h(xn) ∈ θ(Un) = int θ(Un). Hence there exists yn ∈ int θ(Un) so that
d′(yn, h(xn)) < 1/n. By Lemma 12, (yn) has a subsequence converging to
a point y0 in

⋂
ε>0 θ(B(x0, ε)). Consequently, (h(xn)) has a subsequence

that converges to y0. By Lemma 11, y0 = h(x0). The continuity of h at x0

follows.

Observe that if f = 0 on an open set U containing x0, then f = 0 on
B(x0, ε) for some ε > 0 and hence Tf = 0 on θ(B(x0, ε)). In particular,
Tf(h(x0)) = 0.

Proposition 15. If f ∈ LipΣ(X,E) and f(x0) = 0, then Tf(h(x0)) = 0.

Proof. By the observation preceding the proposition, we only need to
consider the case where x0 is an accumulation point of C(f). Suppose z
belongs to C(f). By Lemma 6, there are functions g1, g2 : X → E with
ωgi ≤ 3ωf , i = 1, 2, so that

g1(x) =
{
f(x) if ‖f(x)‖ ≤ 2‖f(z)‖,
0 if ‖f(x)‖ ≥ 4‖f(z)‖,

and

g2(x) =
{
f(x) if ‖f(x)‖ ≤ ‖f(z)‖/4,
0 if ‖f(x)‖ ≥ ‖f(z)‖/2.

Set g = g1 − g2. Then ωg ≤ 6ωf and

g(x) =
{
f(x) if ‖f(x)‖ ∈ [‖f(z)‖/2, 2‖f(z)‖],
0 if ‖f(x)‖ /∈ [‖f(z)‖/4, 4‖f(z)‖].

Let (xn) be a sequence in C(f) converging to x0 so that ‖f(xn+1)‖ ≤
16‖f(xn)‖ for all n. For each n, let fn be the function g described above
with z = x2n−1. By Lemma 7, f̃ =

∑
fn belongs to LipΣ(X,E). For each n,

An = {x ∈ X : ‖f(xn)‖/2 < ‖f(x)‖ < 2‖f(xn)‖}

is an open neighborhood of xn. Furthermore, f̃ = f on An if n is odd and
f̃ = 0 on An if n is even. By Proposition 4, T f̃ = Tf on θ(An) for odd n
and T f̃ = 0 on θ(An) for even n. In particular, T f̃(h(xn)) = Tf(h(xn)) if n
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is odd and 0 if n is even. By continuity of T f̃ , Tf and h, we have

Tf(h(x0)) = limTf(h(x2n−1)) = limT f̃(h(x2n−1))

= T f̃(h(x0)) = limT f̃(h(x2n)) = 0.

The following is the main result of this section. It includes as a special
case the result of [6] characterizing biseparating maps between spaces of
bounded Lipschitz functions.

Theorem 16. Let X,Y be complete metric spaces and E,F be Banach
spaces. Suppose that LipΣ(X,E) and LipΣ′(Y, F ) are generalized Lipschitz
spaces that are Lipschitz normal. If T : LipΣ(X,E) → LipΣ′(Y, F ) is a
linear biseparating map, then there exist a homeomorphism h : X → Y and,
for each y ∈ Y , a vector space isomorphism Sy : E → F such that

(1) Tf(y) = Sy(f(h−1(y))) for all y ∈ Y .
Proof. Let h : X → Y be defined as above. Then h is a homeomorphism

by Proposition 14. Define Sy : E → F by Syu = T û(y) for all y ∈ Y . If
f ∈ LipΣ(X,E) and y ∈ Y , then (f − û)(h−1(y)) = 0, where u = f(h−1(y)).
Therefore, Tf(y) = T û(y) by Proposition 15. Thus (1) holds. The linearity
of Sy follows from that of T . If v ∈ F , there exists f such that Tf = v̂. Hence,
for any y, taking u = f(h−1(y)), we find that Syu = v. This shows that each
Sy is onto. Finally, if Syu = 0, then T û(y) = 0. Applying Proposition 15 to
T−1 and h−1, we find that u = T−1T û(h−1(y)) = 0. Thus Sy is one-to-one.

4. Continuity. In this section, let T : LipΣ(X,E) → LipΣ′(Y, F ) be a
biseparating map. Thus T has the form given in (1) of Theorem 16, where h
is a homeomorphism and Sy is a vector space isomorphism for all y ∈ Y . We
investigate the continuity properties of the family (Sy) and of the operator
T with respect to suitable topologies. We also consider the metric properties
of the mapping h.

Proposition 17. If y0 is an accumulation point in Y , then Sy0 is a
bounded linear operator. Furthermore, if

(2) sup
σ∈Σ′

σ(ε) <∞ for all ε ≥ 0,

then Sy is bounded at all y ∈ Y except for finitely many isolated points of Y.

Proof. Assume on the contrary that Sy0 is unbounded for some accu-
mulation point y0 of Y . Set x0 = h−1(y0). Then x0 is an accumulation
point of X. Choose ϕ1 ∈ LipΣ(X) with values in [0, 1] so that ϕ1(x0) = 1
and ϕ1 = 0 outside B(x0, 1). There are K1 < ∞ and σ1 ∈ Σ so that
ωϕ1 ≤ K1σ1. Pick a norm-1 vector u1 in E and let f1(x) = ϕ1(x)u1. Since
Tf1 ◦ h is continuous on X and Tf1(h(x0)) = Sy0u1 by (1), there exists
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r1 ∈ (0, 1) such that ‖Tf1(h(x))− Sy0u1‖ ≤ 1 for all x ∈ B(x0, r1). Choose
x1 ∈ B(x0, r1) \ {x0}. In general, after xn−1 and (um)n−1

m=1 have been deter-
mined, let ϕn ∈ LipΣ(X) be a [0, 1]-valued function such that ϕn(x0) = 1
and ϕn = 0 outside B(x0, d(xn−1, x0)). There are Kn < ∞ and σn ∈ Σ
so that ωϕn ≤ Knσn. Of course, ωϕn ≤ 1 as well. Set fn(x) = ϕn(x)un
for a vector un ∈ E such that ‖un‖ = (n2(Kn + 1))−1 and ‖Sy0un‖ ≥∑n−1

m=1 ‖Sy0um‖ + 2n. There exists rn with 0 < rn < d(xn−1, x0) ∧ n−1

such that ‖Tfn(h(x)) − Sy0un‖ ≤ 1 for all x ∈ B(x0, rn). Choose xn ∈
B(x0, rn) \ {x0}. This completes the inductive construction.

Since ‖fn(x)‖ ≤ ‖un‖ ≤ 1/n2 for all n and all x ∈ X, f =
∑
fn exists.

Furthermore, for all n,

ωfn ≤
ωϕn

n2(Kn + 1)
≤ 1
n2(Kn + 1)

(Knσn ∧ 1) ≤ 1
n2

(σn ∧ 1).

By condition (MS2) in the definition of modulus sets, we find K < ∞
and σ ∈ Σ so that

∑
n−2(σn ∧ 1) ≤ Kσ. Hence ωf ≤ Kσ and thus

f ∈ LipΣ(X,E). If m > n, we have d(xn, x0) ≥ d(xm−1, x0) and hence
fm(xn) = 0. For all n,

Tf(h(xn)) = Sh(xn)(f(xn)) =
n∑

m=1

Sh(xn)(fm(xn)) =
n∑

m=1

Tfm(h(xn)).

Therefore,

‖Tf(h(xn))‖ ≥ ‖Tfn(h(xn))‖ −
n−1∑
m=1

‖Tfm(h(xn))‖

≥ ‖Sy0un‖ − 1−
n−1∑
m=1

(‖Sy0um‖+ 1)

≥
n−1∑
m=1

‖Sy0um‖+ 2n− 1−
n−1∑
m=1

(‖Sy0um‖+ 1) = n.

However, (xn) converges to x0 and thus (Tf(h(xn))) converges. We have
reached a contradiction.

Now suppose that (2) holds and that (yn) is an infinite sequence so
that Syn is unbounded for all n. By the above, each yn is isolated in Y ,
and consequently each xn = h−1(yn) is isolated in X. Since LipΣ(X) is
Lipschitz normal, for each n, the function ϕn defined by ϕn(xn) = 1 and
ϕn(x) = 0 otherwise belongs to LipΣ(X). Let Kn <∞ and σn ∈ Σ be such
that ωϕn ≤ Knσn. For each n ≥ 2, let bn = d′(yn, y1) and choose un ∈ E
with ‖un‖ = (n2(Kn + 1))−1 and ‖Synun‖ > n supσ∈Σ′ σ(bn). Let f(x) be
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the pointwise sum
∑∞

n=2 ϕn(x)un. Then

ωf ≤
∞∑
n=1

ωϕn
n2(Kn + 1)

≤
∞∑
n=2

1
n2

(σn ∧ 1) ≤ Kσ0

for some K < ∞ and σ0 ∈ Σ. Hence f ∈ LipΣ(X,E). It follows that
Tf ∈ LipΣ′(Y,E) and so there are K ′ <∞ and σ′ ∈ Σ′ so that ωTf ≤ K ′σ′.
But Tf(yn) = Synun for all n > 1 and Tf(y1) = 0. Therefore,

K ′σ′(bn) ≥ ωTf (bn) ≥ ‖Tf(yn)− Tf(y1)‖ = ‖Synun‖ > n sup
σ∈Σ′

σ(bn)

for all n ≥ 2, which is clearly impossible.

Remark. If LipΣ′(Y, F ) consists of bounded functions only, then we
may replace Σ′ with {σ ∧ 1 : σ ∈ Σ′}. In this case, (2) is fulfilled and hence
Sy is bounded except for finitely many isolated points of Y . The special case
of the result for spaces of bounded Lipschitz functions was obtained in [6].
Condition (2) also holds for the spaces Lip(Y, F ) and lip(Y, F ).

Let Y1 be the set of all y ∈ Y at which Sy is bounded and X1 be the set of
all x ∈ X at which S−1

h(x) is bounded. The next result is a simple application
of the Uniform Boundedness Principle.

Corollary 18. Let r > 0 be a real number such that σ′(r) < ∞ for
all σ′ ∈ Σ′. Then {Sy : y ∈ Y1, d(y, y0) ≤ r} is uniformly bounded for any
y0 ∈ Y . Similarly, {Sy : y ∈ Y1} is uniformly bounded if supr>0 σ

′(r) < ∞
for all σ′ ∈ Σ′.

Proof. For any u ∈ E, there are K < ∞ and σ′ ∈ Σ′ such that ωT û
≤ Kσ′. If d(y, y0) ≤ r, then

‖Syu− Sy0u‖ = ‖T û(y)− T û(y0)‖ ≤ Kσ′(r) <∞.
Hence {Syu : y ∈ Y1, d(y, y0) ≤ r} is bounded for all u ∈ E. Thus {Sy :
y ∈ Y1, d(y, y0) ≤ r} is uniformly bounded by the Uniform Boundedness
Principle. The second statement is proved similarly.

In general, we still have “local uniform boundedness”.

Proposition 19. For all y0 ∈ Y1, there is a neighborhood V of y0 in Y1

so that {Sy : y ∈ V } is uniformly bounded.

Proof. If the proposition fails, there are sequences (yn) in Y1 converging
to y0 and (un) in E with ‖un‖ = 1/2n so that ‖Synun‖ → ∞. Note that
(Synum)m converges to 0 for each n and limn Synum = limn T ûm(yn) =
T ûm(y0) for each m. Thus, by passing to subsequences, we may assume
that, for each n, ‖Synun‖ ≥ n+

∑
m 6=n ‖Synum‖. Let w =

∑
un. Then

‖Tŵ(yn)‖ = ‖Synw‖ ≥ ‖Synun‖ −
∑
m 6=n
‖Synum‖ ≥ n
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for all n. However, Tŵ is continuous and so (Tŵ(yn)) converges, contrary
to the above.

Next we consider the continuity of T . First we look at a diagonalization
lemma.

Lemma 20. Let (gn) be a sequence of functions from Y into F . Suppose
that there are a positive sequence (cn), sequences (yn1 ), (yn2 ) in Y and C <∞
so that

sup
n

‖gn(yn1 )− gn(yn2 )‖
cn

=∞,

sup
n

‖gm(yn1 )− gm(yn2 )‖
cn

= Lm <∞ for all m,

sup
m,n
‖gm(yn1 )− gm(yn2 )‖ = C <∞.

Then there exists a nonnegative summable sequence (εn) so that if the point-
wise sum g =

∑
εngn converges on the set {yn1 , yn2 : n ∈ N}, then supn ‖g(yn1 )

− g(yn2 )‖/cn =∞.

Proof. Let Kn = ‖gn(yn1 ) − gn(yn2 )‖/cn. Choose n1 < n2 < · · · and a
summable sequence (εnk) so that εnkKnk ≥ max{3

∑k−1
m=1 εnmLnm , k} and

3C
∑∞

m=k+1 εnm ≤ εnkKnkcnk for all k. Define εn = 0 if n 6= nk for any k. If
g =

∑
εngn converges pointwise on {yn1 , yn2 : n ∈ N}, then

‖g(ynk1 )− g(ynk2 )‖

≥ εnk‖gnk(ynk1 )− gnk(ynk2 )‖ −
k−1∑
m=1

εnmLnmcnk − C
∞∑

m=k+1

εnm .

Thus

‖g(ynk1 )− g(ynk2 )‖ ≥ εnkKnkcnk −
εnkKnkcnk

3
− εnkKnkcnk

3
≥ kcnk

3
for all k.

The next proposition establishes a form of continuity of the operator T .
For a function f ∈ LipΣ(X,E) and a subset U of X, let ‖f‖U = sup{‖f(x)‖ :
x ∈ U}.

Proposition 21. Suppose that U is a subset of X such that V = h(U) ⊆
Y1 and that M = sup{‖Sy‖ : y ∈ V } < ∞. Then there exists K < ∞ so
that for any f ∈ LipΣ(X,E) with ωf ≤ σ for some σ ∈ Σ and ‖f‖U ≤ 1,
we have ωVTf ≤ K supσ′∈Σ′ σ′, where

ωVTf (t) = sup{‖Tf(y1)− Tf(y2)‖ : y1, y2 ∈ V, d′(y1, y2) ≤ t}.

Proof. Otherwise, for all n, we find fn ∈ LipΣ(X,E), σn ∈ Σ and tn > 0
such that ωfn ≤ σn, ‖fn‖U ≤ 1 and supn[ωV

Tfn
(tn)/supσ′∈Σ′ σ′(tn)] = ∞.
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Let cn = supσ′∈Σ′ σ′(tn). There are (yn1 , y
n
2 ) ∈ V×V such that d′(yn1 , y

n
2 ) ≤ tn

and that supn ‖Tfn(yn1 ) − Tfn(yn2 )‖/cn = ∞. Let xni = h−1(yni ) ∈ U , i =
1, 2. Consider the retraction R : E → BE as in Lemma 5. Set fn = R ◦ fn.
Then ωfn ≤ 2ωfn ≤ 2σn and ωfn ≤ 2. Let gn = Tfn for all n. Then, for all
m,n,

‖gm(yn1 )− gm(yn2 )‖ = ‖Syn1 fm(xn1 )− Syn2 fm(xn2 )‖.

Since fn(xn1 ), fn(xn2 ) ∈ BE , we have Syni fn(xni ) = Syni fn(xni ) = Tfn(xni ) for
n ∈ N, i = 1, 2. Thus

sup
n

‖gn(yn1 )− gn(yn2 )‖
cn

=∞.

Since gm ∈ LipΣ′(Y, F ),

sup
n

‖gm(yn1 )− gm(yn2 )‖
cn

<∞ for all m.

Moreover, for all m and n,

‖gm(yn1 )− gm(yn2 )‖ ≤M(‖fm(xn1 )‖+ ‖fm(xn2 )‖) ≤ 2M.

Therefore, Lemma 20 applies to (gn) and we obtain a summable sequence
(εn) as in the lemma. Since ‖fn(x)‖ ≤ 1 for all n and x, f =

∑
εnfn

converges pointwise on X. Also,

ωf ≤
∑

εnωfn ≤
∑

εn(2σn ∧ 2) = 2
∑

εn(σn ∧ 1).

By (MS2), f ∈ LipΣ(X,E) and hence Tf ∈ LipΣ(X,E). Since Sy is bounded
for all y ∈ V , for all such y,

Tf(y) = Syf(h−1(y)) =
∑

εnSyfn(h−1(y)) =
∑

εngn(y).

But by the conclusion of Lemma 20, supn ‖Tf(yn1 ) − Tf(yn2 )‖/cn = ∞,
contradicting the fact that Tf ∈ LipΣ′(Y, F ).

If 0 < α ≤ 1, then Lipα(X,E) = Lip{σα}(X,E), where σα(t) = tα. Sim-
ilarly, lipα(X,E) = LipΣ(X,E), where Σ consists of all modulus functions
σ such that σ(t) ≤ tα and limt→0 σ(t)/tα = 0. Define the Lipα constant of
f ∈ Lipα(X,E) to be Lα(f) = sup{ωf (t)/tα : t > 0}. For spaces of Lipschitz
(Lip) functions, the next corollary was obtained in [6].

Corollary 22. Let T be a biseparating map from Lip(X,E) onto
Lip(Y, F ), respectively from lipα(X,E) onto lipα(Y, F ). Suppose that U is a
bounded subset of X such that V = h(U) is a bounded subset of Y1. Then
there exists K < ∞ so that L1(Tf|V ) ≤ K(L1(f) ∨ ‖f‖U ) for all f ∈
Lip(X,E), respectively, Lα(Tf|V ) ≤ K(Lα(f)∨‖f‖U ) for all f ∈ lipα(X,E).

Proof. Observe that Proposition 21 applies since {Sy : y ∈ V } is uni-
formly bounded by Corollary 18.
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Recall that if Σ is a modulus set and Σb = {σ ∧ 1 : σ ∈ Σ}, then
LipΣb(X,E) is precisely the space of all bounded functions in LipΣ(X,E).

Corollary 23. Let T : LipΣb(X,E) → LipΣ′b(Y, F ) be a biseparating
map. There exists K <∞ so that for any f ∈ LipΣb(X,E) with ωf ≤ σ ∧ 1
for some σ ∈ Σ and ‖f‖X ≤ 1, we have ωY1

Tf ≤ K supσ′∈Σ(σ′ ∧ 1).

Proof. By Corollary 18, sup{‖Sy‖ : y ∈ Y1} < ∞ in this case. The
corollary follows immediately from Proposition 21.

Denote by Ub(X,E) the space of bounded uniformly continuous functions
from X into E.

Corollary 24. Let T : Ub(X,E) → Ub(Y, F ) be a biseparating map.
Then there exists a finite set I of isolated points of Y and K <∞ such that
supy∈Y \I ‖Tf(y)‖ ≤ K supx∈X ‖f(x)‖ for all f ∈ Ub(X,E).

Proof. Let Σ = Σ′ be the set of all modulus functions. Then Ub(X,E) =
LipΣb(X,E) and Ub(Y, F ) = LipΣ′b(Y, F ). Recall that Y1 is the set of all
y ∈ Y at which Sy is bounded. In this case, I = Y \ Y1 consists of finitely
many isolated points of Y by Proposition 17. Fix x0 ∈ X so that y0 =
h(x0) ∈ Y1. Suppose that f ∈ Ub(X,E) with supx∈X ‖f(x)‖ ≤ 1. By Corol-
lary 23, there exists K <∞ so that for all y ∈ Y1,

‖Tf(y)‖ ≤ ‖Tf(y)− Tf(y0)‖+ ‖Tf(y0)‖
≤ ωY1

Tf (d′(y, y0)) + ‖Sy0f(x0)‖ ≤ K + ‖Sy0‖.

We also obtain local continuity of T with respect to the topology of
uniform convergence.

Proposition 25. Let T : LipΣ(X,E) → LipΣ′(Y, F ) be a biseparat-
ing map. If x0 ∈ X and y0 = h(x0) ∈ Y1, then there exists a neighbor-
hood V of y0 in Y1 and K < ∞ so that, setting U = h−1(V ), we have
supy∈V ‖Tf(y)‖ ≤ K for all f ∈ LipΣ(X,E) such that supx∈U ‖f(x)‖ ≤ 1.

Proof. By Proposition 19, there is a neighborhood V of y0 in Y1 such
that sup{‖Sy‖ : y ∈ V } = K <∞. Set U = h−1(V ). If f ∈ LipΣ(X,E) and
supx∈U ‖f(x)‖ ≤ 1, then for all y ∈ V , ‖Tf(y)‖ = ‖Syf(h−1(y))‖ ≤ K.

We can now deduce the metric properties of the map h. For any x1, x2

∈ X, define

s(x1, x2) = sup{‖f(x2)‖ : f(x1) = 0, ωf ≤ σ for some σ ∈ Σ}.

Proposition 26. Let U be a subset of X1 so that V = h(U) is a
subset of Y1. Assume sup{‖Sy‖, ‖S−1

y ‖ : y ∈ V } = M < ∞ and that
sup{s(x1, x2) : x1, x2 ∈ U} = C < ∞. There exists K < ∞ such that
s(x1, x2) ≤ K supσ′∈Σ′ σ′(d′(h(x1), h(x2))) for all x1, x2 ∈ U .
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Proof. Appeal to Proposition 21 to find K < ∞ so that for any f ∈
LipΣ(X,E) with ωf ≤ σ for some σ ∈ Σ and ‖f‖U ≤ 1, we have ωVTf ≤
K supσ′∈Σ′ σ′. If a < s(x1, x2), x1, x2 ∈ U , choose f ∈ LipΣ(X,E) and
σ ∈ Σ so that f(x1) = 0, ‖f(x2)‖ > a and ωf ≤ σ. Now x ∈ U implies that
‖f(x)‖ ≤ s(x1, x) ≤ C. Let f = f/(C ∨ 1). Then ωf ≤ σ and ‖f‖U ≤ 1.
Thus

a

C ∨ 1
< ‖f(x2)‖ ≤M‖Sh(x2)f(x2)‖ = M‖Tf(h(x1))− Tf(h(x2))‖

≤MωV
Tf

(d′(h(x1), h(x2))) ≤MK sup
σ′∈Σ′

σ′(d′(h(x1), h(x2))).

This proves the proposition.

Corollary 27 ([6]). Let T : Lip(X,E) → Lip(Y, F ) be a biseparat-
ing map and h : X → Y be the homeomorphism associated to T . For any
bounded set U ⊆ X such that V = h(U) is bounded in Y , h is Lipschitz
on U and h−1 is Lipschitz on V .

Proof. By Proposition 17, the set Y1 consisting of all y ∈ Y where Sy
is bounded contains all of Y except for finitely many isolated points of Y .
A similar statement holds for X1. Thus it suffices to show that h is Lip-
schitz on U1 = U ∩X1 ∩ h−1(Y1) and that h−1 is Lipschitz on V1 = h(U1).
By Corollary 18, sup{‖Sy‖, ‖S−1

y ‖ : y ∈ V1} < ∞. For all x1, x2 ∈ X, it
is clear that the quantity s(x1, x2) defined above has the value d(x1, x2).
In particular, sup{s(x1, x2) : x1, x2 ∈ V1} < ∞ since V1 is bounded. By
Proposition 26, there exists K <∞ such that d(x1, x2) ≤ Kd′(h(x1), h(x2))
for all x1, x2 ∈ U1. This shows that h−1 is Lipschitz on V1. The proof for h
is similar.

Remark. If 0 < α < 1, then for a bounded subset U of the space
lipα(X,E), there is a positive constant Kα so that s(x1, x2) ≥ Kαd

α(x1, x2)
for all x1, x2 ∈ U . Hence Corollary 27 also applies to biseparating maps
between lipα spaces, 0 < α < 1.

Proposition 28. Let T : LipΣ(X,E) → LipΣ′(Y, F ) be a biseparating
map. Suppose that Lip(Y, F ) ⊆ LipΣ′(Y, F ). If U is a subset of X so that
V = h(U) ⊆ Y1 and supy∈V ‖Sy‖ < ∞, then h is uniformly continuous
on U .

Proof. If the proposition fails, we can find a sequence ((xn1 , x
n
2 ))n in

U × U and an ε > 0 so that lim d(xn1 , x
n
2 ) = 0 and d′(yn1 , y

n
2 ) ≥ ε for all n,

where yni = h(xni ). If (yn1 ) has a convergent subsequence, then by continuity
of h−1 and the fact that lim d(xn1 , x

n
2 ) = 0, there is a subsequence I of N so

that (xn1 )n∈I and (xn2 )n∈I both converge to the same x0. Then (yn1 )n∈I and
(yn2 )n∈I must both converge to h(x0), contrary to their choice. Thus (yn1 ),
and, by symmetry, (yn2 ) cannot have convergent subsequences. Without loss
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of generality, there exists δ with 0 < 4δ < ε such that d(yn1 , y
m
1 ), d(yn2 , y

m
2 )

> 2δ for all m 6= n. Then the sets B(yn1 , δ), n ∈ N, are pairwise disjoint and
each can contain at most one ym2 , in which case m 6= n. Hence we can choose
a subsequence J of N so that yn2 /∈ B(ym1 , δ) if n,m ∈ J . Pick a normalized
vector v ∈ F and let g(y) = v · supn∈J(δ− d(y, yn1 ))+. Then g ∈ Lip(Y, F ) ⊆
LipΣ′(Y, F ) and hence f = T−1g ∈ LipΣ(X,E). In particular, f is uniformly
continuous. However, for all n ∈ J ,

‖f(xn1 )− f(xn2 )‖ = ‖S−1
yn1
g(yn1 )− S−1

yn2
g(yn2 )‖ = δ‖S−1

yn2
v‖ ≥ δ‖Syn2 ‖

−1.

Since sup ‖Syn2 ‖ < ∞ and d(xn1 , x
n
2 ) → 0, f cannot be uniformly continu-

ous.

Acknowledgements. The author thanks Wee-Kee Tang for many
stimulating conversations regarding the material contained herein.

This research was partially supported by AcRF project no. R-146-000-
130-112.

References

[1] J. Araujo, Realcompactness and spaces of vector-valued continuous functions, Fund.
Math. 172 (2002), 27–40.

[2] —, Realcompactness and Banach–Stone theorems, Bull. Belg. Math. Soc. Simon
Stevin 11 (2004), 247–258.

[3] —, Linear biseparating maps between spaces of vector-valued differentiable functions
and automatic continuity, Adv. Math. 187 (2004), 488–520.

[4] —, The noncompact Banach–Stone theorem, J. Operator Theory 55 (2006), 285–294.
[5] J. Araujo, E. Beckenstein and L. Narici, Biseparating maps and homeomorphic real-

compactifications, J. Math. Anal. Appl. 192 (1995), 258–265.
[6] J. Araujo and L. Dubarbie, Biseparating maps between Lipschitz function spaces,

ibid. 357 (2009), 191–200.
[7] J. Araujo and K. Jarosz, Separating maps on spaces of continuous functions in:

Function Spaces (Edwardsville, IL, 1998), Contemp. Math. 232, Amer. Math. Soc.,
Providence, RI, 1999, 33–37.

[8] —, —, Automatic continuity of biseparating maps, Studia Math. 155 (2003), 231–
239.
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