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The power boundedness and resolvent
conditions for functions of the classical Volterra operator

by

Yuri Lyubich (Warszawa and Haifa)

Abstract. Let φ(z) be an analytic function in a disk |z| < ρ (in particular, a poly-
nomial) such that φ(0) = 1, φ(z) 6≡ 1. Let V be the operator of integration in Lp(0, 1),
1 ≤ p ≤ ∞. Then φ(V ) is power bounded if and only if φ′(0) < 0 and p = 2. In this case
some explicit upper bounds are given for the norms of φ(V )n and subsequent differences
between the powers. It is shown that φ(V ) never satisfies the Ritt condition but the Kreiss
condition is satisfied if and only if φ′(0) < 0, at least in the polynomial case.

1. Introduction and overview. The integration

(1.1) (V f)(x) =
x�

0

f(t) dt

is a traditional example of a quasinilpotent (but not nilpotent) operator in
Lp(0, 1), 1 ≤ p ≤ ∞. In L2(0, 1) we have the adjoint operator

(1.2) (V ∗f)(x) =
1�

x

f(t) dt,

so V is not self-adjoint. From (1.1) and (1.2) it follows that

(1.3) Re(V f, f) =
1
2

((V + V ∗)f, f) =
1
2

( 1�

0

f(t) dt
)2
≥ 0.

Hence, exp(−tV ), t ≥ 0, is a semigroup of contractions in L2(0, 1).
Recall that a bounded linear operator T in a Banach space X is called

power bounded if sup{‖Tn‖ : n ≥ 0} <∞. In particular, all contractions are
power bounded, and conversely, every power bounded operator is a contrac-
tion in the equivalent norm ‖f‖T = sup{‖Tnf‖ : n ≥ 0}, f ∈ X. Sometimes,
this trick can be useful, but here we do not need it, so we will deal with a
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fixed norm in X. In particular, if X = Lp(0, h), 0 < h <∞, then we set, as
usual,

(1.4) ‖f‖p =
( h�

0

|f(t)|p dt
)1/p

,

so that, ‖f‖p = 1 if f = 1 and h = 1. Since all Lp(0, h) are isometric, the
case h = 1 is representative. For definiteness we can deal with Lp(0, 1) and
write briefly Lp, unless stated otherwise.

All spaces under consideration are assumed complex and all operators
linear and bounded. We denote by I the identity operator. Also, as usual,
we denote by σ(T ) the spectrum of T and by R(λ;T ) the resolvent of T ,
i.e. R(λ;T ) = (T − λI)−1, λ ∈ C \ σ(T ). If σ(T ) lies in the open unit disk
D = {λ ∈ C : |λ| < 1} then T is power bounded. On the other hand, if T
is power bounded then σ(T ) lies in the closed unit disk D. If σ(T ) = {1},
T 6= I, and T is power bounded then T−1 is not power bounded. This is a
reformulation of the classical Gelfand theorem on the single-point spectrum
isometries.

There is a series of resolvent conditions in the domain |λ| > 1 closely
related to power boundedness. The most important are: the Ritt condition

(1.5) ‖R(λ;T )‖ ≤ C

|λ− 1|
,

and the Kreiss condition

(1.6) ‖R(λ;T )‖ ≤ C

|λ| − 1
.

Obviously, the latter is weaker than the former. Furthermore, from the ex-
pansion

(1.7) R(λ;T ) = −
∞∑
n=0

Tn

λn+1
, |λ| > 1,

it follows that every power bounded operator is a Kreiss operator, i.e. it
satisfies (1.6). On the other hand, every Ritt operator is power bounded
[10, 13].

The “iterated” inequality (1.6), i.e.

(1.8) ‖Rn(λ;T )‖ ≤ C

(|λ| − 1)n
, |λ| > 1, n ≥ 1,

is called the strong Kreiss condition. This property is intermediate between
power boundedness and the Kreiss condition. All strongly Kreiss operators
are uniformly Kreiss [5] in the sense that the upper bound (1.6) remains
valid for all partial sums of the series (1.7). The converse is not true [12].
We refer the reader to Nevanlinna’s book [14] and to his papers [15], [16] for
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some general theorems on the resolvent conditions. In particular, Theorem 4
from [16] shows that ‖Tn‖ = O(n) for every Kreiss operator T .

In the present paper we focus on the case T = φ(V ), where φ(z) is a
polynomial or even an analytic function of the complex variable z regular
at z = 0. The linear and quadratic polynomials were considered in [6], [12],
[18], [19]. In [11] it is proven that T = I −V α, 0 < α < 1, is power bounded
(even Ritt) in any Lp. However, the analytic function φ(z) = 1 − zα is not
regular at z = 0.

In [6] Halmos used (1.3) to prove that (I + V )−1 is a contraction in L2.
Accordingly, I + V is not power bounded in this space. In contrast, I − V
is power bounded in L2, due to the Pedersen similarity P−1(I − V )P =
(I + V )−1 where (Pf)(x) = exf(x) (see [1] for a reference). Using these
results Tsedenbayar [18] proved that the operator I − rV , r ≥ 0, is power
bounded in L2. On the other hand, he showed that I−aV with a ∈ C\[0,∞]
is not Kreiss in Lp for p = 1, 2,∞, and I − aV 2 with a 6= 0 is not Kreiss in
all Lp.

In [12] Montes-Rodŕıguez, Sánchez-Álvarez and Zemánek proved that
in Lp with p 6= 2 the operator I − rV with r > 0 is not power bounded.
Moreover, they determined an exact order of growth of (I − rV )n and of
decay of the differences between the (n+1)th and the nth powers. Also they
proved that I − rV , r > 0, is uniformly Kreiss for all p, but it is strongly
Kreiss if p = 2 only.

The quadratic polynomials I − aV + bV 2 (a ∈ R, b ∈ C) were investi-
gated by Tsedenbayar and Zemánek in [19], where it was proven that these
operators in L2 are power bounded if a, b > 0, but not Kreiss if a < 0. Note
that Proposition 6 from [19] should be corrected: by our Theorem 1.1 (see
below) the operator I−aV + bV 2 is power bounded for a > 0 and all b ∈ C,
not for b ≥ 0 only.

As mentioned before, we consider

(1.9) φ(z) =
∞∑
k=0

akz
k, ak ∈ C, |z| < ρ,

where

(1.10) ρ = ( lim
k→∞

k
√
|ak|)−1 > 0.

The latter is just the convergence radius of the power series (1.9). The series

φ(V ) =
∞∑
k=0

akV
k

converges in the operator norm topology because of (1.10) and ‖V k‖1/k → 0.
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As usual, the functional calculus φ 7→ φ(V ) is an algebra homomorphism
such that 1 7→ I. This is injective since ker(V ) = 0 and any operator φ(V )
with a0 6= 0 is invertible. Indeed, the spectrum σ(φ(V )) = φ(σ(V )) is the
singleton {φ(0)} = {a0}. If |a0| < 1 then φ(V ) is power bounded. If |a0| = 1
then φ(V ) is power bounded if and only if a−1

0 φ(V ) is power bounded. Thus,
without loss of generality one can assume a0 = 1, i.e. φ(0) = 1. This is the
only case from now on.

The operator φ(V ) can be represented in a “closed” form. Namely, since

(V kf)(x) =
1

(k − 1)!

x�

0

(x− t)k−1f(t) dt, k ≥ 1,

we have

(1.11) (φ(V )f)(x) = f(x) +
x�

0

K(x− t)f(t) dt, 0 ≤ x ≤ 1,

where

(1.12) K(u) =
∞∑
k=1

aku
k−1

(k − 1)!
.

Theorem 1.1. In order for the operator φ(V ) 6= I to be power bounded
in Lp it is necessary and sufficient that p = 2 and a1 = φ′(0) is real negative.

The necessity of a1 < 0 follows from an asymptotic formula recently
obtained by a complicated complex analysis in [2] (1) (see Theorem 1.2
therein). Our proof of the necessity (Section 3) is elementary and rather
short.

On the other hand, a comparison of the above mentioned asymptotic
formula to the sufficiency in our Theorem 1.1 discovers an exponential jump
in the scale of growth of ‖φ(V )n‖2 (2).

Theorem 1.2. In L2(0, 1) the following alternative holds: either φ(V )
is power bounded or

(1.13) ‖φ(V )n‖ ≥ exp(cnγ)

with some c > 0 and some 0 < γ ≤ 1/2.

The sufficiency in Theorem 1.1 follows from the similarity between φ(V )
and I + a1V in L2. The latter is a particular case (up to an obvious modifi-
cation) of that of [3, pp. 369–370]. However, our direct method (Section 4)
yields some explicit upper bounds for the L2-norms of φ(V )n and of the
differences φ(V )n+1−φ(V )n. Actually, this method works in a wide class of

(1) I thank Yu. Tomilov for providing me with this reference after my talk about the
present work.

(2) I thank S. Torba for this observation.
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integral convolution operators (see Theorem 4.2). This generalization does
not fall under [3].

Theorem 1.3. If a1 < 0 then

(1.14) sup
n
‖φ(V )n‖2 ≤ eµ

where

(1.15) µ =
|a1|
2

+
3a2

1c+ 2c2

|a1|3

and

(1.16) c = |a2|+
1�

0

∣∣∣∣ ∞∑
k=3

aku
k−3

(k − 3)!

∣∣∣∣ du ≤ ∞∑
k=2

|ak|
(k − 2)!

.

Furthermore,

(1.17) sup
n

√
n ‖φ(V )n+1 − φ(V )n‖2 ≤ eµ1

where

(1.18) µ1 = |a1|+
5a2

1c+ c2

|a1|3
.

In the case φ(V ) = 1−rV , r > 0, we have a1 = −r and c = 0, so µ = r/2
and µ1 = r. Therefore,

(1.19) sup
n
‖(1− rV )n‖2 ≤ er/2,

and

(1.20) sup
n

√
n ‖(1− rV )n+1 − (1− rV )n‖2 ≤ er.

The induction procedure from [18] based on Pedersen’s similarity only yields
exp([r] + 1) instead of exp(r/2) in (1.19).

For the differences from (1.20) the rate
√
n of decay is exact [12]. In fact,

this is true for every power bounded φ(V ) by the similarity from [3]. For
example, the quantity

√
n ‖exp(−(n+ 1)V )− exp(−nV )‖2 stays in between

some two positive constants. An upper constant is determined by (1.17)
with µ1 = 1 + 5c + c2 since a1 = −1 in this case. To estimate this c we
note that the series in (1.16) is of Leibniz’s type with ak = (−1)k/k!. The
sum of this series does not exceed the first term in modulus. This yields
c ≤ |a2|+ |a3| = 2/3, thus µ1 ≤ 43/9, and finally,

√
n ‖exp(−(n+ 1)V )− exp(−nV )‖2 ≤ exp(43/9) < 119.

The case of alternating coefficients ak merits a special attention since
the following theorem can be proven in a very apparent way (see Section 5)
that also yields an interesting upper bound.
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Theorem 1.4. Let φ be a polynomial,

φ(z) = 1 +
m∑
k=1

(−1)kckzk

with all ck > 0. Then

(1.21) sup
n
‖φ(V )n‖2 ≤ e1/2x0

where

(1.22) x0 = sup{x > 0 : signφ(k)(x) = (−1)k, 0 ≤ k ≤ m}.
Obviously, x0 < ∞ since signφ(k)(∞) = (−1)m, 0 ≤ k ≤ m. If all roots

of φ(z) are real positive then x0 = x1, where x1 is the smallest root, so

(1.23) sup
n
‖φ(V )n‖2 ≤ e1/2x1 ,

that is more concrete than (1.21).

Example 1.5. Let x(m)
1 be the smallest root of the mth Laguerre poly-

nomial Lm(z), Lm(0) = 1. Then

sup
n
‖Lm(V )n‖2 ≤ e1/2x

(m)
1 .

According to Theorem 6.31.3 from [17], we have

x
(m)
1 ≥ j21

4m+ 2
where j1 is the smallest positive root of the Bessel function J0(z). In its
turn, j1 > 3π/4 [17].

Let us emphasize that the bound (1.23) is applicable to any φ which is a
member of the system of polynomials orthogonal with a positive weight on
an interval (0, v), 0 < v ≤ ∞. For instance, φ can be a Jacobi polynomial
modified by the linear transformation (−1, 1)→ (0, 1).

Theorem 1.1 yields a lot of remarkable corollaries, most of them simply
by calculation of the corresponding derivatives at z = 0. For example, the
derivatives of φ(−z) and φ(z)−1 at z = 0 are both equal to −φ′(0) since
φ(0) = 1. This yields

Corollary 1.6. Each of the operators φ(V )−1 and φ(−V ) is power
bounded if and only if either p = 2 and φ′(0) > 0 or φ(V ) is I.

For instance, (I + rV )−1 in L2 is power bounded if and only if r ≥ 0.

Corollary 1.7. If φ(V ) is power bounded then φ(rV ) is power bounded
for every r > 0.

Corollary 1.8. If φ(V ) is power bounded then so is ψs(V ) = (1−s)I+
sφ(V ) for all s ≥ 0.



Power boundedness of Volterra operator 47

This statement can be used to immediately derive the estimate

(1.24) ‖φ(V )n+1 − φ(V )n‖2 = O(1/
√
n)

from [14, Theorem 4.5.3] (cf. [18] where φ(V ) = I − V ). In any case φ(V )
is assumed power bounded. By Theorem 1.2 the latter is necessary if the
L2-norm of φ(V )n+1−φ(V )n is bounded or at least grows more slowly than
every exponent exp(nγ), γ > 0.

The product of two commuting power bounded operators is always power
bounded, though the latter may occur without power boundedness of the
factors (cf. Remark 13 in [19]).

Corollary 1.9. For functions φ1(z) and φ2(z) such that φ1φ2 6= 1
the product φ1(V )φ2(V ) is power bounded in Lp if and only if p = 2 and
φ′1(0) + φ′2(0) < 0.

Hence, if φ1(V ) and φ2(V ) are not power bounded and φ
′
1(0) and φ

′
2(0)

are real then either the product φ1(V )φ2(V ) is not power bounded or it is I.

Corollary 1.10. The quotient φ1(V )φ2(V )−1 of different functions
φ1(z) and φ2(z) is power bounded in Lp if and only if p = 2 and φ′1(0)−φ′2(0)
< 0.

Now we consider superpositions, the case most complicated for a direct
analysis. Theorem 1.1 immediately yields

Corollary 1.11. Let φ(V ) 6= I be power bounded. Let θ(w) be a non-
constant analytic function in a neighborhood of w = 0 or w = 1 and θ(0) = 0
or θ(1) = 1, respectively. Then φ(θ(V )) or θ(φ(V )) is power bounded if and
only θ′(0) > 0 or θ′(1) > 0, respectively.

For example, if θ(0) = 0 then exp(−θ(V )) is power bounded if and only
if θ′(0) > 0, or θ(w) ≡ 0. Another example: with ν ∈ C and with φ(V ) power
bounded, φ(V )ν is power bounded if and only if ν is real nonnegative.

Theorem 1.12. If in Lp the operator φ(V ) 6= I satisfies the strong
Kreiss condition (1.8) at least at one point λ > 1 then p = 2 and φ(V )
is power bounded.

Proof. The inequality (1.8) just means that with |λ| > 1 the operator

U = (1− |λ|)R(λ;φ(V ))

is power bounded. Accordingly, we set

θ(w) = (1− λ)(w − λ)−1

for a fixed λ > 1. Then U = θ(φ(V )) and φ(V ) = χ(U) where χ is the
function inverse to θ. Obviously, χ(1) = 1 and χ′(1) = λ − 1 > 0. By
Corollary 1.11, φ(V ) is power bounded, and by Theorem 1.1, p = 2.
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Our further results related to the Kreiss and Ritt conditions are pre-
sented in the next section. In particular, we prove that the only Ritt operator
φ(V ) in Lp is I (Corollary 2.5). In the polynomial case we characterize the
Kreiss operators φ(V ) in Lp by the inequality φ′(0) < 0 (Theorem 2.12).

2. The Ritt and Kreiss operators. It is convenient to reformulate
the resolvent conditions as follows. For any operator T with σ(T ) = {1} we
set A = T − I and ζ = (λ− 1)−1. Then for λ 6= 1 we have

(2.1) R(λ;T ) = (T − λI)−1 = −ζΦ(ζ;A)

where

(2.2) Φ(ζ;A) = (I − ζA)−1 =
∞∑
n=0

ζnAn

is the Fredholm resolvent of A, an entire operator-valued function of ζ ∈ C.
Its exponential order is

(2.3) ω = ω(A) = lim
n→∞

log n
|log n

√
‖An‖|

,

so that
Φ(ζ;A) = O(exp |ζ|ω+ε)

with any fixed ε > 0 (see [9, Section 1.3]).
If T is a Ritt operator then (1.5) can be extended (with another C) to a

sector
Sδ = {λ ∈ C : |arg(λ− 1)| ≤ π − δ}, 0 < δ < π/2

(see [10] and [13]). In its turn, the sectorial Ritt condition implies power
boundedness [8], [14]. The transformation ζ = (λ−1)−1 maps Sδ onto itself.
By (2.1) the sectorial Ritt condition for T becomes

(2.4) ‖Φ(ζ;A)‖ ≤ C, ζ ∈ Sδ.

Lemma 2.1. If σ(A) = {0}, ω(A) ≤ 1, and T = I + A satisfies the Ritt
condition then A = 0, i.e. T = I.

Proof. The angle size of the complementary sector S′δ = C \ Sδ is 2δ,
while ω(A) < π/2δ. By (2.4) the Phragmén–Lindelöf Principle (see e.g. [9,
Section 6.1]) yields ‖Φ(ζ;A)‖ ≤ C for ζ ∈ S′δ. As a result, Φ(ζ;A) is bounded
on the whole C. By the Liouville theorem Φ(ζ;A) = const. Then A = 0 by
(2.2).

The Kreiss condition (1.6) in terms of the Fredholm resolvent is

(2.5) ‖Φ(ζ;A)‖ ≤ C

|ζ + 1| − |ζ|
, Re ζ > −1

2
.
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Lemma 2.2. If σ(A) = {0}, ω(A) < 1 and T = I+A satisfies the Kreiss
condition then A = 0, i.e. T = I.

Proof. From (2.5) it follows that ‖Φ(it;A)‖ ≤ O(|t|), t ∈ R. The entire
function

F (ζ;A) =
Φ(ζ;A)− I

ζ

is of the exponential order ω(A) < 1 and it is bounded on iR. By the
Phragmén–Lindelöf Principle this is bounded for Re ζ > 0 and for Re ζ < 0
separately. By the Liouville theorem F (ζ;A) = const, i.e. Φ(ζ;A) is a linear
function of ζ. However, ‖Φ(t;A)‖ ≤ C for t > 0. Hence, Φ(ζ;A) = const.

Remark 2.3. In the case ω(A) < 1 Lemma 2.1 follows from Lemma 2.2.

Actually, we are interested in

(2.6) T = φ(V ) = I + aV l +
∞∑

k=l+1

akV
k,

where l ≥ 1, a 6= 0. Then

(2.7) A = φ(V )− I = aV lQ,

where

Q = I +
∞∑
k=1

a−1ak+lV
k,

so that σ(Q) = {1}, thus the spectral radius r(Q) equals 1.

Lemma 2.4. If φ(V ) 6= I then in any Lp the exponential order ω(φ(V )
−I) is equal to 1/l where l is the multiplicity of the root z = 0 of the function
φ(z)− 1.

Proof. Since ‖Qn‖1/n → 1 as n → ∞, and Q commutes with V , we get
ω(φ(V )− I) ≥ ω(V l) from (2.7) and (2.3). In fact, this is an equality since
(2.7) can be rewritten as

V l = a−1(φ(V )− I)Q−1.

It remains to note that ω(V l) = 1/l thanks to Stirling’s formula applied to
the estimate

1
n!(np+ 1)1/p

≤ ‖V n‖p ≤
1
n!

(cf. inequality (14) in [11]).

Combining this result with Lemma 2.1 we obtain

Corollary 2.5. In any Lp the only Ritt operator φ(V ) is I.

Similarly, Lemma 2.2 implies

Corollary 2.6. For l > 1 the operator φ(V ) 6= I is not Kreiss in Lp.



50 Y. Lyubich

Remark 2.7. In particular, the operator I − V is not Ritt. In contrast,
I − V α, where

(V αf)(x) =
1

Γ (α)

x�

0

(x− t)α−1f(t) dt,

is a Ritt operator in Lp if 0 < α < 1 [11]. On the other hand, for α > 1 this
is not a Kreiss operator since ω(V α) = 1/α for all α > 0, hence, ω(V α) < 1
if α > 1. (For α = 2 this was proven in [18] by special considerations.)

Now we investigate the Kreiss condition in Lp for

φ(V ) = I +
m∑
k=1

akV
k, am 6= 0,

i.e. for φ(z) which is an arbitrary polynomial of degree m ≥ 1. To this end
we introduce the polynomial

(2.8) ψζ(z) = zm − ζ
m∑
k=1

akz
m−k

depending on a complex parameter ζ and then consider the differential equa-
tion

(ψζ(D)g)(x) = f(x), 0 ≤ x ≤ 1,

with D = d/dx and f ∈ Lp(0, 1). Obviously, DV = I and (V Df)(x) = f(x)
for f absolutely continuous with f(0) = 0.

Denote by Q(u; ζ) the Cauchy function for the operator ψζ(D), i.e. the
solution of the differential equation

(2.9) (ψζ(D)Q)(u; ζ) = 0

under the initial conditions

(2.10) Q(i)(0; ζ) = 0 (0 ≤ i ≤ m− 2), Q(m−1)(0; ζ) = 1.

Lemma 2.8. The Fredholm resolvent Φ(ζ;A) of the operator A = φ(V )
− I in Lp(0, 1) is the integral operator

(2.11) (Φ(ζ;A)f)(x) = f(x) +
x�

0

Q(m)(x− t; ζ)f(t) dt, 0 ≤ x ≤ 1.

Proof. One can assume f ∈ Cm[0, 1] and f (i)(0) = 0, 0 ≤ i ≤ m − 1,
since such functions constitute a dense subset of Lp(0, 1) and both sides of
(2.11) are continuous operators in Lp(0, 1). Under this restriction formula
(2.11) can be rewritten as

(2.12) (Φ(ζ;A)f)(x) =
x�

0

Q(x− t; ζ)f (m)(t) dt, 0 ≤ x ≤ 1,
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by m times integrating by parts. The right hand side h(x) of (2.12) satisfies
the equation

(ψζ(D)h)(x) = f (m)(x), 0 ≤ x ≤ 1,

i.e.

(2.13) Dmh− ζ
m∑
k=1

akD
m−kh = Dmf,

and, in addition, h(i)(0) = 0, 0 ≤ i ≤ m − 1. (This is true due to (2.9) and
(2.10).) Applying V m to both sides of (2.13) we obtain

h− ζ
m∑
k=1

akV
kh = f,

i.e. h = (I − ζA)−1f = Φ(ζ;A)f .

The polynomial ψζ(z) is characteristic for the differential operator ψζ(D).
Let us investigate its roots z1, z2, . . . , zm as |ζ| → ∞. For definiteness let
|z1| ≥ max(|z2|, . . . , |zm|). (If there are two or more roots with maximal
modulus then z1 may be any of them.) Note that all zi 6= 0 since ψζ(0) =
−ζam 6= 0.

Lemma 2.9. Let a1 6= 0. Then |z1| > max(|z2|, . . . , |zm|) for large |ζ|,
and

z1 = a1ζ +O(1), max(|z2|, . . . , |zm|) = O(1).

Proof. According to (2.8) the equation ψζ(z) = 0 is equivalent to

(2.14)
m∑
k=1

akw
k = η

with unknown w = 1/z and parameter η = 1/ζ. For ζ =∞ this turns into

(2.15)
m∑
k=1

akw
k = 0.

One of the roots of (2.15) is w1 = 0 and this root is simple since a1 6= 0.
All other roots are separated from 0 by a circle |w| = δ. By the Argument
Principle all nonzero roots of (2.14) lie outside this circle as long as |η| < ε
and ε is small enough. Let |ζ| > r ≡ 1/ε. Then |z1| > 1/δ but |zi| < 1/δ,
2 ≤ i ≤ m. Now the relation

m∑
i=1

zi = a1ζ

implies |z1 − a1ζ| < (m− 1)/δ.

From now on we assume a1 6= 0 and |ζ| > r. Under these conditions z1
is a unique root of maximal modulus, so it is a function of ζ, z1 = z1(ζ).
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Corollary 2.10. The coefficients of the polynomial

θζ(z) =
ψζ(z)

z − z1(ζ)
=

m∏
i=2

(z − zi)

are bounded functions of ζ.

The solution Q(u; ζ) of (2.9) is of the form

(2.16) Q(u; ζ) = C1(ζ)ez1u +R(u; ζ)

where the second term satisfies the equation

(2.17) (θζ(D)R)(u; ζ) = 0.

In view of (2.10) and (2.16) the initial conditions for R are

(2.18) C1(ζ)zi1 +R(i)(0; ζ) = 0, 0 ≤ i ≤ m− 2,

and

(2.19) C1(ζ)zm−1
1 +R(m−1)(0; ζ) = 1.

From (2.17)–(2.19) it follows that

(2.20) C1(ζ)θζ(z1) = 1

since the leading coefficient of θζ(z) equals 1. However,

θζ(z1) = ψ′ζ(z1) = mzm−1
1 − ζ

m∑
k=1

ak(m− k)zm−k−1
1

according to (2.8). By Lemma 2.9,

θζ(z1) = (a1ζ)m−1 +O(|ζ|m−2),

so (2.20) yields

(2.21) C1(ζ) =
1

(a1ζ)m−1
+O

(
1
|ζ|m

)
.

Lemma 2.11. max0≤u≤1|R(l)(u; ζ)| = O(|ζ|−1), l ≥ 0.

Proof. Let Eζ be the evolutionary operator for the differential equation
(2.17). This operator transforms the vector of initial conditions into the
corresponding solution. Since the equation is linear, Eζ is linear. Actually,
this is an isomorphism between the space of initial conditions and the space
of solutions,

R(·; ζ) = Eζ((R(i)(0; ζ))m−2
0 ).

Equipping these spaces with the corresponding sup-norms we get

(2.22) max
0≤u≤1

|R(u; ζ)| ≤ ‖Eζ‖ max
0≤i≤m−2

|R(i)(0; ζ)|.
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The second factor on the right hand side of (2.22) is O(|ζ|−1) by (2.18),
(2.21) and Lemma 2.9, while ‖Eζ‖ = O(1) by Corollary 2.10. Thus,

max
0≤u≤1

|R(u; ζ)| = O(|ζ|−1).

The same estimate is true for every derivative R(l)(u; ζ), l ≥ 1. Indeed,
R(l)(u; ζ) satisfies the same differential equation (2.17), which also deter-
mines its initial vector, as long as R(i)(0; ζ) are given for 0 ≤ i ≤ m − 2.
Thus,

‖(R(l+i)(0; ζ))m−2
0 ‖ = O(‖(R(i)(0; ζ))m−2

0 ‖), l ≥ 1,

by Corollary 2.10 again.

Now we are in a position to prove our result concerning the Kreiss op-
erators.

Theorem 2.12. In any Lp, in order for the operator

(2.23) φ(V ) = I +
m∑
k=1

akV
k, m ≥ 1, am 6= 0,

to be Kreiss it is necessary and sufficient that a1 < 0.

Proof of necessity. Applying (2.11) to f = 1 we obtain

(Φ(ζ;A)1)(x) = 1 +
x�

0

Q(m)(x− t; ζ) dt = Q(m−1)(x; ζ)

since Q(m−1)(0; ζ) = 1. Furthermore,
1�

0

Q(m−1)(x; ζ) dx = Q(m−2)(1; ζ)

since Q(m−2)(0; ζ) = 0. Hence,

|Q(m−2)(1; ζ)| ≤
1�

0

|Q(m−1)(x; ζ)| dx =
1�

0

|(Φ(ζ;A)1)(x)| dx.

Using the Hölder inequality we obtain

|Q(m−2)(1; ζ)| ≤ ‖Φ(ζ;A)1‖p ≤ ‖Φ(ζ;A)‖p.
Thus, from (2.5) it follows that

|Q(m−2)(1; ζ)| ≤ C

|ζ + 1| − |ζ|
, Re ζ > −1

2
.

This yields

exp(Re(a1ζ)) = O

(
|ζ|

|ζ + 1| − |ζ|

)
, Re ζ > −1

2
,
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by (2.16), (2.21) and Lemmas 2.9 and 2.11. Obviously,

|ζ|
|ζ + 1| − |ζ|

=
|ζ|(|ζ + 1|+ |ζ|)

2 Re ζ + 1
≤ |ζ|(2|ζ|+ 1)

2 Re ζ + 1
,

and Re(a1ζ) = |ζ|Re(a1χ) where χ = ζ/|ζ|, so |χ| = 1. Hence,

exp(|ζ|Re(a1χ)) = O

(
|ζ|2

2|ζ|Reχ+ 1

)
.

Letting |ζ| → ∞ we get Re a1 ≤ 0 taking χ = 1 and Im a1 = 0 taking
χ = ±i. Thus, a1 ∈ R and a1 ≤ 0. But a1 6= 0 by Corollary 2.6, hence,
a1 < 0.

Proof of sufficiency. From (2.11) it follows that

‖Φ(ζ;A)‖p ≤ 1 +
1�

0

|Q(m)(u; ζ)| du

in all Lp, according to the well known estimate of the Lp-norm of the con-
volution (see [20, Theorem 1.15] and [7, Lemma 23.16.1]).

By (2.16), (2.21) and Lemmas 2.9 and 2.11 again we have

|Q(m)(u; ζ)| = O

(
|ζ|ea1ξu +

1
|ζ|

)
,

where ξ = Re ζ > −1/2. Hence,

‖Φ(ζ;A)‖p = O

(
|ζ| e

a1ξ − 1
a1ξ

+ 1
)
.

On the other hand,

|ζ + 1| − |ζ| = 2ξ + 1
|ζ + 1|+ |ζ|

∈ (0, 1].

Thus,

(2.24) (|ζ + 1| − |ζ|)‖Φ(ζ;A)‖p = O(M(ξ) + 1)

where

M(ξ) =
(2ξ + 1)(ea1ξ − 1)

a1ξ
.

Since a1 < 0, this function is bounded on (−1/2,∞), so (2.5) follows imme-
diately from (2.24).

In fact, the necessity part of Theorem 2.12 is true for all analytic φ.
Indeed, if φ(V ) is a Kreiss operator then ‖φ(V )n‖p = O(n) and then a1

must be real negative by Theorem 1.2 from [2].

Corollary 2.13. In L2, if φ(V ) is a Kreiss operator then it is power
bounded.
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In Lp with p 6= 2 this fails by Theorem 1.1. However, the conjecture
saying that every Kreiss operator φ(V ) is uniformly Kreiss seems to be
plausible even if p 6= 2.

Perhaps, the sufficiency part of Theorem 2.12 can also be extended to
the analytic situation but this requires a quite different approach.

3. The necessity in Theorem 1.1. In this section we resort to a
“scaling”. All norms below are those of (1.4). For any ε, 0 < ε < 1, the
space Lp(0, ε) is naturally isometric to the subspace of those f ∈ Lp(0, 1)
which vanish for x > ε. The operator R : Lp(0, 1) → Lp(0, ε) such that
(Rf)(x) = f(x), 0 < x < ε, is the left inverse to the natural isometric
embedding E : Lp(0, ε)→ Lp(0, 1). Denote by Vε the same integration (1.1)
but for f ∈ Lp(0, ε). Then VεR = RV , whence φ(Vε)R = Rφ(V ) for all
functions φ under consideration. Hence, φ(Vε) = Rφ(V )E, which yields

(3.1) ‖φ(Vε)‖ ≤ ‖φ(V )‖
since ‖R‖ = 1 and ‖E‖ = 1.

Now let S be the operator Lp(0, ε) → Lp(0, 1) defined as (Sf)(x) =
f(εx), 0 < x < 1. Then

‖Sf‖p =
1�

0

|f(εx)|p dx =
1
ε

ε�

0

|f(t)|p dt =
1
ε
‖f‖p,

which means that Sε = ε1/pS is an isometry. Also we have SεVε = εV Sε.
Indeed,

((SVε)f)(x) =
εx�

0

f(t) dt = ε

x�

0

f(εs) ds = ((εV S)f)(x), 0 ≤ x ≤ 1.

Now Sεφ(Vε) = φ(εV )Sε yields

(3.2) ‖φ(Vε)‖ = ‖φ(εV )‖.
Combining (3.1) and (3.2) we obtain

‖φ(εV )‖ ≤ ‖φ(V )‖, 0 < ε < 1.

This results in the following important

Lemma 3.1. If φ(V ) is power bounded then the family {φ(εV ) : 0 < ε
< 1} is uniformly power bounded, i.e.

sup{‖φ(εV )n‖p : 0 < ε < 1, n ≥ 0} <∞.

Now we turn to the decomposition (2.6) with l = 1, i.e.

φ(V ) = I + aV +
∞∑
k=2

akV
k.
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Here a 6= 0, otherwise φ(V ) would not be Kreiss by Corollary 2.6, while φ(V )
is power bounded by assumption. By Lemma 3.1 with ε = τ/n, 0 < τ < n,
we obtain

sup
τ>0

sup
n>τ

∥∥∥∥(I +
aτV

n
+O

(
τ2

n2

))n∥∥∥∥ <∞.
Passing to the limit as n→∞ with τ fixed, we get

(3.3) sup
τ>0
‖exp(aτV )‖ ≡M <∞.

By the classical resolvent criterion [7, Theorem 12.31], (3.3) implies

(3.4) ‖R(λ; aV )n‖ ≤ M

(Reλ)n
, Reλ > 0, n ≥ 1,

in particular,

(3.5) ‖R(λ; aV )‖ ≤ M

Reλ
, Reλ > 0.

However, the function g = R(λ; aV )1 is nothing but the solution of the
integral equation

a

x�

0

g(t) dt− λg(x) = 1, 0 ≤ x ≤ 1,

or, equivalently, of the differential equation λg′(x) − ag(x) = 0 with the
initial condition g(0) = −1/λ. Therefore,

g(x) = − 1
λ

exp
(
ax

λ

)
,

whence
1�

0

g(x) dx =
1
a

(
1− exp

(
a

λ

))
,

and, on the other hand,∣∣∣ 1�
0

g(x) dx
∣∣∣ ≤ ‖g‖ ≤ M

Reλ
, Reλ > 0,

by (3.5). Thus, ∣∣∣∣1− exp
(
a

λ

)∣∣∣∣ ≤ M |a|
Reλ

, Reλ > 0.

Setting λ = 1/ζ, Re ζ > 0, we get

|exp(aζ)| ≤ 1 +
M |a| |ζ|2

Re ζ
, Re ζ > 0.
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Letting ζ ∈ R, ζ → +∞, we see that Re a ≤ 0. On the other hand, for
ζ = 1 + iω, ω ∈ R, we have

exp(Re a− ω Im a) ≤ 1 +M |a|(ω2 + 1).

With ω → ±∞ we obtain Im a = 0. Since a 6= 0, we conclude that a < 0.
Now we return to (3.4). For λ = |a| this yields the power boundedness

of (I + V )−1 and then the power boundedness of I − V by the Pedersen
similarity. This implies p = 2 according to [12, Theorem 1.1].

The sufficiency in Theorem 1.1 is contained in Theorem 1.3 which we
prove in the next section.

4. Proof of Theorem 1.3. Our main tool in this proof is the Laplace
transform. To apply the latter we start with φ(V ) in the form (1.11) and
extend it to x > 1 as follows. We set

(4.1) (Wf)(x) = f(x) +
x�

0

k(x− t)f(t) dt, 0 ≤ x <∞,

where k(u) = K(u) for 0 ≤ u ≤ 1 and k(u) = K ′(1)(u−1)+K(1) for u > 1.
The operator W acts in the linear space Λ of locally L2-functions whose
integral over (0, x) grows no faster than polynomially as x→∞. Obviously,
for all n we have

(4.2) (Wnf)(x) = (φ(V )nf)(x), 0 ≤ x ≤ 1.

The Laplace transform of k(u),

(4.3) k̃(λ) =
∞�

0

k(u)e−λu du,

is a regular analytic function in the half-plane Reλ > 0, and the same is
true for all f ∈ Λ, thus for all Wnf , n ≥ 1.

From (4.1) it follows that

(4.4) (W̃f)(λ) = (1 + k̃(λ))f̃(λ), Reλ > 0,

by the usual convolution rule. Now it is convenient to introduce the function

ψ(z) = 1 + k̃(1/z), Re z > 0.

Then (4.4) takes the form

(W̃f)(λ) = ψ(1/λ)f̃(λ),

and, by iteration,

(4.5) (W̃nf)(λ) = ψn(1/λ)f̃(λ), Reλ > 0, n ≥ 1.
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Integrating two times by parts in (4.3) and taking into account our def-
inition of k(u) we obtain

k̃(λ) =
K(0)
λ

+
1
λ2

(
K ′(0) +

1�

0

K ′′(u)e−λu du
)
.

Accordingly,

(4.6) ψ(z) = 1 + a1z +R(z)z2

where a1 = K(0) < 0 and

R(z) = K ′(0) +
1�

0

K ′′(u)e−u/z du.

Since Re z > 0, we have

(4.7) |R(z)| ≤ c = |K ′(0)|+
1�

0

|K ′′(u)| du.

In the classical inversion formula for the Laplace transform the latter is
a factor in the integrand when integrating along the vertical line {λ : Reλ
= µ} with any fixed µ > 0. In view of (4.5) we have to investigate ψ(z) on
the image of this line under the mapping z = 1/λ. This is the circle

Cµ =
{
z :
∣∣∣∣z − 1

2µ

∣∣∣∣ =
1

2µ

}
= {z : Re z = µ|z|2}

punctured at z = 0, but the latter “singularity” can be removed by setting
ψ(0) = 0. Since a1 is real, we have

|ψ(z)|2 = 1+(2a1µ+a2
1)|z|2+2 Re(R(z)z2)+2a1 Re(R(z)z|z|2)+|R(z)|2|z|4.

By (4.7)

(4.8) |ψ(z)|2 ≤ 1−M(µ)|z|2, z ∈ Cµ,
with

(4.9) M(µ) = 2|a1|µ−
(
a2

1 + 2c+
2c|a1|
µ

+
c2

µ2

)
since a1 < 0 and |z| ≤ 1/µ for z ∈ Cµ. The continuous function M(µ),
µ > 0, is increasing and M(+0) = −∞, M(+∞) = +∞. Hence, it has a
unique root µ0 and M(µ) > 0 if µ > µ0. By (4.8) and (4.5) we obtain the
following key lemma:

Lemma 4.1. If µ ≥ µ0 then

(4.10) |(W̃nf)(λ)| ≤ |f̃(λ)|, Reλ = µ.

Indeed, in this case |ψ(z)| ≤ 1 for z ∈ Cµ.
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The function (W̃nf)(µ+iω), ω∈R, is the Fourier image of (Wnf)(x)e−µx

extended by zero to x < 0. By the Parseval equality and inequality (4.10),
∞�

0

|(Wnf)(x)|2e−2µx dx =
1

2π

∞�

−∞
|(W̃nf)(µ+ iω)|2 dω(4.11)

≤ 1
2π

∞�

−∞
|f̃(µ+ iω)|2 dω

=
∞�

0

|f(x)|2e−2µx dx.

A fortiori,
1�

0

|(Wnf)(x)|2e−2µx dx ≤
∞�

0

|f(x)|2 dx,

and finally,

(4.12)
1�

0

|(Wnf)(x)|2 dx ≤ e2µ
∞�

0

|f(x)|2 dx.

In particular, one can take any f ∈ L2(0, 1) and extend it by zero to x > 1.
Then (4.12) takes the form

1�

0

|(Wnf)(x)|2 dx ≤ e2µ
1�

0

|f(x)|2 dx.

In view of (4.2) this inequality is actually
1�

0

|(φ(V )nf)(x)|2 dx ≤ e2µ
1�

0

|f(x)|2 dx,

i.e.
‖φ(V )n‖2 ≤ eµ.

This is nothing but (1.14) with µ determined by (1.15) and c as in (1.16).
To show this, note that M(|a1|/2) < 0. Hence, every µ such that M(µ) ≥ 0
is ≥ |a1|/2, i.e.

(4.13) µ = |a1|/2 + δ, δ > 0.

If |a1|δ − (3c+ 2c2/a2
1) ≥ 0 then M(µ) ≥ 0. Thus, one can take

δ =
3ca2

1 + 2c2

|a1|3

in order to get (1.15). The value c given by (1.16) appears as a result of the
substitution of K(u) from (1.12) into (4.7).
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The estimate (1.17) can be obtained similarly but with ψn(ψ−1) instead
of ψn. In this case for z ∈ Cµ we have |ψ(z)−1|2 ≤ 1−|ψ(z)|2 if µ is chosen so
that |ψ(z)|2 ≤ Reψ(z). For this inequality it suffices to haveM(µ) ≥ |a1|µ+c
thanks to (4.6) and (4.8). In this case we set µ = |a1|+ δ instead of (4.13).
This yields (1.18) in the same way as we obtained (1.14). It remains to note
that |ψ(z)|2n|ψ(z)− 1|2 is bounded from above by

max{un(1− u) : 0 ≤ u ≤ 1} =
(

n

n+ 1

)n
· 1
n+ 1

<
1
en
.

Theorem 1.3 is proven. Moreover, literally the same proof yields the following

Theorem 4.2. Let q(u), 0 ≤ u ≤ 1, be a complex-valued function with
absolutely continuous first derivative, and assume q(0) is real negative. Then
the integral operator

(Tf)(x) = f(x) +
x�

0

q(x− t)f(t) dt, 0 ≤ x ≤ 1,

in L2(0, 1) is power bounded, and moreover,

sup
n
‖Tn‖2 ≤ eµ

where

µ =
|q(0)|

2
+

3cq(0)2 + 2c2

|q(0)|3

and

c = |q′(0)|+
1�

0

|q′′(u)| du.

Furthermore,
sup
n

√
n ‖Tn+1 − Tn‖2 ≤ eµ1

where

µ1 = |q(0)|+ 5cq(0)2 + c2

|q(0)|3
.

If q(u) is convex and nondecreasing then c = q′(1).

Note that the conditions on the kernel q(u) in Theorem 4.2 are weaker
than those of [3] which provide the similarity to I + q(0)V .

5. Alternating coefficients. We start with the proof of Theorem 1.4.
To this end we proceed to Taylor’s expansion

φ(z) =
m∑
k=0

φk(x)
k!

(z − x)k
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with x > 0 such that signφ(k)(x) = (−1)k, 0 ≤ k ≤ m, so x < x0. Then

φ(z) =
m∑
k=0

pk(1− z/x)k

where

pk =
φ(k)(x)(−x)k

k!
, 0 ≤ k ≤ m.

Obviously, all pk > 0 and
m∑
k=0

pk = φ(0) = 1.

Furthermore,

φn(z) =
mn∑
l=0

( ∑
k1+···+kn=l

pk1 . . . pkn

)
(1− z/x)l.

Hence,

sup
n
‖φn(V )‖ ≤ sup

l

∥∥∥∥(I − 1
x
V

)l∥∥∥∥
irrespective of the choice of the norm. In particular,

sup
n
‖φn(V )‖2 ≤ e1/2x

by (1.19). It remains to optimize this bound by passing to x = x0.
Now we denote by Am the set of real polynomials φ(z) of degree m with

φ(0) = 1 and alternating coefficients. Obviously, Am is convex. Furthermore,
the product AmAs = {φ1φ2 : φ1 ∈ Am, φ2 ∈ As} is contained in Am+s.
Indeed, φ ∈ Am if and only if deg φ = m, φ(0) = 1, and all coefficients of
φ(−z) are positive.

If φ is real and all roots of φ lie in the open right half-plane H+ = {z :
Re z > 0} then φ ∈ Am. (The converse is also true if m ≤ 2.) Such φ
can be called anti-Hurwitz polynomials since this is exactly the case when
φ(−z) satisfies Hurwitz’s determinant condition for the roots to lie in H− =
{z : Re z < 0} (see e.g. [4]). The role of the “Hurwitz polynomials” in the
classical stability theory is well known.

Corollary 5.1. If φ(z) is an anti-Hurwitz polynomial then (1.21) holds
with x0 defined in (1.22).

Indeed, φ is the product of a number of polynomials, each from A1 or
A2, thus φ ∈ Am, m = deg φ.

Corollary 5.2. Let φ(z) be a complex polynomial with real coeffi-
cient a1. If all roots z1, . . . , zm of φ(z) lie in H+ then φ(V ) is power bounded
in L2.
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Indeed, in this case

a1 = Re a1 = −
m∑
i=1

Re
(

1
zi

)
= −

m∑
i=1

Re zi
|zi|2

< 0.
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