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On the weak amenability of B(X)

by

A. Blanco (Belfast)

Abstract. We investigate the weak amenability of the Banach algebra B(X) of all
bounded linear operators on a Banach space X. Sufficient conditions are given for weak
amenability of this and other Banach operator algebras with bounded one-sided approxi-
mate identities.

1. Introduction. Let A be a Banach algebra and let X be a Banach
A-bimodule. A (bounded) derivation is a (bounded) linear map D : A → X
that satisfies the identity

D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A).

Every map from A to X of the form a 7→ a · x− x · a (a ∈ A), where x ∈ X
is fixed, is a bounded derivation. Derivations of this form are called inner.
The first Hochschild–Johnson cohomology group of A with coefficients in an
A-bimodule X, denoted H1(A,X), is defined to be the quotient of the space
of bounded derivations from A to X by the corresponding (sub)space of
inner derivations. Thus, triviality of H1(A,X) amounts to every continuous
derivation from A into X being inner.

The topological dual X′ of a Banach A-bimodule X is also a Banach
A-bimodule under the actions

(a · f)(x) = f(xa) and (f · a)(x) = f(ax) (a ∈ A, x ∈ X, f ∈ X′).

In particular, A′ becomes a Banach A-bimodule in this way. A Banach al-
gebra A is said to be weakly amenable if H1(A,A′) = {0}. The notion of
weak amenability was introduced in [BCD] for commutative Banach algebras
and extended to the general case in [J2]. For instance, group algebras of lo-
cally compact groups, C∗-algebras and tensor algebras are all examples of
weakly amenable Banach algebras (see [J3], [H] and [DGG], respectively).
For further examples see [Da].
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In this paper, we shall be primarily concerned with the weak amenability
of the Banach algebra B(X) of all bounded linear operators on a Banach
space X. Some remarks on weak amenability of this algebra were made in
[DGG], where it was noticed that if X is a reflexive Banach space so that
X ' `p(X) for some 1 < p < ∞, then an argument similar to the one
used in the proof of [W, Proposition 5] shows that the homology groups of
B(X) with coefficients in itself vanish, which in turn, combined with [J1,
Corollary 1.3], implies that Hn(B(X),B(X)′) = {0} (n ∈ N). We give below
an elementary version of this argument in the case n = 1.

In the opposite direction, one should mention that examples of Banach
spaces X for which B(X) is not weakly amenable have appeared in the
literature. For instance, if R is the Banach space constructed in [R] then
B(R) cannot be weakly amenable as one can easily define non-zero, continu-
ous point derivations on B(R) (see [DGG, Proposition 1.3]). Another (more
tractable) example is the Banach space constructed in [Bl2, Proposition 5.3].
The latter happens to be a reflexive Banach space with an unconditional ba-
sis. That the algebra of bounded operators on it is not weakly amenable
follows readily from [Bl2, Proposition 5.3] and [DGG, Theorem 5.6].

The question of when B(X) is weakly amenable was formally raised in [G,
Question 22] and it is our view that little progress has been made in the study
of this problem since [DGG]. Here, we will give sufficient conditions for weak
amenability of B(X) and other Banach operator algebras with bounded one-
sided approximate identities. In the case of B(X), these conditions will be
seen to have an easy interpretation in terms of the geometry of X. Moreover,
they will be verified in a number of important examples.

To some extent, this work could be seen as a continuation of our earlier
research on weak amenability of Banach algebras of approximable opera-
tors. Indeed, some of the ideas of this paper will be found to be reminis-
cences of ideas from [Bl]. Essential to the results of the latter were the facts
that the tensor algebra is always weakly amenable and that the continuous
finite-rank operators are dense in the tensor algebra and in the algebra of
approximable operators on any Banach space. The absence, in general, of a
weakly amenable dense subalgebra in B(X) was one of the main obstacles
in extending results from [Bl] to Banach algebras of bounded operators. In
this paper, we will follow a slightly different approach which will allow us
to overcome this difficulty and, consequently, to make further progress in
the study of weak amenability of B(X). The present work will provide, in
addition, a new framework in which to accommodate known results on weak
amenability of algebras of approximable operators.

The organization of the paper is as follows. In the next section, we have
gathered some notation and terminology that we need. The main result of
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the note is proved in Section 3. It is then applied, in Section 4, to establish
the weak amenability of B(X) in cases where X admits a relatively nice
direct sum decomposition. In Section 5, we then look at cases where such a
nice direct sum decomposition is not possible. The main examples considered
in this section are of Tsirelson-like type. Finally, in Section 6, we turn our
attention to algebras of bounded operators acting on finite direct sums of
Banach spaces with `p-sum decompositions.

2. Some notations and terminology. Throughout, we write X ′ for
the topological dual of a normed space X, and given a subset S of X, we
denote by [S] the closure of its linear span.

By a (topological) direct sum decomposition of a Banach space X we
mean a sequence (Xi) of closed subspaces of X such that every x ∈ X can
be represented in a unique way as the sum of a series

∑
i xi, where xi ∈ Xi

(i ∈ N). We write this as X =
⊕∞

i=1Xi.
Given Banach spaces X1, . . . , Xn, we denote by X1 ⊕ · · · ⊕ Xn (or by

⊕ni=1Xi) the linear space X1×· · ·×Xn endowed (unless otherwise specified)
with any norm with respect to which all canonical coordinate projections
and embeddings are continuous. Also, given a Banach space X, we write
`p(X), 1 ≤ p ≤ ∞, (resp. c0(X)) for the `p-sum (resp. c0-sum) of infinitely
many copies of X, i.e., the linear space of all sequences (xi) in X so that
(‖xi‖) ∈ `p (resp. (‖xi‖) ∈ c0), endowed with the norm ‖(xi)‖ := ‖(‖xi‖)‖p
(resp. ‖(xi)‖ := ‖(‖xi‖)‖∞).

If X and Y are isomorphic (resp. isometric) normed spaces, we write this
asX ' Y (resp.X ∼= Y ), and denote by d(X,Y ) the Banach–Mazur distance
between them, i.e., the infimum of numbers ‖T‖ ‖T−1‖, where T : X → Y is
a linear isomorphism. The identity operator on a normed space X is denoted
by idX .

Recall that a bounded left (resp. right) approximate identity, b.l.a.i. (resp.
b.r.a.i.) for short, for a Banach algebra A is a bounded net (eα) in A with
the property that limα eαa = a (resp. limα aeα = a) for every a ∈ A.

We call a Banach A-bimodule X left essential if X = [AX], where AX =
{ax : a ∈ A, x ∈ X}. If A has a b.l.a.i. (resp. b.r.a.i.) (eα) then, by Cohen’s
factorization theorem, X is left (resp. right) essential if and only if limα eαx =
x (resp. limα xeα = x) for every x ∈ X.

We denote by A(X) the uniform closure in B(X) of the ideal F(X) of
continuous finite-rank operators on X, and by W(X), the ideal of weakly
compact operators on X.

Lastly (though this is not essential), we assume all our normed spaces to
be over the complex field.
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3. Derivations from B(X). In this section we present the main result
of the note. We start with a proof of the known fact that if E is a Banach
space so that E ' `p(E) then every derivation from B(E) into B(E)′ is inner.
As indicated in the introduction, the proof is inspired by Wodzicki’s ideas
([W]) and it will serve as a motivation for our subsequent results.

We shall need the following.

Lemma 3.1. Let A be a Banach algebra, let X be a Banach A-bimodule
and let D : A → X′ be a derivation. Let e ∈ A be an idempotent and let
g, h ∈ A be such that gh = e. Define Dg,h : A → X′ by Dg,h(a) := g·D(hag)·h
(a ∈ A). Then for every a ∈ eAe and every y ∈ eXe,

〈y,D(a)〉 − 〈y,Dg,h(a)〉 = 〈ya− ay, g ·D(h)〉.

Proof. Straightforward computations using the fact that e·D(e)·e = 0.

Proposition 3.2. If E is a Banach space so that either E ' `p(E) for
some 1 ≤ p ≤ ∞ or E ' c0(E) then B(E) is weakly amenable.

Proof. We give the proof only for the case where E ' `p(E) for some
1 ≤ p ≤ ∞, the case where E ' c0(E) being completely analogous.

Let D : B(E)→ B(E)′ be a continuous derivation and let φ : E → `p(E)
be a Banach space isomorphism. Define D̃ : B(E ⊕ `p(E))→ B(E ⊕ `p(E))′

by 〈(
u11 u12

u21 u22

)
, D̃

(
v11 v12

v21 v22

)〉
= 〈u11, D(v11)〉+ 〈u12φ,D(φ−1v21)〉

+ 〈φ−1u21, D(v12φ)〉+ 〈φ−1u22φ,D(φ−1v22φ)〉.

One verifies that D̃ is a derivation.
Next, for every w ∈ B(E), define

∆(w) :=


w

w
. . .

 ∈ B(`p(E)).

Let L and R be left and right shifts, respectively, with respect to the direct
sum decomposition E ⊕ `p(E), so that LR = idE⊕`p(E) and

R

(
w

∆(w)

)
L =

(
0

∆(w)

)
(w ∈ B(E)).
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Then, by Lemma 3.1, for all u and v in B(E),

〈u,D(v)〉 =
〈(

u

∆(u)

)
, D̃

(
v

∆(v)

)〉

−
〈(

0
∆(u)

)
, D̃

(
0

∆(v)

)〉

=
〈(

uv − vu
∆(uv − vu)

)
, L · D̃(R)

〉
.

Letting T : B(E)→ B(E ⊕ `p(E)), v 7→
( v

∆(v)

)
, and ξ = T ′(L · D̃(R)) one

readily deduces from the last identity that

〈u,D(v)〉 = 〈uv − vu, ξ〉 = 〈u, v · ξ − ξ · v〉 (u, v ∈ B(E)),

or equivalently, that D(v) = v · ξ − ξ · v (v ∈ B(E)), as needed.

As mentioned earlier, some of the ideas behind this proof motivate most
of what follows.

Recall that a unital Banach algebra A with identity e is properly infinite
if there are sequences (ri) and (si) in A so that risj = δi,j e (i, j ∈ N). It is
not hard to see that the proof of Proposition 3.2 can be adapted to Banach
algebras with this last property, provided the sequences (ri) and (si) are
such that

(a) the “diagonal amplification” operator, ∆ : A → A, a →
∑∞

i=1 siari,
is defined, i.e.,

∑∞
i=1 siari converges (a ∈ A);

(b) both series,
∑∞

i=1 siri+1 and
∑∞

i=1 si+1ri, converge.

Indeed, one can simply carry out the same argument as above, letting

R =
(

0 0
s1

∑
j sj+1rj

)
and L =

(
0 r1

0
∑

j sjrj+1

)
.

For the Banach algebra B(X), proper infiniteness has an easy interpre-
tation in terms of the geometry of the underlying Banach space. Indeed,
it is well known (see for instance [La1, Lemma 1.8]) that B(X) is properly
infinite if and only if X admits a cartesian decomposition, i.e., if and only
if X ' X ⊕ X ⊕ Y for some Banach space Y . Unfortunately, in general,
the latter is not enough to ensure that the above conditions are satisfied.
An example of this situation is provided by Tsirelson’s space (see Section 5).
The same is probably true for other important examples. For instance, it
seems unlikely that one can choose (ri) and (si) to satisfy (a) and (b) for
X = `p ⊕ `q (1 ≤ p 6= q < ∞) or for every Banach space with a symmetric
basis, but we do not have a proof of this. Note, though, that apart from c0
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and `p (1 ≤ p < ∞) there are other Banach spaces with a symmetric basis
for which this is possible ([R1]).

To address the above limitations, we shall relax the hypotheses of Propo-
sition 3.2 (and in turn (a) and (b)) in two main ways. First we shall consider
Banach algebras with bounded one-sided approximate identities. Second, we
shall consider finite diagonal amplifications of the elements of the algebra
instead of infinite ones. This last idea was already present in [G1], though it
was not fully exploited there. Here, we look at it in more detail.

Let us start with the following.

Lemma 3.3. Let A be a Banach algebra and let e ∈ A be so that there
are sequences (rn) and (sn) in A satisfying

(1) rmsn = δm,ne (n,m ∈ N).

Let X be a Banach A-bimodule and let D : A → X′ be a derivation. Then,
for every a ∈ A and every x ∈ X,

(2) 〈ex,D(ea)〉 = 〈aex− xea, ϕn〉+ n−1〈∆n(x), D(∆n(a))〉 (n ∈ N),

with ϕn = n−1
∑n

i=1D(ri)·si, ∆n(x) =
∑n

i=1 sixri and ∆n(a) =
∑n

i=1 siari.

Proof. Let e, (ri) and (si) be as in the hypotheses of the lemma. Let
a ∈ A and x ∈ X be arbitrary. Then

〈∆n(x), D(∆n(a))〉

=
n∑
i=1

〈sixri, D(siari)〉

= n〈exe,D(a)〉+
n∑
i=1

(〈aex, ri ·D(si)〉+ 〈xea,D(ri) · si〉)

= n〈exe,D(a)〉+ n〈aex,D(e)〉+
n∑
i=1

〈xea− aex,D(ri) · si〉

= n〈ex,D(ea)〉 − n〈aex− xea, ϕn〉.
The rest is clear.

Now the main result of the note reads as follows.

Theorem 3.4. Let A be a Banach algebra with a b.l.a.i. (eα), let X
be a left essential Banach A-bimodule, and let D : A → X′ be a bounded
derivation. Suppose for each eα there are sequences (ri,α) and (si,α), as in
Lemma 3.3, and suppose there is an increasing sequence of positive integers,
(nk), so that

(i) supk,α ‖ϕk,α‖ <∞, where ϕk,α := n−1
k

∑nk
i=1D(ri,α) · si,α;
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(ii) there are dense subsets X◦ of X and A◦ of A such that, for every
x ∈ X◦ and a ∈ A◦,

lim
k

lim
α
n−1
k 〈∆nk,α(x), D(∆nk,α(a))〉 = 0,

where ∆nk,α(x) :=
∑nk

i=1 si,αxri,α and ∆nk,α(a) :=
∑nk

i=1 si,αari,α.

Then D is inner.

Proof. Condition (i) implies that, for each k, the net (ϕk,α) has a weak-∗
convergent subnet, (ϕk,αj )j∈J say (J depending on k), with weak-∗ limit Φk
of norm ≤ M := supk,α ‖ϕk,α‖. Let a ∈ A◦ and x ∈ X◦ be arbitrary. By
Lemma 3.3,

〈eαx,D(eαa)〉 = 〈aeαx− xeαa, ϕk,α〉+ n−1
k 〈∆nk,α(x), D(∆nk,α(a))〉.

Replacing α by αj in this last identity and taking limits with respect to j,
one obtains

(3) 〈x,D(a)〉 = 〈ax− xa, Φk〉+ n−1
k lim

j
〈∆nk,αj (x), D(∆nk,αj (a))〉,

where we have taken into account the fact that X is left essential. Next,
choose a weak-∗ convergent subnet (Φkd)d∈D of (Φk). Then, replacing k by
kd in (3) and taking limits once more, this time with respect to d, one arrives
at

〈x,D(a)〉 = 〈ax− xa, Φ〉+ lim
d

lim
j
n−1
kd
〈∆nkd ,αj

(x), D(∆nkd ,αj
(a))〉

= 〈ax− xa, Φ〉,
where Φ ∈ X′ denotes the weak-∗ limit of (Φkd) and the second equality
follows from condition (ii). The desired result follows readily from this last
formula, since D is continuous and A◦ and X◦ are dense in A and X, respec-
tively.

Remark 3.5. The hypotheses of Theorem 3.4 can be relaxed as follows.
Let A be a Banach algebra and let X be a left essential Banach A-bimodule.
Suppose there exists a Banach algebra B that contains A as a closed sub-
algebra together with a net (eα) such that limα eαa = a (a ∈ A). Let
D : A → X′ be a bounded derivation which can be lifted to a bounded
derivation D̃ : B → Y′, where Y is a Banach B-bimodule containing X as a
closed subspace. Lastly, suppose for each eα there are sequences (ri,α) and
(si,α) in B satisfying (1), and suppose there is an increasing sequence of
positive integers so that conditions (i) and (ii) of Theorem 3.4 hold with
D̃ in place of D. In this situation, one can show, exactly as above, that
there exists Φ̃ ∈ Y′ such that D̃(a) = a · Φ̃ − Φ̃ · a (a ∈ A). Then note
that the restriction map ı′ : Y′ → X′ is an A-bimodule homomorphism, so
D(a) = a · ı′(Φ̃) − ı′(Φ̃) · a (a ∈ A), i.e., D is inner. In this note, we will
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not make use of this degree of generality. For this reason, we have chosen to
present, as our main result, the simpler one given in Theorem 3.4.

Remark 3.6. There is a “right” analogue of Theorem 3.4, which can
be easily obtained by replacing A by its opposite Aop and passing from
bimodules over A to bimodules over Aop, via the usual functor. We will not
use the “right” version in this note, so we leave the details to the reader.

Theorem 3.4 should be compared with [Bl, Proposition 2.2]. Indeed, the
main difference between these results lies in the way the averages are taken.
One should point out that it was precisely in connection with the averages
n−1〈∆n,α(u), D(∆n,α(v))〉 (u, v ∈ A) that the so-called trace unbounded
triples were needed in [Bl], combined with the facts that the tensor algebra
is always weakly amenable and that the continuous finite-rank operators are
dense in both the tensor algebra and the algebra of approximable operators.

There is one other Banach space property which is defined in terms of
direct sum decompositions and which, together with the cartesian decom-
position property, has proved useful in the study of automatic continuity of
homomorphisms from B(X), namely, the continued bisection property. Re-
call from [J, Definition 3.1] that a Banach space X is said to have a continued
bisection if there is a sequence (En) of closed subspaces of X so that E1 = X
and En ' En+1 ⊕ En+1 (n ∈ N). In view of its similarity with a cartesian
decomposition, one might expect the existence of a continued bisection to
have some positive implications on the cohomological properties of B(X).
However, as the next example shows, the existence of a continued bisection
ofX, even a “bounded” one, i.e., one for which the projection constants of the
En’s are uniformly bounded, is not enough to ensure the weak amenability
of B(X).

Example 3.7. It was shown in [Bl] that if (pn) ⊂ ]1, 2[ and (kn) ⊂ N
are strictly increasing sequences such that

(4) k1/pn−1/2
n ≥ ε−1

n and k1/pn+1−1/2
n ≤ 2

for some positive sequence (εn) such that
∑

n εn <∞, then A((⊕∞n=1 `
kn
pn)2)

is not weakly amenable. The sequences (pn) and (kn) are constructed in-
ductively and it is easy to see that one can always choose the kn’s to be
powers of 2. On the other hand, if the kn’s are chosen to be powers of 2
then `2 ⊕ (⊕∞n=1 `

kn
pn)2 has a continued bisection. Noting that (⊕∞n=1 `

kn
pn)2 '

`2 ⊕ (⊕∞n=1 `
kn
pn)2, one concludes that A(`2 ⊕ (⊕∞n=1 `

kn
pn)2) cannot be weakly

amenable, and in turn, by [DGG, Theorem 5.6], that B(`2 ⊕ (⊕∞n=1 `
kn
pn)2)

cannot be weakly amenable either.

We should recall, though, that von Neumann algebras of type II1 are
weakly amenable, and that any projection in a von Neumann algebra of type
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II1 can be halved, in particular, the identity. This suggests that some positive
result should hold for Banach algebras of operators acting on Banach spaces
with a continued bisection and without a cartesian decomposition. However,
we shall not pursue this problem any further in this paper.

4. First applications. Our first applications of Theorem 3.4 will be to
algebras of bounded operators acting on Banach spaces with relatively nice
direct sum decompositions. Let us start by fixing some terminology.

A direct sum decomposition
⊕

iXi of a Banach space X will be called
C-unconditional if ‖

∑
i εixi‖ ≤ C‖

∑
i xi‖ for every sequence (xi) ∈

∏
iXi so

that
∑

i xi converges and for every sequence (εi) in T := {z ∈ C : |z| = 1}.
Given a Banach space X with direct sum decomposition

⊕
iXi, we shall

say that
⊕

iXi satisfies a lower (resp. upper) r-estimate (1 ≤ r < ∞)
if there exists a constant c (resp. C) so that (

∑
i ‖xi‖r)1/r ≤ c‖

∑
i xi‖

(resp. ‖
∑

i xi‖ ≤ C(
∑

i ‖xi‖r)1/r) for every eventually zero sequence in∏
iXi. Furthermore, we shall say that

⊕
iXi satisfies a lower (resp. upper)

∞-estimate if there is a constant c (resp. C) so that supi ‖xi‖ ≤ c‖
∑

i xi‖
(resp. ‖

∑
i xi‖ ≤ C supi ‖xi‖) for every eventually zero sequence in

∏
iXi.

Clearly, every direct sum decomposition satisfies a lower ∞-estimate and an
upper 1-estimate.

Example 4.1. Every uniformly convex Banach space X with a sub-
symmetric basis has an unconditional direct sum decomposition

⊕
iXi sat-

isfying an upper (resp. a lower) r-estimate, 1 < r < ∞, and such that
supi d(Xi, X) < ∞. Indeed, let (ek) be a subsymmetric basis for X, and
let {N1, N2, . . .} be an infinite partition of N into infinite subsets. Then⊕∞

i=1Xi, where Xi = [ek : k ∈ Ni] (i ∈ N), is an unconditional direct sum
decomposition for X. If x1, . . . , xn ∈ X are such that xi ∈ Xi (1 ≤ i ≤ n)
then one can show, exactly as in the proof of Gurarĭıs’ theorem, given in [D,
Chapter VIII], that there exists r > 1, depending only on the basis constant,
and C = C(r) > 0 so that ‖

∑
i xi‖ ≤ C(

∑
i ‖xi‖r)1/r. The existence of a

lower estimate is established similarly.

As a first consequence of the results from the previous section we have
the following.

Corollary 4.2. Let X be a Banach space with a direct sum decom-
position

⊕∞
i=0Xi satisfying a lower p-estimate for some p < ∞ (resp. an

upper q-estimate for some q > 1) and such that supi≥1 d(Xi, X) < ∞. Let
πi ∈ B(X) be the i-th coordinate projection corresponding to this decomposi-
tion, and let (ri) and (si) be bounded sequences in B(X) such that risi = idX
and siri = πi (i ∈ N). Then B(X) is weakly amenable if and only if for ev-
ery pair u, v in a dense subset of B(X) and for every continuous derivation
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D : B(X)→ B(X)′ one has

(5) n−1〈∆n(u), D(∆n(v))〉 → 0,

where ∆n(u) :=
∑n

i=1 siuri (u ∈ B(X)).

In proving the corollary we will make use of the following.

Lemma 4.3. Let X be a Banach space with a direct sum decomposition⊕∞
i=0Xi satisfying a lower p-estimate and an upper q-estimate, and such

that Xi ' X (i ∈ N). Let (ri) and (si) be sequences in B(X) so that, for
every i ∈ N, risi = idX and siri is the natural projection onto Xi associated
with the decomposition

⊕∞
i=0Xi. Then there exists M > 0 such that∥∥∥ n∑

i=1

siuri

∥∥∥ ≤Mn1/q−1/p( max
1≤i≤n

‖ri‖ ‖si‖)‖u‖ (u ∈ B(X), n ∈ N).

Proof. We give the proof in the case where p < ∞. The cases where
p =∞ and 1 ≤ q <∞, or p =∞ and q =∞, are treated in a similar way.

By hypothesis, there exist constants c and C such that

c−1
(∑

i

‖xi‖p
)1/p

≤
∥∥∥∑

i

xi

∥∥∥ ≤ C(∑
i

‖xi‖q
)1/q

,

for every eventually zero sequence (xi) ∈
∏∞
i=0Xi. Let u ∈ B(X) and x ∈ X

be arbitrary, and let xi = sirix (i ∈ N). Then,∥∥∥ n∑
i=1

siurix
∥∥∥ =

∥∥∥ n∑
i=1

siurixi

∥∥∥ ≤ C( n∑
i=1

‖siuri‖q‖xi‖q
)1/q

≤ C( max
1≤i≤n

‖ri‖ ‖si‖)
( n∑
i=1

‖xi‖q
)1/q
‖u‖

≤ C( max
1≤i≤n

‖ri‖ ‖si‖)n1/q−1/p
( n∑
i=1

‖xi‖p
)1/p
‖u‖

≤ cCn1/q−1/p( max
1≤i≤n

‖ri‖ ‖si‖)
∥∥∥ n∑
i=1

xi

∥∥∥‖u‖,
from which we conclude the desired inequality with M = cC.

Proof of Corollary 4.2. Let B(X) be weakly amenable and let D : B(X)
→ B(X)′ be a continuous derivation, so there exists φ ∈ B(X)′ such that
〈u,D(v)〉 = 〈u, v · φ− φ · v〉 for every pair u, v ∈ B(X). Then

〈∆n(u), D(∆n(v))〉 =
〈 n∑
i=1

si(uv − vu)ri, φ
〉

(u, v ∈ B(X)).

By the lemma, the right hand side of this last identity is o(n), whence the
desired result.
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The opposite implication is an immediate consequence of Theorem 3.4.

Remark 4.4. In the last sentence of Corollary 4.2 one can replace B(X)
by any self-induced closed two-sided ideal I of B(X). Indeed, the proof that
weak amenability of I implies (5) is the same. As for the opposite implication,
one just needs to note that since I is self-induced, every bounded derivation
D : I → I ′ can be extended to a bounded derivation D̃ : B(X) → I ′ (see
[BG, Lemma 2.1]). One can then apply Remark 3.5.

Remark 4.5. If A is a Banach algebra with a b.l.a.i. (eα), and (ri,α)
and (si,α) are sequences as in Theorem 3.4, so that supi,α ‖ri,α‖ ‖si,α‖ <∞
and for each α the decomposition

⊕∞
i=1 πi,α(X) satisfies a lower p-estimate

(resp. an upper q-estimate) for some p <∞ (resp. q > 1) fixed, then a con-
clusion similar to that of Corollary 4.2 holds. Namely, A is weakly amenable
if and only if for every pair u, v in a dense subset of A and for every bounded
derivationD : A → A′ one has limn limα n

−1〈∆n,α(u), D(∆n,α(v))〉 = 0. The
proof of this goes along the same lines as that of Corollary 4.2, so we leave
the details to the reader.

To what extent is the estimate provided by Lemma 4.3 a sharp one? For
instance, if X = `p ⊕ `q, with 1 ≤ q < p < ∞, it is easy to produce a
direct sum decomposition of X satisfying a lower p-estimate and an upper
q-estimate. Indeed, simply take a partition {Ni : i ∈ N} of N in which eachNi

is an infinite subset, and set Xi = {x ∈ `p : suppx ⊆ Ni} and Yi = {y ∈ `q :
supp y ⊆ Ni} (i ∈ N). Then

⊕∞
i=1(Xi ⊕ Yi) is a decomposition of `p ⊕ `q

with the required properties. One easily verifies that, with respect to this
decomposition, the order of growth of ‖∆n‖ is at most n1/q−1/p. However,
we do not know whether this estimate is best possible. An interesting fact
that one should notice is that, in this case, modulo the compact operators,
(∆n) is a bounded sequence.

The following is an immediate consequence of Corollary 4.2.

Corollary 4.6. Let X be a Banach space with a subsymmetric basis
(ei), and suppose N1, N2, . . . is an infinite partition of N into infinite subsets,
so that

⊕
i [ej : j ∈ Ni] satisfies a lower p-estimate and an upper q-estimate.

If 1/q − 1/p < 1/2 then B(X) is weakly amenable.

Proof. Let (Ni) be as in the hypotheses, so
⊕

i [ej : j ∈ Ni] satisfies
a lower p-estimate and an upper q-estimate. By Lemma 4.3, ‖∆n(u)‖ ≤
Kn1/q−1/p‖u‖ (u ∈ B(X)) for some constant K independent of n, and so
〈∆n(u), D(∆n(v))〉 = o(n) for every bounded derivation D : B(X)→ B(X)′.
By Corollary 4.2, B(x) is weakly amenable.

The hypotheses of Corollary 4.6 seem to be very restrictive. However, at
the moment, we have no evidence in support of this. It would help to know
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whether there are Banach spaces X with a symmetric basis for which B(X)
is not weakly amenable.

Regarding derivations into general dual Banach bimodules we have the
following.

Corollary 4.7. Let X be a Banach space with a direct sum decomposi-
tion as in Corollary 4.2, and let X be a super-reflexive left essential Banach
B(X)-bimodule. Furthermore, let (ri) and (si) also be as in Corollary 4.2.
Then a continuous derivation D : B(X) → X′ is inner if and only if for
every u in a dense subset of B(X) and every x in a dense subset of X one
has

n−1〈∆n(x), D(∆n(u))〉 → 0.

Proof. Let φ ∈ X′ be arbitrary and let D : B(X)→ X′, u 7→ u · φ− φ · u.
We know that

n−1〈∆n(x), D(∆n(u))〉 = n−1〈∆n(xu− ux), φ〉 (x ∈ X, u ∈ B(X)).

Suppose xu 6= ux and set xi = si(xu − ux)ri (i ∈ N). Without loss of
generality, we can assume ‖vy‖ ≤ ‖v‖ ‖y‖ and ‖yv‖ ≤ ‖y‖ ‖v‖ (y ∈ X, v ∈
B(X)). Then, for any scalar sequence (αi) and every pair k, n ∈ N,∥∥∥ n∑

i=1

αixi

∥∥∥ =
∥∥∥( n∑

j=1

sjrj

)(n+k∑
i=1

αixi

)∥∥∥ ≤ C∥∥∥(n+k∑
i=1

αixi

)∥∥∥,
where C is the constant of the decomposition, i.e., C = supn ‖

∑n
j=1 πj‖.

Moreover, if M = supi ‖ri‖ ‖si‖ then, for every i ∈ N, we have

0 < M−1‖xu− ux‖ = M−1‖risi(xu− ux)risi‖ ≤ ‖xi‖ ≤M‖xu− ux‖.
Thus, (xi) is a seminormalized basic sequence in X, i.e., a basic sequence
so that 0 < inf ‖xi‖ ≤ sup ‖xi‖ < ∞. If we let ξi = xi/‖xi‖ (i ∈ N) then,
by [Be, Part 4, Chapter II, Theorem 1], ‖

∑n
i=1 xi‖ = ‖

∑n
i=1 ‖xi‖ξi‖ = o(n).

Clearly, this is also true if xu = ux, so n−1〈∆n(xu− ux), φ〉 → 0 as n→∞.
The opposite implication follows immediately from Theorem 3.4.

We notice that all is needed for the above argument to work is that the
basic sequence (xi) should satisfy ‖

∑n
i=1 xi‖ = o(n). Bearing this in mind

one obtains the following variation of Corollary 4.7.

Corollary 4.8. Let X be a Banach space with an unconditional direct
sum decomposition

⊕∞
i=0Xi such that supi≥1 d(Xi, X) < ∞. Let (ri) and

(si) be as in Corollary 4.2, and suppose
∑

i siri+1 and
∑

i si+1ri are well
defined and power bounded. Let X be a left essential Banach B(X)-bimodule
containing no isomorphic copies of `1. Then a continuous derivation D :
B(X)→ X′ is inner if and only if for every u in a dense subset of B(X) and
every x in a dense subset of X one has
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n−1〈∆n(x), D(∆n(u))〉 → 0.

Thus, in particular, every continuous derivation from B(`p) into a left es-
sential B(`p)-bimodule with no subspaces isomorphic to `1 is inner.

Proof. The proof is almost the same as that of Corollary 4.7. One just
needs to note that under the present hypotheses, the seminormalized basic
sequence (xi), defined as in the proof of Corollary 4.7, is unconditional and
the left and right shifts with respect to it are power bounded. Indeed, for
every sequence (αi) in C, every sequence (εi) in T and every n ∈ N one has∥∥∥ n∑

i=1

εiαixi

∥∥∥ =
∥∥∥(∑

j

εjsjrj

)( n∑
i=1

αixi

)∥∥∥ ≤ K∥∥∥ n∑
i=1

αixi

∥∥∥,
where K is the unconditional constant of the decomposition, i.e., K =
supε ‖

∑
j εjπj‖. So, (xi) is an unconditional basis. As for the left and right

shifts with respect to (xi) being power bounded, note that if L : [xi]→ [xi],∑
i αixi 7→

∑
i αi+1xi and R : [xi] → [xi],

∑
i αixi 7→

∑
i αixi+1 then, for

every n ∈ N,∥∥∥Ln(∑
i

αixi

)∥∥∥ =
∥∥∥(∑

j

sjrj+n

)(∑
i

αixi

)(∑
k

sk+nrk

)∥∥∥
=
∥∥∥(∑

j

sjrj+1

)n(∑
i

αixi

)(∑
k

sk+1rk

)n∥∥∥≤N∥∥∥∑
i

αixi

∥∥∥,
where N = supn ‖(

∑
j sjrj+1)n‖‖(

∑
k sk+1rk)n‖, and likewise,∥∥∥Rn(∑

i

αixi

)∥∥∥≤∥∥∥(∑
j

sj+1rj

)n(∑
i

αixi

)(∑
k

skrk+1

)n∥∥∥≤N∥∥∥∑
i

αixi

∥∥∥.
Next note that if there were a constant c > 0 so that ‖

∑n
i=1 xi‖ ≥ cn for

infinitely many values of n, then for such n’s and for every scalar sequence
(αi) one would have, letting σ be the cyclic permutation (1 2 . . . n),

c

n∑
i=1

|αi| ≤ n−1
∥∥∥ n∑
i=1

( n∑
k=1

|ασk(i)|
)
xi

∥∥∥
≤ n−1

n∑
k=1

(∥∥∥n−k∑
i=1

|ασk(i)|xi
∥∥∥+

∥∥∥ n∑
i=n−k+1

|ασk(i)|xi
∥∥∥)

≤ n−1
n∑
k=1

(
‖Lk‖(1 + C)

∥∥∥ n∑
i=1

|αi|xi
∥∥∥+ ‖Rn−k‖C

∥∥∥ n∑
i=1

|αi|xi
∥∥∥)

≤M
∥∥∥ n∑
i=1

αixi

∥∥∥ ≤ M(sup
i
‖xi‖)

n∑
i=1

|αi|,

where C denotes the basis constant of (xi) and M = (1 + 2C)KN .
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To finish the proof, simply note that, as no subspace of X is isomorphic
to `1, we must have ‖

∑n
i=1 xi‖ = o(n).

Remark 4.9. Note that
∑

i siri+1 and
∑

i si+1ri, in the statement of
Corollary 4.8, can be seen as left and right shifts operators, respectively,
with respect to the decomposition

⊕∞
i=1Xi of X.

Of course, there are also analogues of Corollaries 4.7 and 4.8 for right
essential bimodules. In this respect, see Remark 3.6 above.

Our next example, the James space, comes to illustrate the fact that the
applications of Theorem 3.4 are not restricted to the setting of Banach spaces
with a cartesian decomposition. Though we will not need its definition, let
us recall that the James space, J, is defined to be the completion of the linear
space of all complex sequences with finite support in the norm

‖(αn)‖J = sup
{(m−1∑

n=1

|αin − αin+1 |2
)1/2

: m, i1, . . . , im ∈ N,

m ≥ 2 and i1 < · · · < im

}
.

It is well known that J does not admit a cartesian decomposition; however,
as another consequence of Theorem 3.4 we have the following.

Corollary 4.10. The Banach algebras W(J) and B(J) are weakly
amenable.

Proof. Let (eγ) be a bounded left approximate identity for W(J) (see
[OT, Proposition 2.5]). We show next that for each element eγ there are
sequences (ri,γ) and (si,γ) in W(J) such that the conditions of Theorem 3.4
are satisfied.

Let (xi) be the unit vector basis of J, let J := (
⊕∞

n=1[xi]
n
1 )`2 and let GJ

be the operator ideal of all bounded linear operators that factor through J ,
with the usual operator-ideal norm. It is well known that J ' J⊕ `2(J) ([Bl,
Lemma 3.9]) and that W(J) = GJ(J) ([La, Theorem 4.3]). Thus, there is
κ > 0 such that for every w ∈ W(J) there are bounded operators, v : J→ J
and u : J → J, satisfying uv = w and ‖u‖ ‖v‖ ≤ κ‖w‖. In particular, for
every eγ there are linear operators rγ : J → J and sγ : J → J so that
rγsγ = eγ and ‖rγ‖ ‖sγ‖ ≤ κ‖eγ‖. Let πn : J ⊕ `2(J) → J (resp. ın :
J → J ⊕ `2(J)) be the natural projection onto the nth summand of `2(J)
(resp. the natural inclusion of the nth summand of `2(J) into J⊕`2(J)), and
let φ : J→ J⊕`2(J) be a Banach space isomorphism. Define sn,γ := φ−1ınsγ
and rn,γ := rγπnφ (n ∈ N). One easily verifies that the sequences (sn,γ) and
(rn,γ) satisfy the conditions of Theorem 3.4 for every bounded derivation
D :W(J)→W(J)′, so W(J) is weakly amenable.

That B(J) is also weakly amenable now follows easily from the result
of the previous paragraph, the well known fact that B(J) ' W(J) ⊕ C and
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the fact that the unitization of a weakly amenable Banach algebra is weakly
amenable ([DGG, Proposition 1.4(ii)]).

Let us say that a Banach space X has the factorization-norm property
if for every pair (Y, Z) of Banach spaces, the function γX : F(Y,Z) → R+

defined by

γX(T : Y → Z) := inf{‖R‖ ‖S‖ : RS = T, S : Y → X and R : X → Z}

is a norm on F(Y,Z), the space of all continuous finite-rank operators from
Y to Z (see [BG1, Section 4]). Now the last corollary can be generalized as
follows.

Corollary 4.11. Let X be a Banach space with the factorization-norm
property and let Y be a Banach space containing a complemented subspace
isomorphic either to `p(X) for some 1 ≤ p < ∞ or to c0(X). If GX(Y ) has
a b.l.a.i. (or a b.r.a.i.) then GX(Y ) is weakly amenable.

Proof. Except for some obvious modifications the proof is almost the
same as that of Corollary 4.10.

Recall that a Banach space X is said to be an Lp-space if it contains a net
(Xα) of finite-dimensional subspaces, directed by inclusion, whose union is
dense in X, and such that supα d(Xα, `

dimXα
p ) <∞ ([LP]). We do not know

whether or not B(X) is weakly amenable for every Lp-space X. Of course, it
is weakly amenable whenever X admits a decomposition as in Corollary 4.2,
which happens to be the case for all isomorphism types of Lp-spaces that we
have knowledge of.

5. On Tsirelson-like spaces. In many important examples of Banach
spaces, the existence of a cartesian decomposition leads to the existence
of a topological direct sum decomposition

⊕∞
i=0Xi with the property that

supi d(Xi, X) <∞. This, however, does not seem to be always the case. For
instance, if T is the dual of Tsirelson’s space and K ≥ 1 then there are no
bounded sequences (ri) and (si) in B(T ) such that risj = δi,j idT (i, j ∈ N)
and

(6) ‖siri(x)‖ ≤ K‖(siri + sjrj)(x)‖ (i, j ∈ N, i < j, x ∈ T ).

The proof of this is the same as that of [CS, Prop. X.c.2]. Unfortunately,
the latter reference contains a few typos, so we have decided to include the
proof here. Let us start by recalling the definition of T .

Given finite subsets E and F of N, let us write E < F if maxE < minF .
Let c00 denote, as customary, the space of all scalar sequences with finite
support, and let (tn) be the unit vector basis of c00. Given E ⊆ N and
x =

∑
n αntn ∈ c00, let Ex =

∑
n∈E αntn. Set ‖ · ‖0 := ‖ · ‖c0 and for every
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m ≥ 0 define

‖x‖m+1 := max
{
‖x‖m, 2−1 max

[ k∑
j=1

‖Ejx‖m
]}

(x ∈ c00),

where the inner maximum is taken over all possible choices of finite subsets
E1, . . . , Ek of N so that {k} ≤ E1 < · · · < Ek. It can be shown that ‖x‖ :=
limm ‖x‖m (x ∈ c00) defines a norm on c00. The dual T of Tsirelson’s space
is then defined to be the completion of c00 with respect to this last norm.

Now, to establish the claim, suppose towards a contradiction that there
are bounded sequences (ri) and (si) in B(T ) with the required properties.
Let δ = 1/(4K), choose m so that ‖L‖ ‖L−1‖ > δ−1 supn ‖rn‖ ‖sn‖ for
every linear operator L : [ti]mi=1 → [ti]i>m, and choose n big enough so
that whenever x1, . . . , xn belong to the unit ball of [ti]mi=1, there exist 1 ≤
i, j ≤ n such that ‖xi − xj‖ < δ. Then, for some 1 ≤ j0 ≤ n, we must
have ‖(idT − Pm)x‖ ≥ δ‖x‖ (x ∈ Xj0 := sj0Pm(T )), where Pm denotes the
natural projection from T onto [ti]mi=1. Indeed, if this were not true then for
each 1 ≤ j ≤ n there would be a norm-1 vector xj ∈ Xj (= sjPm(T )) so
that ‖(idT − Pm)xj‖ < δ. By our choice of n, for some 1 ≤ i < j ≤ n we
would have ‖Pmxi − Pmxj‖ < δ, and in turn, from this last and (6),

K−1 = K−1‖(siri)(xi − xj)‖ = ‖(siri + sjrj)(xi − xj)‖ = ‖xi − xj‖
≤ ‖Pmxi − Pmxj‖+ ‖(idT − Pm)xi‖+ ‖(idT − Pm)xj‖ ≤ 3δ,

which is clearly impossible. But then for L : [ti]mi=1 → (idT − Pm)Xj0 , x 7→
(idT − Pm)sj0x, we would have ‖L‖ ‖L−1‖ ≤ δ−1‖sj0‖ ‖rj0‖, contradicting
our choice of m.

We do not know whether there are bounded sequences (ri) and (si) in
B(T ) so that risj = δi,j idT (i, j ∈ N). In fact, we do not even know whether
the sequences (ri) and (si) can be chosen so that the averages n−1

∑n
i=1 risi

be uniformly bounded. For this reason, we will follow here a path similar to
that of [Bl, Section 5]. We start with the following technical result.

Lemma 5.1. Let A be a Banach algebra, let e ∈ A be an idempotent
and let (ri) and (si) be sequences in A such that risj = δi,je (i, j ∈ N).
Suppose, in addition, that sie = si and eri = ri (i ∈ N). Let X be a Banach
A-bimodule and let D : A → X′ be a derivation. Then, for every ξ ∈ X and
every n ∈ N, we have

〈eξe, ϕ2n〉 = 〈eξe, r1 ·D(s1)〉+
n−1∑
i=0

2−i−1
〈 2i∑
j=1

sjξrj , γi

〉
,

where γi := (
∑2i

j=1 sjr2i+j) ·D(
∑2i

j=1 s2i+jrj) (i ∈ N ∪ {0}).
Proof. The proof is by induction on n. The case n = 1 is easily verified.

Suppose the identity has been established for some n. Then note that
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〈 2n∑
j=1

sjξrj , γn

〉
=
〈 2n∑
j=1

sjξrj ,
( 2n∑
j=1

sjr2n+j

)
·D
( 2n∑
j=1

s2n+jrj

)〉

=
〈 2n∑
j=1

sjξrj ,

2n∑
j=1

(sjr2n+j) ·D(s2n+jrj)
〉

=
2n∑
j=1

〈sjξe, r2n+j ·D(s2n+jrj)〉

=
2n∑
j=1

〈eξe, r2n+j ·D(s2n+j)〉+
2n∑
j=1

〈eξe,D(rj) · sj〉

=
2n+1∑

j=2n+1

〈eξe, rj ·D(sj)〉 −
2n∑
j=1

〈eξe, rj ·D(sj)〉.

Combining this last with the induction hypothesis, we obtain

〈eξe, r1 ·D(s1)〉+
n∑
i=0

2−i−1
〈 2i∑
j=1

sjξrj , γi

〉

= 〈eξe, ϕ2n〉+ 2−n−1
〈 2n∑
j=1

sjξrj , γn

〉

= 2−n
2n∑
j=1

〈eξe, rj ·D(sj)〉 − 2−n−1
2n∑
j=1

〈eξe, rj ·D(sj)〉

+ 2−n−1
2n+1∑

j=2n+1

〈eξe, rj ·D(sj)〉

= 〈eξe, ϕ2n+1〉,
and so the identity holds for n+ 1 too.

Corollary 5.2. Let X be a Banach space such that there exist sequences
(ri) and (si) in B(X) satisfying risj = δi,j idX (i, j ∈ N). Let

Γn :=
∥∥∥ n∑
j=1

sjrn+j

∥∥∥∥∥∥ n∑
j=1

sn+jrj

∥∥∥ (n ∈ N).

If

‖∆2i(w)‖ = o(
√

2i) and
∞∑
i=0

Γ2i‖∆2i(w)‖
2i

<∞ (w ∈ B(X)),

then B(X) is weakly amenable.
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Proof. Let D : B(X)→B(X)′ be a continuous derivation. By Lemma 5.1,

|〈w,ϕ2n〉|≤‖D‖ ‖r1‖ ‖s1‖ ‖w‖+ ‖D‖
∞∑
i=0

2−i−1Γ2i‖∆2i(w)‖ (w ∈ B(X)).

Thus, (ϕ2n) is a bounded sequence.
On the other hand,

|〈∆2i(v), D(∆2i(w))〉| ≤ ‖D‖ ‖∆2i(v)‖ ‖∆2i(w)‖ = o(2i) (v, w ∈ B(X)).

To finish the proof one just needs to apply Theorem 3.4.

Corollary 5.3. The algebra B(T ) is weakly amenable.

Before giving the proof, we need to recall a few basic facts about T .
As above, let (ti) be the unit vector basis of T . Then for every

∑
i αiti ∈ T

and every strictly increasing sequence (ni) of positive integers,

(7)
∥∥∥∑

i

αiti

∥∥∥ ≤ ∥∥∥∑
i

αitni

∥∥∥.
In the opposite direction, there exists a constant K > 0 such that

(8)
∥∥∥∑

i

αit2i
∥∥∥ ≤ K∥∥∥∑

i

αiti

∥∥∥ (∑
i

αiti ∈ T
)
.

If L and R are the left and right shift operators, respectively, with respect
to (ti) then ‖Ln‖ = 1 and ‖Rn‖ = O(n3) (n ∈ N) ([Bl, Lemma 5.3]).

We will also need the following.

Lemma 5.4 ([CS, Proposition V.12]). For any n ∈ N, let {In, In+1, . . . ,
In2n} be a partition of N∩[n,∞[. Set Xj = [tk : k ∈ Ij ] (n ≤ j ≤ n2n). Then
there exists a constant M , independent of n and the partition chosen, such
that ‖I‖ ‖I−1‖ ≤ M , where I denotes the formal identity map from [tk]∞k=n
to (⊕n≤j≤n2n Xj)`1.

Proof of Corollary 5.3. For each n ∈ N, define En ⊂ N by En := {2k+n :
k > ρ(n)}, where ρ(n) = log2 n, and let Xn := [ti : i ∈ En]. Note that
Xn∩Xm = {0} whenever n 6= m. Indeed, it suffices to see that En∩Em = ∅
whenever n 6= m. For this, suppose towards a contradiction that there are
i > ρ(n) and j > ρ(m) so that 2i + n = 2j + m. As m 6= n, we must have
i 6= j. Without loss of generality, suppose i < j. Then ρ(n) < i ⇒ n < 2i ⇒
2i + n < 2i+1 < 2j +m, a contradiction.

Next, for every n ∈ N, define sn ∈ B(T ) by sn(ti) := t2ρ(n)+i−1+n (i ∈ N),
and let rn ∈ B(T ) be so that rnsn = idT and snrn (=: πn) is the natural
projection onto Xn. From (7) and (8) one sees that, for every x=

∑
i αiti∈T ,

‖sn(x)‖ ≤
∥∥∥∑

i

αit2ρ(n)+i

∥∥∥ ≤ K∥∥∥∑
i

αitρ(n)+i

∥∥∥ ≤ K‖Rρ(n)‖ ‖x‖,

so ‖sn‖ = O(ρ(n)3).
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Let w ∈ B(T ), x ∈ T and n ∈ N be arbitrary. Then

‖∆2n(w)(x)‖ =
∥∥∥ 2n∑
k=1

skwrkL
nRnxk

∥∥∥ ≤ (max
k
‖sk‖ ‖rk‖)‖w‖

2n∑
k=1

‖Rnxk‖

≤ (max
k
‖sk‖ ‖rk‖)‖w‖M‖Rn‖ ‖x‖,

where xk = πkx (k ∈ N) and the second inequality follows from Lemma 5.4.
Combining this last with our estimates for ‖sn‖ and ‖Rn‖ one readily gets

‖∆2n(w)‖ = (max
k
‖sk‖ ‖rk‖)‖w‖M‖Rn‖ = O(n6).

Similarly, one verifies that, for n ∈ N,∥∥∥ 2n∑
k=1

skr2n+k

∥∥∥ ≤M max
k
‖skr2n+k‖ = O(n3),

∥∥∥ 2n∑
k=1

s2n+krk

∥∥∥ ≤M‖Rn‖max
k
‖s2n+krk‖ = O(n6).

The desired result then follows as a consequence of Corollary 5.2.

6. Direct sums. In this final section we present some results on weak
amenability of B(X) in the case where X is a finite direct sum of Banach
spaces with direct sum decompositions of the kind considered in Section 4.
Strictly speaking, these results should not be seen as results on direct sums
but rather as further applications of Theorem 3.4. The main result of the
section is the following.

Proposition 6.1. Let X1 and X2 be Banach spaces with decompositions⊕∞
i=0X1,i and

⊕∞
i=0X2,i, respectively, such that supi d(X1, X1,i) < ∞ and

supi d(X2, X2,i) < ∞. Moreover, suppose there are 1 < s ≤ r < ∞ so that
at least one of the following holds:

(1)
⊕∞

i=0X1,i satisfies a lower r-estimate and an upper s-estimate, and⊕∞
i=0X2,i satisfies an upper r-estimate.

(2)
⊕∞

i=0X1,i satisfies a lower r-estimate and an upper s-estimate, and⊕∞
i=0X2,i satisfies a lower s-estimate.

If B(X1) and B(X2) are weakly amenable then so is B(X1 ⊕X2).

Proof. Let πi : X1 ⊕X2 → Xi (resp. ıi : Xi → X1 ⊕X2), i = 1, 2, stand
for the canonical ith coordinate projection (resp. embedding), and for every
w ∈ B(X1 ⊕X2), let wij := πiwıj (1 ≤ i, j ≤ 2). Also, let πi,j : Xi → Xi,j

(resp. ıi,j : Xi,j → Xi), i ∈ {1, 2}, j ∈ N, denote the corresponding canonical
projection (resp. embedding) with respect to the decomposition

⊕∞
j=0Xi,j .

Choose bounded sequences (ri,j)j∈N and (si,j)j∈N in B(Xi) so that ri,jsi,k
= δj,kπiıi and si,jri,j = ıi,jπi,j (j, k ∈ N, i = 1, 2), and define rj := ı1r1,jπ1 +
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ı2r2,jπ2 and sj := ı1s1,jπ1 + ı2s2,jπ2 (j ∈ N). Note that the sequences (rj)
and (sj), defined in this way, commute with ıiπi (i = 1, 2).

Suppose (1) holds, and to fix ideas, suppose that

c−1
1

(∑
j

‖x1,j‖r
)1/r

≤
∥∥∥∑

j

x1,j

∥∥∥ ≤ C1

(∑
j

‖x1,j‖s
)1/s

and ∥∥∥∑
j

x2,j

∥∥∥ ≤ C2

(∑
j

‖x2,j‖r
)1/r

,

whenever (x1,j) and (x2,j) are finite sequences in X1 and X2, respectively,
so that x1,j ∈ X1,j and x2,j ∈ X2,j for every j.

Then the decomposition
⊕

j(X1,j ⊕X2,j) of X1 ⊕X2 satisfies an upper
s-estimate. Indeed,∥∥∥∑

j

(x1,j , x2,j)
∥∥∥ =

∥∥∥(∑
j

x1,j ,
∑
j

x2,j

)∥∥∥ ≤ ‖ı1‖∥∥∥∑
j

x1,j

∥∥∥+ ‖ı2‖
∥∥∥∑

j

x2,j

∥∥∥
≤ C1‖ı1‖

(∑
j

‖x1,j‖s
)1/s

+ C2‖ı2‖
(∑

j

‖x2,j‖r
)1/r

≤ (C1‖ı1‖ ‖π1‖+ C2‖ı2‖ ‖π2‖)
(∑

j

‖(x1,j , x2,j)‖s
)1/s

.

Thus, to establish the desired result, it will be enough, by Corollary 4.2,
to show that for every pair u, v ∈ B(X1 ⊕ X2) and for every continuous
derivation D : B(X1 ⊕X2)→ B(X1 ⊕X2)′,

(9) n−1〈∆n(u), D(∆n(v))〉 → 0,

where ∆n(w) :=
∑n

k=1 skwrk (w ∈ B(X1 ⊕X2)). One easily sees that

〈u,D(v)〉 =
∑
i,j

〈ıiuijπj , D(ıjvjiπi)〉,

and in turn,

〈∆n(u), D(∆n(v))〉 =
∑
k

〈skurk, D(skvrk)〉

=
∑
k

∑
i,j

〈ıiπiskurkıjπj , D(ıjπjskvrkıiπi)〉

=
∑
i,j

〈∆n(ıiuijπj), D(∆n(ıjvjiπi))〉.

So, in order to establish (9), it suffices to show that

n−1〈∆n(ıiuijπj), D(∆n(ıjvjiπi))〉 → 0 (1 ≤ i, j ≤ 2).
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Next note that

〈∆n(ıiuiiπi), D(∆n(ıiviiπi))〉 = 〈ıi∆i,n(uii)πi, D(ıi∆i,n(vii)πi)〉
= 〈∆i,n(uii), Dii(∆i,n(vii))〉,

where ∆i,n : B(Xi)→B(Xi), w 7→
∑n

k=1 si,kwri,k, and Dii : B(Xi)→B(Xi)′

is defined by 〈u,Dii(v)〉 = 〈u, πi ·D(ıivπi) · ıi〉 (i = 1, 2). One easily verifies
that Dii (i=1, 2) is a derivation. That n−1〈∆n(ıiuiiπi), D(∆n(ıiviiπi))〉→0
(i = 1, 2) now follows immediately from Corollary 4.2, since

⊕∞
k=0Xi,k sat-

isfies an upper s-estimate and B(Xi) is weakly amenable.
As for the other two cases, we argue as follows. Let (x1, x2) ∈ X1 ⊕X2

and w ∈ B(X1 ⊕X2) be arbitrary. First note that

‖∆n(ı1w12π2)(x1, x2)‖

≤
∥∥∥∑

k

ı1s1,kw12r2,kx2

∥∥∥ ≤ C1‖ı1‖
(∑

k

‖s1,kw12r2,kx2,k‖s
)1/s

≤ C1n
1/s‖ı1‖(sup

k
‖s1,k‖ ‖r2,k‖)‖w12‖ sup

k
‖x2,k‖

≤ 2C1Cn
1/s‖ı1‖ ‖π2‖(sup

k
‖s1,k‖ ‖r2,k‖)‖w12‖‖(x1, x2)‖,

where C is the constant of the decomposition
⊕∞

k=0X2,k. So

‖∆n(ı1w12π2)‖ ≤ Kn1/s‖w12‖
for some constant K independent of w and n. Second,

‖∆n(ı2w21π1)(x1, x2)‖

≤
∥∥∥∑

k

ı2s2,kw21r1,kx1

∥∥∥ ≤ C2‖ı2‖
(∑

k

‖s2,kw21r1,kx1,k‖r
)1/r

≤ C2‖ı2‖(sup
k
‖s2,k‖ ‖r1,k‖)‖w21‖

(∑
k

‖x1,k‖r
)1/r

≤ C2c1‖ı2‖ ‖π1‖(sup
k
‖s2,k‖ ‖r1,k‖)‖w21‖‖(x1, x2)‖.

So,
‖∆n(ı2w21π1)‖ ≤ L‖w21‖,

where L is a constant independent of w and n.
Thus, if i 6= j then, combining the above estimates, one obtains

|〈∆n(ıiuijπj), D(∆n(ıjvjiπi))〉| ≤ KLn1/s‖D‖ ‖uij‖ ‖vji‖ = o(n),

as needed. This concludes the proof in the case where (1) is satisfied.
If (2) is satisfied the proof is very similar, so we will not give it in

full detail. In this case, one can show that
⊕

j(X1,j ⊕ X2,j) satisfies a
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lower r-estimate. Then, taking into account this last and the fact that
B(Xi) is weakly amenable (i = 1, 2), one can deduce, exactly as above,
that n−1〈∆n(ıiuiiπi), D(∆n(ıiviiπi))〉 → 0 as n→∞ (i = 1, 2). Finally, one
can find constants K1 and L1 so that, for every w ∈ B(X1 ⊕X2),

‖∆n(ı1w12π2)‖ ≤ K1‖w12‖ and ‖∆n(ı2w21π1)‖ ≤ L1n
(r−1)/r‖w21‖.

That n−1〈∆n(ıiuijπj), D(∆n(ıjvjiπi))〉 → 0 as n → ∞ (1 ≤ i 6= j ≤ 2)
follows readily from these last two inequalities.

As a consequence of Proposition 6.1 we have the following.

Corollary 6.2. Let E1, . . . , En be Banach spaces so that at least one
of the following holds:

(1) For every 1 ≤ i ≤ n there exists 1 ≤ pi <∞ so that Ei ' `pi(Ei).
(2) For every 1 ≤ i ≤ n there exists 1 < pi ≤ ∞ so that Ei ' `pi(Ei).

Then B(E1 ⊕ · · · ⊕ En) is weakly amenable.

Proof. It will be enough to show that if either 1 ≤ pn < pn−1 < · · · <
p1 < ∞ or 1 < p1 < · · · < pn−1 < pn ≤ ∞ then B(`p1(E1) ⊕ · · · ⊕ `pn(En))
is weakly amenable. Note that if pi = pj for some 1 ≤ i 6= j ≤ n then
`pi(Ei)⊕ `pj (Ej) ' `pi(Ei ⊕ Ej).

Let us start by considering the case where 1 ≤ pn < pn−1 < · · · < p1

<∞. We argue by induction on n. By Proposition 3.2, the result is true for
n = 1. Let us suppose the result has been established for n = k. We then
prove it for n = k + 1.

Set X1 = `p1(E1) ⊕ · · · ⊕ `pk(Ek) and X2 = `pk+1
(Ek+1). Moreover, let

{Ni : i ∈ N} be a partition of N into infinite subsets, and let Xl,j = {(ei) ∈
`pl(El) : ei = 0 if i /∈ Nj}, 1 ≤ l ≤ n + 1. Then X1 = ⊕kl=1(

⊕∞
j=1Xl,j) =⊕∞

j=1(⊕kl=1Xl,j) and ⊕kl=1Xl,j
∼= X1 (j ∈ N). This last decomposition of

X1 satisfies a lower p1-estimate and an upper pk-estimate. Indeed, let πl :
X1 → `pl(El) (resp. ıl : `pl(El) → X1), 1 ≤ l ≤ k, denote the canonical lth
coordinate projection (resp. embedding). Then(∑

j

‖(x1,j , . . . , xk,j)‖p1
)1/p1

≤
(∑

j

( k∑
l=1

‖ıl‖ ‖xl,j‖
)p1)1/p1

≤
k∑
l=1

‖ıl‖
(∑

j

‖xl,j‖p1
)1/p1

=
k∑
l=1

‖ıl‖
∥∥∥∑

j

xl,j

∥∥∥ ≤M∥∥∥∑
j

(x1,j , . . . , xk,j)
∥∥∥
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and∥∥∥∑
j

(x1,j , . . . , xk,j)
∥∥∥

≤
∥∥∥(∑

j

x1,j , . . . ,
∑
j

xk,j

)∥∥∥ ≤ k∑
l=1

‖ıl‖
(∑

j

‖xl,j‖pl
)1/pl

≤M
(∑

j

‖(x1,j , . . . , xk,j)‖pk
)1/pk

,

where M =
∑k

l=1 ‖ıl‖ ‖πl‖. Also, it is easy to see that
⊕∞

j=1Xk+1,j sat-
isfies a lower pk-estimate, so condition (2) of Proposition 6.1 holds. As
B(`pk+1

(Ek+1)) is weakly amenable and, by the induction hypothesis, B(X1)
is weakly amenable too, we can apply Proposition 6.1 to conclude that
B(X1 ⊕ `pk+1

(Ek+1)) is weakly amenable.
If 1 < p1 < · · · < pn ≤ ∞ then one can argue in almost the same way

as in the previous paragraph. We only need to note that, in the induction
argument, if one defines X1, X2,

⊕
j X1,j and

⊕
j X2,j exactly as we did

before, then
⊕

j X1,j satisfies a lower pk-estimate and an upper p1-estimate,
and

⊕
j X2,j satisfies an upper pk-estimate, i.e., (1) of Proposition 6.1 is

satisfied instead of (2). The rest of the argument remains the same.

Corollary 6.3. The algebra B(`p1 ⊕ · · · ⊕ `pn), where 1 ≤ p1, . . . , pn
<∞ (resp. 1 < p1, . . . , pn ≤ ∞), is weakly amenable.

Proof. This is an immediate consequence of the previous corollary.

Remark 6.4. The strict inequality in the hypotheses of Corollary 6.3 is
not an essential requirement. However, the extreme cases need to be handled
differently. Let us show, for instance, that B(c0⊕`1) is weakly amenable. For
this, let C(X) denote the quotient B(X)/A(X). By Pitt’s theorem, C(c0⊕`1)
can be represented as a unital algebra of 2×2 upper triangular matrices, with
diagonal entries coming from the unital Banach algebras C(c0) and C(`1). As
C(c0) and C(`1) are weakly amenable, so is C(c0 ⊕ `1), by [Ly, Proposi-
tion 2.11]. Then, as A(c0⊕ `1) is weakly amenable ([Bl2, Corollary 3.8]) and
C(c0 ⊕ `1) is weakly amenable, B(c0 ⊕ `1) is weakly amenable too (see [LW,
Proposition 5.5]).

Unfortunately, the conditions of Corollary 6.1 are not conditions that
one can verify separately for each summand (as in [Bl2, Theorem 3.6], for
instance), and we have not been able to make much progress in this direction.
We thus finish this note with the following question.

Suppose B(X) and B(Y ) are weakly amenable. Is B(X ⊕ Y ) weakly
amenable?
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