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Brézis–Gallouët–Wainger type inequality
for Besov–Morrey spaces

by

Yoshihiro Sawano (Tokyo)

Abstract. The aim of the present paper is to obtain an inequality of Brézis–Gallouët–
Wainger type for Besov–Morrey spaces. We investigate these spaces in a self-contained
manner. Also, we verify that our result is sharp.

1. Introduction. In the present paper we shall obtain an inequality
of Brézis–Gallouët–Wainger type for Besov–Morrey spaces. Let us begin by
describing Morrey spaces.

Let 0 < q ≤ p <∞. Then the Morrey (quasi-)norm is given by

(1.1) ‖f‖Mp
q
≡ sup

B
|B|1/p−1/q

( �

B

|f(x)|q dx
)1/q

,

where B runs over all the open balls in Rn. Note that Morrey spaces include
the Lp spaces as a special case when 0 < p = q <∞ and that Mp

q is mono-
tone with respect to q. An easy calculation yields the following example.

Proposition 1.1. |x|−n/p ∈Mp
q \ Lp with 0 < q < p <∞.

As Proposition 1.1 shows, Morrey spaces can deal directly with functions
having singularity |x|−n/p. From this fact it seems that the parameter p in
the Morrey space Mp

q reflects the global regularity.
With this in mind, let us describe the Besov–Morrey norm. About a

decade ago, Besov–Morrey spaces were investigated in connection with the
Navier–Stokes equations by Kozono and Yamazaki (see [5]). Later, several
people studied Besov–Morrey spaces and their variants (see [6, 7, 11, 10, 12]).
Let 0 < r ≤ ∞ and 0 < q ≤ p <∞. We pick a smooth function ψ ∈ S so that
χB1 ≤ ψ ≤ χB2 . Here and below we shall denote by Br the open ball centered
at the origin and of radius r > 0. We write ϕj ≡ ψ(2−j ·) − ψ(2−j+1·) and
ψj ≡ ψ(2−j ·) for j ∈ Z. We denote by F and F−1 the Fourier transform and
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its inverse respectively. Given f ∈ S ′ and τ ∈ S, we set τ(D)f ≡ F−1τ ∗ f .
Then define the Besov–Morrey norm by

(1.2) ‖f‖N spqr ≡ ‖ψ(D)f‖Mp
q

+
( ∞∑
j=1

2jsr‖ϕj(D)f‖rMp
q

)1/r

for 0 < q ≤ p <∞, 0 < r ≤ ∞ and s ∈ R. An important observation made
in [12] is that the definition of the Besov–Morrey norm (1.2) is independent
of the choice of ψ and ϕ: more precisely, different choices of admissible
ψ and ϕ will yield equivalent norms. In [11] we defined the homogeneous
Besov–Morrey norm by

(1.3) ‖f‖Ṅ spqr ≡
( ∞∑
j=−∞

2jsr‖ϕj(D)f‖rMp
q

)1/r

for f ∈ S ′/P, where P ⊂ S ′ denotes the set of all polynomials, and 0 <
q ≤ p < ∞, 0 < r ≤ ∞ and s ∈ R. Recall that the homogeneous and
nonhomogeneous Besov norms are given by

‖f‖Ḃs,p,q ≡
( ∞∑
j=−∞

2jsq‖ϕj(D)f‖qp
)1/q

,(1.4)

‖f‖Bs,p,q ≡ ‖ψ(D)f‖p +
( ∞∑
j=1

2jsq‖ϕj(D)f‖qp
)1/q

,(1.5)

respectively, where 0 < p, q ≤ ∞, 0 < r ≤ ∞ and s ∈ R. Hence we see that
these Besov–Morrey norms generalize the corresponding Besov norms. We
refer to [5, 6, 7, 11, 12] for more details on Besov–Morrey spaces.

In [10], by using the homogeneous and nonhomogeneous Hölder norms
Ċs−n/p and Cs−n/p, we have established that

(1.6) Ṅ s
pqr ↪→ Ċs−n/p, N s

pqr ↪→ Cs−n/p

for s > n/p, which is a new formulation of the Morrey lemma obtained
originally in 1938 [9]. The following theorem, which is the main theorem in
the present paper, quantifies (1.6) more precisely. Here and below we shall
write logα x = (log x)α for α ∈ R and x > 0.

Theorem 1.1. Let 1 ≤ σ ≤ ∞, s > α > 0 and 0 < q ≤ n/(s−α). Then
there exists a constant C > 0 such that

(1.7) ‖u‖B0,∞,1 ≤ C‖u‖Ḃ0,∞,σ log1−1/σ

(
2 +
‖u‖N s

n/(s−α),q,∞

‖u‖Ḃ0,∞,σ

)
.

It is worth noting that we only need a very weak assumption on the
growth of f at infinity, say, f ∈ N s

n/(s−α),q,∞ with 0 < q � n/(s − α), in

order for f ∈ Ḃ0,∞,σ to belong to f ∈ B0,∞,1. In Section 4 we shall show
that (1.7) is sharp (see Propositions 4.1 and 4.2).
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Now let us look back briefly on the foregoing results. The inequality (1.8)
below, which Theorem 1.1 extends, dates back to the results by Brézis and
Gallouët and by Brézis and Wainger [1, 2]. They established the following
inequality:

Proposition 1.2. Let 1 < p <∞, 1 ≤ r ≤ ∞. Assume in addition that
s is an integer with s > n/r. Then there exists λ > 0 such that

(1.8) ‖u‖p/(p−1)
L∞(Rn) ≤ λ(1 + log(1 + ‖u‖W s,r(Rn)))

for all u ∈Wn/p,p(Rn) ∩W s,r(Rn) under the normalization

‖u‖Wn/p,p(Rn) = 1.

Brézis and Gallouët [2] proved Proposition 1.2 for s = r = n = p = 2.
Brézis and Wainger [1] generalized it to the present form.

Kozono, Ogawa and Taniuchi [4] extended the Brézis–Gallouët–Wainger
inequality considerably:

Proposition 1.3. Let 1 ≤ p, ρ, σ ≤ ∞, 1 ≤ q <∞ and s > n/q. Then

‖u‖ρ/(ρ−1)
L∞(Rn) ≤ C log(2 + ‖u‖Bs,q,σ(Rn)) whenever ‖u‖Ḃn/p,p,ρ(Rn) = 1.

We learn from Theorem 1.1 that the assumption 1 ≤ q is not necessary
in Proposition 1.3 and that we only have to postulate a weak restriction on
the growth at infinity.

We are not concerned with the constants C in Theorem 1.1 and Proposi-
tion 1.3, since the Besov norms in question depend on the specific choice of ψ.
However, as a special case of Theorem 1.1, Morii, Sato and Wadade obtained
the following beautiful inequality. To formulate it, we let Λ1 ≡ ω−1/(n−1)

n−1 and
Λ2 ≡ Λ1/n. Define Ċα(B1) as the set of all continuous functions f supported
on B1 for which the seminorm ‖f‖Ċα(Rn) is finite.

Proposition 1.4 ([8]). Let 0 < α < 1. Then there exists a large constant
C > 0 such that(

‖f‖∞
‖∇f‖n

)n/(n−1)

≤ Λ1

α
log
(

1 +
‖f‖Ċα(B1)

‖∇f‖n

)
(1.9)

+
Λ2

α
log
(

1 + log
(

1 +
‖f‖Ċα(B1)

‖∇f‖n

))
+ C

for all f ∈ Ċα(B1). Conversely, if λ2 < Λ2/α, then for any constant C > 0
we can find f ∈ C∞c (B1) such that
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‖f‖∞
‖∇f‖n

)n/(n−1)

>
Λ1

α
log
(

1 +
‖f‖Ċα(B1)

‖∇f‖n

)
(1.10)

+ λ2 log
(

1 + log
(

1 +
‖f‖Ċα(B1)

‖∇f‖n

))
+ C.

To conclude this section, we describe the organization of the paper. Some
preliminary facts are collected in Section 2. All the results in Section 2 are
known and the references are given. Section 3 is devoted to the proof of
Theorem 1.1. We show that Theorem 1.1 is sharp in Section 4.

2. Some estimates for band-limited distributions. This section
collects some preliminary estimates for band-limited distributions. The
proofs are supplied except for Theorems 2.1 and 2.2.

Theorem 2.1 ([3, 12]). Let 1 < q ≤ p <∞. Then

(2.1) ‖Mf‖Mp
q
≤ C‖f‖Mp

q

for all f ∈Mp
q, where M denotes the Hardy–Littlewood maximal operator.

Theorem 2.2 ([13, Theorem 1.3.1, Section 1.4.1]). Let f ∈ S ′ have
frequency support in B1. Then for all η > 0, there exists a constant C > 0
independent of f such that

(2.2) sup
y∈Rn

|f(x− y)|
1 + |y|n/η

≤ CM [|f |η](x)1/η

for every x ∈ Rn.

The next estimate is an immediate corollary of Theorems 2.1 and 2.2.

Corollary 2.1 ([11, Corollary 2.3]). Let 0 < q ≤ p <∞. Then

(2.3) ‖f‖∞ ≤ C‖f‖Mp
q

for all f ∈Mp
q ∩ S ′ with supp(Ff) ⊂ B1.

Proof. Let 0 < η < q. By Theorem 2.2, we have

(2.4) ‖f‖∞ = sup
B

(sup
x∈B
|f(x)|) ≤ C sup

B

( �

B

M [|f |η](x)q/η dx
)1/q

,

where B runs over all balls in Rn of radius 1. In view of the definition of the
Morrey norm (1.1), we have

sup
B

( �
B

M [|f |η](x)q/η dx
)1/q

≤ C‖M [|f |η]‖1/η
Mp/η

q/η

(2.5)

= C‖|f |η‖1/η
Mp/η

q/η

≤ C‖f‖Mp
q
.

Combining (2.4) and (2.5), we obtain (2.3).
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We transform (2.3) into a form which we shall use in the present paper.

Lemma 2.1 ([11, Corollary 2.9]). Let 0 < q ≤ p <∞ and R > 0. Then

(2.6) ‖f‖∞ ≤ CRn/p‖f‖Mp
q

for all f ∈Mp
q ∩ S ′ with supp(Ff) ⊂ BR, where C is the constant of (2.3).

Proof. This is just a matter of dilation of the estimate (2.3). Apply
Corollary 2.1 to f(R−1 · ).

3. Proof of Theorem 1.1. Our proof consists of establishing the fol-
lowing two inequalities:

‖ψ(D)u‖∞ ≤ C‖u‖Ḃ0,∞,σ log1−1/σ

(
2 +
‖u‖N s

n/(s−α),q,∞

‖u‖Ḃ0,∞,σ

)
,(3.1)

‖(1− ψ(D))u‖B0,∞,1 ≤ C‖u‖Ḃ0,∞,σ log1−1/σ

(
2 +
‖u‖N s

n/(s−α),q,∞

‖u‖Ḃ0,∞,σ

)
.(3.2)

Actually, instead of (3.2), we shall prove more:

(3.3) ‖(1− ψ(D))u‖B0,∞,1 ≤ C‖u‖Ḃ0,∞,σ log1−1/σ

(
2 +

‖u‖Ċα
‖u‖Ḃ0,∞,σ

)
.

Let us begin by proving (3.3). Taking into account the frequency support of
the functions and using the triangle inequality, we obtain

(3.4) ‖(1− ψ(D))u‖B0,∞,1 = C
∥∥∥ ∞∑
j=0

(1− ψ(D))ϕj(D)u
∥∥∥
B0,∞,1

≤ C
∞∑
j=0

‖(1− ψ(D))ϕj(D)u‖B0,∞,1

= C
∞∑
j=0

‖(ϕj−1(D) + ϕj(D) + ϕj+1(D))ϕj(D)u‖∞.

By the Young inequality we have

(3.5) ‖(ϕj−1(D) + ϕj(D) + ϕj+1(D))ϕj(D)u‖∞
≤ C‖F−1[ϕj−1] + F−1[ϕj ] + F−1[ϕj+1]‖1 · ‖ϕj(D)u‖∞.

A change of variables yields

(3.6) ‖F−1[ϕj−1] + F−1[ϕj ] + F−1[ϕj+1]‖1 ≤ 3‖F−1[ϕ]‖1.
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If we combine (3.4)–(3.6), we obtain

‖(1− ψ(D))u‖B0,∞,1 ≤ C
∞∑
j=0

‖ϕj(D)u‖∞(3.7)

= C

J∑
j=0

‖ϕj(D)u‖∞ + C

∞∑
j=J+1

‖ϕj(D)u‖∞,

where J is a constant to be fixed later. We estimate the first term of the
right-hand side of (3.7) by the Ḃ0,∞,q-norm:

J∑
j=0

‖ϕj(D)u‖∞ ≤ CJ1−1/σ
( J∑
j=0

‖ϕj(D)u‖σ∞
)1/σ

(3.8)

≤ CJ1−1/σ‖u‖Ḃ0,∞,σ ,

while the second term is estimated by the Hölder norm:

(3.9)
∞∑

j=J+1

‖ϕj(D)u‖∞ ≤
∞∑

j=J+1

2−jα‖u‖Ċα = C 2−Jα‖u‖Ċα .

From (3.7)–(3.9) we deduce

(3.10) ‖(1− ψ(D))u‖B0,∞,1 ≤ CJ1−1/σ‖u‖Ḃ0,∞,σ + C 2−Jα‖u‖Ċα .

This is an estimate we are looking for.
Assuming, for the time being, that

(3.11) ‖u‖Ċα ≥ 2α+1‖u‖Ḃ0,∞,σ ,

we take the smallest J ∈ N such that

(3.12) J1−1/σ‖u‖Ḃ0,∞,σ ≥ 2−Jα‖u‖Ċα .

Note that (3.11) implies that J ≥ 2, which in turn yields

(3.13) (J − 1)1−1/σ‖u‖Ḃ0,∞,σ < 2−(J−1)α‖u‖Ċα

in view of the minimality. From (3.12) and (3.13) we deduce

(3.14) 2−Jα‖u‖Ċα ≤ J
1−1/σ‖u‖Ḃ0,∞,σ ≤ C 2−Jα‖u‖Ċα .

In particular, we have

‖u‖Ḃ0,∞,σ ≤ C 2−Jα‖u‖Ċα , or equivalently,(3.15)

J ≤ C log2

(
2 +

‖u‖Ċα
‖u‖Ḃ0,∞,σ

)
.
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Hence it follows from (3.14) and (3.15) that

‖(1− ψ(D))u‖B0,∞,1 ≤ CJ1−1/σ‖u‖Ḃ0,∞,σ(3.16)

≤ C‖u‖Ḃ0,∞,σ log1−1/σ

(
2 +

‖u‖Ċα
‖u‖Ḃ0,∞,σ

)
,

provided (3.11) holds.
If (3.11) fails, then use (3.10) with J = 1. Then we have

‖(1− ψ(D))u‖B0,∞,1 ≤ C‖u‖Ḃ0,∞,σ(3.17)

≤ C‖u‖Ḃ0,∞,σ log1−1/σ

(
2 +

‖u‖Ċα
‖u‖Ḃ0,∞,σ

)
.

From (3.16) and (3.17) we deduce the inequality (3.3).
Now let us establish (3.1). An argument which we used to deduce (3.7)

and (3.8) yields∥∥∥ −1∑
j=−J

ϕj(D)u
∥∥∥
∞
≤ J1−1/σ

( J∑
j=0

‖ϕj(D)u‖σ∞
)1/σ

(3.18)

≤ J1−1/σ‖u‖Ḃ0,∞,σ .

By using Theorems 2.1 and 2.2 we have

‖ψ−J−1(D)f‖∞ = ‖ψ−J−1(D)ψ(D)f‖∞(3.19)

≤ C 2−J(s−α)‖u‖N s
n/(s−α),q,∞

.

(3.18) and (3.19) yield

(3.20) ‖ψ(D)f‖∞ ≤ C 2−J(s−α)‖u‖N s
n/(s−α),q,∞

.

Once (3.20) was established, going through the same technique used in
(3.10)–(3.18), we obtain (3.1).

4. Sharpness of Theorem 1.1. Now we shall establish that (1.7) is
sharp. Motivated by the example in [8], we shall construct a counterexample
which is quite close to a function having a log-singularity. We shall distort
the function log |x| to construct counterexamples whose Besov norm and
L∞ norm are easy to calculate, while in [8] it was necessary to quantify the
log-singularity in order to obtain the inequality there.

Proposition 4.1. Let 0 < α < 1 and 1 < σ ≤ ∞. Then for any C > 0,
we can find κ ∈ S such that

(4.1) ‖κ‖∞ > C‖κ‖Ḃ0,∞,σ log1−1/σ

(
2 +

‖κ‖Ċα
‖κ‖Ḃ0,∞,σ

)
.

Proof. To calculate the Besov norms, we shall specify the Littlewood–
Paley decomposition more precisely and quantitatively. Let us take κ ∈
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C∞(R) so that χ(−∞,1) ≤ κ ≤ χ(−∞,11/10). We define ϕj(x) = κ(2−j |x|) −
κ(2−j+1|x|) and ψj(x) = κ(2−j |x|) for j ∈ Z. Note that

(4.2) χB
2−j \B2−j ·11/20

≤ ϕj ≤ χB
2−j ·11/10\B2−j ·1/2

.

Recall that the Besov norm ‖f‖Ḃ0,∞,σ is given by

‖f‖Ḃ0,∞,σ =
( ∞∑
j=−∞

‖ϕj(D)f‖σ∞
)1/σ

.(4.3)

Take an auxiliary radial function τ ∈ S so that

(4.4) χB
2−j ·4/5\B2−j ·7/10

≤ τ ≤ χB
2−j ·9/10\B2−j ·3/5

.

We set τj(ξ) ≡ τ(2−jξ) for j ∈ N. We define

(4.5) κJ(x) = (2π)−n/2
�

Rn

( −1∑
j=−J

τ(2−jξ)
)

exp(iξ · x)
dξ

|ξ|n
.

Then we have

‖κJ‖∞ = κJ(0) = (2π)−n/2
�

Rn

( −1∑
j=−J

τ(2−jξ)
) dξ
|ξ|n

(4.6)

= (2π)−n/2J
�

Rn
τ(ξ)

dξ

|ξ|n

from (4.5).
To estimate the Cα norm, we use the following: From (4.5) we have

∂βκJ(x) = (2π)−n/2
�

Rn

( −1∑
j=−J

τ(2−jξ)
)

(iξ)β exp(iξ · x)
dξ

|ξ|n

for all β ∈ (N∪{0})n\{(0, . . . , 0)}, which implies that there exists a constant
C independent of J such that

(4.7) ‖∂βκJ‖∞ ≤ C <∞.
Set

BM = {f ∈ CM : ∂αf ∈ L∞ for all |α| ≤M},
which is normed by

‖f‖BM =
∑
|β|≤M

‖∂βf‖∞.

From (4.6) and (4.7) we have

(4.8) ‖κJ‖BM =
∑
|α|≤M

‖∂ακJ‖∞ ≤ CJ.
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Since Bbαc+1 ↪→ Cα, (4.8) yields

(4.9) ‖κJ‖Cα ≤ C‖κJ‖BM ≤ CJ.

Finally, we shall estimate the Besov norm ‖κJ‖Ḃ0,∞,σ . With the norm spec-
ified by (4.2), we conclude from (4.3) that

‖κJ‖Ḃ0,∞,σ = C

( −1∑
j=−J

∥∥∥∥F−1

[
τj
|ξ|n

]∥∥∥∥σ
∞

)1/σ

= C

∥∥∥∥F−1

[
τ

|ξ|n

]∥∥∥∥
∞
J1/σ.(4.10)

It is easy to see that

(4.11) lim
J→∞

J

J1/σ log1−1/σ J
= lim

J→∞

(
J

log J

)1−1/σ

=∞,

provided 1 < σ ≤ ∞. If J � 1, we see that (4.1) holds from (4.6) and
(4.9)–(4.11).

Proposition 4.2. Let s > α > 0, 0 < q ≤ ∞ and 1 < σ ≤ ∞. Assume
that u < 1− 1/σ. Then for any C > 0, we can find µ ∈ S such that

(4.12) ‖µ‖∞ > C‖µ‖Ḃ0,∞,σ logu
(

2 +
‖µ‖Bs,n/(s−α),q

‖µ‖Ḃ0,∞,σ

)
.

Proof. Maintain the same notation as in the proof of Proposition 4.1.
Set

(4.13) µJ =
J∑
j=1

µj .

In analogy with (4.6) and (4.10), we can deduce

‖µJ‖∞ = (2π)−n/2J
�

Rn
τ(ξ)

dξ

|ξ|n
,(4.14)

‖µJ‖Ḃ0,∞,σ = ‖F−1[τ0]‖∞J1/σ.(4.15)

What is different from the proof of Proposition 4.1 is the estimate of the
Besov norm ‖µJ‖Bs,n/(s−α),q . However, a similar strategy works. Indeed, we
can calculate with ease

‖µJ‖Bs,n/(s−α),q = C
( J∑
j=1

2jsq‖F−1[τ0](2j ·)‖qn/(s−α)

)1/q
(4.16)

= C
( J∑
j=1

2jαq
)1/q

≤ C 2Jα.

Since u < 1− 1/σ, we see that (4.12) holds with µ = µJ , provided J � 1.
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Proposition 4.3. Let s > α > 0, 0 < q ≤ ∞ and 1 < σ ≤ ∞. Then
for any C > 0, we can find ζ ∈ S such that

(4.17) ‖ζ‖∞ > C‖ζ‖Ḃ0,∞,σ log1−1/σ

(
2 +
‖ζ‖Ṅ s

n/(s−α) qr

‖ζ‖Ḃ0,∞,σ

)
.

Proof. Let C > 0 be fixed. First, we shall prove

(4.18) ‖ζ‖∞ > C‖ζ‖Ḃ0,∞,σ

for some ζ ∈ S, which is well-known. For convenience, we supply a short
proof. Use the notation of Proposition 4.1. Set ζM =

∑M
j=1 j

−2/(1+σ)F−1[τj ].
Then ζM (0)→∞, while supM∈N ‖ζM‖Ḃ0,∞,σ <∞. Hence, we obtain (4.18).

With this in mind we NOW prove Proposition 4.3. Given ζ ∈ S, we have

‖ζj‖∞ = ‖ζ‖∞, ‖ζj‖Ḃ0,∞,σ = ‖ζ‖Ḃ0,∞,σ ,

‖ζj‖Ṅ s
n/(s−α)qr

= 2−jα‖ζ‖Ṅ s
n/(s−α)qr

,

where we have set ζj = ζ(2−j ·). Therefore, if we choose j � 1 so that
‖ζj‖Ṅ s

n/(s−α) qr

‖ζ‖Ḃ0,∞,σ
< e− 2,

then with the help of (4.18), we obtain (4.17).
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