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Invariant measures for Markov operators
with application to function systems

by

Tomasz Szarek (Katowice)

Abstract. A new sufficient condition for the existence of an invariant measure for
Markov operators defined on Polish spaces is presented. This criterion is applied to iterated
function systems.

0. Introduction. The theory of Markov processes is a fast developing
topic which has been extensively studied during the last few years. The
reason for this study was the progress in the theory of fractals. Markov pro-
cesses can be considered from two points of view. They can be investigated
by purely probabilistic and purely analytic methods. In our paper we use the
second approach. More precisely, let {Zn} be a homogeneous Markov chain
taking values in a metric space (X, %) and let π be its transition kernel, i.e.

Prob(Zn+1 ∈ A |Zn = xn, . . . , Z0 = x0) = π(xn, A)

for all n ∈ N and Borel sets A. It is of great interest to give sufficient con-
ditions for the existence of an invariant probability measure for the Markov
chain {Zn}, i.e. a probability measure µ∗ satisfying

µ∗(A) =
�

X

π(x,A)µ∗(dx)

for all Borel sets A (see [4, 9, 13–16]).
In our analytic approach we consider the Markov operator P defined on

the space of all Borel measures given by

Pµ(A) =
�

X

π(x,A)µ(dx).

Consequently, searching for invariant measures of Markov processes can be
replaced by searching for fixed points of P . Using this method does not
involve the probabilistic background of the transition kernels π.
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The theory of Markov operators P with X compact is well developed
(see [5]). For example, the proof of the existence of an invariant measure
goes as follows. First we construct a positive invariant functional on the
space of all bounded continuous functions f : X → R and then using the
Riesz representation theorem we define an invariant measure. This method
was extended by A. Lasota and J. Yorke to the case when X is a locally
compact σ-compact metric space [12]. When X is any Polish space this idea
breaks down, since a positive functional may not correspond to a measure.
In our study we base on the concept of tightness (see also [19]).

In the second part of our paper we consider Markov processes generated
by iterated function systems. Recently such systems have been studied in
detail because of their close connection to fractals [1, 2, 10] and semifractals
[11]. We investigate iterated function systems with place dependent proba-
bilities extending the well known theorem due to Barnsley et al. [2] to Polish
spaces. This part of the paper also generalizes our earlier results [18, 19].

The outline of the paper is as follows. Section 1 contains some notation
and definitions from the theory of Markov operators. In this section we
also introduce the definition of semi-concentrating Markov operators. Such
operators are studied in Section 2. We prove there the main results of the
paper—Theorems 2.1 and 2.2 which assure, for semi-concentrating Markov
operators, the existence of an invariant measure and the attractiveness of
iterates to the family of measures supported on some compact set.

In Section 3 we introduce iterated function systems and discuss the prob-
lem of stability.

1. Preliminaries. Let (X, %) be a Polish space, i.e. a separable, com-
plete metric space. Throughout this paper B(x, r) stands for the closed ball
in X with centre at x and radius r. For every C ⊂ X and r > 0 we denote
by N 0(C, r) the open r-neighbourhood of C, i.e.

N 0(C, r) = {x ∈ X : %(C, x) < r}
and by N (C, r) the closed r-neighbourhood of C, i.e.

N (C, r) = {x ∈ X : %(C, x) ≤ r},
where %(C, x) = inf{%(x, y) : y ∈ C}. Moreover, diamC is the diameter
of C, i.e. diamC = sup{%(x, y) : x, y ∈ C}.

Let B(X) and Bb(X) denote the families of all Borel sets and all bounded
Borel sets in X, respectively. We denote by C(ε), ε > 0, the family of all
C ∈ B(X) for which there exists a finite set {x1, . . . , xn} ⊂ X such that
C ⊂ ⋃ni=1 B(xi, ε), and by Ck(ε), ε > 0, k ∈ N, the family of all C ∈ C(ε)
such that C ⊂ ⋃ki=1 B(xi, ε) for some {x1, . . . , xk} ⊂ X.
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Let Mfin and M1 denote the sets of Borel measures (nonnegative, σ-
additive) on X such that µ(X) < ∞ and µ(X) = 1, respectively. The ele-
ments of M1 are called distributions. We denote by Msig the family of all
signed measures:

Msig = {µ1 − µ2 : µ1, µ2 ∈ Mfin}.
We say that µ ∈ Mfin is concentrated on A ∈ B(X) if µ(X \A) = 0; letMA

1
denote the set of all distributions concentrated on A ∈ B(X).

For A ⊂ X the symbol 1A stands for the characteristic function of A.
As usual, B(X) is the space of all bounded Borel measurable functions
f : X → R and C(X) the subspace of all bounded continuous functions. In
both spaces the norm is

‖f‖0 = sup
x∈X
|f(x)|.

To simplify the notation we write

〈f, ν〉 =
�

X

f(x) ν(dx) for f ∈ B(X), ν ∈ Msig.

In Msig we introduce the Fortet–Mourier norm (see [8]):

‖ν‖ = sup{|〈f, ν〉| : f ∈ F},
where F consists of all functions f ∈ C(X) such that ‖f‖0 ≤ 1 and |f(x)−
f(y)| ≤ %(x, y).

It is known that the convergence limn→∞ ‖µn − µ‖ = 0 for µn, µ ∈ M1

is equivalent to the weak convergence of (µn)n≥1 to µ (see [6]).
Let Θ ⊂ M1. We say that Θ is tight if for every ε > 0 there exists a

compact set K ⊂ X such that µ(K) ≥ 1− ε for all µ ∈ Θ. It is well known
(see [3]) that if the family (µn)n≥1 of distributions is tight then there exists
a subsequence (mn)n≥1 of integers and a measure µ∗ ∈ M1 such that

lim
n→∞

‖µmn − µ∗‖ = 0.

An operator P :Mfin →Mfin is called a Markov operator if it satisfies
the following two conditions:

(i) positive linearity : P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ≥ 0
and µ1, µ2 ∈ Mfin,

(ii) preservation of the norm: Pµ(X) = µ(X) for µ ∈Mfin.

Every Markov operator can be extended to the space of all signed mea-
sures. Namely for every ν ∈Msig, ν = µ1 − µ2, we set

Pν = Pµ1 − Pµ2.

A linear operator U : B(X)→ B(X) is called dual to P if

(1.1) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈ Mfin.
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Setting µ = δx in (1.1) we obtain

(1.2) Uf(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X,
where δx ∈M1 is the point (Dirac) measure supported at x.

From (1.1) it follows immediately that U is a linear operator satisfying

(1.3) Uf ≥ 0 for f ≥ 0, f ∈ B(X),

(1.4) U1X = 1X ,

(1.5) Ufn ↓ 0 for fn ↓ 0, fn ∈ B(X).

Conditions (1.3)–(1.5) allow one to reverse the roles of P and U . Namely
we define an operator P :Mfin →Mfin by setting, for A ∈ B(X),

(1.6) Pµ(A) = 〈U1A, µ〉 for µ ∈ Mfin.

Assume now that P and U are given. If f : X → [0,∞) is a Borel
measurable function, not necessarily bounded, we may assume that

Uf(x) = lim
n→∞

Ufn(x),

where (fn)n≥1, fn ∈ B(X), is an increasing sequence of functions converging
pointwise to f . From the Lebesgue monotone convergence theorem it follows
that Uf satisfies (1.1).

A Markov operator P is called a Feller operator if there exists an operator
U : B(X)→ B(X) satisfying (1.1) such that

(1.7) Uf ∈ C(X) for f ∈ C(X) .

A Markov operator P is called nonexpansive if

(1.8) ‖Pµ1 − Pµ2‖ ≤ ‖µ1 − µ2‖ for µ1, µ2 ∈ M1.

Let P be a Markov operator. A measure µ ∈ Mfin is called stationary
or invariant if Pµ = µ, and P is called asymptotically stable if there exists
a stationary distribution µ∗ such that

(1.9) lim
n→∞

‖Pnµ− µ∗‖ = 0 for µ ∈M1.

Clearly the distribution µ∗ satisfying (1.9) is unique.
We introduce the following notation:

ω(µ) = {ν ∈ M1 : ∃{mn}n≥1, mn →∞, Pmnµ→ ν}.
An operator P is called globally concentrating if for every ε > 0 and

A ∈ Bb(X) there exist Y ∈ Bb(X) and n0 ∈ N such that

(1.10) Pnµ(Y ) ≥ 1− ε for n ≥ n0, µ ∈MA
1 .

An operator P is called semi-concentrating if for every ε > 0 there exist
C ∈ C(ε) and α > 0 such that

(1.11) lim inf
n→∞

Pnµ(C) > α for µ ∈M1.
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2. The existence of invariant measures. We start with easy lemmas:

Lemma 2.1. If ‖µ1 − µ2‖ ≤ ε2 for µ1, µ2 ∈ M1 and some ε > 0 then

µ1(N 0(C, ε)) ≥ µ2(C)− ε for C ∈ B(X).

Lemma 2.2. Let P be a nonexpansive Markov operator. Assume that
there exists a measure µ ∈ M1 such that for every ε > 0 there is a set
C ∈ C(ε) satisfying Pnµ(C) ≥ 1 − ε for n ∈ N. Then (Pnµ)n≥1 is tight.
Moreover , P has an invariant distribution.

The proofs of Lemmas 2.1 and 2.2 can be found in [19].
Let P be a Markov operator. We denote by T (ε), ε > 0, the family of

all C ∈ C(ε) such that there exists a positive number α satisfying

lim inf
n→∞

Pnµ(C) > α for µ ∈M1.

For ε > 0 and k ∈ N write

T k(ε) = Ck(ε) ∩ T (ε).

We are now in a position to formulate the following technical lemma:

Lemma 2.3. Let P be a nonexpansive and semi-concentrating Markov
operator. Then for every ε > 0 there exist an integer k, a sequence
(A1, . . . , Ak) with Ai ∈ B(X), diamAi ≤ ε for i = 1, . . . , k, and a mea-
sure µ0 ∈ M1 such that

⋃k
i=1 Ai ∈ T k(ε) and

lim inf
n→∞

Pnµ0(Ai) > 0 for i = 1, . . . , k.

Proof. Fix ε > 0. Set

k = min{m ∈ N : ∃σ ∈ (0, ε) T m(σ) 6= ∅}.
Choose η ∈ (0, ε) such that T k(η) 6= ∅. Choose C =

⋃k
i=1 Ãi where Ãi are

closed balls with radius η and α > 0 such that

(2.1) lim inf
n→∞

Pnµ(C) > α for µ ∈M1.

Choose γ > 0 such that

(2.2) η + γ < ε and kγ < α.

Set ε̃ = γ2. Let α̃ > 0, p ∈ N and C̃ =
⋃p
i=1 Di, where Di are closed balls

with radius ε̃, be chosen according to the semi-concentrating property of P
for ε̃. For every µ ∈ M1 we define L(µ) to be the set of all j ∈ {1, . . . , p}
such that there exists n ∈ N satisfying

Pnµ(Dj) ≥ α̃/p.
Obviously L(µ) 6= ∅. Further, it follows easily that j ∈ L(µ) iff there exists
n ∈ N such that

(2.3) Pnµ ≥ (α̃/p)ν for some ν ∈ MDj
1 .
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We proceed to show that for every i ∈ {1, . . . , k} there exists µ ∈ M1

such that for every j ∈ L(µ) and x ∈ Dj we have

(2.4) Pnδx(Ãi) ≥ α/k for some n ∈ N.
We can assume that i = 1. Suppose, contrary to our claim, that for every
µ ∈ M1 there exist j ∈ L(µ) and x ∈ Dj such that Pnδx(Ã1) < α/k for
n ∈ N. From (2.1) we conclude that P nδx(Ãin) ≥ α/k for all sufficiently
large n∈N, where in ∈ {1, . . . , k} and in 6= 1. Since ‖δx−ν‖≤ diamDj ≤ γ2

for ν ∈ MDj
1 and P is nonexpansive, Lemma 2.1 shows that

Pnν(N 0(Ãin , γ)) ≥ α/k − γ
for ν ∈ MDj

1 and all sufficiently large n ∈ N. Since in 6= 1, we then obtain

Pnν
( k⋃

i=2

N 0(Ãi, γ)
)
≥ α/k − γ for ν ∈ MDj

1 .

From (2.3) we conclude that P n0µ ≥ (α̃/p)ν for some ν ∈ MDj
1 , j ∈ L(µ),

and n0 ∈ N. Consequently,

Pn0+nµ ≥ (α̃/p)Pnν for n ∈ N
and so

Pn0+nµ
( k⋃

i=2

N 0(Ãi, γ)
)
≥ (α̃/p)(α/k − γ)

for all sufficiently large n ∈ N. Thus

lim inf
n→∞

Pnµ
( k⋃

i=2

N 0(Ãi, γ)
)
≥ (α̃/p)(α/k − γ) for µ ∈ M1.

From (2.2) we conclude that
⋃k
i=2N 0(Ãi, γ)∈Ck−1(η+γ), hence T k−1(η+γ)

6= ∅, contrary to the definition of k.
Let µi ∈ M1, 1 ≤ i ≤ k, be such that for every j ∈ L(µi) and x ∈ Dj

condition (2.4) holds. Fix i ∈ {1, . . . , k}. For every j ∈ L(µi) choose xj ∈ Dj

and an integer nj such that

Pnjδxj (Ãi) ≥ α/k.
By Lemma 2.1 we obtain

Pnjν(N (Ãi, γ)) ≥ α/k − γ for ν ∈ MDj
1 .

Set Ni = maxj∈L(µi) nj and Ai = N (Ãi, γ). From (2.1) and (2.2) it follows
that

⋃k
i=1Ai ∈ T k(ε). Define µi ∈ M1 by the formula

µi =
µi + Pµi + . . .+ PNiµi

Ni + 1
.
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It is easy to check that

(2.5) lim inf
n→∞

Pnµi(Ai) ≥ α̃(α/k − γ)/(Ni + 1) > 0

for i ∈ {1, . . . , k}. Write

µ0 =
µ1 + . . .+ µk

k
.

From (2.5) and the linearity of P we have

lim inf
n→∞

Pnµ0(Ai) > 0 for i = 1, . . . , k.

Lemma 2.4. Let P be a nonexpansive Markov operator , A ∈ B(X) and
ε > 0. Assume that diamA ≤ ε2/16 and there exists µ ∈ M1 such that

(2.6) lim inf
n→∞

Pnµ(A) > 0.

Then there exists C ∈ C(ε) such that Pnν(C) > 1 − ε for n ∈ N and
ν ∈ MA

1 .

Proof. Choose α > 0 such that

lim inf
n→∞

Pnµ(A) ≥ α.

If Pnµ(A) ≥ α/2, then

(2.6) Pnµ ≥ (α/2)νn

for some νn ∈ MA
1 . Define

(2.7) δ = sup{γ ≥ 0 : ∃Cε/2 ∈ C(ε/2) lim inf
n→∞

Pnµ(Cε/2) ≥ γ}.

Choose γ ≥ 0 and Cε/2 ∈ C(ε/2) such that 0 ≤ δ − γ < αε/8 and

lim inf
n→∞

Pnµ(Cε/2) ≥ γ.
We are now in a position to show that

(2.8) Pnν(N 0(Cε/2, ε/2)) ≥ 1− ε/2 for n ∈ N and ν ∈ MA
1 .

On the contrary, suppose that for some ν0 ∈ MA
1 and n0 ∈ N,

(2.9) Pn0ν0(N 0(Cε/2, ε/2)) < 1− ε/2.
By the Ulam theorem, this implies that there exists a compact set K ⊂
X \ N 0(Cε/2, ε/2) such that Pn0ν0(K) ≥ ε/2. Since P is nonexpansive, we
have

‖Pn0ν0 − Pn0ν‖ ≤ ‖ν0 − ν‖ ≤ diamA ≤ ε2/16

for ν ∈ MA
1 . Lemma 2.1 now shows that Pn0ν(N 0(K, ε/4)) ≥ ε/4. Put

B = N (K, ε/4). Obviously B ∈ C(ε/2) and consequently B∪Cε/2 ∈ C(ε/2).
Applying (2.6) we see that

Pn+n0µ(B) ≥ α

2
Pn0νn(B) ≥ αε

8
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for all sufficiently large n. Since B ∩ Cε/2 = ∅, we see that

lim inf
n→∞

Pnµ(B ∪ Cε/2) ≥ lim inf
n→∞

Pnµ(B) + lim inf
n→∞

Pnµ(Cε/2)

≥ αε/8 + γ > δ,

which contradicts the definition of δ. Thus (2.8) holds. Put C = N (Cε/2, ε/2)
and note that C ∈ C(ε).

Lemma 2.5. Let P be a nonexpansive semi-concentrating Markov oper-
ator. Then for every ε > 0 there exists C ∈ C(ε) satisfying

lim inf
n→∞

Pnµ(C) ≥ 1− ε for µ ∈ M1.

Proof. Fix ε > 0. By Lemma 2.3 there exist an integer k, a sequence
(A1, . . . , Ak) with Ai ∈ B(X) and diamAi ≤ ε2/16 for i = 1, . . . , k, and a
measure µ0 ∈ M1 such that

⋃k
i=1 Ai ∈ T k(ε2/16) and

lim inf
n→∞

Pnµ0(Ai) > 0 for i = 1, . . . , k.

Lemma 2.4 now shows that there exists a sequence (C1, . . . , Ck) with Ci ∈
C(ε/2) for i = 1, . . . , k satisfying P nν(Ci) > 1 − ε/2 for n ∈ N, ν ∈ MAi

1

and i = 1, . . . , k. Set C =
⋃k
i=1 C

i and observe that C ∈ C(ε). Moreover,

(2.10) Pnν(C) > 1− ε/2 for n ∈ N and ν ∈
k⋃

i=1

MAi
1 .

Since
⋃k
i=1 Ai ∈ T k(ε2/16), there exists α̃ > 0 such that

(2.11) lim inf
n→∞

Pnµ
( k⋃

i=1

Ai

)
> α̃ for µ ∈ M1.

Set α = α̃/k and define

η = sup{γ ≥ 0 : lim inf
n→∞

Pnµ(C) ≥ γ for µ ∈ M1}.

It remains to prove that η ≥ 1 − ε/2. Suppose, contrary to our claim,
that η < 1− ε/2. Hence

(2.12) η >
η

1− α −
α

1− α (1− ε/2).

Choose a real number γ such that

η > γ >
η

1− α −
α

1− α (1− ε/2).

Then
lim inf
n→∞

Pnµ(C) ≥ γ for µ ∈ M1.
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Fix µ ∈M1. From (2.11) it follows that there exist n0 ∈ N and i ∈ {1, . . . , k}
such that Pn0µ(Ai) > α. Define

ν(B) =
Pn0µ(B ∩ Ai)
Pn0µ(Ai)

,

µ̃(B) =
1

1− α {P
n0µ(B)− αν(B)} for B ∈ B(X).

Then Pn0µ = (1 − α)µ̃ + αν. Obviously ν ∈ ⋃ki=1MAi
1 . By (2.10), (2.12)

and the linearity of P we now obtain

lim inf
n→∞

Pn0+nµ(C) ≥ (1− α) lim inf
n→∞

Pnµ̃(C) + α lim inf
n→∞

Pnν(C)

> (1− α)γ + α(1− ε/2) > η.

Since µ ∈ M1 is arbitrary, we see that

lim inf
n→∞

Pnµ(C) ≥ (1− α)γ + α(1− ε/2) > η for all µ ∈M1,

which contradicts the definition of η.

Combining Lemmas 2.2 and 2.5 we obtain the following theorem:

Theorem 2.1. Let P : M→M be a nonexpansive semi-concentrating
Markov operator. Then P has an invariant distribution.

Theorem 2.2. Let P :M→M be a nonexpansive semi-concentrating
Markov operator. Then

(i) ω(µ) 6= ∅ for every µ ∈M1,
(ii) Ω =

⋃
µ∈M1

ω(µ) is tight.

Proof. (i) Fix ε > 0 and µ ∈ M1. By Lemma 2.5 there exists a set
C ∈ C(ε) such that

lim inf
n→∞

Pnµ(C) > 1− ε.

By the Ulam theorem we can find a compact set K ⊂ X such that

Pnµ(K ∪ C) > 1− ε for n ∈ N.
Since K ∪C ∈ C(ε), Lemma 2.2 shows that the sequence (P nµ)n≥1 is tight.
From this and the Prokhorov theorem (see [3]) it follows that ω(µ) 6= ∅.

(ii) To prove the tightness of Ω fix ε > 0. Again, by Lemma 2.5 there
exists a sequence (Ci)i≥1 of subsets of X such that

Ci ∈ C(ε/2i) and lim inf
n→∞

Pnµ(Ci) ≥ 1− ε/2i for i ∈ N.

Define K =
⋂∞
i=1N (Ci, ε/2i) and observe that K is compact. We are going

to show that µ̃(K) ≥ 1−ε for µ̃ ∈ Ω. Fix µ̃ ∈ Ω and let µ ∈ M1 be such that
µ̃ ∈ ω(µ). Let (nm)m≥1 be a sequence of integers such that ‖P nmµ− µ̃‖ → 0
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as m→∞. Then by the Aleksandrov theorem we have

µ̃(N (Ci, ε/2i)) ≥ µ̃(N 0(Ci, ε/2i)) ≥ lim sup
m→∞

Pnmµ(N 0(Ci, ε/2i))

≥ lim sup
m→∞

Pnmµ(Ci) ≥ 1− ε/2i for i ∈ N.

Hence

µ̃(X \K) ≤
∞∑

i=1

µ̃(X \ N (Ci, ε/2i)) <
∞∑

i=1

ε/2i = ε,

which finishes the proof of (ii).

3. Iterated function systems. Assume we are given a family of con-
tinuous transformations Si : X → X, i = 1, . . . , N , and a probabilistic
vector

(p1(x), . . . , pN (x)), pi(x) ≥ 0,
N∑

i=1

pi(x) = 1.

The pair of sequences (S, p)N = (S1, . . . , SN ; p1, . . . , pN ) is called an iterated
function system.

We consider some special Markov operators describing the evolution of
measures due to the action of randomly chosen transformations. A simple
but somewhat inexact description of this process goes as follows. Choose
x0 ∈ X. When an initial point x0 is chosen, we randomly select an integer
from {1, . . . , N} in such a way that the probability of choosing k is pk(x0),
k = 1, . . . , N . When a number k0 is drawn we define x1 = Sk0(x0). Having
x1 we select k1 according to the distribution p1(x1), . . . , pN (x1), we define
x2 = Sk1(x1) and so on. Denoting by µn, n = 0, 1, . . . , the distribution of
xn, i.e. µn(A) = Prob(xn ∈ A), we define P as the transition operator such
that µn+1 = Pµn. We can prove (see [2, 7, 12]) that it must be of the form

(3.1) Pµ(A) =
N∑

i=1

�

S−1
i (A)

pi dµ.

Moreover, it is a Feller operator and its adjoint operator is given by

(3.2) Uf(x) =
N∑

i=1

pi(x)f(Si(x)).

Now assume that

(3.3)
N∑

i=1

|pi(x)− pi(y)| ≤ ω(%(x, y)) for x, y ∈ X,

where ω : R+ → R+ is a continuous function. The function ω is called a mod-
ulus of continuity . Further, we assume that ω satisfies the Dini condition,
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i.e. ω : R+ → R+ is a nondecreasing concave function such that
a�

0

ω(t)
t

dt <∞ for some a > 0.

We do not require the Si’s to be contractions, but require only an average
contractivity condition between points, as in [2]:

(3.4)
N∑

i=1

pi(x)%(Si(x), Si(y)) ≤ r%(x, y) for x, y ∈ X,

where r < 1.
Let us start with the following observation. The asymptotic stability of

a Markov operator P acting on measures defined on a metric space (X, %)
may be verified without the precise knowledge of the metric %. What is
important is just the space C(X) of all bounded continuous functions. We
may change the metric % in such a way that P becomes nonexpansive and
the family of all bounded continuous functions remains the same. Conditions
(3.3) and (3.4) allow us to do it. Summarizing, we have the following:

Proposition 3.1. Let an iterated function system (S, p)N satisfy con-
dition (3.4). If the modulus of continuity ω defined by (3.3) satisfies the
Dini condition, then there exists a new metric % such that the new space
(X, %) remains a Polish space and the Markov operator P given by (3.1) is
nonexpansive. Moreover , bounded sets in both spaces remain the same and
for every ε > 0 there exists η > 0 such that diam%(C) < ε if diam%(C) < η
for C ⊂ X.

The above theorem (see [12, Proposition 6.1]) was formulated in the
case when (X, %) is a locally compact, σ-compact metric space but its proof
remains valid for every Polish space.

Moreover, if we want to verify the global concentrating property or the
semi-concentrating property for P , the last theorem allows us to verify it in
the former metric.

Theorem 3.1. Let an iterated function system (S, p)N = (S1, . . . , SN ;
p1, . . . , pn) satisfy condition (3.4). Assume that the modulus of continuity ω
defined by (3.3) satisfies the Dini condition. If there exists δ > 0 such that

(3.5)
∑

i

pi(x)pi(y) ≥ δ for x, y ∈ X,

where the summation is taken over all integers i, 1 ≤ i ≤ N , such that
%(Si(x), Si(y)) ≤ r%(x, y), then the Markov operator P given by (3.1) is
semi-concentrating and consequently has an invariant distribution.

Proof. Since the assumptions of Proposition 3.1 are satisfied, we may
assume that P is nonexpansive. Further, Theorem 4.2 in [18] shows that P
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is globally concentrating. Hence there exists a set Y ∈ Bb(X) such that

(3.6) lim inf
n→∞

Pnµ(Y ) > 1/2 for µ ∈ M1.

To show that P is semi-concentrating fix ε > 0. Choose an integer m such
that
(3.7) rm diamY < ε.

Fix x ∈ X and define

(3.8) C =
N⋃

i1,...,im=1

B(Sim ◦ . . . ◦ Si1(x), ε).

Let δ > 0 be such that (3.5) is satisfied and set δ = δ/N . For every sequence
(i1, . . . , im)∈ {1, . . . , N}m denote by Y(i1,...,im) the set of all y ∈ Y such that

Sim ◦ . . . ◦ Si1(y) ∈ B(Sim ◦ . . . ◦ Si1(x), rm%(x, y))

and
pi1(y) · . . . · pim(Sim−1 ◦ . . . ◦ Si1(y)) ≥ δm.

From (3.4) and (3.5) it follows that

(3.9) Y =
N⋃

i1,...,im=1

Y(i1,...,im).

In fact, by an induction argument for every y ∈ Y there is a sequence
(k1, . . . , km) ∈ {1, . . . , N}m such that

%(Skm ◦ . . . ◦ Sk1(x), Skm ◦ . . . ◦ Sk1(y)) ≤ rm%(x, y)
and

pk1(y) · . . . · pkm(Skm−1 ◦ . . . ◦ Sk1(y)) ≥ δm.
Consequently, y ∈ Y(k1,...,km) ⊂

⋃N
i1,...,im=1 Y(i1,...,im).

We are going to show that P satisfies condition (1.11) with α =
δm/(2Nm). Fix µ ∈ M1. According to (3.6), we may choose an integer
n0 such that

Pnµ(Y ) ≥ 1/2 for n ≥ n0.

From this and condition (3.9) it follows that

Pnµ(Y(kn1 ,...,knm)) ≥ 1/(2Nm)

for n ≥ n0 and some (kn1 , . . . , k
n
m) ∈ {1, . . . , N}m.

By an induction argument for n ∈ N we have

Pn+mµ(C) = 〈1C , Pn+mµ〉 = 〈Um1C , Pnµ〉

=
N∑

i1,...,im=1

�

X

pi1(y) · . . . · pim(Sim−1 ◦ . . . ◦ Si1(y))

× 1C(Sim ◦ . . . ◦ Si1(y))Pnµ(dy).



Invariant measures for Markov operators 219

Therefore
Pn+mµ(C) ≥ δm/(2Nm) = α for n ≥ n0.

Consequently,
lim inf
n→∞

Pnµ(C) ≥ α for all µ ∈M1.

Since ε > 0 is arbitrary, this completes the proof of the semi-concentrating
property. An application of Theorem 2.1 finishes the proof.

Theorem 3.2. Under the assumptions of Theorem 3.1, the Markov op-
erator P is asymptotically stable.

Proof. By Theorem 3.1, P has an invariant distribution µ∗. It remains to
verify (1.9). When an invariant distribution exists this condition is equivalent
to a more symmetric relation

(3.10) lim
n→∞

‖Pn(µ1 − µ2)‖ = 0 for µ1, µ2 ∈ M1.

By Proposition 3.1, we may assume that P is nonexpansive. Analysis similar
to that in the proof of Theorem 8.1 in [12] shows that to verify (3.10) it is
enough to prove that for every ε > 0 there is a number α > 0 with the
following property: for every µ1, µ2 ∈ M1 there exist a Borel set A with
diamA ≤ ε and an integer n0 such that

(3.11) Pn0µi(A) ≥ α for i = 1, 2.

Fix ε > 0. According to Theorem 2.2(ii) there is a compact set K such
that

(3.12) µ(K) ≥ 4/5 for µ ∈ Ω =
⋃

µ∈M1

ω(µ).

Choose an integer m such that

(3.13) rm diamK ≤ ε/3
and for every x ∈ K and (j1, . . . , jm) ∈ {1, . . . , N}m define

Π(j1,...,jm)(x) = pj1(x) · . . . · pjm(Sjm−1 ◦ . . . ◦ Sj1(x)).

For every x ∈ K and (j1, . . . , jm) ∈ {1, . . . , N}m define the open neighbour-
hood O(j1,...,jm)(x) of x in the following way:

1) if Π(j1,...,jm)(x) > 0, then

O(j1,...,jm)(x) = {y ∈ X : %(Sjm,...,j1(x), Sjm,...,j1(y)) < ε/3,

Π(j1,...,jm)(y) > Π(j1,...,jm)(x)/2},
2) if Π(j1,...,jm)(x) = 0, then

O(j1,...,jm)(x) = {y ∈ X : %(Sjm,...,j1(x), Sjm,...,j1(y)) < ε/3},
where Sjm,...,j1(x) = Sjm ◦ . . . ◦ Sj1(x).
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Set

(3.14) Ox =
N⋂

j1,...,jm=1

O(j1,...,jm)(x) for x ∈ X.

Since K is a compact set there is a finite covering

(3.15) K ⊂
q⋃

i=1

Oxi .

Set G =
⋃q
i=1 Oxi . Let δ > 0 be such that (3.5) is satisfied and set δ = δ/N .

We are going to show that P satisfies (3.11) with α = δm/(4q). In fact, let
µ1, µ2 ∈ M1 be given. Set µ0 = (µ1 + µ2)/2. According to Theorems 3.1
and 2.2(i) there exists µ ∈ M1 such that µ ∈ ω(µ0). Consequently, there
exists a sequence (mn)n≥1 such that

(3.16) lim
n→∞

‖Pmnµ0 − µ‖ = 0.

Since (3.16) is equivalent to the weak convergence of (Pmnµ0)n≥1 to µ and
G is open, the Aleksandrov theorem implies

lim inf
n→∞

Pmnµ0(G) ≥ µ(G).

From this and (3.12), (3.15) it follows that there exists an integer n such
that

Pnµ0(G) = (Pnµ1(G) + Pnµ2(G))/2 ≥ 3/4.

Hence Pnµk(G) ≥ 1/2 for k = 1, 2. Then (3.15) implies that there exist
s, t ∈ {1, . . . , q} such that

Pnµ1(Oxs) ≥ 1/(2q) and Pnµ2(Oxt) ≥ 1/(2q).

Write for simplicity O1 = Oxs and O2 = Oxt . From (3.4) we conclude that
there is (i1, . . . , im) ∈ {1, . . . , N}m such that

(3.17) %(Sim ◦ . . . ◦ Si1(xs), Sim ◦ . . . ◦ Si1(xt)) ≤ rm%(xs, xt) ≤ ε/3

and

Π(i1,...,im)(xs) ≥ δm, Π(i1,...,im)(xt) ≥ δm.

Define

A = A1 ∪ A2 where Ak = Sim ◦ . . . ◦ Si1(Ok), k = 1, 2.

According to (3.13), (3.14) and (3.17) we have diamA ≤ ε and Π(i1,...,im)(y)
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≥ δm/2 for y ∈ O1 ∪O2. On the other hand, from (3.17) we obtain

Pm+nµk(A) = 〈Um+n1A, µk〉 = 〈Um1A, Pnµk〉

≥
N∑

j1,...,jm=1

�

X

Π(j1,...,jm)(y)1Ak(Sjm ◦ . . . ◦ Sj1(y))Pnµk(dy)

≥ δmPnµk(Ok)/2 = δm/(4q) for k = 1, 2,

which finishes the proof.
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