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a-times integrated semigroups: local and global
by

Miao L1 (Chengdu) and QUAN ZHENG (Wuhan)

Abstract. We investigate the relations between local a-times integrated semigroups
and (a + 1)-times integrated Cauchy problems, and then the relations between global
a-times integrated semigroups and regularized semigroups.

1. Introduction. Let X be a Banach space. A strongly continuous
family (S(t))o<t<r C B(X) is called a local a-times integrated semigroup if
1 t+s s
S(t+s)xr=—— [ S (t+s—r) " LS(r)zdr — S (t+s—7)*"1S(r)x dr]
I'(a) ! 5
forallz € X and 0 < s,t,s+t < 7. If 7 = 00, we call (S(t)):>0 a global
a-times integrated semigroup, or simply, a-times integrated semigroup. S(-)
is said to be nondegenerate if S(t)x = 0 for all ¢ € [0,7) implies z = 0.
For a nondegenerate local a-times integrated semigroup S(-), we define its
generator, A, by
t
= SS(s)y ds, Yt € [0, 7).
0
In the first section, we consider the relations between local a-times inte-
grated semigroups and the (a + 1)-times integrated Cauchy problem

v e O([0,7),D(A) N CH[0,7), X),

Con(7) J(t) = Av(t) + F(ofio—ti—l)
v(0) =0,

where « is a positive number. This is motivated by the work by Arendt et al.
in [AEK], where they investigate such relations for a an integer. By using an
asymptotic formula for Kummer’s function, we obtain analogous results for

tCV

x, te]l0,7),
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local fractional times integrated semigroups. Our results generalize those in
[AEK], and enrich the existing local theory for semigroups (see [TO], [HH],
[AEK], [Ga] and [LHZ]).

On the other hand, deLaubenfels proved in [dL1] that A generates an
n-times integrated semigroup if and only if it is a generator of a (A — A)™"-
regularized semigroup for any A € p(A). Using these relations, we can reduce
some problems concerning integrated semigroups to problems for regularized
semigroups. Also, the solutions of the abstract Cauchy problem

(ACP) u'(t) = Au(t) (t>0), u(0)= zo,

can be expressed more directly by a regularized semigroup than by an in-
tegrated semigroup. However, in many cases, especially in the study of dif-
ferential operators on function spaces such as LP(R™) or Cy(R™), we have a
fractional times integrated semigroup instead of an integer times integrated
one. So our second aim is to clarify the relations between fractional times in-
tegrated semigroups and regularized semigroups (Theorems 3.1, 3.2). More-
over, these relations will be applied to the study of the asymptotic behavior
of the abstract Cauchy problem (ACP) for A being a generator of an a-times
integrated semigroup.

2. (o + 1)-times integrated Cauchy problems and local a-times
integrated semigroups. The Cauchy problem C,1(7) is called well-posed
if it has a unique solution for every x € X. In this section, we will extend
the results of [AEK] to the case that « is not necessarily an integer. First,
we characterize the well-posedness by the resolvent. For an operator A on
a Banach space X, we write D(A), R(A) and p(A) for its domain, range
and resolvent set, respectively. If A € o(A), we let R(\, 4) = (A— A)~!, and
B(X) is the space of all bounded linear operators on X.

THEOREM 2.1. Let a > 0, 0 < 7 < oo. Suppose that Co11(T) is well-
posed. Then for every 0 < a < T/a, there exist constants b > 0, M > 0 such
that

E(a,b) :={A € C:ReA>b, [Im\| < e®Ber} c p(A)
and

(2.1) IR(N, A)|| < MIA®, X € E(a,b).

Proof. Let x € X. Define S(t)x = v'(t), where v(t) is the unique solution
of Cqy1(7) at x. One may prove that S(¢) € B(X) and
t s

A§S(s)xds =S(t)r — ma} for all x € X
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in a similar way to [AEK, Proposition 2.3]. Next, given ¢ € [0, 7), define the
finite Laplace transform of S(t) by

t
Ly(t)xr = Se*’\SS(s)a: ds, VxelX.
0

By a simple computation, we have, for every x € X, Ly(t)x € D(A) and
(2.2) A=A Ly(t)x = e M(gr(t) — S(t)z), VAeEC,

where
t

80171
g\(t) = P Py
/\( ) (S) F(a)

When « > 1, integration by parts yields
At a—[a]—-1

(2.3) o0 = 1 fe W ds — qx(1),
0

where [a] is the maximal integer less than or equal to a, and
po—1 ro—2 to—[a]
T3 @) e T T N e+ )

For |A| > 1, we have

ax(t)

to—1 o2 ta—[a}

B IOl 0O = TG ey T Tl

If we define gx(t) = ¢i1(t) =0 for 0 < a < 1, then (2.3) and (2.4) are valid
for all a > 0.

Let 0 <t <t < 7. Substituting s = tu in the following, one obtains

§ N Saf[a]fl p [ ]§ v uaf[a]fl J
e ————ds =t e —————du
Y T =) AL )

=t MK, 0 — [0 —1,-X0),

where K (1, — [o] — 1, —At) is the Kummer function. By its asymptotic
formula (cf. [Er, p. 278]) one has

K(1,a—[a] =1, =Xt) = (=xt) e M1+ O(IM]7Y))
+ I'(a — [a])eemleDm (k=@ o(a )
= A"l MO@1) + A 01), A = oo,

where we choose + (respectively —) if —7/2 < arg\ < 37/2 (respectively
—37/2 < arg\ < 7/2). Since [a] — a < 1, there are constants C and Co
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such that when |\| > Cy we have

t [0
fe? % ds > Cy|\|lel=
0
combining (2.3), (2.4) with this leads to
M| ot Re
(2.5) oA ()] = e ()] = T 1 (2)]

for |A| > max{C1,1}. Let 0 < ¢ < 1 and choose b’ > max{C1,1} large
enough such that, when Re A >/, we have

e(2t/a) Re)\eXp< 5 <HS< )H |Q1(t)|)> > (2'/)Re (ReA).

It follows that, for a = t'/a and X € E(a,b’),

< e ey (21 (10041, ) ),

which implies that e? R¢A/|\|* > |q1 (£)|+]|S(¢) ]| /q. Therefore for A € E(a, '),
we have [g(t)] > [|S(t)]|/g. So the operator gy (t) — S(t) is invertible. From
(2.2), as in the proof of [AEK, Proposition 2.5], we can show that E(a,b’) C
o(A) and R(A, A) = L(t)eM (g(t) — S(t)) 7", so

IR, A < IZA@)] - e (ga(t) = SE) 71|
< Miet P (ga() 1 - g) 7
Thus (2.1) follows easily from (2.5) for 0 < a < 1; and for a > 1,

R (g0 (1)) < etRe/\<€|t;|Z\ _ Iq,\(t)\>_1 = [% (1 — et}{%h,\(t)ﬂ_l’

where

Lo gamett o qame? (|A[£)o o]
hy(t) == etRe)\( (o) + T(a 1) 4.4 m)

For A € E(a,b'), we have e!R¢* > O|)\|® for some positive constant C. So

hy(t) — 0 as Re A — oo. Choosing b > ' large enough such that h(\) < 1/2
when Re A > b, one gets (2.1). =

The proofs of the following results are similar to [AEK, Theorem 2.2],
with the exception that 3 here can be chosen to be a noninteger.

THEOREM 2.2. Leta > 0, b > 0, —1 < «. Suppose that E(a,b) C o(A)
and (2.1) holds. Then for every 8 > a+1 and 7 = a(f —a—1), Cgy1(7) is
well-posed.

From the proof of Theorem 2.1, we know that if C(41(7) is well-posed,
then the solution operators (S(t))o<t<, defined by S(t)x = u'(t,x), where
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u(t, x) is the solution of Cy41(7) at x, are bounded operators. And S(-) has
all the properties in [AEK, Proposition 3.1] with k therein replaced by «.
Moreover, the proof of [LHZ, Proposition 2.4] provides a way to show that
S(+) is a local a-times integrated semigroup.

THEOREM 2.3. Assume that Coy1(7) is well-posed. Then the family
(S(t))o<t<r of its solution operators defined above is a local a-times inte-
grated semigroup generated by A.

We conclude this section with a rescaling result.

PROPOSITION 2.4. (a) Let 0 < 7 < 00, 0 < a < fB. If Coq1(7) is
well-posed, then so is Cgy1(T); and if v(t) is the solution of Cay1(7), then
JB—a—1%V(t) := SE JB—a—1(t—s)v(s)ds (t € [0,7)) is the solution of Cgi1(T),
where ja(t) =17 /(B +1).

(b) If Coy1(T) is well-posed and its solution is v(t), then for each r € R,
the problem CQH(T) corresponding to A — r (obtained by replacing A by
A —r in Coq1(7)) is also well-posed and its solution is given by

t oo
- r a+ 1),k sh=1 (s
V() =e tv(t)—l—x g < k‘>k : (k—l)'e =)y (t — s) ds,
0 k=1 ’ )

where (a + 1), = (a+ Da... (o — k + 2).
Proof. (a) is easy to verify.

(b) Define
t o k k-1
r _ -t <a + 1>kr . s —r(t—s) o
v(t) = e "u(t) + §),§:1 o =1 e v(t — s)ds.

Differentiating this leads to

—— t e P
(") =e {Av(t) —Tv(t)erx] +§);< +k!>k (k1)

: [(A—r)v(t—s) (t=s) )x] e m(t=9) ds

Ia+1
t oo k-1
:(A—r[ SZ a+1 i 1'e*T(t*3)v(t—8)ds
0 k= -1
4 e—rt . t T
I'la+1)
t oo
(a+1)rk g1 Cr(t—s) (E—8)
LD T T Tla+n "%
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Now we compute the Laplace transform of the last integral as follows:

00 t oo k k—1 AT
(Sl A e L0

5 ot k! (k—1)! I'a+1)
00 k g o° k—1 o0 o
_ Z {a ‘|‘k1'>k7” < S oMt ]: - 'dt> < S o~ (A+r)t - t - dt>$
k=1 ' 0 (k=1 0 (a+1)
B ST T B
- — Ao (A4 r)att

()" ) o=~ (- )
|

t* te

-\t —rt

_— _— dt.
06 <l(a—|—1) € Z(oz—l—l))$

By the uniqueness of Laplace transform, we have

t oo
_ t (a+)prk =1 (t—s)®
rt v . r(t—s) \* —°) d
¢ F(a+1)x+§; R TR Tatn ™
J— ta x.
Ia+1)""

so v"(t) is the solution of C} (7). =

3. The relations between a-times integrated semigroups and
regularized semigroups. Let A be densely defined and generate an a-
times integrated semigroup (S*(t))i>0 with ||[S¥(¢)|| < Me** for all ¢ > 0.
Then {A € C:ReX > w} C p(A) and

o0
R\ A) =2 | e Mg2(t)dt with ||R(M,A) <
0
for every A € C with Re A > w.

Foro>0,set Ayyo =A—(w+o)l.Let 0 <a<7/2,0<d<o. Then

YaUBs C{A€C:ReX> —0c} C o(Auts), where

Yo ={AeC:largA| <a}U{0} and Bs:={AeC: |\ <},

M~
Re) —w

and
A+ w4+ ol
Red+o

< MM+ Yae X,

IR, Awro) | = [RA +w + 0, A)| < M

(A +w+o)®
|A| cosa + o
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Therefore, we can define the fractional powers of —A,,1,. For every ¢ > 0,
the operator defined by

(3.1) (—Ay )t = L

oo V(=0 R, Ay yo)z dA
T

r

is bounded and injective, where I" is a curve in X, and D((—Ayto)*¢) is
independent of o (see [St2]). From [NS, Theorem 1.1] and its proof we know
that, for every zgp € D((—Au10)*"¢), the abstract Cauchy problem (ACP)
has a unique mild solution u(t) and for every ¢’ > o there exists a constant
M > 0 such that ||u(t)|| < Me“r)||(= Ayt q)*exol|; the constant M may
depend on ¢’ and £ but is independent of z9. By [dL2, Theorem 5.17], we
have the following

THEOREM 3.1. Suppose that a densely defined operator A generates an
a-times integrated semigroup (S*(t))i>0 and ||S*(t)|| < Me** for all t > 0.
Then for everye > 0 and o > 0, (—A,1o) (@2 defined by (3.1) is a bounded
injective operator and A generates a (—Aw+g)*(°‘+5)—regulam'zed Semigroup
(T(t))t>0. Moreover, for every o' > o, there exists a constant M > 0 such
that || T(t)|| < Me@to)t,

Now we turn to the converse problem. Suppose that

(A1) A is a densely defined operator and there are constants M,w > 0,
B >0and 0 < ¢ < m/2such that ¥, +w C o(A) and

IR A)| < ML+ |A)Y VAe D, +w.

Then for every a > 3, 0 > 0, (—Aw+o)”“, the fractional power of —A, 44,
is well-defined and is a bounded injective operator on X.
If in addition,

(A2) for some o > 3, 0 > 0, A generates an exponentially bounded
(—Aw+o) *regularized semigroup (7'(¢))+>0,

then for every x € D((—A,1,)*!), the abstract Cauchy problem (ACP)
has a unique classical solution wu(t) given by T(¢)(—Ay+0)%r and u/(t) =
(w+0)T () (—Awto)*x—T(t)(— Awso ) 2; both are exponentially bounded.
So by [St2, Theorem 5.6], we have

THEOREM 3.2. Suppose A satisfies (Al) and (A2). Then for everye > 0,
A generates an (« + €)-times integrated semigroup.

REMARK 3.3. Since A is densely defined, a sufficient and necessary con-
dition for A to satisfy (A2) is that for alln € Nand Re A > w, D((—Au+5)%)
C R((A— A)™) and there exists a constant M € R such that

[(Re A —w)" (A= A) " (—Awto) “z|| < Mnl||z| forall z € X.
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Under the conditions of Theorem 3.1 we know that if ¢ > o’ > 0,
then A, generates a uniformly bounded (— A ,)~(®*%)-regularized semi-
group. Since D((—A,1,)%"¢) and D((— A, o) t1) are independent of o,
the Cauchy problem

(ACP),, ., ' (t) = Apsou(t) (£>0), u(0)=ux,

has a bounded (respectively mild) solution for every € D((—Ay14)* T
(respectively D((—Aw+o)?"¢)). Therefore we can discuss some asymptotic
properties of such solutions.

By [ZL, Theorem 2.1] and Theorem 3.1 we have

THEOREM 3.4. Suppose that a densely defined operator A generates an
a-times integrated semigroup (S*(t))i>0 on X and ||S*(t)|| < Me*! for all
t > 0. Suppose also that for some o > 0, span{z € D(A) : Az = (w+o+ir)z
for some r € R} is dense in X. Then all solutions of (ACP)ys for initial
values in D((—Ay10)*TtL) are almost periodic.

The following ergodic result follows from Theorem 3.1 and [LHC].

THEOREM 3.5. Suppose that a densely defined operator A generates an
a-times integrated semigroup (S®(t))>0 on X and ||S*(t)|| < Me*t for
every t > 0. Let € > 0. Then the following statements are equivalent.

(a) all mild solutions of (ACP)y+o for initial values in D((—Aw+o)*TF)
are strongly Abel-ergodic;

(b) all mild solutions of (ACP)y4e for initial values in D((—Ay4o)*T°)
are weakly Abel-ergodic;

(c) for every x € X, {A\ — Apio) H(—Auio) @tz 1 0 < X < 1} s
weakly sequentially compact, i.e. there exists a sequence {\,}, A, — 0, and
some y € X such that

weak- lim A\, (A, — Aw+g)*1(—Aw+0)*(a+€)x =;

(d) D((_Aw+o)a+€) C ker Ayio @ R(Awts)-

If a family {(Sn(t))i>0}52, of a-times integrated semigroups satisfying
[|Sn(t)|| < Me*! for some constants M,w > 0 converges to an a-times inte-
grated semigroup (So(t))+>0, then so do the resolvents of their generators.
Since the solution of the corresponding Cauchy problem can be obtained by
an integral of the resolvents (see [NS]), we have the following approximation
theorem.

THEOREM 3.6. Suppose that for every n € Ng := NU {0}, A,, generates
an a-times integrated semigroup (Sy(t))i>0 on X and there exists a constant
w > 0 such that ||Sy(t)|| < Me* for allt > 0 and n € Ny. If Sp(t)x —
So(t)x as n — oo for all x € X and t > 0, then, for every ¢ > 0 and every
z € D((—(A0)wto)*TeTY), the solution of u'(t) = Agu(t),u(0) = = can be
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approzimated by uy(t) which is the solution of ul,(t) = Apun(t), u,(0) = x,
and x, — x.

Finally, we apply Theorem 3.1 to elliptic differential operators. From [Zh]
we know that if a polynomial P is elliptic and w := supgcgn Re P(§) < oo,
then for every a > n, :=n|1/2—1/p|, P(D) generates an a-times integrated
semigroup; thus Theorem 3.1 yields

THEOREM 3.7. Let P be an elliptic polynomial on R™. If

w:= sup Re P(§) < oo,
EeR™

then for every o > my := n|1/2 — 1/p| and W' > w, P(D) generates an
(W' — P(D))“-regularized semigroup.
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