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α-times integrated semigroups: local and global

by

Miao Li (Chengdu) and Quan Zheng (Wuhan)

Abstract. We investigate the relations between local α-times integrated semigroups
and (α + 1)-times integrated Cauchy problems, and then the relations between global
α-times integrated semigroups and regularized semigroups.

1. Introduction. Let X be a Banach space. A strongly continuous
family (S(t))0≤t<τ ⊂ B(X) is called a local α-times integrated semigroup if

S(t+ s)x =
1

Γ (α)

[ t+s�
t

(t+ s− r)α−1S(r)x dr −
s�
0

(t+ s− r)α−1S(r)x dr
]

for all x ∈ X and 0 ≤ s, t, s + t < τ . If τ = ∞, we call (S(t))t≥0 a global
α-times integrated semigroup, or simply, α-times integrated semigroup. S(·)
is said to be nondegenerate if S(t)x = 0 for all t ∈ [0, τ) implies x = 0.
For a nondegenerate local α-times integrated semigroup S(·), we define its
generator , A, by

x ∈ D(A) with Ax = y ⇔ S(t)x− tα

Γ (α+ 1)
x =

t�
0

S(s)y ds, ∀t ∈ [0, τ).

In the first section, we consider the relations between local α-times inte-
grated semigroups and the (α+ 1)-times integrated Cauchy problem

Cα+1(τ)





v ∈ C([0, τ),D(A)) ∩ C1([0, τ),X),

v′(t) = Av(t) +
tα

Γ (α+ 1)
x, t ∈ [0, τ),

v(0) = 0,

where α is a positive number. This is motivated by the work by Arendt et al.
in [AEK], where they investigate such relations for α an integer. By using an
asymptotic formula for Kummer’s function, we obtain analogous results for
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local fractional times integrated semigroups. Our results generalize those in
[AEK], and enrich the existing local theory for semigroups (see [TO], [HH],
[AEK], [Ga] and [LHZ]).

On the other hand, deLaubenfels proved in [dL1] that A generates an
n-times integrated semigroup if and only if it is a generator of a (λ−A)−n-
regularized semigroup for any λ ∈ %(A). Using these relations, we can reduce
some problems concerning integrated semigroups to problems for regularized
semigroups. Also, the solutions of the abstract Cauchy problem

(ACP) u′(t) = Au(t) (t ≥ 0), u(0) = x0,

can be expressed more directly by a regularized semigroup than by an in-
tegrated semigroup. However, in many cases, especially in the study of dif-
ferential operators on function spaces such as Lp(Rn) or C0(Rn), we have a
fractional times integrated semigroup instead of an integer times integrated
one. So our second aim is to clarify the relations between fractional times in-
tegrated semigroups and regularized semigroups (Theorems 3.1, 3.2). More-
over, these relations will be applied to the study of the asymptotic behavior
of the abstract Cauchy problem (ACP) for A being a generator of an α-times
integrated semigroup.

2. (α + 1)-times integrated Cauchy problems and local α-times
integrated semigroups. The Cauchy problem Cα+1(τ) is called well-posed
if it has a unique solution for every x ∈ X. In this section, we will extend
the results of [AEK] to the case that α is not necessarily an integer. First,
we characterize the well-posedness by the resolvent. For an operator A on
a Banach space X, we write D(A), R(A) and %(A) for its domain, range
and resolvent set, respectively. If λ ∈ %(A), we let R(λ,A) = (λ−A)−1, and
B(X) is the space of all bounded linear operators on X.

Theorem 2.1. Let α > 0, 0 < τ ≤ ∞. Suppose that Cα+1(τ) is well-
posed. Then for every 0 < a < τ/α, there exist constants b > 0, M ≥ 0 such
that

E(a, b) := {λ ∈ C : Reλ ≥ b, |Imλ| ≤ eaReλ} ⊂ %(A)

and

‖R(λ,A)‖ ≤M |λ|α, λ ∈ E(a, b).(2.1)

Proof. Let x ∈ X. Define S(t)x = v′(t), where v(t) is the unique solution
of Cα+1(τ) at x. One may prove that S(t) ∈ B(X) and

A

t�
0

S(s)x ds = S(t)x− tα

Γ (α+ 1)
x for all x ∈ X
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in a similar way to [AEK, Proposition 2.3]. Next, given t ∈ [0, τ), define the
finite Laplace transform of S(t) by

Lλ(t)x =
t�
0

e−λsS(s)x ds, ∀x ∈ X.

By a simple computation, we have, for every x ∈ X, Lλ(t)x ∈ D(A) and

(λ− A)Lλ(t)x = e−λt(gλ(t)− S(t)x), ∀λ ∈ C,(2.2)

where

gλ(t) =
t�
0

eλ(t−s) s
α−1

Γ (α)
ds.

When α > 1, integration by parts yields

gλ(t) =
eλt

λ[α]

t�
0

e−λs
sα−[α]−1

Γ (α− [α])
ds− qλ(t),(2.3)

where [α] is the maximal integer less than or equal to α, and

qλ(t) =
tα−1

λΓ (α)
+

tα−2

λ2Γ (α− 1)
+ . . .+

tα−[α]

λ[α]Γ (α− [α] + 1)
.

For |λ| > 1, we have

|qλ(t)| ≤ q1(t) :=
tα−1

Γ (α)
+

tα−2

Γ (α− 1)
+ . . .+

tα−[α]

Γ (α− [α] + 1)
.(2.4)

If we define qλ(t) = q1(t) ≡ 0 for 0 < α < 1, then (2.3) and (2.4) are valid
for all α > 0.

Let 0 < t′ < t < τ . Substituting s = tu in the following, one obtains

t�
0

e−λs
sα−[α]−1

Γ (α− [α])
ds = tα−[α]

1�
0

e−λtu
uα−[α]−1

Γ (α− [α])
du

= tα−[α]K(1, α− [α]− 1,−λt),
where K(1, α − [α] − 1,−λt) is the Kummer function. By its asymptotic
formula (cf. [Er, p. 278]) one has

K(1, α− [α]− 1,−λt) = (−λt)−1e−λt(1 +O(|λt|−1))

+ Γ (α− [α])e±i(α−[α])π(−λ)[α]−α(1 +O(|λt|−1))

= λ−1e−λtO(1) + λ[α]−αO(1), |λ| → ∞,
where we choose + (respectively −) if −π/2 < arg λ < 3π/2 (respectively
−3π/2 < argλ < π/2). Since [α] − α < 1, there are constants C1 and C2
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such that when |λ| ≥ C1 we have
t�
0

e−λs
sα−[α]−1

Γ (α− [α])
ds ≥ C2|λ|[α]−α;

combining (2.3), (2.4) with this leads to

|gλ(t)| ≥ |e
λt|
|λ|α − |q1(t)| = etReλ

|λ|α − |q1(t)|(2.5)

for |λ| > max{C1, 1}. Let 0 < q < 1 and choose b′ ≥ max{C1, 1} large
enough such that, when Reλ ≥ b′, we have

e(2t/α) Reλ exp
(
− 2
α

ln
(‖S(t)‖

q
+ |q1(t)|

))
≥ e(2t′/α) Reλ + (Reλ)2.

It follows that, for a = t′/α and λ ∈ E(a, b′),

|λ|2 ≤ e(2t/α) Reλ exp
(
− 2
α

ln
(‖S(t)‖

q
+ |q1(t)|

))
,

which implies that etReλ/|λ|α ≥ |q1(t)|+‖S(t)‖/q. Therefore for λ ∈ E(a, b′),
we have |gλ(t)| ≥ ‖S(t)‖/q. So the operator gλ(t)− S(t) is invertible. From
(2.2), as in the proof of [AEK, Proposition 2.5], we can show that E(a, b′) ⊂
%(A) and R(λ,A) = Lλ(t)eλt(gλ(t)− S(t))−1, so

‖R(λ,A)‖ ≤ ‖Lλ(t)‖ · ‖eλt(gλ(t)− S(t))−1‖
≤M1e

tReλ(gλ(t))−1(1− q)−1.

Thus (2.1) follows easily from (2.5) for 0 < α < 1; and for α > 1,

etReλ(gλ(t))−1 ≤ etReλ
(
etReλ

|λ|α − |qλ(t)|
)−1

=
[

1
λα

(
1− 1

etReλhλ(t)
)]−1

,

where

hλ(t) :=
1

etReλ

(
(|λ|t)α−1

Γ (α)
+

(|λ|t)α−2

Γ (α− 1)
+ . . .+

(|λ|t)α−[α]

Γ (α− [α] + 1)

)
.

For λ ∈ E(a, b′), we have etReλ ≥ C|λ|α for some positive constant C. So
hλ(t)→ 0 as Reλ→∞. Choosing b ≥ b′ large enough such that h(λ) < 1/2
when Reλ ≥ b, one gets (2.1).

The proofs of the following results are similar to [AEK, Theorem 2.2],
with the exception that β here can be chosen to be a noninteger.

Theorem 2.2. Let a > 0, b > 0, −1 < α. Suppose that E(a, b) ⊂ %(A)
and (2.1) holds. Then for every β > α+ 1 and τ = a(β−α− 1), Cβ+1(τ) is
well-posed.

From the proof of Theorem 2.1, we know that if Cα+1(τ) is well-posed,
then the solution operators (S(t))0≤t<τ defined by S(t)x = u′(t, x), where
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u(t, x) is the solution of Cα+1(τ) at x, are bounded operators. And S(·) has
all the properties in [AEK, Proposition 3.1] with k therein replaced by α.
Moreover, the proof of [LHZ, Proposition 2.4] provides a way to show that
S(·) is a local α-times integrated semigroup.

Theorem 2.3. Assume that Cα+1(τ) is well-posed. Then the family
(S(t))0≤t<τ of its solution operators defined above is a local α-times inte-
grated semigroup generated by A.

We conclude this section with a rescaling result.

Proposition 2.4. (a) Let 0 < τ ≤ ∞, 0 < α < β. If Cα+1(τ) is
well-posed , then so is Cβ+1(τ); and if v(t) is the solution of Cα+1(τ), then
jβ−α−1∗v(t) := � t0 jβ−α−1(t−s)v(s)ds (t ∈ [0, τ)) is the solution of Cβ+1(τ),
where jβ(t) := tβ/Γ (β + 1).

(b) If Cα+1(τ) is well-posed and its solution is v(t), then for each r ∈ R,
the problem Crα+1(τ) corresponding to A − r (obtained by replacing A by
A− r in Cα+1(τ)) is also well-posed and its solution is given by

vr(t) = e−rtv(t) +
t�
0

∞∑

k=1

〈α+ 1〉krk
k!

· sk−1

(k − 1)!
e−r(t−s)v(t− s) ds,

where 〈α+ 1〉k = (α+ 1)α . . . (α− k + 2).

Proof. (a) is easy to verify.
(b) Define

vr(t) = e−rtv(t) +
t�
0

∞∑

k=1

〈α+ 1〉krk
k!

· sk−1

(k − 1)!
e−r(t−s)v(t− s) ds.

Differentiating this leads to

(vr(t))′ = e−rt
[
Av(t)− rv(t) +

tα

Γ (α+ 1)
x

]
+

t�
0

∞∑

k=1

〈α+ 1〉krk
k!

· sk−1

(k − 1)!

·
[
(A− r)v(t− s) +

(t− s)α
Γ (α+ 1)

x

]
e−r(t−s) ds

= (A− r)
[
e−rtv(t) +

t�
0

∞∑

k=1

〈α+ 1〉krk
k!

sk−1

(k − 1)!
e−r(t−s)v(t− s) ds

]

+ e−rt · tα

Γ (α+ 1)
x

+
t�
0

∞∑

k=1

〈α+ 1〉krk
k!

· sk−1

(k − 1)!
e−r(t−s)

(t− s)α
Γ (α+ 1)

x ds.
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Now we compute the Laplace transform of the last integral as follows:
∞�
0

e−λt
( t�

0

∞∑

k=1

〈α+ 1〉krk
k!

· sk−1

(k − 1)!
e−r(t−s)

(t− s)α
Γ (α+ 1)

x ds

)
dt

=
∞∑

k=1

〈α+ 1〉krk
k!

(∞�
0

e−λt
tk−1

(k − 1)!
dt

)(∞�
0

e−(λ+r)t tα

Γ (α+ 1)
dt

)
x

=
∞∑

k=1

〈α+ 1〉krk
k!

· 1
λk
· 1

(λ+ r)α+1 x

=
[(

1 +
r

λ

)α+1

− 1
]

1
(λ+ r)α+1 x =

(
1

λα+1 −
1

(λ+ r)α+1

)
x

=
∞�
0

e−λt
(

tα

Γ (α+ 1)
− e−rt tα

Γ (α+ 1)

)
x dt.

By the uniqueness of Laplace transform, we have

e−rt
tα

Γ (α+ 1)
x+

t�
0

∞∑

k=1

〈α+ 1〉krk
k!

· sk−1

(k − 1)!
e−r(t−s)

(t− s)α
Γ (α+ 1)

x ds

=
tα

Γ (α+ 1)
x;

so vr(t) is the solution of Crα+1(τ).

3. The relations between α-times integrated semigroups and
regularized semigroups. Let A be densely defined and generate an α-
times integrated semigroup (Sα(t))t≥0 with ‖Sα(t)‖ ≤ Meωt for all t ≥ 0.
Then {λ ∈ C : Reλ > ω} ⊂ %(A) and

R(λ,A) = λα
∞�
0

e−λtSα(t) dt with ‖R(λ,A)‖ ≤ M |λ|α
Reλ− ω

for every λ ∈ C with Reλ > ω.
For σ > 0, set Aω+σ = A− (ω + σ)I. Let 0 < a < π/2, 0 < δ < σ. Then

Σa ∪Bδ ⊆ {λ ∈ C : Reλ > −σ} ⊆ %(Aω+σ), where

Σa := {λ ∈ C : |arg λ| ≤ a} ∪ {0} and Bδ := {λ ∈ C : |λ| ≤ δ},
and

‖R(λ,Aω+σ)‖ = ‖R(λ+ ω + σ,A)‖ ≤M |λ+ ω + σ|α
Reλ+ σ

≤M (|λ|+ ω + σ)α

|λ| cos a+ σ
≤M ′(|λ|+ 1)α−1, ∀λ ∈ Σa.
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Therefore, we can define the fractional powers of −Aω+σ. For every ε > 0,
the operator defined by

(−Aω+σ)−(α+ε) =
1

2πi

�
Γ

(−λ)−(α+ε)R(λ,Aω+σ)x dλ(3.1)

is bounded and injective, where Γ is a curve in Σa, and D((−Aω+σ)α+ε) is
independent of σ (see [St2]). From [NS, Theorem 1.1] and its proof we know
that, for every x0 ∈ D((−Aω+σ)α+ε), the abstract Cauchy problem (ACP)
has a unique mild solution u(t) and for every σ′ > σ there exists a constant
M > 0 such that ‖u(t)‖ ≤Me(ω+σ′)t‖(−Aω+σ)α+εx0‖; the constant M may
depend on σ′ and ε but is independent of x0. By [dL2, Theorem 5.17], we
have the following

Theorem 3.1. Suppose that a densely defined operator A generates an
α-times integrated semigroup (Sα(t))t≥0 and ‖Sα(t)‖ ≤ Meωt for all t ≥ 0.
Then for every ε > 0 and σ > 0, (−Aω+σ)−(α+ε) defined by (3.1) is a bounded
injective operator and A generates a (−Aω+σ)−(α+ε)-regularized semigroup
(T (t))t≥0. Moreover , for every σ′ > σ, there exists a constant M ≥ 0 such
that ‖T (t)‖ ≤Me(ω+σ′)t.

Now we turn to the converse problem. Suppose that

(A1) A is a densely defined operator and there are constants M,ω ≥ 0,
β > 0 and 0 < ϕ < π/2 such that Σϕ + ω ⊆ %(A) and

‖R(λ,A)‖ ≤M(1 + |λ|)β−1, ∀λ ∈ Σϕ + ω.

Then for every α > β, σ > 0, (−Aω+σ)−α, the fractional power of −Aω+σ,
is well-defined and is a bounded injective operator on X.

If in addition,

(A2) for some α > β, σ > 0, A generates an exponentially bounded
(−Aω+σ)−α-regularized semigroup (T (t))t≥0,

then for every x ∈ D((−Aω+σ)α+1), the abstract Cauchy problem (ACP)
has a unique classical solution u(t) given by T (t)(−Aω+σ)αx and u′(t) =
(ω+σ)T (t)(−Aω+σ)αx−T (t)(−Aω+σ)α+1x; both are exponentially bounded.
So by [St2, Theorem 5.6], we have

Theorem 3.2. Suppose A satisfies (A1) and (A2). Then for every ε > 0,
A generates an (α+ ε)-times integrated semigroup.

Remark 3.3. Since A is densely defined, a sufficient and necessary con-
dition for A to satisfy (A2) is that for all n ∈ N and Reλ > ω, D((−Aω+σ)α)
⊂ R((λ− A)n) and there exists a constant M ∈ R such that

‖(Reλ− ω)n(λ− A)−n(−Aω+σ)−αx‖ ≤Mn!‖x‖ for all x ∈ X.
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Under the conditions of Theorem 3.1 we know that if σ > σ′ > 0,
then Aω+σ generates a uniformly bounded (−Aω+σ′)−(α+ε)-regularized semi-
group. Since D((−Aω+σ′)α+ε) and D((−Aω+σ′)α+ε+1) are independent of σ′,
the Cauchy problem

(ACP)ω+σ u′(t) = Aω+σu(t) (t ≥ 0), u(0) = x,

has a bounded (respectively mild) solution for every x ∈ D((−Aω+σ)α+ε+1)
(respectively D((−Aω+σ)α+ε)). Therefore we can discuss some asymptotic
properties of such solutions.

By [ZL, Theorem 2.1] and Theorem 3.1 we have

Theorem 3.4. Suppose that a densely defined operator A generates an
α-times integrated semigroup (Sα(t))t≥0 on X and ‖Sα(t)‖ ≤ Meωt for all
t ≥ 0. Suppose also that for some σ > 0, span{x ∈ D(A) : Ax = (ω+σ+ir)x
for some r ∈ R} is dense in X. Then all solutions of (ACP)ω+σ for initial
values in D((−Aω+σ)α+ε+1) are almost periodic.

The following ergodic result follows from Theorem 3.1 and [LHC].

Theorem 3.5. Suppose that a densely defined operator A generates an
α-times integrated semigroup (Sα(t))t≥0 on X and ‖Sα(t)‖ ≤ Meωt for
every t ≥ 0. Let ε > 0. Then the following statements are equivalent.

(a) all mild solutions of (ACP)ω+σ for initial values in D((−Aω+σ)α+ε)
are strongly Abel-ergodic;

(b) all mild solutions of (ACP)ω+σ for initial values in D((−Aω+σ)α+ε)
are weakly Abel-ergodic;

(c) for every x ∈ X, {λ(λ − Aω+σ)−1(−Aω+σ)−(α+ε)x : 0 < λ < 1} is
weakly sequentially compact , i.e. there exists a sequence {λn}, λn → 0, and
some y ∈ X such that

weak- lim
n→∞

λn(λn −Aω+σ)−1(−Aω+σ)−(α+ε)x = y;

(d) D((−Aω+σ)α+ε) ⊆ kerAω+σ ⊕R(Aω+σ).

If a family {(Sn(t))t≥0}∞n=1 of α-times integrated semigroups satisfying
‖Sn(t)‖ ≤Meωt for some constants M,ω ≥ 0 converges to an α-times inte-
grated semigroup (S0(t))t≥0, then so do the resolvents of their generators.
Since the solution of the corresponding Cauchy problem can be obtained by
an integral of the resolvents (see [NS]), we have the following approximation
theorem.

Theorem 3.6. Suppose that for every n ∈ N0 := N ∪ {0}, An generates
an α-times integrated semigroup (Sn(t))t≥0 on X and there exists a constant
ω > 0 such that ‖Sn(t)‖ ≤ Meωt for all t ≥ 0 and n ∈ N0. If Sn(t)x →
S0(t)x as n→ ∞ for all x ∈ X and t ≥ 0, then, for every ε > 0 and every
x ∈ D((−(A0)ω+σ)α+ε+1), the solution of u′(t) = A0u(t), u(0) = x can be
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approximated by un(t) which is the solution of u′n(t) = Anun(t), un(0) = xn
and xn → x.

Finally, we apply Theorem 3.1 to elliptic differential operators. From [Zh]
we know that if a polynomial P is elliptic and ω := supξ∈Rn ReP (ξ) < ∞,
then for every α > np := n|1/2−1/p|, P (D) generates an α-times integrated
semigroup; thus Theorem 3.1 yields

Theorem 3.7. Let P be an elliptic polynomial on Rn. If

ω := sup
ξ∈Rn

ReP (ξ) <∞,

then for every α > np := n|1/2 − 1/p| and ω′ > ω, P (D) generates an
(ω′ − P (D))−α-regularized semigroup.
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