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On inertial manifolds for reaction-diffusion equations
on genuinely high-dimensional thin domains

by

M. Prizzi (Trieste) and K. P. Rybakowski (Rostock)

Abstract. We study a family of semilinear reaction-diffusion equations on spatial
domains Ωε, ε > 0, in Rl lying close to a k-dimensional submanifold M of Rl. As ε →
0+, the domains collapse onto (a subset of) M. As proved in [15], the above family
has a limit equation, which is an abstract semilinear parabolic equation defined on a
certain limit phase space denoted by H1

s (Ω). The definition of H1
s (Ω), given in the above

paper, is very abstract. One of the objectives of this paper is to give more manageable
characterizations of the limit phase space. Under additional hypotheses on the domains
Ωε we also give a simple description of the limit equation. If, in addition, M is a k-
sphere and the nonlinearity of the above equations is dissipative, then for every ε > 0
small enough the corresponding equation on Ωε has an inertial manifold, i.e. an invariant
manifold containing the attractor of the equation. We thus obtain the existence of inertial
manifolds for reaction-diffusion equations on certain classes of thin domains of genuinely
high dimension.

1. Introduction. In this paper we study a family of semilinear reaction-
diffusion equations on spatial domains Ωε, ε > 0, in Rl lying close to a
k-dimensional submanifold M of Rl. As ε→ 0+, the domains Ωε shrink to
a subset of M in the normal direction to M. It was proved in the previous
work [15], extending earlier results from [7] and [16], that the above family
has a limit equation, which is an abstract semilinear parabolic equation
defined on a certain limit phase space denoted by H1

s (Ω).
The definition of H1

s (Ω), given in [15], is very abstract. One of the ob-
jectives of this paper is to provide more manageable characterizations of
the limit phase space. Under additional hypotheses on the domains Ωε we
also give a simple description of the limit equation. If, in addition, M is a
k-sphere and the nonlinearity of the above equations is dissipative, then, as
we will prove, for every ε > 0 small enough the corresponding equation on
Ωε has an inertial manifold, i.e. an invariant manifold containing the attrac-
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tor of the equation. Thus we obtain the existence of inertial manifolds for
reaction-diffusion equations on certain classes of thin domains of genuinely
high dimension.

Let us now give a more detailed description of the results of this paper.
Let l, k and r be positive integers with r ≥ 2, l ≥ 2 and k < l. Let M⊂ Rl
be an arbitrary imbedded k-dimensional submanifold of Rl of class Cr. Note
that, in the general case considered here, the manifold is global, i.e.M need
not be included in a single coordinate chart. Let us also remark that we do
not assume M to be orientable.

By the tubular neighborhood theorem (cf. e.g. [1]) there exists an open
set U in Rl and a map φ : U →M of class Cr−1 such that whenever x ∈ U
and p ∈ M then φ(x) = p if and only if the vector x − p is orthogonal to
TpM; moreover, εx+ (1− ε)φ(x) ∈ U for all x ∈ U and all ε ∈ [0, 1].

For ε∈ [0, 1] let us define the curved squeezing transformation Φε : U→Rl
by

Φε(x) := εx+ (1− ε)φ(x) = φ(x) + ε(x− φ(x)).(1)

Now let Ω be an arbitrary nonempty bounded domain in Rl with Lipschitz
boundary and such that ClΩ ⊂ U . For ε ∈ ]0, 1], define the curved squeezed
domain

Ωε := Φε(Ω).

Let ε ∈ ]0, 1] be arbitrary, ω := Ωε and consider the Neumann boundary
value problem

ut = ∆u+G(u), t > 0, x ∈ ω,
∂νu = 0, t > 0, x ∈ ∂ω,

(2)

on ω. Here, ν is the exterior normal vector field on ∂ω. Suppose that G ∈
C1(R→ R) is dissipative in the sense that

lim sup
|s|→∞

G(s)/s ≤ −δ0 for some δ0 > 0.

Furthermore, let G satisfy the growth estimate

|G′(s)| ≤ C(1 + |s|β) for s ∈ R,

where C and β ∈ [0,∞[ are arbitrary real constants. If l > 2, assume, in
addition, that β < 2∗/2− 1, where 2∗ = 2l/(l − 2).

Problem (2) can be described in abstract terms as the equation

u̇+ Ãεu = Ĝ(u)(3)

on H1(Ωε). Here, the operator Ãε is induced by the bilinear form

ãε(u, v) =
�

Ωε

∇u · ∇v dx
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on H1(Ωε) in the sense that

Ãεu = w if and only if ãε(u, v) =
�

Ωε

uv dx for all v ∈ H1(Ωε).

Furthermore, Ĝ(u) := G◦u is the Nemytskĭı operator defined by G. We can
now use the change of variables u(x) 7→ u(x̃), where x̃ = Φε(x), to transform
equation (3) to the equivalent problem

u̇+ Aεu = Ĝ(u)(4)

on the fixed phase space H1(Ω). Here, the operator Aε is defined by the
formula

Aε(u ◦ Φε) = (Ãεu) ◦ Φε.
Equation (4) defines a semiflow πε on H1(Ω), which has a global attrac-
tor Aε.

For x ∈ U denote by Q(x) : Rl → Rl the orthogonal projection of
Rl ∼= TpRl onto TpM, where p := φ(x). Then P (x) = I − Q(x) is the
orthogonal projection onto the orthogonal complement of TpM.

Now define

H1
s (Ω) := {u ∈ H1(Ω) | P (x)∇u(x) = 0 a.e.}.(5)

Note that H1
s (Ω) is a closed linear subspace of the Hilbert space H1(Ω).

Let L2
s (Ω) be the closure in L2(Ω) of H1

s (Ω).
It is one of the main contributions of [15] that the family (Aε)ε∈]0,1] of

operators converges in a strong spectral sense to a densely defined selfadjoint
operator A0 in L2

s (Ω).
We can now consider the abstract parabolic equation

u̇+ A0u = Ĝ(u).(6)

on the space H1
s (Ω) defined in (5). Equation (6) defines a semiflow π0 on

H1
s (Ω), which has a global attractor A0.

It is proved in [15] that, as ε→ 0+, the linear semigroups e−tAε converge
in a singular sense to the semigroup e−tA0 and the semiflows πε singularly
converge to π0. Furthermore, an upper semicontinuity result is established
for the family (Aε)ε∈[0,1] of attractors.

In order to precisely define the operator A0 we need some notation
from [15]. Define the continuous function J0 : U → R by

J0(x) := |det(Dφ(x)|Tφ(x)M)|.
Moreover, for every x ∈ U define the linear map S0(x) : Rl → Rl by

S0(x) := lim
ε→0+

(DΦ−1
ε (Φε(x))− (1/ε)P (x))

(the limit being taken in L(Rl,Rl)). It is proved in [15] that S0(x) is well
defined and the function S0 : U → L(Rl,Rl) is continuous.
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Define the bilinear forms b0 : L2
s (Ω) × L2

s (Ω) → R and a0 : H1
s (Ω) ×

H1
s (Ω)→ R by

b0(u, v) :=
�

Ω

J0(x)u(x)v(x) dx,(7)

a0(u, v) :=
�

Ω

J0(x)〈S0(x)T∇u(x), S0(x)T∇v(x)〉 dx.(8)

Then A0 is defined as the operator generated by the pair (a0, b0). More
precisely,

A0u = w if and only if a0(u, v) = b0(w, v) for all v ∈ H1
s (Ω).

Now, for p ∈ M define the normal section Ωp of Ω at p to be the set
of all x ∈ Ω with φ(x) = p. The first of our results (Theorem 3.1) shows
that functions in L2

s (Ω) are a.e. (relative to the corresponding Hausdorff
measures) constant along the connected components of Ωp. This leads to a
first characterization of the space H1

s (Ω) in Corollary 3.2. If Ω has connected
normal sections, i.e. if Ωp is connected for all p ∈ M, then Theorems 3.3
and 3.4 completely characterize the spaces L2

s (Ω) and H1
s (Ω). Under some

additional regularity hypotheses, Theorem 3.5 and its Corollary provide a
simple description of the limit operator A0 and the corresponding limit
equation. In particular, A0 is equivalent to a relatively bounded perturbation
of the Laplace–Beltrami operator on an open subset ofM. If G := φ(Ω) is a
k-dimensional sphere and some additional hypotheses are satisfied then the
eigenvalues of the limit operator A0 satisfy a certain “gap condition” (see
Theorem 3.7). We can then apply a version of the inertial manifold theorem
from [17] (see Theorem 3.8) which shows that for all small ε ≥ 0 there is
an invariant manifold Iε for the equation u̇ + Aεu = Ĝ(u) containing the
attractor of this equation. The manifolds Iε (resp. the reduced equations
on Iε) converge, in a regular C1-sense, to the manifold I0 (resp. to the
reduced equations on I0).

The proof of Theorem 3.8 relies essentially on the gap condition men-
tioned above. Therefore we can obtain the same result if we consider, instead
of a sphere, any manifold with the property that the eigenvalues of the limit
operator A0 satisfy the gap condition. It is worth mentioning that there is
a class of compact manifolds without boundary which exhibit large gaps
in the spectrum of the corresponding Laplace–Beltrami operator, and for
which the gap condition is actually satisfied. It is the class of manifolds
satisfying the following property:

All geodesics are closed and their lengths are integer multiples of a fixed
positive number T .

This fact has been known for quite a long time (see e.g. [4, 9] and the
references contained therein), but only recently it has been observed that
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such manifolds provide a new class of spatial domains on which reaction-
diffusion equations have inertial manifolds (see [11]). This is a remarkable
fact, since previous results about inertial manifolds assumed that the spatial
domains were segments in R, rectangles in R2 or cubes in R3 (as in [13]), or
equilateral triangles (as in [12]). Note that in [20] Temam and Wang already
exploited the large gaps occurring in the spectrum of the Laplace–Beltrami
operator on S2 (acting on 1-forms), in order to construct inertial manifolds
for the Navier–Stokes equation on S2.

In this paper we obtain the existence of inertial manifolds for reaction-
diffusion equations on certain classes of domains in Rl which are “thin” in
l− k spatial directions but not thin in the remaining k directions. Since we
may choose l and k arbitrary with k ≤ l − 1 we may therefore term these
domains as being of genuinely high dimension.

2. Preliminaries. Given an arbitrary positive integer m, we denote by
Hm the m-dimensional Hausdorff measure on Rl induced by the Euclidean
metric. We need the following special case of the general coarea formula for
Riemannian manifolds from [6]:

Theorem 2.1. Suppose g : U → R is Lebesgue-measurable and g ≥ 0
(resp. g is Lebesgue-integrable). Then for Hk-a.a. p ∈ M the function
g|φ−1{p} is Hl−k-measurable (resp. Hl−k-integrable), the function

p 7→
�

φ−1{p}
g(x) dHl−k(x)

is Hk-measurable (resp. Hk-integrable) and
�

U
J0(x)g(x) dx =

�

M

( �

φ−1{p}
g(x) dHl−k(x)

)
dHk(p),(9)

where, as before, J0(x) := |det(Dφ(x)|Tφ(x)M)|.
We now recall a few classical definitions and results about Sobolev spaces

on Riemannian manifolds. For more details, the reader is referred to [3], [8]
and [18].

For the rest of this section, let S ⊂ M be open in M. We denote by
L2(S) (resp. L2

loc(S)) the set of all square integrable (resp. locally square
integrable) Hk-measurable functions on S. Moreover, L2(S) (resp. L2

loc(S))
is the space of all Hk-measurable tangent vector fields X on S such that the
function p 7→ 〈X(p),X(p)〉 is integrable (resp. locally integrable) on S.

Definition 2.2. Let u ∈ Cm(S), 1 ≤ m ≤ r. The gradient ∇u of u is
the Cm−1 vector field on S defined by

〈∇u(p), h〉 = (du(p), h) for all p ∈ S and all h ∈ TpM.
(Here we denote by (·, ·) the duality product in TpM.)
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It follows that whenever ũ : U → R is a C1 extension of the function u
to a neighborhood U of S in Rl (e.g. ũ := u ◦ φ), then, for p ∈ S, ∇u(p) is
the orthogonal projection of the usual gradient ∇ũ(p) ∈ Rl onto TpM.

Let us denote by ∇̂ the Levi-Civita connection onM. For a given vector
field X on S of class Cm, 1 ≤ m ≤ r, and for p ∈ S, define the linear map

R(X, p) : TpM→ TpM, h 7→ ∇̂hX(p).

It follows again that whenever X̃ : U → Rl is a C1 extension of the vector
field X to a neighborhood U of S in Rl (e.g. X̃ := X ◦ φ), then, for p ∈ S,
∇̂hX(p) is the orthogonal projection of DX̃(p)h ∈ Rl onto TpM. Here,
DX̃(p) : Rl → Rl is the usual Fréchet derivative of X̃ at p.

Definition 2.3. Let X be a vector field X on S of class Cm, 1 ≤ m ≤ r.
The divergence of X is the Cm−1 function defined by

(divX)(p) := traceR(X, p) for p ∈ S.

Definition 2.4. Let u ∈ L2
loc(S). We say that u ∈ H1

loc(S) if one of the
following equivalent properties is satisfied:

(1) for every chart τ : V ⊂ S → O ⊂ Rk the function u ◦ τ−1 : O → R is
in H1

loc(O);
(2) there exists a sequence of functions (ψn)n∈N, ψn ∈ C1(S), such that,

for every open set V ⊂⊂ S,
�

V
|ψn − ψm|2 dHk +

�

V
〈∇ψn −∇ψm,∇ψn −∇ψm〉 dHk → 0 as n,m→∞,

and ψn → u in L2
loc(S) as n→∞;

(3) there exists a vector field V ∈ L2
loc(S) such that for every vector field

Ψ of class Cr with suppΨ ⊂⊂ S,
�

S

udivΨ dHk = −
�

S

〈V, Ψ〉 dHk.

We call V the weak gradient of u and we write V =: ∇u.

We say that u ∈ H1(S) if u ∈ H1
loc(S), u ∈ L2(S) and ∇u ∈ L2(S). For

u ∈ H1(S), we set

|u|H1(S) :=
( �

S

|u|2 dHk +
�

S

〈∇u,∇u〉 dHk
)1/2

.

Remark 2.5. The Cauchy type condition in (2) above implies that there
exists a vector field V ∈ L2

loc(S) such that ∇ψn → V in L2
loc(S) as n→∞.

Obviously V = ∇u in the sense of (3). It follows that C1 functions are dense
in H1

loc(S).
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Let X and Y be two vector fields of class C1 on S. For a given p ∈ S,
let hj = hj(p), j = 1, . . . , k, be an orthonormal basis of TpS, and define

〈〈X,Y 〉〉(p) := 〈X(p), Y (p)〉+
k∑

j=1

〈∇̂hjX(p), ∇̂hjY (p)〉.

It can be shown that 〈〈X,Y 〉〉(p) does not depend on the choice of the
orthonormal basis of TpS, so the assignment p 7→ 〈〈X,Y 〉〉(p) defines a
function on S, which turns out to be continuous.

Definition 2.6. Let X ∈ L2
loc(S). We say that X ∈ H1

loc(S) if one of
the following equivalent properties is satisfied:

(1) for every chart τ : V ⊂ S → O ⊂ Rk and for j = 1, . . . , k, the
jth component Xj : O → R of X with respect to the coordinate system τ
belongs to H1

loc(O);
(2) there exists a sequence of vector fields (Ψn)n∈N, Ψn ∈ C1(S), such

that, for every open set V ⊂⊂ S,
�

V
〈〈Ψn − Ψm, Ψn − Ψm〉〉 dHk → 0 as n,m→∞

and Ψn → X in L2
loc(S) as n→∞.

If X ∈ H1
loc(S) we can compute ∇̂hX in coordinates for almost every

p ∈ S and for all h ∈ TpM, so it makes sense to define 〈〈X,Y 〉〉(p) for
vector fields X,Y ∈ H1

loc(S). We say that X ∈ H1(S) if X ∈ H1
loc(S) and

the function p 7→ 〈〈X,X〉〉(p) is integrable on S. For X ∈ H1(S), we set

|X|H1(S) :=
( �

S

〈〈X,X〉〉 dHk
)1/2

.

Definition 2.7. We say that a function u ∈ H1(S) belongs to H2(S) if
∇u ∈ H1(S).

For u ∈ H2(S), we define the Laplacian

∆Su(p) := div(∇u)(p).

3. The main results. In this section we state the principal results of
this paper. Most of the proofs will be given in Section 4. Let us remark that
Theorems 3.1, 3.3 and Corollary 3.2 are valid without the assumption that
Ω has Lipschitz boundary.

Recall that Ωp = {x ∈ Ω | φ(x) = p} for p ∈ M. Moreover, for x ∈ Ωp,
let Ωp(x) be the connected component of x in Ωp.

We can now state the first result of this paper:

Theorem 3.1. Let u ∈ L2
loc(Ω) and assume there exists a sequence

(um)m∈N in H1
loc(Ω), with P (x)∇um(x) = 0 a.e. in Ω for all m ∈ N, such
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that um → u in L2
loc(Ω) as m → ∞. Under this assumption, there exists

a set Z ⊂ M with Hk(Z) = 0, and for all p ∈ M \ Z there exists a set
Sp ⊂ φ−1(p) with Hl−k(Sp) = 0, such that the following property holds: for
all p ∈ M \ Z and for all x ∈ Ωp there exists a constant v(p, x) ∈ R such
that u(x) = v(p, x) for all x ∈ Ωp(x) \ Sp.

The assumptions above are in particular satisfied if u ∈ L2
s (Ω) and a

fortiori if u ∈ H1
s (Ω). Theorem 3.1 says that, up to a set of measure zero,

the functions in L2
s (Ω) are constant on each connected component of each

normal section Ωp of Ω at p ∈M.
Theorem 3.1 leads to the following simple characterization of the space

H1
s (Ω):

Corollary 3.2. For u ∈ H1(Ω) the following conditions are equivalent :

(1) P (x)∇u(x) = 0 a.e. in Ω.
(2) There exists a set Z ⊂ M with Hk(Z) = 0, and for all p ∈ M \ Z

there exists a set Sp ⊂ φ−1(p) with Hl−k(Sp) = 0, such that the following
property holds: for all p ∈ M\Z and for all x ∈ Ωp there exists a constant
v(p, x) ∈ R such that u(x) = v(p, x) for all x ∈ Ωp(x) \ Sp.

For domains Ω having connected normal sections, Theorem 3.1 implies
that functions in L2

s (Ω) depend only on the variable p ∈ M. We now show
that much more can be proved in this case.

Whenever Ω has connected normal sections, set G := φ(Ω) and define

µ(p) := Hl−k(Ωp) for p ∈ G.

Then G is open in M by the surjective mapping theorem, since Dφ(x) :
Rl → Tφ(x)M is surjective for all x ∈ U . Moreover, by the coarea formula
the function µ : G → R is Hk-measurable and, in fact, integrable on G.

The following theorem fully characterizes the space H1
s (Ω) when Ω has

connected normal sections.

Theorem 3.3. Assume that Ω has connected normal sections. Let u ∈
L2

s (Ω). Then there exists a null set S in Rl and a function v ∈ L2
loc(G)

such that u(x) = v(φ(x)) for all x ∈ Ω \ S; moreover µ1/2v ∈ L2(G). If
u ∈ H1

s (Ω), then v ∈ H1
loc(G),

∇u(x) = Dφ(x)T∇v(φ(x)) a.e. in Ω(10)

and µ1/2∇v ∈ L2(G). Conversely , let v ∈ L2
loc(G) be such that µ1/2v ∈ L2(G)

and set u(x) := v(φ(x)). Then u ∈ L2
s (Ω). If v ∈ H1

loc(G) and µ1/2∇v ∈
L2(G), then u ∈ H1

s (Ω).

The main consequence of Theorem 3.3 is the following:

Theorem 3.4. Suppose that Ω has connected normal sections. Define

L2(µ,G) := {v ∈ L2
loc(G) | µ1/2v ∈ L2(G)}.
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Then L2(µ,G), endowed with the scalar product

bµ(v1, v2) :=
�

G
µ(p)v1(p)v2(p) dHk(p),

is a Hilbert space. Moreover , define

H1(µ,G) := {v ∈ H1
loc(G) | µ1/2v ∈ L2(G), µ1/2∇v ∈ L2(G)}

and

aµ(v1, v2) :=
�

G
µ(p)〈∇v1(p),∇v2(p)〉 dHk(p) for v1, v2 ∈ H1(µ,G).

Then H1(µ,G), endowed with the scalar product aµ(·, ·)+bµ(·, ·), is a Hilbert
space.

Let  be the linear map

 : L2
s (Ω)→ L2(µ,G), u 7→ v,

where v is the function given by Theorem 3.3. Then  is an isometry of the
Hilbert space (L2

s (Ω), b0(·, ·)) onto L2(µ,G). Furthermore, the restriction of
 to H1

s (Ω) is an isometry of the Hilbert space (H1
s (Ω), a0(·, ·)+b0(·, ·)) onto

H1(µ,G).
Let Aµ be the self-adjoint operator in L2(µ,G) generated by the pair

(aµ, bµ). Then  restricts to an isometry ′ of D(A0) onto D(Aµ) and A0 =
−1Aµ

′.

In what follows, we denote by ∂G the topological boundary of G in M.

Theorem 3.5. Suppose that G is orientable (as a submanifold of M),
∂G = ∅ and the function µ is of class C1 on G. Then D(Aµ) = H2(G) and ,
for u ∈ D(Aµ),

(Aµu)(p) = −(1/µ(p)) div(µ(p)∇u(p)) Hk-a.e. in G.

Proof. Apply the regularity theory for elliptic equations and the diver-
gence formula on Riemannian manifolds. Easy details are omitted.

Theorem 3.5 clearly implies the following

Corollary 3.6. Under the assumptions of Theorem 3.5, the limit equa-
tion (6) is equivalent to the following reaction-diffusion equation on G:

ut = (1/µ(p)) div(µ(p)∇u) +G(u(p)), t > 0, p ∈ G.
Instead of assuming ∂G = ∅ we may alternatively assume that ∂G is a

k − 1-dimensional C2-submanifold of M and that µ can be extended to a
strictly positive C1-function on ClG. In this case it is not difficult to see
that the domain of Aµ is the set of all u ∈ H2(G) satisfying the boundary
condition

〈∇u(p), ν(p)〉 = 0 Hk−1-a.e. on ∂G
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in the sense of traces. Here ν(p) ∈ TpM, p ∈ ∂G, is the outward normal
vector field on ∂G. Again, for u ∈ D(Aµ), one has

(Aµu)(p) = −(1/µ(p)) div(µ(p)∇u(p)) a.e. in G.

Thus the limit equation (6) takes the form

ut = (1/µ(p)) div(µ(p)∇u) +G(u(p)), t > 0, p ∈ G,
〈∇u(p), ν(p)〉 = 0, t > 0, p ∈ ∂G.

We will now see that, for thin domains close to spheres, a spectral gap
condition is satisfied, which can be used to prove existence of inertial man-
ifolds:

Theorem 3.7. Suppose Ω has connected normal sections, regard Rk+1

as isometrically imbedded into Rl, let r ∈ ]0,∞[ be arbitrary and assume
that

G = Sk(r) := {x ∈ Rk+1 | 〈x, x〉 = r2}
(i.e. G the k-dimensional sphere in Rl of radius r centered at 0). Suppose
that

Cµ := sup
p∈Sk(r)

(1/µ(p))〈∇µ(p),∇µ(p)〉1/2 ≤ 1/(4r)2.

Under these assumptions the repeated sequence (λ0
j )j∈N of eigenvalues of the

limit operator A0 satisfies the following gap condition:

lim sup
ν→∞

λ0
ν+1 − λ0

ν

(λ0
ν)1/2

> 0.(11)

We will now state an inertial manifold theorem established in [17]. To
this end, we need some notation.

For every ε ∈ [0, 1] denote by (λεj)j∈N the repeated sequence of eigenval-
ues of Aε and by (wεj)j∈N a corresponding orthonormal sequence of eigen-
vectors.

For every ν ∈ N let Xε,ν,1 be the span of the vectors wεj , j = 1, . . . , ν,
and let Xε,ν,2 be the orthogonal complement of Xε,ν,1 in L2(Ω) if ε > 0 and
in L2

s (Ω) if ε = 0. Let Aε,ν,i be the restriction of Aε to Xε,ν,i for i = 1, 2. Let
Eε,νξ :=

∑ν
j=1 ξjw

ε
j for ξ ∈ Rν and let Pε,ν,i be the orthogonal projection

of L2(Ω) onto Xε,ν,i, i = 1, 2, if ε > 0, and of L2
s (Ω) onto Xε,ν,i, i = 1, 2, if

ε = 0.
Finally, whenever ε ∈ [0, 1] and F : H1(Ω) → L2(Ω) is a locally Lip-

schitzian (nonlinear) operator mapping H1
s (Ω) into L2(Ω), then πε,F is the

local semiflow on H1(Ω) for ε > 0 and on H1
s (Ω) for ε = 0 generated by the

solutions of the equation

u̇+ Aεu = F (u).
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Theorem 3.8. Suppose the eigenvalues of A0 satisfy the following gap
condition:

lim sup
ν→∞

λ0
ν+1 − λ0

ν

(λ0
ν)1/2

> 0.(12)

Then there are an ε0 > 0 and an open bounded set U ⊂ H1(Ω) such that
for every ε ∈ [0, ε0[ the attractor Aε of the semiflow π

ε,f̂
lies in U .

Furthermore, there exists a globally Lipschitzian map g ∈ C1(H1(Ω) →
L2(Ω)) with g(u) = f̂(u) for u ∈ U .

Moreover , there is a positive integer ν and for every ε ∈ [0, ε0[ there is
a map Λε ∈ C1(Rν → H1(Ω)) if ε > 0 and Λε ∈ C1(Rν → H1

s (Ω)) if ε = 0
such that

Pε,ν,1 ◦ Λε = Eε,ν(13)

and Iε := Λε(Rν) is a C1-manifold which is invariant with respect to πε,g.
Finally , there is an open set V ⊂ Rν such that Aε ⊂ Λε(V ) ⊂ U for

every ε ∈ [0, ε0[, and Λε(V ) is positively invariant with respect to π
ε,f̂

.
The reduced equation on Λε(Rν) takes the form

ξ̇ = vε(ξ), ξ ∈ Rν ,(14)

where
vε : Rν → Rν , ξ 7→ −AεEε,νξ + Pε,ν,1g(Λε(ξ)).

Moreover , whenever εn → 0+ and ξn → ξ0 in Rν , then

|Λεn(ξn)− Λ0(ξ0)|εn +
ν∑

j=1

|∂jΛεn(ξn)− ∂jΛ0(ξ0)|εn → 0,(15)

|vεn(ξn)− v0(ξ0)|Rν +
ν∑

j=1

|∂jvεn(ξn)− ∂jv0(ξ0)|Rν → 0.(16)

Remark 3.9. Our inertial manifold Iε is (globally) invariant with re-
spect to the modified semiflow πε,g, which coincides with the original semi-
flow π

ε,f̂
on the neighborhood U of the attractor Aε. Thus, close to the

attractor, Iε is a locally invariant manifold for the “true” semiflow πε,f̂ .
Theorem 3.8 is sharper than similar results in the literature (e.g. in [7]).
In fact, in order to prove existence of inertial manifolds, one usually first
finds L∞-estimates for the attractors and then one modifies the nonlinearity
f : R→ R so as to obtain a bounded nonlinearity f̃ : R→ R which induces
a globally Lipschitzian Nemytskĭı operator from H1 to itself.

However, by modifying the function f (rather than the Nemytskĭı op-
erator f̂ , as we do), one obtains a modified semiflow which coincides with
the original semiflow only on the attractor, while they are different on every
neighborhood of the attractor.
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Remark 3.10. Actually Theorem 3.8 was stated and proved in [17] for
the “flat” squeezing case considered there. However, the largely abstract
proof given in [17] carries over almost verbatim to the present more general
situation. Trivial modifications are left to the reader.

Combining Theorems 3.7 and 3.8 we arrive at the following important

Corollary 3.11. Assume the hypotheses of Theorem 3.7. Then the con-
clusions of Theorem 3.8 hold.

We thus obtain the existence of inertial manifolds for reaction-diffusion
equations on certain classes of domains in Rl which are “thin” in l−k spatial
directions but not thin in the remaining k directions. Since we may choose
l and k arbitrary with k ≤ l − 1 we may therefore term these domains as
being of “genuinely high dimension”.

4. The proofs. For every p ∈ M there is an open set Vp in M with
p ∈ Vp, a chart τ = τp : Vp → Rk of M and Cr−1-maps νj = νp,j : Vp → Rl,
j = 1, . . . , l−k, such that for every q ∈ Vp the vectors νj(q), j = 1, . . . , l−k,
form an orthonormal basis of the orthogonal complement of TqM in TqRl
∼= Rl. For j = 1, . . . , l − k define αj = αp,j : φ−1(Vp)→ R by

αj(x) = 〈x− φ(x), νj(x)〉 for x ∈ φ−1(Vp).

Set α(x) := (α1(x), . . . , αl−k(x)) for x ∈ φ−1(Vp). It is easily proved that
the map Γ = Γp : φ−1(Vp)→ Rk × Rl−k, x 7→ (ξ, s), where ξ = τ(φ(x)) and
s = α(x), is a Cr−1-diffeomorphism of φ−1(Vp) onto an open set O = Op in
Rk × Rl−k = Rl. Its inverse ζ : O → φ−1(Vp) is given by

ζ : (ξ, s) 7→ σ(ξ) +
l−k∑

j=1

sjνj(σ(ξ)) for (ξ, s) ∈ O.

Here, σ := τ−1.

Proposition 4.1. Let E ⊂ Op be open and F := ζ(E). Then u ∈
H1

loc(F ) if and only if ũ := u ◦ ζ ∈ H1
loc(E). In this case the following

properties are equivalent :

(1) P (x)∇u(x) = 0 a.e. in E.
(2) For every i = 1, . . . , l − k, ∂si ũ(ξ, s) = 0 a.e. in F .

Proof. The proof is obtained by using the well-known change of variable
formula in Sobolev spaces (cf. Proposition IX.6 in [2]). In fact this result
implies that the first part of the proposition is true and that the following
chain rule holds:

∂ũ

∂si
(ξ, s) =

l∑

l=1

∂u

∂xl
(ζ(ξ, s))

∂ζl
∂si

(ξ, s) for a.a. (ξ, s) ∈ E.(17)



Inertial manifolds for reaction-diffusion equations 265

Since
∂ζh
∂si

(ξ, s) = (νi(σ(ξ)))h

for i = 1, . . . , l − k and h = 1, . . . , l, it follows from (17) that

∂ũ

∂si
(ξ, s) = 〈∇u(ζ(ξ, s)), νi(σ(ξ))〉 = 〈P (ζ(ξ, s))∇u(ζ(ξ, s)), νi(σ(ξ))〉.

This completes the proof.

Proposition 4.2. Assume that E⊂Op has the special form E :=E1×E2

where

E1 :=
k∏

i=1

]ai, bi[ ⊂ Rk,(18)

E2 :=
l−k∏

j=1

]cj , dj[ ⊂ Rl−k.(19)

and set F := ζ(E) as before. Let u ∈ H1
loc(F ) be such that P (x)∇u(x) = 0

a.e. in F . Then there exist a null set S ⊂ Rl and a function ṽ ∈ H1
loc(E1)

such that u(x) = (ṽ◦τ ◦φ)(x) for all x ∈ F \S. Equivalently , set E1 := σ(E1)
and v(q) := (ṽ ◦ τ)(q) for q ∈ E1. Then v ∈ H1

loc(E1) and u(x) = (v ◦ φ)(x)
for all x ∈ F \ S.

Proof. Let ũ := u ◦ φ. By Proposition 4.1,

∂ũ

∂si
(ξ, s) = 0 a.e. in E, i = 1, . . . , l − k.

By Lemma 2.3 in [16] it follows that there exist a null set S̃ ⊂ Rl and a
function ṽ ∈ H1

loc(E1) such that

ũ(ξ, s) = ṽ(ξ) for all (ξ, s) ∈ E \ S̃.

Set S := ζ(S̃ ∩ E). Then for x ∈ F \ S, we have

u(x) = ũ(Γ (x)) = ṽ(τ(φ(x)).

The second part of the proposition follows from Definition 2.4.

Proposition 4.3. Let E and F be as in Proposition 4.2. Let u∈L2
loc(F )

and assume there exists a sequence (um)m∈N in H1
loc(F ) with P (x)∇um(x)

= 0 a.e. in F for all m ∈ N, such that um → u in L2
loc(F ) as m → ∞.

Then there exist a null set S ⊂ Rl and a function ṽ ∈ L2
loc(E1) such that

u(x) = (ṽ ◦ τ ◦ φ)(x) for all x ∈ F \ S. Equivalently , set E1 := σ(E1) and
v(q) := (ṽ ◦ τ)(q) for q ∈ E1. Then v ∈ L2

loc(E1) and u(x) = v ◦ φ(x) for all
x ∈ F \ S.
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Proof. By Proposition 4.1,

ũm := um ◦ ζ ∈ H1
loc(E).

Moreover, since ζ is a diffeomorphism,

ũ := u ◦ ζ ∈ L2
loc(E) and ũm → ũ in L2

loc(E) as m→∞.
By Proposition 4.1 we obtain, for all m ∈ N and all i = 1, . . . , l − k,

∂ũm
∂si

(ξ, s) = 0 a.e. in E.

It follows that, for all i = 1, . . . , l − k, ∂si ũ(ξ, s) = 0 in the distributional
sense. Thus Lemma 2.3 in [17] again implies that there exist a null set S̃ ⊂ Rl
and a function ṽ ∈ L2

loc(E1) such that

ũ(ξ, s) = ṽ(ξ) for all (ξ, s) ∈ E \ S̃.

Set S := ζ(S̃ ∩ E). Then for x ∈ F \ S, we have

u(x) = ũ(Γ (x)) = ṽ(τ(φ(x)).

The second part of the proposition is obvious.

Before stating the next result, let us notice that, whenever S is an Hk-
measurable subset of M then φ−1(S) is Lebesgue measurable in Rl. This
follows from the fact that the map φ : U → M is a submersion, so in local
charts it can be described as the canonical projection π of Rl = Rk × Rl−k
onto Rk. Thus the above statement boils down to proving that whenever A
is Lebesgue measurable in Rk then π−1(A) is Lebesgue measurable in Rl.
However, this is well known to be true. In particular, if v is a measurable
function defined on S then u = v ◦ φ is a measurable function defined on
φ−1(S). We will use this remark implicitly in the proofs to follow.

Proposition 4.4. Let V be open in M and U := φ−1(V ). Suppose
v ∈ H1

loc(V ) and u = v ◦ φ a.e. in U . Then u ∈ H1
loc(U) and

∇u(x) = Dφ(x)T∇v(φ(x)) a.e. in U .

Proof. First assume that v ∈ C1(V ). In this case we can assume that
u = v ◦ φ ∈ C1(U). Let x ∈ U and h ∈ Rl be arbitrary and set q := φ(x).
Now φ◦φ = φ so u◦φ = u. Since Dφ(x)h ∈ TqM and Q(q) is the orthogonal
projection of Rl onto TqM it follows that

〈∇u(x), h〉= Du(x)h = D(u ◦ φ)(x)h = Du(q)Dφ(x)h = 〈∇u(q),Dφ(x)h〉
= 〈Q(q)∇u(q),Dφ(x)h〉=〈∇v(q),Dφ(x)h〉=〈Dφ(x)T∇v(q), h〉.

Since h is arbitrary, we see that ∇u(x) = Dφ(x)T∇v(φ(x)) for all x ∈ U .
Assume now that v ∈ H1

loc(V ). Take a sequence (vm)m∈N in C1(V ) such
that vm → v in H1

loc(V ) as m → ∞. Let U0 be an arbitrary open set with
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U0 ⊂⊂ U and let V 0 = φ(U0). Notice that V 0 ⊂⊂ V . By (9), we have
�

U0

J0(x)|vm(φ(x))− v(φ(x))|2 dx

=
�

V 0

Hl−k(φ−1{p} ∩ U0)|vm(p)− v(p)|2 dHk(p)→ 0

as m→∞. Since infx∈U0 J0(x) > 0 we infer that

vm ◦ φ→ v ◦ φ in L2(U0) as m→∞.

In the same way we have
�

U0

J0(x)〈∇vm(φ(x))−∇v(φ(x)),∇vm(φ(x))−∇v(φ(x))〉 dx

=
�

V 0

Hn−k(φ−1{p} ∩ U0)〈∇vm(p)−∇v(p),∇vm(p)−∇v(p)〉 dHk(p)→ 0

as m→∞. Again we get

∇vm ◦ φ→ ∇v ◦ φ in L2(U0,Rl) as m→∞.

Now choose an arbitrary function ψ ∈ C∞0 (U) with suppψ ⊂ U0. From
what we have proved thus far, we obtain

�

U

u(x)∇ψ(x) dx =
�

U

v(φ(x))∇ψ(x) dx =
�

U0

v(φ(x))∇ψ(x) dx

= lim
m→∞

�

U0

vm(φ(x))∇ψ(x) dx = − lim
m→∞

�

U0

ψ(x)Dφ(x)T∇vm(φ(x)) dx

= −
�

U0

ψ(x)Dφ(x)T∇v(φ(x)) dx = −
�

U

ψ(x)Dφ(x)T∇v(φ(x)) dx.

Since U0 is arbitrary, we conclude that both u ∈ H1
loc(U) and ∇u(x) =

Dφ(x)T∇v(φ(x)) a.e. in U .

Proof of Theorem 3.1. We follow the proof of Theorem 2.5 in [16]. There
exists a sequence (pi)i∈N of (not necessarily pairwise distinct) points in M,
a sequence τi : Vi = Vpi → Rk, i ∈ N, of charts with inverses σi, a sequence
ζi : Oi = Opi ⊂ Rk × Rl−k → φ−1(Vi), i ∈ N, of diffeomorphisms and a
sequence (Fi)i∈N of sets such that:

(1) Ω =
⋃
i∈N Fi;

(2) for all i ∈ N, Fi has the form of the set F of Proposition 4.2, i.e.
Fi = ζi(E1,i×E2,i), where E1,i and E2,i are products of open intervals, i ∈ N.

Set E1,i := σi(E1,i), i ∈ N. Then, for all i and m ∈ N, we have

P (x)∇um(x) = 0 a.e. in Fi

and
um|Fi → u|Fi in L2

loc(Fi) as m→∞.
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By Proposition 4.3, for all i ∈ N there exist a null set Si ⊂ Rl and a function
vi ∈ L2

loc(E1,i) such that

u(x) = vi(φ(x)) for all x ∈ Fi \ Si.
Set

S :=
(⋃

i∈N
Si

)
∩ U and Sp := S ∩ φ−1{p} for all p ∈ M.

Let χS denote the characteristic function of the set S. Then, by the coarea
formula (9), we have

0 =
�

U
J0(x)χS(x) dx =

�

M
Hl−k(Sp) dHk(p).

It follows that there exists a set Z ⊂ M with Hk(Z) = 0 such that
Hl−k(Sp) = 0 for all p ∈ M \ Z. Fix p ∈ M \ Z and x ∈ Ωp. There
exists an i ∈ N such that x ∈ Fi. Set

A := {z ∈ Ωp(x) | there exists a set Vz ⊂ Ωp(x), open in Ωp(x), z ∈ Vz,
such that u(x) = vi(φ(x)) for all x ∈ Vz \ Sp}.

Then, by Proposition 4.3, x ∈ A with Vx = ζi({τi(p)}×E2,i). If z ∈ A, then
obviously Vz ⊂ A, so A is open in Ωp(x). If z ∈ Ωp(x) \ A, then z ∈ Fj for
some j ∈ N. By Proposition 4.3, it follows that

u(x) = vj(φ(x)) for all x ∈ ζj({τj(p)} × E2,j) \ Sp.
If vj(φ(x)) = vi(φ(x)), then z ∈A, a contradiction. Thus necessarily vj(φ(x))
6= vi(φ(x)) and so

A ∩ ζj({σ−1
j (p)} × E2,j) = ∅.

This implies that A is closed in Ωp(x). Since Ωp(x) is connected, it follows
that A = Ωp(x). Therefore Ωp(x) =

⋃
z∈A Vz. Let x ∈ Ωp(x) \ Sp. Then

x ∈ Vz for some z ∈ A and hence u(x) = vi(φ(x)). We conclude that
u(x) = vi(φ(x)) for all x ∈ Ωp(x) \ Sp.

Proof of Corollary 3.2. Condition (1) implies (2) by Theorem 3.1. Now
suppose that (2) holds. Let (Fi)i∈N and (ζi)i∈N be as in the proof of Theo-
rem 3.1. For every i ∈ N set ũ = u ◦ ζi. Condition (2) implies that there is a
null set Z̃ in Rk and for every ξ ∈ E1,j \ Z̃ there is a null set S̃ξ ∈ Rl−k with
the property that for every ξ ∈ E1,j \ Z̃ there is a constant ṽ(ξ) such that
ũ(ξ, s) = ṽ(ξ) for all s ∈ E2,j \ S̃ξ. Therefore Theorem 2.5 in [16] implies
that ∂sj ũ = 0 a.e. in E1,i×E2,i, j = 1, . . . , l−k. Thus Proposition 4.1 shows
that P (x)∇u(x) = 0 a.e. in Fi, for all i ∈ N. Hence P (x)∇u(x) = 0 a.e.
in Ω.

Proof of Theorem 3.3. Let (Fi)i∈N be as in the proof of Theorem 3.1. As
in that proof, for every i ∈ N there exist a null set Si ⊂ Rl and a function
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vi ∈ L2
loc(E1,i) (vi ∈ H1

loc(E1,i) in case u ∈ H1
s (Ω)) such that

u(x) = vi(φ(x)) for all x ∈ Fi \ Si.
Observe that G =

⋃
i∈N E1,i. Again, set

S :=
(⋃

i∈N
Si

)
∩ U and Sp := S ∩ φ−1{p} for all p ∈ M.

It follows that there exists a set Z ⊂ M with Hk(Z) = 0 such that
Hl−k(Sp) = 0 for all p ∈ M \ Z.

Let p ∈ G \ Z and take any x ∈ Ωp \ Sp. Then

vi(p) = vi(φ(x)) = u(x) for all i ∈ N with p ∈ E1,i.

In particular,

vi(p) = vj(p) for all p ∈ (E1i ∩ E1j) \ Z and for all i, j ∈ N.

Define the function v : G \ Z → R by

v(p) := vi(p) if p ∈ E1i.

Then v is defined unambiguously and we can extend it trivially to the whole
of G. Obviously v|E1,i = vi a.e. in E1,i, so v ∈ L2

loc(G). Moreover, u(x) =
v(φ(x)) for all x ∈ Ω \ S. If u ∈ H1

s (Ω) then, by Propositions 4.2 and 4.4,
we have v ∈ H1

loc(G) and ∇u(x) = Dφ(x)T∇v(φ(x)) a.e. in Ω. Finally, by
the coarea formula, we have

�

G
µ(p)|v(p)|2 dHk(p) =

�

φ(Ω)

Hl−k(φ−1(p) ∩Ω)|v(p)|2 dHk(p)

=
�

Ω

J0(x)|v(φ(x))|2 dx =
�

Ω

J0(x)|u(x)|2 dx <∞.

It is proved in [15] that S0(x)TDφ(x)Th = h for all x ∈ U and all h ∈
Tφ(x)M. Using this, we further obtain

�

G
µ(p)〈∇v(p),∇v(p)〉 dHk(p)

=
�

φ(Ω)

Hl−k(φ−1(p) ∩Ω)〈∇v(p),∇v(p)〉 dHk(p)

=
�

Ω

J0(x)〈∇v(φ(x)),∇v(φ(x))〉 dx

=
�

Ω

J0(x)〈S0(x)TDφ(x)T∇v(φ(x)), S0(x)TDφ(x)T∇v(φ(x))〉 dx

=
�

Ω

J0(x)〈S0(x)T∇u(x), S0(x)T∇u(x)〉 dx <∞.

This completes the proof of the first part of the theorem.
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Assume now that v ∈ L2
loc(G) and µ1/2v ∈ L2(G). Set u(x) := v(φ(x))

for x ∈ Ω. By the coarea formula we have
�

Ω

J0(x)|u(x)|2 dx =
�

Ω

J0(x)|v(φ(x))|2 dx

=
�

φ(Ω)

Hl−k(φ−1(p) ∩Ω)|v(p)|2 dHk(p) =
�

G
µ(p)|v(p)|2 dHk(p) <∞.

Since infx∈Ω J0(x) > 0, this implies that u ∈ L2(Ω). Set

C := sup
x∈Ω
‖Dφ(x)T‖L(Rl,Rl) <∞.

If v ∈ H1
loc(G) and µ1/2∇v ∈ L2(G), then we obtain

�

Ω

J0(x)〈∇u(x),∇u(x)〉dx =
�

Ω

J0(x)〈Dφ(x)T∇v(φ(x)),Dφ(x)T∇v(φ(x))〉 dx

≤ C
�

Ω

J0(x)〈∇v(φ(x)),∇v(φ(x))〉 dx

= C
�

φ(Ω)

Hl−k(φ−1(p) ∩Ω)〈∇v(p),∇v(p)〉 dHk(p)

= C
�

G
µ(p)〈∇v(p),∇v(p)〉 dHk(p) <∞.

Thus again u ∈ H1(Ω). Since

∇u(x) = Dφ(x)T∇v(φ(x)) a.e. in Ω,

it follows that∇u(x) ∈ Tφ(x)M, so P (x)∇u(x) = 0 a.e. in Ω, i.e. u ∈ H1
s (Ω).

It remains to prove that if v ∈ L2
loc(G) and µ1/2v ∈ L2(G), then there

exists a sequence (um)m∈N in H1
s (Ω) such that um → u in L2(Ω) as m→∞,

where u = v ◦ φ. Choose a sequence (vm)m∈N in C1
0(G) such that vm → v in

L2
loc(G). Set um := vm ◦ φ. Then um ∈ H1

s (Ω). Furthermore,
�

Ω

J0(x)|u(x)− um(x)|2 dx =
�

G
µ(p)|v(p)− vm(p)|2 dHk(p)→ 0

as m→∞. Since infx∈Ω J0(x) > 0, the proof is complete.

Proof of Theorem 3.4. This is an easy consequence of Theorem 3.3,
Proposition 4.4 and the coarea formula. Trivial details are omitted.

Proof of Theorem 3.7. Set n := k + 1 and let (λj)j∈N be the repeated
sequence of eigenvalues of the operator −∆Sn−1(r). Moreover, for ν ∈ N0,
let λν denote the νth distinct eigenvalue of −∆Sn−1(r). It is well known (see
e.g. [3]) that

λν = r−2ν(ν + n− 2) for ν ∈ N.
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The multiplicity of λν is
(
ν + n− 1

ν

)
−
(
ν + n− 2
ν − 1

)

and the eigenspace of λν is precisely the space of all homogeneous harmonic
polynomials on Rn of degree ν, restricted to Sn−1(r). So we can find arbi-
trarily large gaps in the spectrum of ∆Sn−1(r). In particular,

lim
ν→∞

λν+1 − λν
λ

1/2
ν

=
2
r
,(20)

and hence

lim sup
j→∞

λj+1 − λj
λ

1/2
j

=
2
r
.(21)

Since Sn−1(r) is a manifold without boundary, we have

D(Aµ) = H2(Sn−1(r)).

It follows that

Aµu = −(1/µ) div(µ∇u) = −∆Sn−1(r)u− 〈(1/µ)∇µ,∇u〉.
This means that Aµ is a relatively bounded perturbation of −∆Sn−1(r). More
precisely, set A := −∆Sn−1(r) and, for u ∈ H1(Sn−1(r)), set

Bµu := −(1/µ)〈∇µ,∇u(p)〉,
so Aµ = A+Bµ. For u ∈ H2(Sn−1(r)), we have

|Bµu|2L2 =
�

Sn−1(r)

|〈µ−1∇µ,∇u〉|2 dHn−1

≤ C2
µ

�

Sn−1(r)

〈∇u,∇u〉 dHn−1

= C2
µ

�

Sn−1(r)

uAudHn−1 ≤ C2
µ|u|L2 |Au|L2 .

It follows that, whenever δ > 0, we have

|Bµu|L2 ≤ δ|Au|L2 +
C2
µ

4δ
|u|L2 for all u ∈ D(A).(22)

Now let λ > 0 and let d(λ) be the distance of λ from the spectrum of A.
Assume that λI −A is invertible. Write L2 := L2(Sn−1(r)). It is well known
(see e.g. Theorem 3.17 in [10]) that a sufficient condition for λI − (A+Bµ)
to be invertible is

|Bµ(λI − A)−1|L(L2,L2) < 1.
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In view of (22), for every δ > 0 we have

|Bµ(λI −A)−1|L(L2,L2) ≤ δ|A(λI −A)−1|L(L2,L2) +
C2
µ

4δ
|(λI −A)−1|L(L2,L2).

Observe that, since A is self-adjoint,

|(λI − A)−1|L(L2,L2) = sup
ν∈N
|λ− λν |−1 ≤ d(λ)−1

and

|A(λI − A)−1|L(L2,L2) = sup
ν∈N
|λν | |λ− λν |−1

≤ sup
ν∈N

(1 + λ|λ− λν |−1) ≤ 1 + λd(λ)−1.

It follows that

|Bµ(λI − A)−1|L(L2,L2) ≤ δ(1 + λd(λ)−1) +
C2
µ

4δ
d(λ)−1.

So a sufficient condition for λI − (A+Bµ) to be invertible is

δ(d(λ) + λ) +
C2
µ

4δ
< d(λ)

or equivalently

δλ+
C2
µ

4δ
< (1− δ)d(λ) for some δ, 0 < δ < 1.(23)

Using our assumption on Cµ we see that (23) is satisfied (and so λI −Aµ is
invertible) whenever

λ > 1/(4r)2 and d(λ) >
1
2r
λ1/2.(24)

(To see this, just set δ := (8r)−1λ1/2.) Now fix ν > 1. Then ν(ν+n−2) > 1/4,
so λν > 1/(4r)2. Consider the interval ]λν , λν+1[. If λ ∈ ]λν , λν+1[, then, in
view of (24), λI − Aµ is invertible provided

λ− λν >
1
2r
λ1/2 and λν+1 − λ >

1
2r
λ1/2.

Set ξ := λ− λν and η := λν+1 − λ. Thus λI − Aµ is invertible provided

4r2ξ2 − ξ − λν > 0 and 4r2η2 + η − λν+1 > 0.

By solving these inequalities for ξ and η > 0, we obtain the conditions

ξ > ξν :=
1

8r2 +
(

1
64r4 +

λν
4r2

)1/2

and

η > ην+1 := − 1
8r2 +

(
1

64r4 +
λν+1

4r2

)1/2

.
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It follows that if λν + ξν < λν+1 − ην+1, then the interval

Iν := ]λν + ξν , λν+1 − ην+1[

is contained in the resolvent set of Aµ. So let us compute

(λν+1 − ην+1)− (λν + ξν)

= λν+1 − λν −
((

1
64r4 +

λν+1

4r2

)1/2

+
(

1
64r4 +

λν
4r2

)1/2)

= λν+1 − λν −
1

4r2 (λν+1− λν)
((

1
64r4 +

λν+1

4r2

)1/2

−
(

1
64r4 +

λν
4r2

)1/2)−1

.

If we substitute the explicit expression λν = r−2ν(ν + n− 2), a straightfor-
ward computation shows that

lim
ν→∞

((
1

64r4 +
λν+1

4r2

)1/2

−
(

1
64r4 +

λν
4r2

)1/2)
=

1
2r2 .

It follows that there is a ν0 ∈ N such that for all ν ≥ ν0,

(λν+1 − ην+1)− (λν + ξν) ≥ 1
3(λν+1 − λν).(25)

In particular, for such ν, the interval Iν is nonempty.
Let

λµ1 ≤ λµ2 ≤ λµ3 ≤ . . .
be the repeated sequence of eigenvalues of Aµ. For ν ≥ ν0 + 1, set

Jν := ]λν − ην , λν + ξν [ .

Define Z to be the set of all ν ≥ ν0+1 such that Jν has nonempty intersection
with the spectrum of Aµ. It follows that Z has infinitely many elements. For
ν ∈ Z set

jν := max{j ∈ N | λµj ∈ Jν}.
jν is well defined since λµj →∞ as j →∞. Now λµjν+1 ≥ λ

µ
jν

and so, by the
definition of jν and the fact that there are no eigenvalues of Aµ lying in Iν ,
it follows that λµjν+1 ≥ λν+1 − ην+1. Therefore

λµjν+1 − λ
µ
jν

(λµjν )1/2
≥ (λν+1 − ην+1)− (λν + ξν)

(λν + ξν)1/2
.

Thus, by (25), we see that

λµjν+1 − λ
µ
jν

(λµjν )1/2
≥ 1

3
λν+1 − λν
λ

1/2
ν

λ
1/2
ν

(λν + ξν)1/2
.

Since

lim
ν→∞

λ
1/2
ν

(λν + ξν)1/2
= 1,
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we deduce, in view of (20), that

lim sup
ν→∞

λµjν+1 − λ
µ
jν

(λµjν )1/2
≥ 2

3r

and therefore

lim sup
j→∞

λµj+1 − λ
µ
j

(λµj )1/2
≥ 2

3r
> 0.(26)

Now, in view of Theorem 3.4, the repeated eigenvalue sequences of the limit
operator A0 and the operator Aµ are the same. The proof is complete.
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