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Characterizations of weakly compact sets
and new fixed point free maps in c0

by

P. N. Dowling (Oxford, OH), C. J. Lennard (Pittsburgh, PA)
and B. Turett (Rochester, MI)

Abstract. We give a basic sequence characterization of relative weak compactness
in c0 and we construct new examples of closed, bounded, convex subsets of c0 failing the
fixed point property for nonexpansive self-maps. Combining these results, we derive the
following characterization of weak compactness for closed, bounded, convex subsets C of
c0: such a C is weakly compact if and only if all of its closed, convex, nonempty subsets
have the fixed point property for nonexpansive mappings.

1. Introduction. While the main result of this paper is a characteriza-
tion of weak compactness in the Banach space c0, this work has its origins in
metric fixed point theory. In his celebrated paper of 1981, Maurey [9] used
ultrapower techniques to prove a number of very interesting results in metric
fixed point theory. One result of particular interest is that closed bounded
convex nonempty subsets of c0 that are weakly compact have the fixed point
property for nonexpansive self-maps. Considerable effort had been expended
in the years before 1980 to prove this result and some partial results were
known; most notably the results of Haydon, Odell and Sternfeld [6], and
Odell and Sternfeld [10]. In the years immediately following the appearance
of Maurey’s paper, several people worked on extending Maurey’s result in c0
to a larger class of Banach spaces. Borwein and Sims [2] proved an analogue
of Maurey’s result in the setting of Banach lattices under some technical
conditions, and Lin [7] proved an analogue of Maurey’s result in the Banach
spaces with a 1-unconditional basis.

In recent years, the converse of Maurey’s result has been a topic of ac-
tive research. Llorens-Fuster and Sims [8] proved that certain closed bounded
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convex nonempty subsets of c0 which are not weakly compact but are “close
to weakly compact” fail the fixed point property for nonexpansive map-
pings. These examples led them to conjecture that closed bounded convex
nonempty subsets of c0 have the fixed point property if and only if they are
weakly compact. In this paper we prove a result that partially supports this
conjecture of Llorens-Fuster and Sims. Specifically, we prove that a closed
bounded convex nonempty subset of c0 is weakly compact if and only if all
of its closed convex nonempty subsets have the fixed point property. As a
consequence, we also prove the result analogous to this in the space (c, ‖·‖∞)
of convergent scalar sequences.

The key to proving the results mentioned above is to build, inside any
closed bounded convex subset of c0, a sequence which acts very much like
the usual summing basis in c0. We will construct nonexpansive fixed point
free mappings on the closed convex hull of this sequence. One consequence
of our construction is that a subset C of c0 is relatively weakly compact
if and only if C is bounded and the convex hull of C does not contain an
asymptotically isometric copy of the summing basis. Our construction can
be further modified to prove that a subset of c0 is relatively weakly compact
if and only if it is bounded and does not contain a copy of the summing
basis.

We note here that all our results hold independently of whether the
underlying scalar field is the real numbers R or the complex numbers C.

Finally, we remark that, working independently of each other, we and
Domı́nguez Benavides, Japón Pineda and Prus [4, Proposition 3.1(c), The-
orem 3.2(c) and Corollary 3.4(c)] have both recently proven related re-
sults for c0. It turns out that our results are more general than those of
Domı́nguez Benavides, Japón Pineda and Prus. They prove that a closed
bounded convex nonempty subset C of c0 is weakly compact if and only if
there exists a constant M > 1 such that all of C’s closed convex nonempty
subsets have the fixed point property for affine mappings which are uni-
formly Lipschitzian with the constant M . (In [4] an analogue of this re-
sult is also proven for c0(Γ ), for any infinite set Γ , and for the James
space Jp.)

Note that [4] employs a right shift mapping T in Theorem 3.2 and Corol-
lary 3.4 there. We use the averaging of iterated right shift operators, as
described in Theorem 2 below. This is one of the main new tools of our
paper. These tools enable us to reach the stronger conclusion mentioned
above.

2. The results. We begin this section with a definition of asymptoti-
cally isometric c0-summing basic sequence. Throughout this paper c00 will
denote the space of finitely nonzero sequences.
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Definition 1. Let (xn)n∈N be a sequence in a Banach space X. We say
that (xn) is an asymptotically isometric c0-summing basic sequence if there
exists a null sequence (εn) in (0,∞) such that for all (tn)n ∈ c00,

(†) sup
n≥1

(
1

1 + εn

)∣∣∣
∞∑

j=n

tj

∣∣∣ ≤
∥∥∥
∞∑

n=1

tnxn

∥∥∥ ≤ sup
n≥1

(1 + εn)
∣∣∣
∞∑

j=n

tj

∣∣∣.

Note that we may replace c00 by `1 in the above definition. If L > 0,
we will refer to a sequence (xn) as an L-scaled asymptotically isometric
c0-summing basic sequence if the sequence (xn/L) is an asymptotically iso-
metric c0-summing basic sequence.

Theorem 2. Let X be a Banach space with a norm ‖ ·‖, and let K be a
closed bounded convex subset of X. Let (εn) be a null sequence in (0,∞) with
εn < 2−14−n for all n ≥ 2. If K contains a sequence (xn)n∈N such that (†)
holds for all (tn)n ∈ c00, then K contains a nonempty closed convex subset
C for which there is a nonexpansive affine mapping T : C → C that fails to
have a fixed point in C. Moreover , T is contractive, i.e. ‖T (x) − T (y)‖ <
‖x− y‖ for all x, y ∈ C with x 6= y.

Proof. Define C = co{xn : n ∈ N}, the closed convex hull of the se-
quence (xn). It is easy to check that we also have

C =
{ ∞∑

n=1

tnxn : tn ≥ 0 for all n ∈ N and
∞∑

n=1

tn = 1
}
.

Now, define T (xn) =
∑∞

j=1 2−jxj+n for all n ∈ N, and extend T linearly
to C; i.e.

T (x) =
∞∑

n=1

tnT (xn) for all x =
∞∑

n=1

tnxn ∈ C.

It is clear that T maps C into C. Further, T has no fixed point in C. Indeed,
fix x ∈ C as above and suppose that T (x) = x. Now, x =

∑∞
n=1 tnxn implies

that
T (x) =

∑

k∈N
tkT (xk) =

∑

k∈N
tk
∑

j∈N

1
2j
xj+k

=
∑

k∈N

∑

j∈N

1
2j
tkxj+k =

∑

m≥2

( ∑

j,k∈N: j+k=m

1
2j
tk

)
xm.

Thus, T (x) =
∑∞

m=1 smxm, where s1 = 0 and for all m ≥ 2,

sm =
∑

j,k∈N: j+k=m

1
2j
tk =

1
2m−1 t1 + . . .+

1
21 tm−1.

But x = T (x). It follows that t1 = s1 = 0, t2 = (1/2)t1 = 0, t3 = (1/22)t1 +
(1/2)t2 = 0, . . . ; and therefore each tn = 0, by induction. This contradicts
the fact that

∑∞
n=1 tn = 1. So, T is fixed point free on C.
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We will complete the proof by showing that T is contractive on C. Let
x =

∑∞
n=1 tnxn and y =

∑∞
n=1 snxn, where tn, sn ≥ 0 for all n ∈ N and∑∞

n=1 tn =
∑∞

n=1 sn = 1. Also suppose that x 6= y. Then

T (x)− T (y) =
∞∑

n=1

tnT (xn)−
∞∑

n=1

snT (xn) =
∞∑

n=1

(tn − sn)T (xn).

Let αn = tn − sn for all n ∈ N and note that
∑∞

n=1 αn = 0. Similarly to an
argument given above, it follows that

T (x)− T (y) =
∞∑

k=1

αkT (xk) =
∞∑

m=2

( ∑

j,k∈N: j+k=m

1
2j
αk

)
xm

=
∞∑

n=1

(
1
2n
α1 +

1
2n−1 α2 +

1
2n−2 α3 + . . .+

1
2
αn

)
xn+1

(n = m− 1). Therefore,

‖T (x)− T (y)‖ ≤ sup
m≥1

(1 + εm)
∣∣∣∣
∞∑

n=m

( ∑

j,k∈N:j+k=n

1
2j
αk

)∣∣∣∣

= (1 + ε1)

∣∣∣∣0 +
(

1
2
α1

)
+
(

1
22 α1 +

1
2
α2

)
+
(

1
23 α1 +

1
22 α2 +

1
2
α3

)
+ . . .

∣∣∣∣

∨ (1 + ε2)

∣∣∣∣
(

1
2
α1

)
+
(

1
22 α1 +

1
2
α2

)
+
(

1
23 α1 +

1
22 α2 +

1
2
α3

)
+ . . .

∣∣∣∣

∨ (1 + ε3)
∣∣∣∣
(

1
22 α1 +

1
2
α2

)
+
(

1
23 α1 +

1
22 α2 +

1
2
α3

)

+
(

1
24 α1 +

1
23 α2 +

1
22 α3 +

1
2
α4

)
+ . . .

∣∣∣∣ ∨ . . .

= sup
n≥3

(1 + εn)

∣∣∣∣
1

2n−2

∞∑

j=2

αj +
1

2n−3

∞∑

j=3

αj + . . .+
1
21

∞∑

j=n−1

αj

∣∣∣∣

≤ sup
n≥3

(1 + εn)
(

1
2n−2

∣∣∣
∞∑

j=2

αj

∣∣∣+
1

2n−3

∣∣∣
∞∑

j=3

αj

∣∣∣+ . . .+
1
21

∣∣∣
∞∑

j=n−1

αj

∣∣∣
)

= sup
n≥3

(1 + εn)
(

1 + 2ε2

2n−2

1
1 + 2ε2

∣∣∣
∞∑

j=2

αj

∣∣∣+
1 + 2ε3

2n−3

1
1 + 2ε3

∣∣∣
∞∑

j=3

αj

∣∣∣+ . . .

+
1 + 2εn−1

21

1
1 + 2εn−1

∣∣∣
∞∑

j=n−1

αj

∣∣∣
)

≤ max
m≥1

1
1 + 2εm

∣∣∣
∞∑

j=m

αj

∣∣∣ ·Q,
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where

Q := sup
n≥3

(1 + εn)
(

1 + 2ε2

2n−2 +
1 + 2ε3

2n−3 + . . .+
1 + 2εn−1

21

)

≤ sup
n≥3

(
1 +

1
2 · 4n

)([
1

2n−2 +
1

2n−3 + . . .+
1
21

]

+
[

1
422n−2 +

1
432n−3 + . . .+

1
4n−121

])

= sup
n≥3

(
1 +

1
2 · 4n

)(
1− 1

2n−2 +
[

1
2n+2 +

1
2n+3 + . . .+

1
22n−1

])

≤ sup
n≥3

(
1 +

1
4n

)(
1− 1

2n−2 +
1

2n+1

)
≤ sup

n≥3

(
1 +

1
4n
− 7

2n+1

)
= 1.

Recall that x 6= y. So, ti 6= si for some i, and so some αi 6= 0. Thus,∑∞
j=m αj 6= 0 for some m. Consequently,

‖T (x)− T (y)‖ ≤ max
m≥1

1
1 + 2εm

∣∣∣
∞∑

j=m

αj

∣∣∣ < max
m≥1

1
1 + εm

∣∣∣
∞∑

j=m

αj

∣∣∣

≤
∥∥∥
∞∑

j=1

αjxj

∥∥∥;

and therefore ‖T (x)− T (y)‖ < ‖x− y‖ for all x, y ∈ C with x 6= y.

Next, note that a subsequence of an asymptotically isometric c0-summing
basic sequence is again an asymptotically isometric c0-summing basic se-
quence. Moreover, we can choose the subsequence in such a way that the
corresponding new sequence of εn’s, (ε̂n)n≥1 say, satisfies ε̂n < 2−14−n for
all n ≥ 2. Hence, we immediately have the following corollary of the last
result:

Corollary 3. If L > 0 and K is a closed bounded convex subset
of a Banach space that contains an L-scaled asymptotically isometric c0-
summing basic sequence, then K contains a nonempty closed convex subset
C such that there is a nonexpansive affine mapping T : C → C which fails
to have a fixed point in C.

Remark. Now that we have a method for recognizing whether a closed
bounded convex subset of a Banach space contains a closed bounded con-
vex subset that will support a fixed point free nonexpansive mapping, we
will show that closed bounded convex subsets of (c0, ‖ · ‖∞) that are not
weakly compact are examples of such sets. Most of our work here will in-
volve showing that a certain sequence is an asymptotically isometric c0-
summing basic sequence. Note that if a sequence (xn) is an asymptotically
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isometric c0-summing basic sequence and if we define a sequence (wn) by
wn := xn − xn−1, where x0 := 0, then we have

(∗) sup
n

(
1

1 + εn

)
|tn| ≤

∥∥∥
∞∑

n=1

tnwn

∥∥∥ ≤ sup
n

(1 + εn)|tn|

for all (tn) ∈ c0. This condition is very close to saying that the sequence
is an asymptotically isometric c0-sequence in the sense of [5]. Conversely,
we note that if the sequence (wn) defined as above satisfies condition (∗),
then the sequence (xn) is an asymptotically isometric c0-summing basic se-
quence.

Theorem 4 below is an “asymptotically isometric” analogue of Proposi-
tion 3.1 and part of Theorem 3.2 of [4], which are “(1 + ε)-isomorphic” in
flavour.

Theorem 4. Let K be a closed bounded convex subset of (c0, ‖ · ‖∞)
which is not weakly compact. Then K contains an L-scaled asymptotically
isometric c0-summing basic sequence, for some L > 0. Consequently , K
contains a closed convex nonempty subset C that fails the fixed point property
for some nonexpansive mapping T on C. Further , we may choose T to be
affine and contractive.

Proof. Since K is not weakly compact, by the Eberlein–Shmul’yan the-
orem and the weak∗ sequential compactness of the closed unit ball in `∞,
there exists a sequence (xn)n∈N in K which converges weak∗ to an element
x = (ξi)i∈N in `∞ \ c0. Similarly, we denote each xn by (ξni )i∈N =

∑∞
i=1 ξ

n
i ei,

where (ei)i∈N is the canonical unit vector basis of c0.
Let L = lim supi |ξi|. Clearly, L > 0 and so by scaling the set K and the

sequence (xn) by L, we can assume that L = 1.
Fix δ with 0 < δ < 4−7.
Let N0 = 0 and choose n1 = 1. Since xn1 ∈ c0 and lim supi |ξi| = 1, we

may choose N1 ≥ 1 so that |ξn1
i | < δ/41+2 for all i ≥ N1, max1≤i≤N1 |ξi| >

1 − δ/41+2 and supi>N1
|ξi| < 1 + δ/41+2. Because xn → x coordinatewise,

we may choose n2 > n1 so that |ξn2
i − ξi| < δ/42+2 for all 1 ≤ i ≤ N1.

Since xn1 , xn2 ∈ c0 and lim supi |ξi| = 1, we can choose N2 > N1 so that
|ξn1
i | + |ξn2

i | < δ/42+2 for all i ≥ N2, maxN1<i≤N2 |ξi| > 1 − δ/42+2 and
supi>N2

|ξi| < 1 + δ/42+2.
Next, choose n3 > n2 so that |ξn3

i − ξi| < δ/43+2 for all 1 ≤ i ≤ N2.
Choose N3 > N2 so that |ξn1

i | + |ξn2
i | + |ξn3

i | < δ/43+2 for all i ≥ N3,
maxN2<i≤N3 |ξi| > 1− δ/43+2 and supi>N3

|ξi| < 1 + δ/43+2.
Continuing inductively in this manner we produce integer sequences 1 ≤

n1 < n2 < . . . and 1 ≤ N1 < N2 < . . . so that
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(1) |ξnki − ξi| < δ/4k+2 for all 1 ≤ i ≤ Nk−1 and all k ≥ 2;
(2) maxNk−1<i≤Nk |ξi| > 1− δ/4k+2 for all k ∈ N;

(3) supi>Nk |ξi| < 1 + δ/4k+2 for all k ∈ N; and

(4)
∑k

l=1 |ξ
nl
i | < δ/4k+2 for all i ≥ Nk and all k ∈ N.

To simplify our notation we now relabel xnk by xk. Thus conditions
(1)–(4) become

(1′) |ξki − ξi| < δ/4k+2 for all 1 ≤ i ≤ Nk−1 and all k ≥ 2;
(2′) maxNk−1<i≤Nk |ξi| > 1− δ/4k+2 for all k ∈ N;

(3′) supi>Nk |ξi| < 1 + δ/4k+2 for all k ∈ N; and

(4′)
∑k

l=1 |ξli| < δ/4k+2 for all i ≥ Nk and all k ∈ N.

At this stage we have some control of ξki when 1 ≤ i ≤ Nk−1 and when
i ≥ Nk (for k ≥ 2). To gain some control when Nk−1 < i ≤ Nk, we will
average the xk’s.

Since K is bounded, there exists a constant B > 0 so that ‖xk‖ ≤ B for
all k ∈ N. Fix a strictly decreasing sequence (δn) in (0, 1) so that δn < δ/4n

for all n ∈ N. Choose a strictly increasing sequence (M(n))n∈N in N so that

B/∆n < δn for all n ∈ N,
where

∆n = M(n)−M(n− 1) and M(0) = 0.

For each n ∈ N, define

yn :=
1
∆n

M(n)∑

l=M(n−1)+1

xl.

Denote yn by
∑∞

i=1 y
n
i ei and note that

yni =
1
∆n

M(n)∑

l=M(n−1)+1

ξli for all i ∈ N and n ∈ N.

We now need to estimate the size of each yni . For this we consider three
separate cases.

Case 1. If i > NM(n), then by (4′) above,

|yni | ≤
1
∆n

M(n)∑

l=M(n−1)+1

|ξli| ≤
1
∆n

M(n)∑

l=1

|ξli| <
1
∆n

δ

4M(n)+2
≤ δ

4n+2 .
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Case 2. If i ≤ NM(n−1) and n ≥ 2, then by (1′),

|yni − ξi| ≤
1
∆n

M(n)∑

l=M(n−1)+1

|ξli − ξi|

<
1
∆n

M(n)∑

l=M(n−1)+1

δ

4M(n−1)+1+2
=

δ

4M(n−1)+3
≤ δ

4n+2 .

Case 3. If NM(n−1) < i ≤ NM(n), then there exists a unique j ∈ N with
1 ≤ j ≤ ∆n so that NM(n−1)+j−1 < i ≤ NM(n−1)+j. Then, via (4′) and (1′),
we have
∣∣∣∣yni −

(
∆n − j
∆n

)
ξi

∣∣∣∣ =
1
∆n

∣∣∣
M(n)∑

l=M(n−1)+1

ξli − (∆n − j)ξi
∣∣∣

≤ 1
∆n

{M(n−1)+j−1∑

l=M(n−1)+1

|ξli|+ |ξ
M(n−1)+j
i |+

M(n)∑

l=M(n−1)+j+1

|ξli − ξi|
}

(where the first sum is 0 if j = 1 and the last sum is 0 if j = ∆n)

≤ 1
∆n

{
δ

4M(n−1)+j+1
+B +

M(n)∑

l=M(n−1)+j+1

δ

4M(n−1)+j+3

}

≤ δ

4n+1 +
B

∆n
+

δ

4n+3 <
δ

4n+1 + δn +
δ

4n+3 <
δ

4n
+ δn <

δ

4n−1 .

We now wish to show that the sequence (yn)n∈N is an asymptotically
isometric c0-summing basic sequence. By our remarks preceding this theo-
rem, it suffices to show that (wn)n∈N satisfies condition (∗), where wn :=
yn−yn−1, with y0 := 0. To this end, fix an element (tk)k∈N of c00, and define
σ :=

∑∞
k=1 tkwk. Then for all k ∈ N we have

wk =
∑

i∈N
wki ei, where each wki := yki − yk−1

i .

Further,

σ =
∑

i∈N
σiei, where each σi :=

∞∑

k=1

tkw
k
i .

Note that σ ∈ c0, and so
∥∥∥
∞∑

k=1

tkwk

∥∥∥
∞

= ‖σ‖∞ = max
i∈N
|σi| = max

n∈N
max

NM(n−1)<i≤NM(n)

|σi|

= max
n∈N

max
1≤j≤∆n

max
NM(n−1)+j−1<i≤NM(n−1)+j

|σi|.
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We wish to estimate ‖σ‖∞ from above and below, in order to establish
the pair of inequalities (∗), for some null sequence (εn)n∈N in (0,∞) to be
determined.

Fix n ∈ N and fix j ∈ {1, . . . ,∆n}. Next, fix i ∈ N with NM(n−1)+j−1 <
i ≤ NM(n−1)+j. Then

|σi| =
∣∣∣
∞∑

k=1

tkw
k
i

∣∣∣ ≤
∣∣∣
n−1∑

k=1

tkw
k
i

∣∣∣+ |tnwni |+ |tn+1w
n+1
i |+

∣∣∣
∞∑

k=n+2

tkw
k
i

∣∣∣

≤
n−1∑

k=1

‖t‖∞|yki − yk−1
i |+ |tn| |wni |+ |tn+1| |wn+1

i |+
∞∑

k=n+2

‖t‖∞|yki − yk−1
i |

≤ 2‖t‖∞
n−1∑

k=1

|yki |+ |tn| |wni |+ |tn+1| |wn+1
i |+ 2‖t‖∞

∞∑

k=n+1

|yki − ξi|

≤ 2‖t‖∞
M(n−1)∑

l=1

|ξli|+ |tn| |wni |+ |tn+1| |wn+1
i |+ 2‖t‖∞

∞∑

k=n+1

δ

4k+2 [by (1′)]

≤ 2‖t‖∞
δ

4M(n−1)+2
+ |tn| |wni |+ |tn+1| |wn+1

i |+ 2‖t‖∞
δ

4n+2 [by (4′)]

≤ δ

4n
‖t‖∞ + |tn| |wni |+ |tn+1| |wn+1

i |.

By the estimates in Cases 3 and 1 above, we also have

|wni | = |yni − yn−1
i | ≤

∣∣∣∣yni −
∆n − j
∆n

ξi

∣∣∣∣+
∆n − j
∆n

|ξi|+ |yn−1
i |

≤ δ

4n−1 +
∆n − j
∆n

|ξi|+
δ

4n+1 ≤
2δ

4n−1 +
∆n − j
∆n

|ξi|.

Moreover, by Cases 2 and 3 above,

|wn+1
i | = |yn+1

i − yni | ≤ |yn+1
i − ξi|+ |yni − ξi|

≤ |yn+1
i − ξi|+

∣∣∣∣yni −
∆n − j
∆n

ξi

∣∣∣∣+
j

∆n
|ξi|

≤ δ

4n+3 +
δ

4n−1 +
j

∆n
|ξi| ≤

2δ
4n−1 +

j

∆n
|ξi|.

Therefore,

|σi| =
∣∣∣
∞∑

k=1

tkw
k
i

∣∣∣ ≤ δ

4n
‖t‖∞ + |tn| |wni |+ |tn+1| |wn+1

i |

≤ δ

4n
‖t‖∞ + |tn|

{
2δ

4n−1 +
∆n − j
∆n

|ξi|
}

+ |tn+1|
{

2δ
4n−1 +

j

∆n
|ξi|
}
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(♦) ≤ δ

4n−3 ‖t‖∞ + |tn|
∆n − j
∆n

|ξi|+ |tn+1|
j

∆n
|ξi|

≤ δ

4n−3 ‖t‖∞ + max{|tn|, |tn+1|}|ξi|.
In summary, we have shown that for all n ∈ N and all i ∈ N such that
NM(n−1) < i ≤ NM(n), we have

|σi| =
∣∣∣
∞∑

k=1

tkw
k
i

∣∣∣ ≤ δ

4n−3 ‖t‖∞ + max{|tn|, |tn+1|}|ξi|;

and thus for all n ≥ 2, via (3′) above, we see that

max
NM(n−1)<i≤NM(n)

|σi| ≤
δ

4n−3 ‖t‖∞ + max{|tn|, |tn+1|} max
NM(n−1)<i≤NM(n)

|ξi|

≤ δ

4n−3 ‖t‖∞ + max{|tn|, |tn+1|}
(

1 +
δ

4n−1+2

)

≤ δ

4n−4 ‖t‖∞ + max{|tn|, |tn+1|}.
For n = 1 we have the following two inequalities (keeping in mind that
M0 = 0):

max
N1<i≤NM(1)

|σi| ≤
δ

41−4 ‖t‖∞ + max{|t1|, |t2|},

which is derived exactly as for the case n ≥ 2, and

max
0<i≤N1

|σi| ≤
δ

41−4 ‖t‖∞ +B|t1|.

This second inequality is similarly derived, by using inequality (♦) above
and the fact that B/∆1 < δ1 < δ/41. Since B ≥ 1, these two inequalities
can be combined to obtain the single inequality

max
0<i≤NM(1)

|σi| ≤
δ

41−4 ‖t‖∞ + max{B|t1|, |t2|}.

Therefore, for each n ∈ N,

(♣) max
NM(n−1)<i≤NM(n)

|σi| ≤
δ

4n−4 ‖t‖∞ + max{An|tn|, An+1|tn+1|},

where A1 := B and An := 1 for all n ≥ 2.
On the other hand, let us again fix n ∈ N and i ∈ N with NM(n−1) < i

≤ NM(n). Then, by similar arguments to those above, we also have

|σi| =
∣∣∣
∞∑

k=1

tkw
k
i

∣∣∣ ≥ |tn| |wni | − |tn+1| |wn+1
i | −

∣∣∣
n−1∑

k=1

tkw
k
i

∣∣∣−
∣∣∣
∞∑

k=n+2

tkw
k
i

∣∣∣

≥ |tn| |wni | − |tn+1| |wn+1
i | − δ

4n
‖t‖∞.
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In particular, for all n ∈ N, if i ∈ N satisfies NM(n−1) < i ≤ NM(n−1)+1,
then

|σi| ≥ |tn| |yni − yn−1
i | − |tn+1| |yn+1

i − yni | −
δ

4n
‖t‖∞

≥ |tn|[|ξi| − |yni − ξi| − |yn−1
i |]− |tn+1|[|yn+1

i − ξi|+ |yni − ξi|]−
δ

4n
‖t‖∞

≥ |tn|
[
|ξi| −

∣∣∣∣yni −
∆n − 1
∆n

ξi

∣∣∣∣−
1
∆n
|ξi| − |yn−1

i |
]

− |tn+1|
[
|yn+1
i − ξi|+

∣∣∣∣yni −
∆n − 1
∆n

ξi

∣∣∣∣+
1
∆n
|ξi|
]
− δ

4n
‖t‖∞

≥ |tn|
[
|ξi|−

δ

4n−1−
B

∆n
− δ

4n+1

]
−|tn+1|

[
δ

4n+3 +
δ

4n−1 +
B

∆n

]
− δ

4n
‖t‖∞

(by Cases 3, 1, 2 and 3 respectively, and the fact that each |ξi|≤B)

≥ |tn| |ξi|−‖t‖∞
[

δ

4n−1 + δn +
δ

4n+1

]

− ‖t‖∞
[

δ

4n+3 +
δ

4n−1 + δn

]
− δ

4n
‖t‖∞

≥ |tn| |ξi| −
3δ

4n−1 ‖t‖∞.

Hence, for all n ∈ N, by condition (2′) above with k := M(n − 1) + 1, we
have

max
NM(n−1)<i≤NM(n)

|σi| ≥ max
NM(n−1)<i≤NM(n−1)+1

|σi|(♠)

≥ |tn| max
NM(n−1)<i≤NM(n−1)+1

|ξi| −
3δ

4n−1 ‖t‖∞

≥ |tn|
(

1− δ

4M(n−1)+1+2

)
− 3δ

4n−1 ‖t‖∞

≥ |tn|
(

1− δ

4n+2

)
− 3δ

4n−1 ‖t‖∞

≥ |tn| −
δ

4n−2 ‖t‖∞.

Therefore, since δ < 4−7,

‖σ‖∞ = max
n∈N

max
NM(n−1)<i≤NM(n)

|σi| ≥ max
n∈N
|tn| − 1

2‖t‖∞ = 1
2‖t‖∞.

Hence ‖t‖∞ ≤ 2‖σ‖∞. Now, returning to inequality (♣) above, we see that
for all n ∈ N,
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max
NM(n−1)<i≤NM(n)

|σi| ≤
δ

4n−4 ‖t‖∞ + max{An|tn|, An+1|tn+1|}

≤ 2
δ

4n−4 ‖σ‖∞ + max{An|tn|, An+1|tn+1|}.
Since σ ∈ c0, there exists n0 ∈ N so that

‖σ‖∞ = max
NM(n0−1)<i≤NM(n0)

|σi|.

Then we have

‖σ‖∞ ≤ 2
δ

4n0−4 ‖σ‖∞ + max{An0 |tn0|, An0+1|tn0+1|}.
Therefore,

‖σ‖∞ ≤
[
1− 2δ

4n0−4

]−1

max{An0 |tn0|, An0+1|tn0+1|}

≤ max
{
An0

[
1− 2δ

4n0−5

]−1

|tn0|, An0+1

[
1− 2δ

4n0−4

]−1

|tn0+1|
}

≤ max
n∈N

{
An

[
1− 2δ

4n−5

]−1

|tn|
}

= max
n∈N

(1 + αn)|tn|,

where αn := An[1− 2δ/4n−5]−1− 1 for all n ∈ N. Now An = 1 for all n ≥ 2;
hence

αn =
[
1− 2δ

4n−5

]−1

− 1 =
2δ

4n−5

[
1− 2δ

4n−5

]−1

<
2δ

4n−6 .

So, we have an upper asymptotically isometric c0 estimate for ‖σ‖∞.
To get a corresponding lower estimate, let us return to inequality (♠)

above. We have

max
NM(n−1)<i≤NM(n)

|σi| ≥ |tn| −
δ

4n−2 ‖t‖∞ ≥ |tn| −
2δ

4n−2 ‖σ‖∞.

Hence, for all n ∈ N,

|tn| ≤ max
NM(n−1)<i≤NM(n)

|σi|+
2δ

4n−2 ‖σ‖∞

≤ ‖σ‖∞ +
2δ

4n−2 ‖σ‖∞ =
(

1 +
2δ

4n−2

)
‖σ‖∞;

and so [1 + 2δ/4n−2]−1|tn| ≤ ‖σ‖∞ for all n ∈ N. Therefore,

max
n∈N

(
1

1 + 2δ/4n−2

)
|tn| ≤ ‖σ‖∞.

Finally, let εn := max{αn, 2δ/4n−2} for all n ∈ N. Then we see that

max
n∈N

(
1

1 + εn

)
|tn| ≤ ‖σ‖∞ ≤ max

n∈N
(1 + εn)|tn|,
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which means that

max
n∈N

(
1

1 + εn

)
|tn| ≤

∥∥∥
∞∑

k=1

tkwk

∥∥∥ ≤ max
n∈N

(1 + εn)|tn|,

where each wk := yk − yk−1. The proof is now complete since (εn) is a null
sequence in (0,∞). Indeed, for all n ≥ 2, εn < 2δ/4n−6 < 2 · 4−7/4n−6 =
2−14−n. So we may use the remark preceding this theorem to conclude that
(yn)n∈N is an asymptotically isometric c0-summing basic sequence in K.
Next, we can apply Theorem 2 directly to find that there exists a nonempty,
closed, convex subset C of K and a contractive, affine mapping T on C such
that T is fixed point free.

We are now ready to state some consequences of this last theorem. Our
first corollary follows from Theorem 4 and Maurey’s theorem [9].

Corollary 5. Let K be a closed , bounded , convex subset of (c0, ‖ · ‖∞).
Then K is weakly compact if and only if every closed convex nonempty subset
of K has the fixed point property.

Corollary 5 can be extended to the space of convergent sequences,
(c, ‖ · ‖∞). We first need to prove the following lemma, which may be of
independent interest. While we state and prove the lemma with the as-
sumption that the underlying field is R, the result is also true with C as the
underlying field.

Lemma 6. Let (X, ‖·‖) be a Banach space over R and let K be a closed ,
bounded , convex subset of X. Fix a continuous linear functional π ∈ X∗.
Then K is weakly compact if and only if π−1{a} ∩K is weakly compact for
every a ∈ R.

Proof. Assume K is weakly compact. Fix a ∈ R. Since π ∈ X∗, we see
that π−1{a} is norm closed and convex. Thus, π−1{a} is weakly closed; and
so π−1{a} ∩K is weakly compact.

Conversely, suppose that π−1{a}∩K is weakly compact for every a ∈ R.
Let ε > 0 be given and let d := diam(K). Since K is bounded and convex,
π(K) is a bounded interval in R. Let m := inf π(K) and M := supπ(K). If
M = m, then K = π−1{m}∩K and so K is weakly compact. If M −m > 0,
then d > 0. Choose N ∈ N with N > 1 so that d/(N − 1) < ε. Partition the
interval [m,M ] into 2N intervals each of length δ = (M −m)/(2N). Now
define

Kε :=
2N⋃

j=0

(π−1{m+ jδ} ∩K).

Note that Kε is weakly compact. We will prove that K ⊆ Kε + εBX , where
BX is the closed unit ball of (X, ‖ · ‖). By a lemma of Grothendieck [3,
Lemma 2, page 227], this is sufficient to prove that K is weakly compact.
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Let x ∈ K. Then m ≤ π(x) ≤ M . We assume that π(x) ≥ (m + M)/2
= m + Nδ. (The case where π(x) ≤ (m + M)/2 is handled in a similar
manner.) Define j0 := max{j : m+ jδ ≤ π(x)}. Then j0 ≥ N . Since m+ δ ∈
π(K), we can choose w ∈ π−1{m+ δ} ∩K. Define

z := sw + (1− s)x, where s :=
π(x)− (m+ j0δ)
π(x)− (m+ δ)

∈ [0, 1).

It is easy to check that π(z) = m+ j0δ and also z ∈ K, since K is convex.
Thus z ∈ Kε. Finally, we note that

‖z − x‖ = s‖w − x‖ ≤ sd ≤ δ

Nδ − δ d < ε.

Thus x ∈ Kε + εBX ; and so K ⊆ Kε + εBX .

Remark. Let us sketch how the above proof goes in the case of complex
scalars. Clearly, if K is weakly compact, then so is π−1{a} ∩ K for every
a ∈ C.

On the other hand, suppose that π−1{a}∩K is weakly compact for every
a ∈ C. Here π maps X into C, and <π and =π are continuous real-linear
functionals on (X, ‖ · ‖). For each t ∈ R,

Lt := (<π)−1{t} ∩K =
⋃

u∈R
(Lt ∩ (=π)−1{u}).

But, for each u ∈ R,

Lt ∩ (=π)−1{u} = π−1{t+ iu} ∩K,
which, by hypothesis, is a weakly compact subset of X.

Since convexity is a real-linear property, our real scalars proof above,
applied with =π in place of π, shows that Lt := (<π)−1{t} ∩ K is weakly
compact. (Note that Grothendieck’s weak compactness criterion applies to
both real and complex Banach spaces.)

Now, t ∈ R is arbitrary. So, repeating the preceding argument for <π
instead of =π, we conclude that K is weakly compact.

Remark. The statement of Lemma 6 is also true if weak compactness
is replaced by norm compactness.

Remark. We note that by the Krĕın–Shmul’yan theorem, Lemma 6 im-
plies that whenever K is a weakly closed, bounded subset of a Banach space
X and π ∈ X∗, then K is weakly compact if and only if for all scalars a, the
intersection of π−1{a} with the closed convex hull of K is weakly compact.

However, the hypothesis in Lemma 6 that K is convex cannot be re-
moved. Indeed, the hypothesis “K is closed and convex” cannot be replaced
by “K is weakly closed”, as the following example shows. Let X := c and de-
fine the map π : c→ R by π(x1, x2, . . .) := limn xn, for each (x1, x2, . . .) ∈ c.
Define
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z(k) := (1, 0, 12, 0, . . . , 1k, 0, 1/k, 1/k, . . .) for all k ∈ N.
Clearly K := {z(k) : k ∈ N} is a bounded subset of c, and it is easy to check
that K is weakly closed. Moreover, π−1{1/k} ∩ K = {z(k)} for all k ∈ N
and π−1{a} ∩K = ∅ for all other real numbers a. So, π−1{a} ∩K is weakly
compact for all a ∈ R.

On the other hand, K is not weakly compact. To see this, use Banach’s
criterion for weak convergence in c [1, IX, pp. 136–137]. Since (z(k))k∈N
converges coordinatewise to q := (1, 0, 1, 0, 1, 0, . . .), which is not in c, it
follows that K cannot be weakly compact.

Corollary 7. Let K be a closed , bounded , convex subset of (c, ‖·‖∞).
Then K is weakly compact if and only if every closed , convex , nonempty
subset of K has the fixed point property.

Proof. If K is a closed, bounded, convex subset of (c, ‖ · ‖∞) which is
weakly compact, then all of its closed (bounded) convex, nonempty subsets
have the fixed point property by a result of Borwein and Sims [2].

Conversely, if K is closed, bounded, convex and non-weakly compact in
(c, ‖ · ‖∞), then by Lemma 6, there exists a ∈ R so that π−1{a} ∩ K is
non-weakly compact, where π ∈ c∗ is defined by π(x1, x2, . . .) := limn xn for
each (x1, x2, . . .) ∈ c.

Define U : π−1{a} → c0 by U(x) := (xn − a)n for each x = (xn)n ∈
π−1{a}. It is easily seen that U is an affine map from (π−1{a}, ‖ · ‖∞)
onto (c0, ‖ · ‖∞) and ‖U(x) − U(y)‖∞ = ‖x − y‖∞ for all x, y ∈ π−1{a}.
Moreover, it is easy to check that U is a (π−1{a}, σ(c, `1)) to (c0, σ(c0, `1))
homeomorphism. Here σ(c, `1) is the weak topology on c. (See, for example,
[1, IV, pp. 65–67].)

Therefore the non-weakly compact, closed, bounded, convex subset
π−1{a} ∩ K in π−1{a} corresponds isometrically to the non-weakly com-
pact, closed, bounded, convex subset U(π−1{a} ∩K) in c0. By Theorem 4,
U(π−1{a}∩K) contains a subset C which is closed, bounded and convex such
that there is a nonexpansive mapping V : C → C that has no fixed point. It
follows that U−1(C) is a closed, bounded, convex subset of π−1{a}∩K and
the mapping U−1V U is a nonexpansive mapping on U−1(C) which fails to
have a fixed point in U−1(C).

Remark. By the Remark after Lemma 6, the previous corollary is also
true if we replace the field R everywhere by C.

Our next corollary follows from the Eberlein–Shmul’yan theorem and
the proof of Theorem 4.

Corollary 8. Let K be a subset of (c0, ‖ · ‖∞). Then K is relatively
weakly compact if and only if K is bounded and the convex hull of K,
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co(K), does not contain an L-scaled asymptotically isometric c0-summing
basic sequence for any L > 0.

Corollary 8, as stated, is an isometric characterization of relative weak
compactness in c0. However, since relative weak compactness is an isomor-
phic property, Corollary 8 would be more useful if it was formulated in an
isomorphic form. The isomorphic form of this result is that a subset K of c0

is relatively weakly compact if and only if it is bounded and its convex hull,
co(K), does not contain a sequence equivalent to the summing basis of c0.
This result would be even more useful if the dependence on the convex hull
of K were removed. This can be done by suitably modifying the proof of
Theorem 4.

Theorem 9. Let K be a subset of c0. Then K is relatively weakly com-
pact if and only if K is bounded and K does not contain a sequence equiv-
alent to the summing basis of c0.

Proof. If K is relatively weakly compact, then K is bounded. Now sup-
pose, to get a contradiction, that K contains a sequence (xn)n∈N equiva-
lent to the summing basis of c0. It is easy to check that xn → z for some
z ∈ `∞\c0 with respect to the weak∗ = σ(`∞, `1) topology. This contradicts
the fact that K is relatively weakly compact.

The second part of the proof of Theorem 9 is very similar to the proof
of Theorem 4. If K is a bounded subset of c0 that is not relatively weakly
compact then, just as in the proof of Theorem 4, we construct a sequence
(xn)n in K and an element x in `∞ \ c0 satisfying conditions (1′)–(4′). Now
instead of averaging the xn’s (which we cannot do unless K is convex), we
show that the subsequence consisting of the odd terms, (x2n−1), is equivalent
to the summing basis of c0. The details of the proof are technical, as they
are in Theorem 4, but the proof is so similar to the proof of Theorem 4 that
we will leave it to the reader to fill in the details.

Remark. Theorem 9 is similar to [4, Proposition 3.1(c)] (which is stated
for the case where K is also assumed to be convex).

Remark. One should compare Theorem 9 to [11, III.C.9], where the
following characterization of relative weak compactness in `1 is stated. A
subset H of `1 is relatively weakly compact if and only if H is bounded
and H does not contain a sequence equivalent to the usual unit vector basis
of `1. (Of course, for `1, via the Schur property, these conditions are also
equivalent to: H is relatively norm compact.)

References
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