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Kergin interpolation in Banach spaces

by

Henrik Petersson (Växjö)

Abstract. We study the Kergin operator on the space HNb(E) of nuclearly entire
functions of bounded type on a Banach space E. We show that the Kergin operator is
a projector with interpolating properties and that it preserves homogeneous solutions to
homogeneous differential operators. Further, we show that the Kergin operator is uniquely
determined by these properties. We give error estimates for approximating a function
by its Kergin polynomial and show in this way that for any given bounded sequence
of interpolation points and any nuclearly entire function, the corresponding sequence of
Kergin polynomials converges.

1. Introduction. Let (p0, . . . , pd) be a sequence of points in the complex
plane. Let f be an entire function in one variable. Then there is a unique
polynomial F of degree at most d such that

F (k)(pj) = f (k)(pj), k = 0, . . . , kj − 1, j = 0, . . . , d,(1)

where kj is the number of repetitions of the point pj in the sequence
(p0, . . . , pd). If all the points are different we obtain the Lagrange poly-
nomial and at the other extreme case, when all are equal, F is the Taylor
polynomial for f .

Consider now the n-variable case and a sequence of points (p0, . . . , pd)
in Cn. Then for every given entire function f there is a polynomial F , of
degree at most d, that interpolates f analogously to (1), i.e. we replace
derivatives of order k with directional derivatives of order k. In contrast to
the one variable case, the polynomial F is, in general, not uniquely deter-
mined by this property.

More generally, let X be any (complex) vector space and let (p0, . . . , pd)
be a sequence of points in X. Let f be an arbitrary Gateaux holomorphic
function on X, i.e. f is an entire function on all finite-dimensional subspaces.
We denote by HG(X) the space of Gateaux holomorphic functions on X.
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We shall see (Theorem 1) that there is a polynomial F of degree at most d
on X such that

Dk
xF (pj) = Dk

xf(pj), x ∈ X, k = 0, . . . , kj − 1, j = 0, . . . , d,(2)

where kj is the number of repetitions of the point pj in the sequence
(p0, . . . , pd). Here, and in what follows, Dh denotes the directional derivative
along h. In fact, we show that the Kergin polynomial F = Kpf , with respect
to the points p = (p0, . . . , pd), satisfies (2) for any given Gateaux holomor-
phic function f . Thus, in the one variable case, the Kergin polynomial is
nothing but the Lagrange resp. Taylor polynomial in the above-mentioned
two extreme cases.

Even though the Kergin polynomial is not uniquely determined by its
interpolating property (2), it is possible to characterize Kergin interpolation.
In n variables, the following result is due to Filipsson and Calvi (see [3] or
[7]): the Kergin operator, f 7→ Kpf , on the space of entire functions is a pro-
jector that preserves homogeneous solutions to homogeneous partial differ-
ential operators. That is, if P (D)f = 0 for some homogeneous polynomial P ,
then P (D)Kpf = 0. Moreover, the Kergin projector is uniquely determined
by its interpolating property and this property. An infinite-dimensional gen-
eralization of this result can be found in [11].

In this article we study the Kergin operator on the space of nuclearly
entire functions of bounded type, HNb(E), on a Banach space E. An ex-
cellent exposition of the theory of HNb(E) can be found in Gupta’s work
[9] and we shall also refer to Dineen [4] and Dwyer [5]. We show that the
Kergin operator is a continuous projector from HNb(E) onto the nuclear
polynomials and that, in addition to its interpolating property, it preserves
homogeneous solutions to homogeneous differential equations (Theorem 8).
Further, we give error estimates for approximating a function by its Ker-
gin polynomial (Theorem 11). Our result shows that for any given bounded
sequence of interpolation points and any nuclearly entire function, the cor-
responding sequence of Kergin polynomials converges to the function under
consideration. In the finite-dimensional theory, such convergence problems
have been studied in [2], [10] and in [8] where Gelfond’s classical theorem
about convergence of Lagrange interpolants to entire functions in one vari-
able can be found.

Some of the results in this article are taken from the author’s doctoral
thesis [11].

2. The Kergin operator. Let X be a complex vector space. For any
Gateaux holomorphic function f ∈ HG(X) and sequence p = (p0, . . . , pd) of
points in X let
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�
[p]

f ≡
�
Sd

f(p0 + s1(p1 − p0) + . . .+ sd(pd − p0)) ds,(3)

where Sd ≡ {s = (sk ≥ 0) ∈ Rd :
∑
sk ≤ 1} denotes the simplex in Rd. If

p = (p0), i.e. if p consists only of one point, let � [p] f ≡ f(p0). Note that � [p] f

does not depend on the ordering of the points pj . Indeed, with an obvious
change of variables in (3) we may permute any of the points with p0 and
thus any two points. Next, for a given sequence of points p = (p0, . . . , pd),
the Kergin operator with respect to p is the operator Kp : HG(X)→ HG(X)
defined by

(4) Kpf(x) ≡
�

[p0]

f +
�

[p0,p1]

Dx−p0f + . . .+
�

[p0,...,pd]

Dx−pd−1 . . .Dx−p0f.

Recall that Dhf(x) denotes the directional derivative at x along h.

Remark 1. Suppose f ∈ HG(X) has the form f = h◦πF for some entire
function h in n variables. Here F = (y1, . . . , yn) ∈ X∗× . . .×X∗, where X∗

denotes the algebraic dual, and πF is the projector πF : X → Cn defined by
πF (x) ≡ (〈x, yk〉). We say that f is an X∗-cylinder function of order n. If
p = (p0, . . . , pd) then � [p] f = � [πF (p)] h where πF (p) ≡ (πF (p0), . . . , πF (pd)).
In view of this it is easily checked that Kp[h ◦ πF ] = [KπF (p)h] ◦ πF and, in
particular, Kpf = [Kπy(p)h] ◦ πy if f = h ◦ πy is a cylinder function of order
one.

The Kergin operator on function spaces with finite-dimensional domains
is studied in [1, 6]. Many of its properties depend only on the properties of
the functions under consideration restricted to finite-dimensional subspaces
and are therefore easily extended to Gateaux holomorphic functions. If V
is any finite-dimensional subspace containing the points pj , then [Kpf ]V =
KpfV where [·]V denotes the restriction of [·] to V . We denote by PdA(X)
the space of polynomials on X of degree at most d. That is, PdA(X) is
the space spanned by

⋃
n≤d PA(nX) in HG(X), where PA(nX) denotes the

n-homogeneous polynomials on X.

Theorem 1. Let X be any complex vector space and let f ∈ HG(X).
For any finite sequence p = (p0, . . . , pd) of points in X we have:

(i) Kpf does not depend on the ordering of the points.
(ii) Kpf interpolates f at the points of p in the sense of (2).

(iii) KpKpf = Kpf , and Kpf = f if f ∈ PdA(X), i.e. Kp is a projector
in HG(X) onto PdA(X).

Proof. We prove (i) by induction on d. When d = 1 we have Dx−p0f =
Dx−p1f+Dp1−p0f and the assertion follows easily. Assume now that it holds
for d = k. Note that Kpk+1f(x) = Kpkf(x) + � [pk+1]Dx−pk . . .Dx−p0f where
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pj ≡ (p0, . . . , pj). By the assumption that (i) holds for d = k, we may
permute any of the points (p0, . . . , pk) in the first term Kpkf and this is also
true for the second term on the right hand side. In view of this, it suffices to
show that we can exchange the roles of pk+1 and, say, pk. In the same way
as above,

Kpk+1f(x) = Kpk−1f(x) +
�

[pk]

Dx−pk−1 . . .Dx−p0f +
�

[pk+1]

Dx−pk . . .Dx−p0f.

The first term on the right hand side does not depend on pk and pk+1. Hence
we are left with establishing that we may exchange the positions of pk and
pk+1 in the last two expressions. Since integrals like (3) do not depend on
the ordering of the points, this follows easily as in the case d = 1. We leave
the details to the reader.

Next we prove (ii). This holds for finite-dimensional spaces ([7, Theorem
5.7]). Let x1, . . . , xk be arbitrary points in X where k ≤ kj − 1, j ≤ d. Let
V be any finite-dimensional subspace containing the point x and the points
of p. By the finite-dimensional result,

Dk
xKpf(pj) = [Dk

xKpf ]V (pj) = Dk
x[Kpf ]V (pj) = Dk

xKpfV (pj)

= Dk
xfV (pj) = [Dk

xf ]V (pj) = Dk
xKpf(pj).

This proves (ii).
(iii) follows easily from the corresponding result in n variables ([7, The-

orem 5.7]). Indeed, let x ∈ X be arbitrary and let V ⊆ X be any finite-
dimensional vector space containing x and the points pj . If fV denotes the
restriction to V then KpfV = [Kpf ]V and

KpKpf(x) = [KpKpf ]V (x) = Kp[Kpf ]V (x) = KpKpfV (x)

= KpfV (x) = [Kpf ]V (x) = Kpf(x).

In the same way Kpf = f if f ∈ Pd(X) since fV ∈ PdA(V ).

The interpolating property of the Kergin operator implies the following
“difference formula”.

Lemma 2. Let X be a complex vector space and let f ∈ HG(X). Then
for any finite sequence p = (p0, . . . , pd) of points in X,

f(x)−Kpf(x) =
�

[p0,...,pd,x]

Dx−p0 . . .Dx−pdf.

Proof. By Theorem 1 we have f(x) = K(p0,...pd,x)f(x) and the lemma
follows from the observation that

K(p0,...pd,x)f(x) = K(p0,...pd)f(x) +
�

[p0,...,pd,x]

Dx−p0 . . .Dx−pdf.
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The next theorem shows that, in some sense, the Kergin operator ap-
proximates functions with geometric error (compare [7, Theorem 6.2] and
[11, Theorem 9.3]).

Theorem 3. Let X be a vector space and let (p0, p1, . . .) be a sequence
of points in an absolutely convex set P ⊆ X. Then for an arbitrary absolutely
convex set B ⊆ X and f ∈ HG(X) we have, for any j and s > 0,

‖f −Kpjf‖B ≤ e−1
(
e

s

)j+1

‖f‖3P+B+s(P+B),

where pj = (p0, . . . , pj) and ‖ · ‖A is the supremum over A ⊆ X.

Proof. We can assume that f is bounded on [3P + B + s(P + B)]. By
Lemma 2,

[f −Kpjf ](x) =
�

[pj ,x]

Dx−p0 . . .Dx−pjf(5)

=
�

Sj+1

Dx−p0 . . .Dx−pjf(ξ(s) + sj+1x) ds

where

ξ(s) ≡ p0 + s1(p1 − p0) + . . .+ sj(pj − p0) + sj+1(−p0) ∈ 3P, s ∈ Sj+1.

Thus ξ(s) + sj+1x ∈ 3P + B ≡ U for all s ∈ Sj+1 and x ∈ B. By Cauchy’s
formula and the polarization formula (see for example [4, Proposition 1.8])

|Dx−p0 . . .Dx−pjf(ξ(s) + sj+1x)| ≤ sup
hk∈V, ξ∈U

|Dh0 . . .Dhjf(ξ)|

≤ (j + 1)j+1

(j + 1)!
sup

h∈V, ξ∈U
|Dj+1

h f(ξ)|

≤ (j + 1)j+1

2πsj+1 sup
h∈V, ξ∈U

∣∣∣
2π�
0

f(ξ + sheit)e−i(j+1)t dt
∣∣∣

≤ (j + 1)j+1

sj+1 ‖f‖U+sV , s ∈ Sj+1, x ∈ B,

where V ≡ P + B. Since � Sj ds = 1/j! and jj ≤ ej−1j!, j ∈ N, we have, for
any x ∈ B,

|[f −Kpjf ](x)| ≤ (j + 1)j+1

(j + 1)!
· 1
sj+1 ‖f‖U+sV ≤

ej

sj+1 ‖f‖U+sV

and hence the assertion.

3. The Kergin operator on the nuclearly entire functions. In
this section we study the Kergin operator on the space of nuclearly entire
functions of bounded type, HNb(E), on a Banach space E. The objective
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is to prove that the Kergin operator on HNb(E), in addition to its inter-
polating property (Theorem 1), is a projector that preserves homogeneous
solutions to homogeneous differential operators, and that it is uniquely de-
termined by these properties. We end up by deriving an error formula, in
terms of the seminorms on HNb(E), for approximating a function by its
Kergin polynomial.

A Banach pairing is a pairing (E,F ) where E and F are Banach spaces
and where F = E′ or the other way round. Thus the norm topologies on
E and F are the (strong) topologies β(E,F ) and β(F,E) respectively. Let
(E,F ) be a fixed Banach pairing. We denote by P(nE) the space of con-
tinuous n-homogeneous polynomials on E equipped with the usual norm
topology, and by PN(nE) the nuclear n-homogeneous polynomials. That is,
PN(nE) is the space of all polynomials P of the form

P (x) =
∞∑

k=1

λk〈·, yk〉n, (|λk| · ‖yk‖n) ∈ `1,

where λk are complex numbers and yk are vectors in F , provided with the
nuclear norm ‖ · ‖n (to simplify the notation, we do not specify F in the
notation PN(nE)). The finite type polynomials on E, i.e. the (dense) subspace
of PN(nE) spanned by polynomials of the form 〈·, y〉n, y ∈ F , is denoted by
PF(nE). If F has the approximation property, then the map Fn defined by
Fnλ(y) ≡ 〈λ, 〈·, y〉n〉 defines a topological isomorphism between P ′N (nE) and
P(nF ) (when (E,F ) = (E,E′) see Dineen [4, Proposition 2.10] or Gupta [9,
Lemma 4, page 59], and when (E,F ) = (F ′, F ) see Dwyer [5, Proposition
I.1]). In this way we may put PN(nE) and P(nF ) in duality by 〈P,Q〉n ≡
F−1
n Q(P ) where P ∈ PN(nE) and Q ∈ P(nF ).

If (E,F ) is a Banach pairing, then HNb(E) is the space of all Gateaux
holomorphic functions f ∈ HG(E) such that fn ≡ Dn

(·)f(0)/n! ∈ PN(nE),
n = 0, 1, . . . , and

‖f‖N :r ≡
∑

rn‖fn‖n <∞, r > 0,

equipped with the seminorms thus defined. In this way, the nuclearly en-
tire functions of bounded type, HNb(E), are a Fréchet space. Note that
f =

∑
fn, fn ≡ Dn

(·)f(0)/n!, with convergence in HNb(E), for every f ∈
HNb(E). The exponential type functions on F , Exp(F ), are the space of
functions ϕ ∈ HG(F ) such that ϕn ≡ Dn

(·)ϕ(0)/n! ∈ P(nF ), n = 0, 1, . . . ,

and lim sup [n!|||ϕn|||n]1/n < ∞, or equivalently, such that |ϕ(y)| ≤ Cec‖y‖

for some c, C ≥ 0. Here ||| · |||n denotes the norm on P(nF ). By the dual-
ity between PN(nE) and P(nF ), when F has the approximation property,
the Fourier–Borel transform F , defined by Fλ(y) ≡ 〈λ, ey〉, is an isomor-
phism between H ′Nb(E) and Exp(F ) and we may put HNb(E) and Exp(F )
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in duality by

〈f, ϕ〉 ≡ F−1ϕ(f) =
∞∑

n=0

n!〈fn, ϕn〉n, f ∈ HNb(E), ϕ ∈ Exp(F ).(6)

Multiplication ψ 7→ ϕψ, ϕ ∈ Exp(F ), is weakly continuous on Exp(F ) for
the duality between HNb(E) and Exp(F ). Thus, for any given ϕ ∈ Exp(F ),
ϕ(D) ≡ tϕ : HNb(E)→ HNb(E). Such differential operators are continuous.
In this way one obtains the family of all continuous convolution operators on
HNb(E) (a convolution operator is an operator that commutes with transla-
tions). In particular, homogeneous differential operators P (D), P ∈ P(nF ),
n = 0, 1, . . . , are homogeneous convolution operators.

Remark 2. If P = 〈x1, ·〉 . . . 〈xn, ·〉, xi ∈ E, then P (D) = Dx1 . . .Dxn .
Hence, if P =

∑
k λk〈xk, ·〉n∈PN(nF ) (⊆ P(nF )), then P (D)f=

∑
k λkD

n
xk
f

with absolute convergence in HNb(E).

Definition 1 ([3, 7]). Let (E,F ) be a Banach pairing. A continuous
linear projector Π : HNb(E)→ PdN(E) is PDE-preserving on HNb(E) if

P (D)f = 0 ⇒ P (D)Πf = 0, ∀P ∈ P(nF ), n = 0, 1, . . . ,

i.e. if it preserves homogeneous solutions to homogeneous differential (con-
volution) operators.

Lemma 4. Let (E,F ) be a Banach pairing and let p = (p0, . . . , pd) be
points in E. The map f 7→ � [p] f defines a continuous linear functional on
HNb(E).

Proof. The (nuclear) topology on HNb(E) is finer than the topology of
uniform convergence on bounded sets in E. Thus it suffices to prove the
continuity for this latter topology. If ‖pj‖ ≤ r, j = 0, . . . , d, we obtain

∣∣∣
�

[p]

f
∣∣∣ =

∣∣∣
�
Sd

f
(
p0 +

d∑

k=1

sk(pj − p0)
)
ds
∣∣∣ ≤ sup

‖x‖≤3r
|f(x)|/d!.

This completes the proof.

We denote by PdN(E) the nuclear polynomials on E of degree at most d.
That is, PdN(E) is the space spanned by

⋃
n≤dPN(nE) in HNb(E).

Lemma 5. Let (E,F ) be a Banach pairing and let p = (p0, . . . , pd) be
points in E. Then the Kergin operator f 7→ Kpf defines a continuous linear
projector from HNb(E) onto PdN(E).

Proof. A map of the form f 7→ Dh0 . . .Dhjf , hj ∈ E, is continuous
on HNb(E). In view of this, and by Theorem 1, it suffices to prove that
f 7→ � [p] D

m
(·)f defines a continuous map between HNb(E) and PN(mE).
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Assume first that fn=
∑

k λk〈·, yk〉n∈PN(nE). If m > n, then Dm
x fn = 0

so assume that m ≤ n. Then

Dm
x fn =

∑

k

λk
n!

(n−m)!
〈x, yk〉m〈·, yk〉n−m

with absolute convergence in HNb(E). Hence, by Lemma 4,
�

[p]

Dm
x fn =

∑

k

[
λk

n!
(n−m)!

�
[p]

〈·, yk〉n−m
]
〈x, yk〉m =

∑

k

µk〈x, yk〉m.

Now if ‖pj‖ ≤ r, j = 0, . . . , d, then

|µk| · ‖yk‖m ≤ |λk|
n!

(n−m)!
‖yk‖m

∣∣∣
�

[p]

〈·, yk〉n−m
∣∣∣

≤ |λk|
n!

(n−m)!
· [3r]n−m

d!
‖yk‖n.

Hence fmn ≡ � [p]D
m
(·)fn ∈ PN(mE) and

‖fmn ‖m ≤
n!

(n−m)!
· [3r]n−m

d!
‖fn‖n.(7)

Now let f =
∑
fn ∈ HNb(E) where fn ∈ PN(nE). By the continuity of

f 7→ Dm
x f on HNb(E) we have Dm

x f =
∑

n≥mD
m
x fn. Hence, by Lemma 4,

� [p]D
m
x f =

∑
n≥m f

m
n where fmn (x) = � [p]D

m
x fn. By (7) this series converges

absolutely in PN(mE) and
∑

n≥m
‖fmn ‖m ≤

[3r]−m

d!

∑

n≥m

n![3r]n

(n−m)!
‖fn‖n ≤

m!
d![3r]m

∑

n≥m
[6r]n ‖fn‖n

≤ m!
d![3r]m

‖f‖N :6r.

This also shows the continuity of f 7→ � [p]D
m
(·)f and the proof is complete.

Lemma 6. Let (E,F ) be a Banach pairing where F has the approx-
imation property. Then PF(nF ) is dense in P(nF ) for the weak topology
σ(P(nF ),PN(nE)) and thus for the topology σ(P(nF ),HNb(E)) (duality in-
duced by the duality (6) between Exp(F ) and HNb(E)).

Proof. Assume that PF(nF ) is not dense in P(nF ). Then there is a 0 6=
P ∈ PN(nE) such that 〈P,Q〉 = 0 for every Q ∈ P(nF ). But with Q = 〈x, ·〉n
this gives 0 = 〈P,Q〉 = P (x) and hence P = 0 as x was arbitrary. This is
a contradiction so PF(nF ) is dense in P(nF ). This also implies that PF(nF )
is dense for σ(P(nF ),HNb(E)) since by formula (6), 〈f,Q〉 = n!〈fn, Q〉n for
every f ∈ HNb(E) and Q ∈ P(nF ) ⊆ Exp(F ).
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Lemma 7. Let (E,F ) be a Banach pairing , where F has the approxi-
mation property , and let Π : HNb(E) → PdN(E) be a continuous projector.
Assume that there are functionals λj ∈ H ′Nb(E), j = 0, . . . , d, such that
〈λj , 1〉 = 1 and

λjD
j
xΠ = λjD

j
x, x ∈ E, j = 0, . . . , d.(8)

Then Π is PDE-preserving.

Remark 3. (8) is equivalent to λjP (D)Π = λjP (D) for all P ∈ PF(jF ),
j = 0, . . . , d. Since any derivative of the form Dx1 . . .Dxj can be written as
P (D) for some P ∈ PF(jF ) (see [9, Proposition 2]), (8) is also equivalent to
λjDx1 . . .DxjΠ = λjDx1 . . .Dxj , xi ∈ E, j = 0, . . . , d.

Proof of Lemma 7. Assume that P (D)f = 0 where P ∈ P(nF ) and
f ∈ HNb(E). We must prove that r ≡ P (D)Πf = 0. If d < n this is obvious
so we can assume that d ≥ n. We have r ∈ Pd−nN (E) and hence

r = r0 + . . .+ rd−n, rj ∈ PN(jE).

We prove that rd−n=0. Let x∈E be arbitrary and put Q≡〈x, ·〉d−n/(d−n)!
∈ PF(d−nF ). Then Q(D) = Dd−n

x /(d − n)! and rd−n(x) = Q(D)rd−n =
Q(D)r (= constant). By Lemma 6 there is a net Pα ∈ PF (d−nE) such that
Pα → P in σ(P(nF ),HNb(E)). Now QPα ∈ PF(dF ) and Q(D) ◦ Pα(D) =
QPα(D). Hence for ϕd ≡ Fλd ∈ Exp(F ) we obtain, in view of Remark 3,

rd−n(x) = λd(Q(D)r) = 〈Q(D)P (D)Πf,ϕd〉 = 〈ϕd(D)Q(D)Πf,P 〉
= lim〈ϕd(D)Q(D)Πf,Pα〉 = limλd(Q(D)Pα(D)Πf)

= limλd(Q(D)Pα(D)f) = lim〈ϕd(D)Q(D)f, Pα〉
= 〈ϕd(D)Q(D)f, P 〉 = λd(Q(D)P (D)f) = 0.

As x was arbitrary we conclude that rd−n = 0. Repeating these arguments
for d− n− 1, d− n− 2, . . . down to zero we obtain r = 0.

Theorem 8. Let (E,F ) be a Banach pairing , where F has the approxi-
mation property , and let p = (p0, . . . , pd) be a sequence of points in E. Then
the Kergin operator Kp on HNb(E) is PDE-preserving.

Proof. By Lemma 4 the functionals λj defined by

〈λj , f〉 ≡ j!
�

[pj ]

f, pj = (p0, . . . , pj), j = 0, . . . , d,

are continuous. Moreover, 〈λj , 1〉 = 1 for all j. Thus, by Theorem 7, we are
done if we can prove that 〈λj ,Dj

x(f −Kpf)〉 = 0, that is,
�

[pj ]

Dj
x(f −Kpf) = 0
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for all x ∈ X and j = 0, . . . , d. This is known to hold in the finite-dimensional
case (see [7]). Thus if V is any finite-dimensional subspace containing the
points in p and x we have�

[pj ]

Dj
x(f −Kpf) =

�
[pj ]

[Dj
x(f −Kpf)]V =

�
[pj ]

Dj
x(fV − [Kpf ]V )

=
�

[pj ]

Dj
x(fV −KpfV ) = 0

and hence the conclusion.

The next theorem shows that the Kergin operator is uniquely deter-
mined by its interpolating and PDE-preserving properties on HNb(E). The
n-dimensional version of the theorem was obtained by Filipsson [7]. An
infinite-dimensional generalization can be found in [11] for entire functions
in the ring of formal power series in an infinite number of variables.

Theorem 9. Let (E,F ) be a Banach pair where F has the approxima-
tion property. Let Π : HNb(E) → PdN(E) be a continuous PDE-preserving
projector that interpolates function values at the points (p0, . . . , pd) in E in
the sense of (2). Then Π is the Kergin operator Kp on HNb(E).

Proof. Linear combinations of functions of the form hy = h(〈·, y〉), where
y ∈ F and h is an entire function in one variable (F -cylinder functions of
order one), are dense in HNb(E). Thus it suffices to prove that Kp = Π on
such functions. If y = 0, then hy is constant and hence Kphy = hy = Πhy.
Further, every F -cylinder function, with non-zero element in F , is the limit
of cylinder functions hy for which p̃j ≡ 〈pj , y〉 6= 0 whenever pj 6= 0. Hence
it suffices to prove Πf = Kpf for an arbitrary function of the form f = hy.
By Remark 1, Kphy = q(〈·, y〉) where q = Kp̃h is the Kergin polynomial of
h with respect to the points p̃ = (p̃j). Thus, q is the unique polynomial of
degree at most d that interpolates h at the points p̃ in the sense of (1). Thus
we must prove that f̃ = q(〈·, y〉) where f̃ ≡ Πf .

We note that Dx0f = 〈x0, y〉h′(〈·, y〉) = 0 for every x0 ∈ [y]⊥ ([·] =
linear hull). The assumption that Π is PDE-preserving implies that such
derivatives also vanish for f̃ . Hence f̃ is constant on each hyperplane Y (z) ≡
{x : 〈x, y〉 = z}, z ∈ C. Indeed, let Y (z0) be a fixed hyperplane and let x0 ∈
Y (z0). We must show f̃(x′) = f̃(x0) for x′ ∈ Y (z0), that is, f̃x0;x′−x0(1) =
f̃x0;x′−x0(0) where f̃x;ξ(z) ≡ f̃(x+zξ). Thus it suffices to prove that f̃x0;x′−x0

is constant on [0, 1]. But since x′ − x0 ∈ [y]⊥ we have

f̃ ′x0;x′−x0
(t) = Dx′−x0 f̃(x0 + t(x′ − x0)) = 0, t ∈ [0, 1],

and f̃x0;x′−x0 is constant. We now define the function q̃ by q̃(z) ≡ f̃(Y (z)),
where f̃(Y (z)) is the constant value of f̃ on the hyperplane Y (z). Hence
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f̃(x) = q̃(〈x, y〉) for all x. Moreover, q̃(z) = f̃(xz) where xz is any element
in Y (z). If x1 ∈ Y (1) is arbitrary then xz ≡ zx1 ∈ Y (z) for any given z.
Hence q̃(z) = f̃(zx1) and q̃ is entire. Since f̃ ∈ PdN(E) is a polynomial of
degree at most d, q̃ must be a polynomial of degree less than or equal to d.
If x1 ∈ Y (1), then q̃(z) = f̃(zx1) and hence

q̃(k)(z) = Dk
x1
f̃(zx1).(9)

Thus if pj 6= 0, and hence p̃j 6= 0 by assumption, for z = p̃j and x1 = pj/p̃j ∈
Y (1) we obtain, for k ≤ kj − 1,

q̃(k)(p̃j) = Dk
x1
f̃(pj) = Dk

x1
f(pj) = 〈x1, y〉kh(k)(p̃j) = h(k)(p̃j).

On the other hand, if pj = 0, and hence p̃j = 0, for z = 0 = p̃j and arbitrary
x1 ∈ Y (1) we obtain

q̃(k)(0) = q̃(k)(p̃j) = Dk
x1
f̃(pj) = Dk

x1
f(pj) = 〈x1, y〉kh(k)(p̃j) = h(k)(0)

for k ≤ kj − 1. Summing up, q̃ is a polynomial of degree at most d and
interpolates h at the points p̃j in the sense of (1). Hence q̃ = q and we are
done.

As a consequence we obtain the following.

Corollary 10. Let (E,F ) be a Banach pairing where F has the ap-
proximation property. Let Π : HNb(E) → PdN(E) be a continuous PDE-
preserving projector. Then Π cannot interpolate function values at more
than d+ 1 points in E in the sense of (2).

Proof. Assume that there is a PDE-preserving projector Π that interpo-
lates function values at the points p = (p0, . . . , pd+1) in the sense of (2). By
Theorem 9, Π is the Kergin projector with respect to the first d+ 1 points
(p0, . . . , pd). By Remark 1, the Kergin polynomial for every entire func-
tion is the same for the points (p̃0, . . . , p̃d) as for the points (p̃0, . . . , p̃d+1),
p̃j ≡ 〈pj , y〉, for every y ∈ F . This is impossible and the proof is complete.

We now derive an error formula for Kergin approximation. Let Br denote
the closed ball with radius r centered at the origin. By Theorem 3 with
P = Br and B = B%,

‖f −Kpjf‖B% ≤ e−1
(e
s

)j+1
‖f‖BR , R = R(r, %, s) ≡ 3r + %+ s(r + %).

However, our objective is to give an error formula in terms of the seminorms
on HNb(E). In the finite-dimensional theory, such error formulae have been
studied in [2], [8] and [10].

Theorem 11. Let (E,F ) be a Banach pairing and let f ∈ HNb(E).
Then for any sequence (p0, p1, . . .) of points in the closed ball Br, we have,
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for any j and % > 0,

‖f −Kpjf‖N :% ≤
∥∥∥f −

j∑

n=0

fn

∥∥∥
N :[2(2r+%)]

(10)

(
=

∞∑

n=j+1

[2(2r + %)]n‖fn‖n
)
,

where pj = (p0, . . . , pj).

Proof. By Lemmas 2 and 4 we have

[f −Kpjf ](x) =
�

[pj ,x]

Dx−p0 . . .Dx−pjf(11)

=
∞∑

n=j+1

�
[pj ,x]

Dx−p0 . . .Dx−pjfn =
∞∑

n=j+1

Fn(x)

for f =
∑
fn in HNb(E). Let fn =

∑
λk〈·, yk〉n be an arbitrary representa-

tion of fn ∈ PN(nE). Then Fn is a finite sum of terms of the form�
[pj ,x]

Dm
x Dq0 . . .Dqj−mfn, m ≤ j + 1,(12)

where qi ∈ {p0, . . . , pj}. We note that

(13) Dm
x Dq0 . . .Dqj−mfn

=
∞∑

k=1

n . . . (n− j)λk〈x, yk〉m〈q0, yk〉 . . . 〈qj−m, yk〉〈·, yk〉n−j−1.

Now Fmn (x) = � Sj+1
Dm
x Dq0 . . .Dqj−mfn(ξ(s) + sj+1x) ds where

ξ(s) ≡ p0 + s1(p1 − p0) . . . sj(pj − p0) + sj+1(−p0) ∈ 3Br, s ∈ Sj+1.

The binomial formula gives

〈ξ(s) + sj+1x, yk〉n−j−1 =
n−j−1∑

i=0

(
n− j − 1

i

)
〈x, yk〉isij+1〈ξ(s), yk〉n−j−1−i.

Hence, the expression (12) for Fmn can be rewritten as

Fmn (x)

=
n−j−1∑

i=0

∞∑

k=1

n . . . (n− j)
(
n− j − 1

i

)
λk〈q0, yk〉 . . . 〈qj−m, yk〉ξijnk〈x, yk〉m+i

=
n−j−1∑

i=0

∞∑

k=1

µijnk〈x, yk〉m+i, ξijnk ≡
�

Sj+1

sij+1〈ξ(s), yk〉n−j−1−i ds.

Hence Fmin ≡ ∑µijnk〈·, yk〉m+i ∈ PN(m+iE). In fact, since ξ(s) ∈ 3Br and
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� Sj ds = 1/j!, we see that |ξijnk| ≤ [3r‖yk‖]n−j−1−i/(j + 1)! and

|µijnk| · ‖yk‖m+i ≤ n . . . (n− j)
(j + 1)!

(
n− j − 1

i

)
rj−m+1[3r]n−j−1−i|λk| · ‖yk‖n

=
(

n

j + 1

)(
n− j − 1

i

)
rj−m+1[3r]n−j−1−i|λk| · ‖yk‖n.

This implies Fmin ∈ PN(m+iE) and

‖Fmin ‖m+i ≤
(

n

j + 1

)(
n− j − 1

i

)
rj−m+1[3r]n−j−1−i‖fn‖n.

Hence

‖Fmn ‖N :% =
n−j−1∑

i=0

%m+i‖Fmin ‖m+i

≤ ‖fn‖n
(

n

j + 1

)
%mrj−m+1

n−j−1∑

i=0

(
n− j − 1

i

)
[3r]n−j−1−i%i

= ‖fn‖n
(

n

j + 1

)
%mrj−m+1[3r + %]n−j−1.

Now, Fn is a finite sum
∑j+1

m=0 Fnm and each Fnm is a sum of
(
j+1
m

)
terms

of the form Fmn . By the binomial formula,

‖Fn‖N :% ≤ ‖fn‖n
(

n

j + 1

)
[3r + %]n−j−1

j+1∑

m=0

(
j + 1
m

)
rj−m+1%m

= ‖fn‖n
(

n

j + 1

)
[3r + %]n−j−1[r + %]j+1 ≤ [4r + 2%]n‖fn‖n.

Substituting into (11) completes the proof.

Estimate (10) shows that for any bounded sequence of interpolation
points and f ∈ HNb(E), the corresponding sequence of Kergin polynomials
converges to f . More generally, from the proof it follows that for an arbitrary
sequence of interpolation points, the estimate (10) holds with r replaced by
rj ≡ max{‖pi‖ : 0 ≤ i ≤ j}. This gives a sufficient condition on a function
in order that its sequence of Kergin polynomials converges. This holds for
f ∈ HNb(E) when the (increasing) sequence

∑j
n=0 r

n
j %

n‖fn‖n is bounded
for every % > 0 (compare with [7, Theorem 7.1]).
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