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Algebras whose groups of units are Lie groups

by

Helge Glöckner (Darmstadt)

Abstract. Let A be a locally convex, unital topological algebra whose group of
units A× is open and such that inversion ι : A× → A× is continuous. Then inversion
is analytic, and thus A× is an analytic Lie group. We show that if A is sequentially
complete (or, more generally, Mackey complete), then A× has a locally diffeomorphic ex-
ponential function and multiplication is given locally by the Baker–Campbell–Hausdorff
series. In contrast, for suitable non-Mackey complete A, the unit group A× is an analytic
Lie group without a globally defined exponential function. We also discuss generalizations
in the setting of “convenient differential calculus”, and describe various examples.

Introduction. Following [38], we call a locally convex, unital topologi-
cal algebra A a continuous inverse algebra if its group of units A× is open
in A and inversion ι : A× → A× is continuous. Some authors also call
such algebras “good”, or “Q-algebras”. They are encountered in K-theory
and non-commutative geometry, usually as dense subalgebras of C∗-algebras
of interest; see [6], [8], [11], [31]. Also certain Fréchet algebras of pseudo-
differential operators are continuous inverse algebras (see [18] and the ref-
erences therein). A typical example is the algebra C∞(K,A) of smooth
functions on a compact smooth manifold, with values in a unital Banach
algebra A. Further examples can be found in [18, 1.15] and [2]. The interest
in continuous inverse algebras started in the 1950s, when it became clear
that the holomorphic functional calculus for Banach algebras carries over to
complete, commutative continuous inverse algebras ([37]–[41]).

In the present article, we investigate continuous inverse algebras (com-
mutative or not) with a view towards applications in infinite-dimensional Lie
theory. We show that the inversion map of a continuous inverse algebra A is
not only continuous, but analytic (and so A× is an analytic Lie group). If A
is sequentially complete (or, more generally, Mackey complete), as our main
result we show that A× is a Baker–Campbell–Hausdorff (BCH)-Lie group,
i.e., an analytic Lie group with a locally diffeomorphic exponential func-
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tion whose multiplication is given locally by the BCH-series (1). Our proof
makes essential use of the holomorphic functional calculus for general (not
necessarily commutative) Mackey complete continuous inverse algebras A,
which we develop as far as required. In particular, if x ∈ A and f is a
complex-valued holomorphic function defined on an open neighbourhood of
the spectrum σ(x) ⊆ C of x, we show that the assignment a 7→ f [a] is ana-
lytic on an open neighbourhood of x in A also when A is non-commutative
(see [38] for the commutative case). Our main result is useful due to the fact
that, if G is a BCH-Lie group, then every (sequentially) closed Lie subal-
gebra of L(G) integrates to an analytic subgroup of G (see [32] and [15]).
Now, if A is a Mackey complete continuous inverse algebra, then so is Mn(A)
for each n ∈ N (cf. [35]), and thus GLn(A) is a BCH-Lie group. As a con-
sequence, every (sequentially) closed Lie subalgebra G of gln(A) = Mn(A)
integrates to an analytic subgroup of GLn(A). This observation is vital for
the theory of so-called root-graded Lie groups (like SLn(A)), which are cur-
rently attracting interest stimulated by the well developed structure theory
for the corresponding root-graded Lie algebras (see [1], [3], [4]) (2). In fact,
in the case where G ≤ gln(A) is a root-graded Lie algebra with coordinate
domain A, our results ensure the existence of a corresponding Lie group with
Lie algebra G. This makes it clear that Mackey complete continuous inverse
algebras provide a particularly well suited class of coordinate domains for
root-graded Lie groups.

In addition to the abstract theory, we present various examples of contin-
uous inverse algebras. These also motivate generalizations in the “convenient
setting” of analysis.

1. Preliminaries from differential calculus. We shall work in two
different settings of differential calculus and Lie theory. In the first of these
settings, smoothness and analyticity are rather strong notions (much stron-
ger than continuity). This is desirable, because we can show that many
mappings of interest (like inversion in a continuous inverse algebra, the ex-
ponential function of its unit group, and the logarithm) are in fact analytic
in this strong sense: valuable information would be lost by working with
weaker notions of smoothness or analyticity. However, natural operations,
like the formation of strict countable locally convex direct limits of continu-
ous inverse algebras, may lead outside this class of algebras (multiplication
need not be continuous, nor inversion). To tackle the resulting algebras, the
“convenient setting” of analysis provides an ideal framework.

(1) For involutive ILB-algebras, which are certain countable projective limits of unital
involutive Banach algebras, a similar result had been obtained before in [26].

(2) This connection was outlined to the author by K.-H. Neeb (TU Darmstadt).
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The “strong” setting of differential calculus. The first setting of differen-
tial calculus we shall be working with is essentially the framework described
by Milnor [28], omitting however his unnecessary restriction to sequentially
complete locally convex spaces. See [13] for a detailed exposition of the
slightly generalized setting. Here we only briefly summarize several basic
definitions and facts.

1.1. Suppose that E and F are real locally convex spaces, U is an open
subset of E, and f : U → F a map. We say that f is of class C1 if it is
continuous, the two-sided directional derivative

df(x; v) := lim
t→0

t−1(f(x+ tv)− f(x))

exists for all x ∈ U , v ∈ E, and the mapping df : U × E → F so obtained
is continuous. Recursively, we define f to be of class Ck for 2 ≤ k ∈ N
if it is of class Ck−1 and dk−1f : U × E2k−1−1 → F (having been defined
recursively) is a mapping of class C1 on the open subset U ×E2k−1−1 of the
locally convex space E2k−1

. We then set dkf := d(dk−1f) : U ×E2k−1 → F .
The mapping f is said to be smooth or of class C∞ if it is of class Cn for
all n ∈ N.

Ck-maps in the preceding sense are precisely Ck-maps in the sense of
Michal–Bastiani (as studied in [19] in the Fréchet case, in [28] and [29] in
the case of sequentially complete spaces); see [13, Lemma 1.14].

1.2. Let E and F be complex locally convex spaces, and U be an open
subset of E. A mapping f : U → F is called complex-analytic (or C-analytic)
if it is continuous and, for every x ∈ U , there exists a 0-neighbourhood V
in E such that x + V ⊆ U and f(x + h) =

∑∞
n=0 βn(h) for all h ∈ V as a

pointwise limit, where βn : E → F is a continuous homogeneous polynomial
over C of degree n ([7, Definition 5.6]).

1.3. A sequence (xn)n∈N in a locally convex space E is called a Mackey–
Cauchy sequence if xn − xm ∈ tn,mB for all n,m ∈ N, for some bounded
set B ⊆ E and certain tn,m ∈ R such that tn,m → 0 as both n,m → ∞.
The space E is called Mackey complete (or c∞-complete) if every Mackey–
Cauchy sequence in E converges. If E is sequentially complete, then E is
Mackey complete. The space E is Mackey complete if and only if the Rie-
mann integral

� b
a γ(t) dt exists in E for any smooth curve γ : ]α, β[→ E and

α < a < b < β (cf. [24, 2.1]).

1.4. A mapping f : U → F as in 1.2 is complex-analytic if and only if
it is smooth and df(x; ·) is complex-linear for each x ∈ U ([13, Lemma 2.5]).
If F is Mackey complete, then f is complex-analytic if and only if f is C1

and df(x; ·) is complex-linear. Indeed, f is (F)-holomorphic when considered
as a mapping into the completion F of F by [29, Proposition I.10(i)] and
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thus complex-analytic as a mapping into F as a consequence of [7, Theo-
rems 6.2(iii) and 3.1]. Given (x, v) ∈ U × E, we have

df(x; v) =
1

2πi

�

|ζ|=r
ζ−2f(x+ ζv) dζ ∈ F

(where r > 0 is sufficiently small) as F is Mackey complete, and thus in-
ductively im(dkf) ⊆ F for each k ∈ N, whence f is C∞ with complex-linear
differentials and thus complex-analytic.

1.5. Let E, F be real locally convex spaces, and U ⊆ E be open. A
mapping f : U → F is called real-analytic (or R-analytic) if it extends to
a complex-analytic mapping Ũ → FC on some open neighbourhood Ũ of U
in EC.

1.6. Compositions of smooth (resp., K-analytic) mappings are smooth
(resp.,K-analytic), forK ∈ {R,C} (cf. [13]). Thus smooth (resp.,K-analytic)
manifolds M modelled on a locally convex space E can be defined in the
usual way, as Hausdorff topological spaces M together with an atlas of
charts taking open subsets of M homeomorphically to open subsets of E,
with smooth (resp., K-analytic) transition maps.

1.7. A smooth (resp., K-analytic) Lie group G is a group equipped with
a smooth (resp., K-analytic) manifold structure as above making the group
operations smooth (resp., K-analytic). Then L(G) := T1(G) inherits a nat-
ural topological Lie algebra structure.

The convenient setting. Let E and F be Mackey complete locally convex
spaces, U ⊆ E be a c∞-open subset, i.e., γ−1(U) ⊆ R is open for every
smooth curve γ : R → E. Let f : U → F be a mapping. We recall various
basic notions from [23].

1.8. f is a c∞-map if f ◦ γ : R→ F is a smooth curve for every smooth
curve γ : R→ E such that im(γ) ⊆ U .

1.9. If λ ◦ γ : R → R is real-analytic for each λ ∈ E ′, then γ : R → E
is called weakly real-analytic. If f as above is a c∞-map and f ◦ γ is weakly
real-analytic for each weakly real-analytic curve γ : R→ E with image in U ,
then f is a conveniently real-analytic map.

1.10. Let B1(0) ⊆ C be the open unit disk. If E and F are complex
locally convex spaces now and f ◦ γ : B1(0) → F is complex-analytic for
each complex-analytic mapping γ : B1(0) → E with image in U , we shall
call f conveniently complex-analytic.

We write c∞(E) for E, equipped with the final topology with respect
to C∞(R, E). Lie groups in the sense of convenient differential calculus (as
described in [23], [24]) will be called convenient Lie groups here. When we
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speak of “Lie groups” without the specification “convenient”, we exclusively
refer to Lie groups as defined in 1.7.

2. Unit groups in topological algebras: basic facts. In this section,
we assemble some basic material concerning inverses and quasi-inverses in
topological algebras. The results are well known in the case of Banach alge-
bras, but no direct reference seems to be available in the required generality.

Throughout the following, K ∈ {R,C}. The word “algebra” abbreviates
“associative K-algebra”. An algebra is unital if it has a non-zero multi-
plicative identity element (denoted by e or 1). An algebra equipped with a
Hausdorff vector topology making multiplication jointly continuous is called
a topological algebra. We begin with an obvious fact:

2.1. Lemma. If A is an algebra, then the operation x � y := x+ y − xy
(for x, y ∈ A) turns A into a monoid , with neutral element 0. If A is unital ,
then

θ : (A, �)→ (A, ·), x 7→ 1− x,
is an isomorphism of monoids, and an isomorphism of topological monoids
if A is a unital topological algebra.

2.2. Definition. If A is an algebra, we write Q(A) := (A, �)× for the
group of invertible elements in the monoid (A, �). Given x ∈ Q(A), we
denote its (uniquely determined) inverse with respect to � by q(x), and call
q(x) the quasi-inverse of x.

Thus, an element x ∈ A is in Q(A) and has the quasi-inverse y ∈ A if
and only if xy = yx and x + y − xy = 0. The following is immediate from
Lemma 2.1:

2.3. Lemma. If A is a unital algebra, then A× = 1 − Q(A) and
(1− x)−1 = 1− q(x) for each x ∈ Q(A).

2.4. Definition. Given an algebra A, we let Ae := Ke ⊕ A be the
associated unital algebra. If A comes equipped with a topology, we give Ae
the product topology.

It is easy to see that Ae is a topological algebra if A is.

2.5. Lemma. Let A be an algebra (unital or not). Then

(Ae)× = K× · (e−Q(A))

and Q(A) = Q(Ae) ∩A. Given z ∈ K× and x ∈ Q(A), we have

(z(e− x))−1 =
1
z

(e− q(x)).(1)

Proof. If x ∈ Q(A) and y ∈ A is the quasi-inverse of x, then apparently y
is also the quasi-inverse for x, considered as an element of Ae. In particular,
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Q(A) ⊆ Q(Ae) ∩ A. If x ∈ Q(Ae) ∩ A, let y = te + w be the quasi-inverse
of x in Ae (where t ∈ K, w ∈ A). Then tx + xw = xy = yx = tx + wx
(whence xw = wx), and 0 = x + y − xy = x + te + w − tx − xw. By the
latter formula, t = 0 and x+w − xw = 0. Thus w is the quasi-inverse for x
in A, and we have established the identity Q(A) = Q(Ae) ∩ A. It is easy to
see that A∩ (Ae)× = ∅. Hence if y ∈ (Ae)×, then y = z(e− x) = (ze)(e− x)
for some z ∈ K× and x ∈ A. As ze ∈ (Ae)×, we deduce that e− x ∈ (Ae)×

and thus x ∈ Q(Ae) ∩ A = Q(A). The remainder is clear.

If (M, ·, 1) is a monoid, equipped with a topology making the left mul-
tiplication maps λx : M → M , m 7→ xm, continuous for each x ∈ M , then
clearly λx is an auto-homeomorphism of M taking M× onto itself, for each
x ∈ M×. We easily deduce that M× is open in M if and only if M× has
non-empty interior.

2.6. Lemma. Let A be an algebra equipped with a vector topology making
the left multiplication maps λx : A→ A, a 7→ xa, continuous for each x ∈ A.
Then the following conditions are equivalent :

(a) Q(A) is an open 0-neighbourhood in A;
(b) Q(A) is a 0-neighbourhood in A;
(c) (Ae)× is an identity neighbourhood in Ae;
(d) (Ae)× is an open identity neighbourhood in Ae.

Proof. Due to the hypotheses, the left multiplication maps in (Ae, ·) are
continuous, as are the left multiplication maps in (A, �). In view of the
preceding considerations, (a)⇔(b) and (c)⇔(d). The implication (d)⇒(a)
follows from Lemmas 2.3 and 2.5.

(b)⇒(c). Let W be a balanced open 0-neighbourhood in A contained
in Q(A), and S := {z ∈ K : 1/2 < |z| < 2}. Then Se ⊆ (Ae)× and
e−W ⊆ (Ae)×. Thus, (Ae)× being a group, Se · (e−W ) ⊆ (Ae)×. Now, W
being balanced, clearly Se − 1

2W ⊆ Se · (e −W ); thus (Ae)× contains the
open identity neighbourhood Se− 1

2W .

2.7. Definition. We shall call a topological algebra A a continuous
quasi-inverse algebra if the underlying vector topology is locally convex,
Q(A) is an open 0-neighbourhood in A, and quasi-inversion q : Q(A)→ A,
a 7→ q(a), is continuous. Unital continuous quasi-inverse algebras will also
be called continuous inverse algebras.

2.8. Lemma. For a locally convex topological algebra A, the following
conditions are equivalent :

(a) Ae is a continuous inverse algebra;
(b) A is a continuous quasi-inverse algebra;
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(c) Q(A) contains a 0-neighbourhood W of A such that q|W is conti-
nuous.

Proof. Let q : Q(A) → A and qe : Q(Ae) → Ae be the respective quasi-
inversions. The implication (b)⇒(c) is trivial.

(a)⇒(b). If Ae is a continuous inverse algebra, then Q(Ae) is an open
0-neighbourhood in Ae and qe is a continuous map. Thus Q(A) =
Q(Ae) ∩ A is an open 0-neighbourhood in A and q = qe|AQ(A) is continu-
ous (by Lemma 2.5).

(c)⇒(a). As Q(A) ⊆ A is a 0-neighbourhood, Q(Ae) is an open 0-
neighbourhood in Ae (Lemma 2.6). Pick a balanced open 0-neighbourhood
W of A contained in Q(A) such that q|W is continuous; define S as in the
proof of Lemma 2.6. As seen there, U := Se − 1

2W is an open identity
neighbourhood of Ae contained in (Ae)×. Given x = ze− 1

2w ∈ U , we have
x = (ze) · (e− (2z)−1w), where (2z)−1w ∈W . Thus

x−1 = (z−1e)
(
e− q

(
1
2z
w

))
=

1
z
e− 1

z
q

(
1
2z
w

)
.

In view of this formula and the continuity of q|W , the map U → Ae, x 7→ x−1,
is continuous. The left multiplication maps on Ae being continuous, we easily
deduce that inversion is continuous on all of (Ae)×.

2.9. Remark. It can be shown that if A is a unital algebra equipped
with a vector topology making A× an identity neighbourhood and inversion
continuous at the identity, then inversion is continuous [36, Proposition 1].
If a unital topological algebra A has an open unit group and the underlying
topological vector space is a Fréchet space, then A is a continuous inverse
algebra [40, p. 115]. Every commutative complete continuous inverse alge-
bra A is locally m-convex [36, Théorème], i.e., its locally convex topology is
defined by a family of submultiplicative continuous seminorms. Thus A is
a projective limit of commutative unital Banach algebras [27]. See also [43]
and further works by W. Żelazko.

2.10. Definition. If A is a unital algebra, equipped with a Mackey
complete locally convex vector topology making multiplication a c∞-map (or
equivalently, a bounded bilinear map [24, 2.3(ii)]), then A is called a bounded
algebra [23, p. 63]. A c∞-inverse algebra is a bounded algebra, A, whose
group of units A× is c∞-open in A and such that inversion ι : A× → A× is
a c∞-map.

3. Analyticity of inversion. In this section, we show that inversion
ι : A× → A× in a continuous inverse algebra is not only continuous but in
fact analytic, entailing that A× is an analytic Lie group.
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3.1. Lemma. If A is a continuous inverse algebra, then inversion ι :
A× → A× is of class C∞.

Proof. Using the well known identity

(∀x, y ∈ A×) y−1 − x−1 = x−1(x− y)y−1 = y−1(x− y)x−1,(2)

we find that t−1((x + ty)−1 − x−1) = −x−1y(x + ty)−1 → −x−1yx−1 as
t→ 0, for all x ∈ A×, y ∈ A. Thus dι : A× × A→ A exists and is given by
dι(x; y) = −x−1yx−1, i.e.,

dι = −τ ◦ (ι ◦ prA× ,prA, ι ◦ prA×),(3)

where the projection maps prA× : A××A→ A× and prA : A××A→ A are
smooth, and so is the multiplication map τ : A × A × A → A, τ(a, b, c) :=
a·b·c, which is a continuous K-trilinear map (and hence actuallyK-analytic).
As ι is continuous, equation (3) shows that dι is continuous; thus ι is C1.
Inductively, having shown that ι is of class Ck, we deduce from (3) and the
Chain Rule [13, Proposition 1.15] that dι is of class Ck and so ι is of class
Ck+1. Being of class Ck for all k, the inversion map ι is smooth.

Thus every Mackey complete continuous inverse algebra is a c∞-inverse
algebra in particular.

3.2. Proposition. If A is a complex continuous inverse (resp., c∞-
inverse) algebra, then inversion ι : A× → A× is complex-analytic (resp.,
conveniently complex-analytic).

Proof. If A is a complex continuous inverse algebra, then ι is smooth
(Lemma 3.1), with dι(x; y) = −x−1yx−1 for x ∈ A×, y ∈ A, showing that
dι(x; ·) is complex-linear. By 1.4, the mapping ι is complex-analytic. If A is
a c∞-inverse algebra, then ι is a c∞-map by definition and again dι(x; ·) =
−x−1(·)x−1 is complex-linear, whence A is conveniently complex-analytic
by [23, Theorem 7.19(8)].

Inversion close to the identity is given by the Neumann series.

3.3. Lemma. Let W ⊆ Q(A) be a balanced open 0-neighbourhood in
a complex continuous inverse algebra A. Then (e − x)−1 =

∑∞
n=0 x

n for
all x ∈ W . The same conclusion holds if A is a c∞-inverse algebra and
W ⊆ Q(A) a balanced open 0-neighbourhood in c∞(A).

Proof. Given x ∈ W , we have Br(0)x ⊆ W for some r > 1, where
Br(0) ⊆ C is the open disk of radius r centred at 0. We consider the complex-
analytic function

f : Br(0)→ A, f(z) := (e− zx)−1.

Formula (2) entails that f ′(z) = −(e − zx)−1(−x)(e − zx)−1 = xf(z)2.
A simple induction gives f (n)(z) = n! · xn · f(z)n+1 for all n ∈ N0 (cf. [23,
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Lemma 5.5]). As we may consider f as a complex-analytic function into the
completion of A, [7, Theorem 3.1 (or Proposition 5.5)] shows that

(∀z ∈ Br(0)) f(z) =
∞∑

n=0

zn

n!
f (n)(0) =

∞∑

n=0

znxn,

whence (e− x)−1 = f(1) =
∑∞

n=0 x
n in particular.

3.4. Proposition. If A is a real continuous inverse algebra, then also
its universal complexification AC is a continuous inverse algebra. The inver-
sion ι : A× → A× is real-analytic.

Proof. Since A is a continuous inverse algebra, we find an open identity
neighbourhood U ⊆ A× and an open 0-neighbourhood V ⊆ A such that
e + (a−1b)2 ∈ A× for all a ∈ U , b ∈ V . For a, b as before, we have a + ib
= a(e + ia−1b) in AC, where a is invertible and so is e + ia−1b. In fact,
abbreviating c := a−1b we observe that e+ ic and e− ic commute, whence
e+ ic also commutes with e+ c2 = (e+ ic)(e− ic) and its inverse. Now the
formula (e+ ic)(e+ c2)−1(e− ic) = (e+ c2)−1(e− ic)(e+ ic) = e shows that
(e+ c2)−1(e− ic) is the inverse of e+ ic. We have shown that the open set
U + iV is contained in A×C , and

(a+ ib)−1 = (e+ (a−1b)2)−1(e− ia−1b)a−1 for all (a, b) ∈ U × V ,

which depends continuously on (a, b). By Lemma 2.8, AC is a continuous
inverse algebra and so inversion on (AC)× is complex-analytic, by Proposi-
tion 3.2. Thus inversion ι : A× → A× has a complex-analytic extension to a
mapping between open subsets of AC, which means that ι is a real-analytic
map.

Note that we might have interpreted AC as a subalgebra of M2(A) here.
For matrix algebras, we have as a special case of [35, Corollary 1.2]:

3.5. Proposition. If A is a continuous inverse algebra, then also
Mn(A) is a continuous inverse algebra, for every n ∈ N.

Let us prove certain c∞-analogues.

3.6. Proposition. If A is a c∞-inverse algebra, then so is Mn(A).

Proof. The proof is by induction on n ∈ N. The assertion holds for
n = 1, by definition of a c∞-inverse algebra. Assume it holds for n ∈ N. Let
γ : R→Mn+1(A) be a smooth curve such that γ(0) ∈ GLn+1(A). Then also
η := γ(0)−1γ is smooth, and η(0) = 1. Since η(0)1,1 = e, where the (1, 1)-
entry η1,1 is a smooth curve, there is ε > 0 such that η(]−ε, ε[)1,1 ⊆ A×.
Given i 6= j∈{1, . . . , n+ 1} and a∈A, define Eij(a) :=1 + aeij ∈GLn+1(A),
the eij ’s being the matrix units. Then

R(t) := E1,2(−η(t)−1
1,1η(t)1,2) . . . E1,n+1(−η(t)−1

1,1η(t)1,n+1)
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defines a smooth curve ]−ε, ε[ → Mn+1(A) of invertible matrices, and so
does L(t) := E2,1(−η(t)2,1η(t)−1

1,1) . . . En+1,1(−η(t)n+1,1η(t)−1
1,1). Note that

L(t)η(t)R(t) is block diagonal. So, there is a smooth curve κ : ]−ε, ε[ →
Mn(A) such that κ(0) = 1 and

L(t)η(t)R(t) = diag(η1,1(t), κ(t)).

By induction, after shrinking ε, we have κ(]−ε, ε[) ⊆ GLn(A), and ]−ε, ε[→
GLn(A), t 7→ κ(t)−1, is smooth. Thus γ(t) ∈ GLn+1(A) for t ∈ ]−ε, ε[, with

γ(t)−1 = R(t) diag(η(t)−1
1,1, κ(t)−1)L(t)γ(0)−1,

a formula which shows that γ(t)−1 depends smoothly on t.

3.7. Proposition. If A is a real c∞-inverse algebra, then AC is a com-
plex c∞-inverse algebra. The inversion ι : A× → A× is conveniently real-
analytic.

Proof. Using ideas from the proofs of Propositions 3.4 and 3.6, it is easy
to show that AC is a c∞-inverse algebra. Since inversion ι : A× → A× extends
to the conveniently complex-analytic inversion map (AC)× → (AC)× be-
tween c∞-open subsets of AC, we deduce that ι is conveniently real-analytic
(cf. [23, 10.4]).

4. Functional calculus in c∞-inverse algebras. It is known from
the work of Waelbroeck ([37]–[41]) that the holomorphic functional calculus
familiar from unital Banach algebras carries over to complete commutative
continuous inverse algebras, and more generally to “regular” elements in
complete commutative locally convex topological algebras [39], or regular
elements in (Mackey complete) commutative algebras with bounded struc-
tures ([40], [41]). In this section, we develop the holomorphic functional
calculus for not necessarily commutative, Mackey complete continuous in-
verse (resp., c∞-inverse) algebras, with a view towards Lie-theoretic appli-
cations (Section 5). Every element x in such an algebra A being contained
in a closed (resp., Mackey complete) commutative subalgebra which is a
continuous (resp., c∞-) inverse algebra (3), some basic results (Lemma 4.3,
Proposition 4.9) might be deduced from Waelbroeck’s work. We have opted
to give the (simple) proofs as Waelbroeck only discusses complete (rather
than Mackey complete) commutative topological algebras in his early works
[37]–[39], whereas his later discussion of functional calculus for regular ele-
ments in (Mackey complete) commutative algebras with bounded structures
([40], [41]) is presented as part of an extensive theory, which is much more
sophisticated than the simple facts needed here. Part of the basic results

(3) A closed (resp., Mackey complete) commutative subalgebra B of A such that x ∈ B
and B∩A× = B× is easily constructed by transfinite induction (cf. [23, Proposition 4.32]).
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have also been recorded in [8] (without proofs); cf. also [25]. The main re-
sult of this section, the complex-analyticity of a 7→ f [a] (Theorem 4.10),
apparently cannot be reduced to the commutative case.

In this section, we discuss two situations in parallel. Case 1: A is a
Mackey complete continuous inverse algebra over K. Case 2: A is a c∞-
inverse algebra over K. We assume that K = C for the moment; the real
case will be discussed later.

Convention. In this section and the next, in an expression “α (resp.,
β)”, the statement α refers to Mackey complete continuous inverse algebras,
whereas β refers to general c∞-inverse algebras. When we say that a certain
function is “(conveniently) complex-analytic”, or that a certain set is “(c∞-)
open” (and the like), then the statement outside the brackets refers to the
case of Mackey complete continuous inverse algebras, whereas the statement
including the bracket applies to c∞-inverse algebras.

4.1. Definition. The resolvent set of x ∈ A is %(x) := {z ∈ C : ze−x ∈
A×}; the spectrum of x is σ(x) := C\%(x). The resolvent of x is the mapping

R(x, ·) : %(x)→ A×, z 7→ R(x, z) := (ze− x)−1.

Note that, as A× is c∞-open in A and z 7→ ze−x is smooth, %(x) is open
in C. Inversion A× → A× being conveniently complex-analytic (Proposi-
tion 3.2), R(x, ·) : %(x)→ A× is complex-analytic (cf. 1.10).

4.2. Lemma. Let x, y ∈ A.

(a) (First Resolvent Identity) For all z 6= ζ ∈ %(x) we have

R(x, z)R(x, ζ) = (ζ − z)−1(R(x, z)−R(x, ζ)).(4)

(b) (Second Resolvent Identity) For all z ∈ %(x) ∩ %(y) we have

R(y, z)−R(x, z) = R(y, z) · (y − x) ·R(x, z).(5)

Proof. Both (4) and (5) are immediate from (2).

4.3. Lemma. For every 0-neighbourhood U ⊆ C, there exists a 0-neigh-
bourhood W ⊆ A (resp., 0-neighbourhood W ⊆ c∞(A)) such that σ(x) ⊆ U
for all x ∈W . For every x ∈ A, the spectrum σ(x) is a compact non-empty
subset of C.

Proof. We have e−V ⊆ A× for some balanced 0-neighbourhood V in A
(resp., in c∞(A); cf. [23, Lemma 4.15]). Thus 1 ∈ %(x) for all x ∈ V . Let
x ∈ V . If z ∈ C is such that |z| ≥ 1, then ze− x = (ze) · (e − z−1x) where
ze ∈ A× and e− z−1x ∈ A× as z−1x ∈ V , the set V being balanced. Thus
σ(x) ⊆ B1(0) := {z ∈ C : |z| < 1} for all x ∈ V . There is r > 0 such that
Br(0) ⊆ U . Then σ(x) ⊆ Br(0) ⊆ U for all x ∈ W := rV . If x ∈ A is
arbitrary, we find t > 0 such that tx ∈ V . Then σ(tx) ⊆ B1(0) and therefore
σ(x) ∈ B1/t(0). Being closed and bounded, σ(x) is compact. To see that
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σ(x) is non-empty, assume to the contrary that %(x) = C; we shall derive a
contradiction. For every continous linear functional λ ∈ A′, the function

fλ := λ ◦R(x, ·) : C→ C
is complex-analytic. Since (e− zx) = z(z−1e − x) ∈ A× for all z ∈ C×, we
have Cx ⊆ Q(A). As C → C, z 7→ λ((e − zx)−1), is complex-analytic and
thus continuous, there exists 1 > s > 0 such that

(∀z ∈ Bs(0)) |λ((e− zx)−1)| < |λ(e)|+ 1 =: M.

Then (ze− x)−1 = z−1(e− z−1x)−1 shows that

|fλ(z)| = |z|−1 · |λ((e− z−1x)−1)| ≤M
for all z ∈ C such that |z| ≥ s−1. On the relatively compact set Bs(0), the
continuous function fλ is bounded. Thus fλ is bounded. Being a bounded
entire function, fλ is constant. We deduce that R(x, ·) is constant, whence
(−x)−1 = (e− x)−1 in particular. Taking inverses, we arrive at −x = e− x,
which is absurd.

4.4. Lemma. Let x ∈ A, and Ω ⊆ C be an open neighbourhood of
σ(x). Then there is a 0-neighbourhood Y in A (resp., in c∞(A)) such that
σ(x+ y) ⊆ Ω for all y ∈ Y .

Proof. There is r > 0 such that σ(x) ⊆ Br(0). Then σ(zx) ⊆ B1(0) for
all z ∈ C such that |z| ≤ 1/r, entailing that e− zx ∈ A×. Thus

{(ze− x)−1 = z−1(e− z−1x)−1 : |z| ≥ r} ⊆ Br−1(0) · (e− q(Br−1(0)x))

is a relatively compact subset of A. The set (C \Ω) ∩Br(0) being compact
and R(x, ·) being continuous, furthermore {(ze−x)−1 : z ∈ (C\Ω)∩Br(0)}
is a compact subset of A. We deduce that C := R({x} × (C \ Ω)) is a
relatively compact subset of A. Hence, if A is a continuous inverse algebra,
in view of continuity of multiplication we find a 0-neighbourhood Y in A
such that C · Y ⊆ Q(A).

If A is a general c∞-inverse algebra, we pick 0 < s < r such that
σ(x) ⊆ Bs(0). Then h : Bs−1(0) × A → A, h(z, y) := z(e − q(zx))y, is a
c∞-map and hence continuous as a mapping c∞(Bs−1(0) × A) → c∞(A).
Since c∞(Bs−1(0) × A) = Bs−1(0) × c∞(A) (cf. [23, Cor. 4.16]), we find a
0-neighbourhood Y1 ⊆ c∞(A) such that h(Br−1(0)× Y1) ⊆ Q(A). A similar
argument provides a 0-neighbourhood Y2 in c∞(A) such that (ze−x)−1Y2 ⊆
Q(A) for all z ∈ (C \ Ω) ∩ Br(0). Then C · Y ⊆ Q(A) holds for the 0-
neighbourhood Y := Y1 ∩ Y2 in c∞(A).

In either case, fix y ∈ Y . For every z ∈ C\Ω, we have (ze−x)−1y ∈ Q(A)
and thus e− (ze− x)−1y ∈ A×. Therefore

ze− (x+ y) = (ze− x)(e− (ze− x)−1y) ∈ A×,
showing that z ∈ %(x+ y). Thus σ(x+ y) ⊆ Ω, as required.
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Throughout the remainder of this section, Ω denotes a non-empty, open
subset of C.

4.5. Definition. We let H(Ω) denote the space of holomorphic func-
tions f : Ω → C, equipped with the topology of uniform convergence on
compact sets. Define

AΩ := {x ∈ A : σ(x) ⊆ Ω}.
It is easy to see that H(Ω) is a locally convex topological algebra under

pointwise operations (cf. Section 7). By Lemma 4.4, AΩ is open (resp., c∞-
open) in A.

4.6. Definition. Recall that a formal Z-linear combination Γ=
∑

γnγγ
(where almost all nγ = 0) of smooth curves γ : [aγ , bγ] → C is called a
contour if

∑
γ with z=γ(aγ) nγ =

∑
γ with z=γ(bγ) nγ for all z ∈ C. If K ⊆ C is a

compact set, U an open neighbourhood of K in C, and Γ as before, we say
that Γ is a contour surrounding K in U if im(γ) ⊆ U \K whenever nγ 6= 0,
and

IndΓ (z) =
1

2πi

�

Γ

dζ

ζ − z =
{

1 if z ∈ K,
0 if z ∈ C \ U .

A contour surrounding K in U always exists ([12, Satz IV.3.3 and its
proof]).

4.7. Definition. Given f ∈ H(Ω) and x ∈ AΩ , we define

f [x] :=
1

2πi

�

Γ

f(ζ) (ζe− x)−1 dζ

:=
1

2πi

∑

γ withnγ 6=0

nγ ·
bγ�

aγ

f(γ(t))γ′(t)(γ(t)− x)−1 dt,

where Γ is a contour surrounding σ(x) in Ω (the integrals exist by 1.3).

Applying continuous linear functionals, we deduce from the scalar-valued
Cauchy Theorem ([12, Satz IV.2.1]) that f [x] is independent of the chosen
contour.

A simple fact will be needed:

4.8. Lemma. Suppose that α : E → F is a bounded linear map between
Mackey complete locally convex spaces, and γ : ]a, d[ → E a smooth curve.
Then α◦γ is smooth, and α(

� c
b γ(t) dt) =

� c
b α(γ(t)) dt for all a < b < c < d.

Proof. See [23, Corollary 2.11] for the first assertion. Thus α is a c∞-map.
The chain rule gives

d

ds
α
( s�

b

γ(t) dt
)

= α(γ(s)) =
d

ds

s�

b

α(γ(t)) dt,

implying the claim.
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4.9. Proposition. For fixed x ∈ AΩ, the mapping

Φ : H(Ω)→ A, f 7→ f [x],

is a homomorphism of unital algebras which takes J := idC|Ω to x.

Proof. It is obvious that Φ is linear.

Step 1: We have Φ(Jk) = xk for each k ∈ N0. Let W ⊆ Q(A) be
a balanced open 0-neighbourhood in A (resp., in c∞(A)). There is r > 0
such that r−1x ∈ W and σ(x) ⊆ Br(0). The mapping Jk ∈ H(Ω) extends
to the mapping z 7→ zk in H(C); in view of the independence of the con-
tour in Definition 4.7, it therefore suffices to assume Ω = C in the present
part of the proof, which enables us to choose a positive parametrization γ
of the circle of radius 2r around 0 as the contour surrounding σ(x) used
to define Φ(Jk) = Jk[x]. For fixed λ ∈ A′, consider the complex-analytic
function

f : B1/r(0)→ C, f(z) = λ((e− zx)−1) =
∞∑

n=0

znλ(xn)

(Proposition 3.2, Lemma 3.3). The radius of convergence of the power se-
ries being at least 1/r, the series converges absolutely and uniformly on
B1/(2r)(0), entailing that

λ
( �

γ

ζk(ζe− x)−1 dζ
)

=
�

γ

ζk−1λ((e− ζ−1x)−1) dζ =
�

γ

∞∑

n=0

ζk−1−nλ(xn) dζ

=
∞∑

n=0

( �

γ

ζk−1−n dζ
)
λ(xn) = 2πiλ(xk)

where we have used the fact that
�
γ ζ

k−1−n dζ = 2πiδk−1−n,−1 = 2πiδk,n.
Since the continuous linear functionals separate points on A, we deduce that
Φ(Jk) = xk.

Step 2: Φ is a homomorphism of unital algebras. As we already know
that Φ is linear and takes 1 = J0 to x0 = e, it only remains to show that
Φ is multiplicative. To see this, let f, g ∈ H(Ω). There exists a relatively
compact open neighbourhood U of σ(x) in C whose closure is contained
in Ω. We choose a contour Γ1 surrounding σ(x) in U , and a contour Γ2

surrounding U in Ω. Then we get

f [x]g[x] =
(

1
2πi

�

Γ1

f(z)R(x, z) dz
)(

1
2πi

�

Γ2

g(ζ)R(x, ζ) dζ
)

= − 1
(2π)2

�

Γ1

�

Γ2

f(z)g(ζ)R(x, z)R(x, ζ) dζ dz
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= − 1
(2π)2

�

Γ1

f(z)
( �

Γ2

g(ζ)
ζ − z dζ

)
R(x, z) dz

− 1
(2π)2

�

Γ2

g(ζ)
( �

Γ1

f(z)
z − ζ dz

)
R(x, ζ) dζ

using Lemma 4.8 twice to obtain the second equality, and using the First
Resolvent Identity (4) and Fubini’s Theorem to obtain the last line. Since

�

Γ2

g(ζ)
ζ − z dζ = 2πig(z)

by Cauchy’s Integral Formula (as IndΓ2(z) = 1) and
�

Γ1

f(z)
z − ζ dz = 0

as IndΓ1(ζ) = 0, we obtain

f [x]g[x] =
1

2πi

�

Γ1

f(z)g(z)R(x, z) dz = (f · g)[x].

4.10. Theorem. For every non-empty open subset Ω ⊆ C, the mapping

Ξ : H(Ω)× AΩ → A, Ξ(f, x) := f [x],

is complex-analytic (resp., conveniently complex-analytic). In particular ,
the mapping AΩ → A, x 7→ f [x], is complex-analytic (resp., conveniently
complex-analytic) for each f ∈ H(Ω), and , for any x ∈ A, the homomor-
phism Φ (as in Proposition 4.9) is continuous.

Proof. Let (f, x) ∈ H(Ω)×AΩ . There is a relatively compact open neigh-
bourhood U of σ(x) in C such that U ⊆ Ω. Then AU is an open neighbour-
hood of x in A (resp., in c∞(A)). Fix a contour Γ =

∑
γ nγγ surrounding U

in Ω; set Γ ∗ :=
⋃
γ withnγ 6=0 im(γ) and M := 1 + (2π)−1∑

γ |nγ|`(γ), where
`(γ) is the length of the curve γ.

Assume first that A is a continuous inverse algebra.

Step 1: Ξ is continuous at (f, x). To see this, let V be a closed convex
balanced 0-neighbourhood in A. The set C := R({x} × Γ ∗) being compact,
there exists r > 0 such that Br(0) ·C ⊆ (2M)−1V ; set s := sup |f(Γ ∗)|+ r.
There exists a 0-neighbourhood P in A such that P ·C ⊆ (2M)−1V . Using
the continuity of R|AU×Γ ∗ and continuity of multiplication in A, as well as
the compactness of Γ ∗, we find a 0-neighbourhood S in A and a neighbour-
hood T of x in AU such that R(T ×Γ ∗) ·S ⊆ (1/s)P . For all g ∈ H(Ω) such
that sup |(g − f)(Γ ∗)| < r and all y ∈ T ∩ (x+ S), we deduce that
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g[y]− f [x] = g[y]− g[x] + (g − f)[x]

=
1

2πi

�

Γ

g(z)(R(y, z)−R(x, z)) dz +
1

2πi

�

Γ

(g(z)− f(z))R(x, z) dz

=
1

2πi

�

Γ

g(z)R(y, z)(y − x)R(x, z) dz +
1

2πi

�

Γ

(g(z)− f(z))R(x, z) dz,

using the Second Resolvent Identity (5) to obtain the final equality. As the
integrands occurring in the last line are functions with values in the closed,
absolutely convex set (2M)−1V , standard arguments show that each of the
integrals is contained in

∑

γ

|nγ| · `(γ)
2M

V ⊆ 2π
2
V,

and thus g[y]− f [x] ∈ V .

Step 2: Existence of directional derivatives. Given (g, y) ∈ H(Ω) × A,
we have x + ty ∈ AU for t ∈ R \ {0} with |t| sufficiently small. The above
formulas show that

1
t

((f + tg)[x+ ty]− f [x]) =
1

2πi

�

Γ

(f(z) + tg(z))R(x+ ty, z)yR(x, z) dz

+
1

2πi

�

Γ

g(z)R(x, z) dz.

Here, the last integral is g[x], whereas the first converges to
1

2πi

�

Γ

f(z)R(x, z)yR(x, z) dz

as t → 0, its integrand being jointly continuous in z and t. Thus the direc-
tional derivative dΞ((f, x); (g, y)) exists, and is given by

dΞ((f, x); (g, y)) = g[x] +
1

2πi

�

Γ

f(z)R(x, z)yR(x, z) dz,(6)

an expression which is complex-linear in (g, y).

Step 3: Ξ is a C1-map. In fact, using arguments similar to those in
Step 1, we deduce from formula (6) that dΞ : H(Ω)×AΩ ×H(Ω)×A→ A
is continuous.

Step 4: Ξ is complex-analytic. We have shown that Ξ : H(Ω)×AΩ → A
is a C1-map with complex-linear differentials. By 1.4, Ξ is complex-analytic.

Now assume that A is a c∞-inverse algebra. To see that Ξ is conve-
niently complex-analytic on H(Ω) × AU , we have to show that Ξ ◦ (γ, η)
is complex-analytic for all complex-analytic mappings γ : B1(0) → H(Ω)
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and η : B1(0) → AU . By [23, Theorem 7.4], it suffices to show that F :=
λ ◦ Ξ ◦ (γ, η) : B1(0) → C is complex-analytic for each λ ∈ A′. Clearly
λ(R(η(z), ζ)) is a complex-analytic function of (z, ζ) ∈ B1(0)× (C \U), and
furthermore h : B1(0) × Ω → C, h(z, ζ) := γ(z)(ζ), is complex-analytic,
being a continuous mapping with continuous complex partial derivatives
(∂h/∂z)(z, ζ) = γ′(z)(ζ) and (∂h/∂ζ)(z, ζ) = γ(z)′(ζ). Thus

F (z) =
1

2πi

�

Γ

H(z, ζ) dζ,

where H : B1(0) × (Ω \ U) → C, H(z, ζ) := γ(z)(ζ)λ(R(η(z), ζ)), is a
complex-analytic function. Standard arguments show that F is complex-
analytic.

To complete the proof, note that Φ, being conveniently complex-analytic,
is continuous as a mapping c∞(H(Ω)) → A. But c∞(H(Ω)) = H(Ω), the
latter being a Fréchet space [23, Theorem 4.11(1)], and thus Φ is continu-
ous.

See [38] and [41, 5.7] for the case when A is commutative.

4.11. Corollary. Let f : Br(z0) → C be a holomorphic function on
a disk Br(z0) ⊆ C, with power series expansion f(z) =

∑∞
n=0 an(z − z0)n.

Then

(∀x ∈ ABr(z0)) f(x) =
∞∑

n=0

an(x− z0e)n.

Proof. Set fk(z) :=
∑k

j=0 aj(z−z0)j . Then f = limk→∞ fk in H(Br(z0)).
Thus f [x] = limk→∞ fk[x] for every x ∈ ABr(z0), by Theorem 4.10. It remains
to observe that fk[x] =

∑k
j=0 aj(x− z0e)j, by Proposition 4.9.

The familiar Spectral Mapping Theorem carries over to c∞-inverse alge-
bras.

4.12. Proposition. Let x ∈ AΩ and f ∈ H(Ω). Then

(a) f [x] is invertible in A if and only if f(z) 6= 0 for all z ∈ σ(x).
(b) σ(f [x]) = f(σ(x)).

Proof. In view of Proposition 4.9 above, the proof of the Banach case as
formulated in [33, Theorem 10.28] can be repeated verbatim.

Concerning compositions, the usual proof of the Banach case (see [33,
Theorem 10.29]) applies without changes. We obtain:

4.13. Proposition. Let x ∈ AΩ, f ∈ H(Ω), Ω1 be an open neigh-
bourhood of f(σ(x)) in C, and g ∈ H(Ω1). Set h := g ◦ f |Ω1

Ω0
, where

Ω0 := f−1(Ω1). Then f [x] ∈ AΩ1 , and h[x] = g[f [x]].
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For the final proposition in this section, let A be a Mackey complete, real
continuous inverse algebra (resp., c∞-inverse algebra). Given x ∈ A, we let
σ(x) be the spectrum of x, considered as an element of AC. Let κ : C → C
and τ : AC → AC, τ(x + iy) = x+ iy := x − iy for x, y ∈ A, denote the
respective complex conjugation. Given an open non-empty subset Ω of C
invariant under complex conjugation κ, we set AΩ := (AC)Ω ∩A and define
f [x] ∈ AC using the holomorphic functional calculus for AC when f ∈ H(Ω)
and x ∈ AΩ. Clearly f∗(z) := f(z) (i.e., f ∗ := κ◦f◦κ|ΩΩ) defines a continuous
involution ∗ : H(Ω)→ H(Ω) making H(Ω) a ∗-algebra.

4.14. Proposition. For x ∈ (AC)Ω and f ∈ H(Ω), we have τ(f [x]) =
f∗[τ(x)]. In particular , f [x] ∈ A for all x ∈ AΩ and all hermitian elements
f = f∗ ∈ H(Ω).

Proof. It is easily verified that τ is a complex-antilinear, continuous
real unital algebra automorphism of AC. We readily deduce that σ(τ(x)) =
σ(x) ⊆ Ω for x ∈ (AC)Ω. For z ∈ %(x), we have τ(R(x, z)) = τ((ze−x)−1) =
(ze− τ(x))−1 = R(τ(x), z). Let Γ =

∑
γ nγγ be a contour surrounding σ(x)

in Ω. Then Γ2 := −∑γ nγκ ◦ γ is easily seen to be a contour surrounding

σ(x) = σ(τ(x)) in Ω. Thus

τ(f [x]) =
∑

γ

−nγ
2πi

bγ�

aγ

f(γ(t))γ′(t)R(τ(x), γ(t)) dt

=
∑

γ

−nγ
2πi

bγ�

aγ

f∗((κ ◦ γ)(t))(κ ◦ γ)′(t)R(τ(x), (κ ◦ γ)(t)) dt

= f∗[τ(x)],

as asserted. The remainder is an immediate consequence.

Note that H(Ω) = Herm(H(Ω))C in the preceding situation, where
Herm(H(Ω)) := {f ∈ H(Ω) : f = f ∗} is the real vector subspace of her-
mitian elements in H(Ω). Since Ψ : Herm(H(Ω)) × A → A, (f, x) 7→ f [x],
extends to a complex-analytic (resp., conveniently complex-analytic) map-
ping (Herm(H(Ω)) × A)C = H(Ω) × AC → AC (Theorem 4.10), the map-
ping Ψ is real-analytic (resp., conveniently real-analytic).

4.15. Remark. Note that the proof of Lemma 4.3 for continuous in-
verse algebras did not make use of Mackey completeness. Thus σ(x) 6= ∅
for any x ∈ A, for any complex continuous inverse algebra A, be it Mackey
complete or not. One readily deduces the following generalization of the clas-
sical Gelfand–Mazur Theorem, in self-explanatory terminology: There is no
locally convex topological (nor c∞-) complex division algebra which properly
extends C (cf. [42] and [40, Chapter 9]).
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5. The unit groups are BCH-Lie groups. In this section, we show
that A× is a K-analytic BCH-Lie group for every Mackey complete contin-
uous inverse algebra A. Similar results are obtained for c∞-inverse algebras.
Throughout this section, A denotes a Mackey complete continuous inverse
algebra (resp., a c∞-inverse algebra).

5.1. Definition. Using exp : C → C, exp(z) :=
∑∞

k=0 z
k/k! and log :

B1(1) → C, log(z) :=
∑∞

k=1(−1)k+1(z − 1)k/k, we define mappings expA :
A → A, expA(x) := exp[x] and logA : AB1(1) → A, logA(x) := log[x], using
the holomorphic functional calculus described in the preceding section.

As a consequence of Theorem 4.10, logA and expA are (conveniently)
complex-analytic mappings (4) in the case K = C. If K = R, then expAC
and logAC are (conveniently) complex-analytic mappings between (c∞-) open
subsets of the respective complexified algebras which extend expA, resp.,
logA, and thus expA and logA are (conveniently) real-analytic mappings.
Corollary 4.11 shows that

(∀x ∈ A) expA(x) =
∞∑

k=0

1
k!
xk(7)

and

(∀x ∈ AB1(1)) logA(x) =
∞∑

k=1

(−1)k+1

k
(x− e)k.(8)

5.2. Lemma. (a) expA(logA(x)) = x for all x ∈ AB1(1).
(b) logA(expA(x)) = x for all x ∈ ABlog(2)(0).

(c) Let V := log−1
A (ABlog(2)(0)) and U := {x ∈ ABlog(2)(0) : expA(x) ∈ V }.

Then V is an open identity neighbourhood in A (resp., in c∞(A)), U is
an open 0-neighbourhood in A (resp., in c∞(A)), and expA|VU : U → V is
a K-analytic (resp., conveniently K-analytic) diffeomorphism, with inverse
logA|UV .

Proof. (a) It is well known that exp(log(z)) = z for all z ∈ B1(1) ⊆ C.
Proposition 4.13 and Proposition 4.9 entail that expA(logA(x)) = x for all
x ∈ AB1(1).

(b) It is well known that |exp(z) − 1| < 1 for all z ∈ Blog(2)(0), and
log(exp(z)) = z for such z. Proposition 4.12 shows that expA(ABlog(2)(0)) ⊆
AB1(1). Thus logA(expA(x)) = x for all x ∈ ABlog(2)(0), by Propositions 4.13
and 4.9.

(c) logA and expA|ABlog(2)(0) being continuous (resp., c∞-) mappings de-

fined on (c∞-) open subsets of A, clearly U and V are (c∞-) open. Since

(4) Recall that the conventions of Section 4 are in effect here, in order to discuss
continuous inverse algebras and c∞-inverse algebras in parallel.
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logA(e) = 0 and expA(0) = e in view of (7) and (8), we get e ∈ V and
0 ∈ U . Given x ∈ V , we have expA(logA(x)) = x ∈ V by part (a), where
logA(x) ∈ ABlog(2)(0) by definition of V . Thus logA(x) ∈ U by definition of U .
We have proved that V ⊆ expA(U). Since expA(U) ⊆ V by definition of U ,
we deduce that expA(U) = V . We have also shown that logA(V ) ⊆ U , and

expA|VU ◦ logA|UV = idV .(9)

By the preceding, expA|VU : U → V is surjective. By part (b), expA|VU is also
injective and thus a bijection. Composing with (expA|VU )−1 in (9), we find
that logA|UV = (expA|VU )−1. Both expA|VU and logA|UV being (conveniently)
K-analytic maps, expA|VU is a diffeomorphism of (convenient) K-analytic
manifolds.

We recall the definition of the exponential function of a Lie group (in the
sense of 1.7): For X ∈ L(G), there is at most one smooth homomorphism
ξX : R→ G such that ξ′X(0) = X (cf. [28]). If ξX exists for each X ∈ L(G),
one calls expG : L(G)→ G, X 7→ ξX(1), the exponential function of G. The
exponential function of a convenient Lie group is defined analogously ([24,
§3.6 and Definition 3.7]).

5.3. Lemma. We have im(expA) ⊆ A×. The co-restriction expA|A
×

:
A→ A× is the exponential function of the Lie group (resp., convenient Lie
group) A×, i.e., for every x ∈ A, the mapping ξx : R → A×, ξx(t) :=
expA(tx), is a smooth (resp., c∞) homomorphism such that ξ′x(0) = x.

Proof. Let x ∈ A. The mapping expA being (conveniently) K-analytic
and thus smooth, ξx is a smooth curve; we have ξx(0) = e. Given r ∈ R,
define µr : C→ C, µr(z) := r·z, and er := exp ◦µr : C→ C, er(z) = exp(rz).
Then µr[x] = r · x by Proposition 4.9 and thus, using Proposition 4.13, we
get er[x] = exp[µr[x]] = expA(rx).

Given r, s ∈ R, we have er · es = er+s and thus

ξx(r + s) = expA((r + s)x) = er+s[x] = er[x]es[x] = ξx(r)ξx(s)

by Proposition 4.9. In particular, ξx(r)ξx(−r) = ξx(−r)ξx(r) = ξx(0) = e,
showing that ξx(r) ∈ A× and ξx(r)−1 = ξx(−r). Thus ξx : R → A× is a
homomorphism. Using formula (6) (valid also for c∞-inverse algebras), we
see that

ξ′x(0) = d expA(0;x) =
1

2πi

�

Γ

exp(z)
z2 x dz = exp′(0)x = x,

where Γ is a contour surrounding {0}.
5.4. Lemma. Let A be a Mackey complete continuous inverse algebra,

resp., a c∞-inverse algebra. Then there exists a neighbourhood V of (0, 0)
in A× A (resp., in c∞(A× A)) such that expA(x) expA(y) ∈ AB1(1) for all
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(x, y) ∈ V , and

(∀(x, y) ∈ V ) logA(expA(x) expA(y)) =
∞∑

k=1

βk(x, y)

is given by the BCH-series. Thus β1(x, y) = x+ y, β2(x, y) = 1
2 [x, y], etc.

Sketch of proof. The proof slightly deviates from the Banach case, as we
do not know a priori that the BCH-series converges in A.

Replacing A by AC if necessary, we may assume that A is a complex
algebra. If A is a continuous inverse algebra, we choose any balanced open
0-neighbourhood U ⊆ A such that expA(U) expA(U) ⊆ AB1(1), and set
V := U×U . If A is a general c∞-inverse algebra, as (x, y) 7→ expA(x) expA(y)
is a c∞-map, we find an open balanced (0, 0)-neighbourhood V in
c∞(A×A) such that expA(x) expA(y) ∈ AB1(1) for all (x, y) ∈ V . Fix (x, y)
in V . There is a real number r > 1 such that r · (x, y) ∈ V . Then f :
Br(0)→ AB1(1), f(z) := expA(zx) expA(zy), is a complex-analytic function
on the disk Br(0) ⊆ C, and so is h := logA ◦f : Br(0) → A. By [7, Theo-
rem 3.1], we have f(z) =

∑∞
n=0(zn/n!)f (n)(0) for all z ∈ Br(0). A simple

calculation shows that f (n)(0) =
∑n

k=0

(
n
k

)
xkyn−k. Thus

f(z) =
∞∑

n=0

n∑

k=0

zn

k!(n− k)!
xkyn−k.

Let Â(X,Y ) =
∏∞
n=0An(X,Y ) be the Magnus algebra in two formal

variables X,Y as defined in [10, Chapter II, §5.1], i.e., the formal completion
of the free associative complex algebra A(X,Y ) on two generators, with
subspace An(X,Y ) of homogeneous elements of degree n. Then

exp(X) exp(Y ) =
∞∑

n=0

n∑

k=0

1
k!(n− k)!

XkY n−k

in Â(X,Y ). Write log(exp(X) exp(Y )) =
∑∞

n=1 βn, where βn ∈ An(X,Y ).
Then h(z) =

∑∞
n=1(zn/n!)(logA ◦f)(n)(0) for all z ∈ Br(0); working out the

derivatives h(n)(0) = (logA ◦f)(n)(0), we find that (1/n!)h(n)(0) = βn(x, y).
It only remains to recall that each βn is a Lie polynomial; by definition, it
is the homogeneous term of degree n in the BCH-series (see [9]).

We need more terminology.

5.5. Definition. A BCH-Lie group (resp., convenient BCH-Lie group)
is a K-analytic Lie group (resp., conveniently K-analytic convenient Lie
group) G such that:

(a) The exponential function expG : L(G)→ G is defined on all of L(G),
and there exists an open 0-neighbourhood U in L(G) (resp., in c∞(L(G)))
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such that V := expG(U) is open in G and φ := expG|VU : U → V is a
diffeomorphism of K-analytic manifolds (resp., of conveniently K-analytic
convenient manifolds).

(b) There is a neighbourhood W ⊆ U×U of (0, 0) in L(G)×L(G) (resp.,
in c∞(L(G) × L(G))) such that expG(X) expG(Y ) ⊆ V for all (X,Y ) ∈ W
and φ−1(φ(X)φ(Y )) =

∑∞
n=1 βn(X,Y ) is given by the Baker–Campbell–

Hausdorff series (with pointwise convergence), for all (X,Y ) ∈W .

We can now summarize our findings, as follows:

5.6. Theorem. If A is a Mackey complete continuous inverse algebra,
then A× is a BCH-Lie group, with exponential map expA× = expA|A

×
. If

A is a c∞-inverse algebra, then A× is a convenient BCH-Lie group, with
exponential map expA× = expA|A

×
.

For the basic theory of BCH-Lie groups (analytic subgroups and Lie
subgroups; existence of Lie group structures on quotients; integration of Lie
algebra homomorphisms; existence of universal complexifications) we refer
to [15], as well as the discussions of the closely related class of “CBH-Lie
groups” in the earlier work [32].

6. Example of a Lie group without a globally defined exponen-
tial function. In this section, we present (first) examples of analytic Lie
groups without globally defined exponential functions. The question whether
every Lie group modelled on a Mackey complete space has a globally defined
exponential map remains open.

Consider the algebra P ∼= K[X] of polynomial functions on [0, 1] and its
multiplicative subset S := {s ∈ P : s([0, 1]) ⊆ K×}. Then

A := PS−1 = {p/s : p ∈ P, s ∈ S} ⊆ C[0, 1]

is a unital subalgebra of the Banach algebra C[0, 1] of continuous K-valued
functions on [0, 1]. It is easily verified thatA∩C[0, 1]× = A×, entailing thatA
is a continuous inverse algebra in the induced topology. By Proposition 3.2
(resp., Proposition 3.4), A× is a K-analytic Lie group modelled on A.

6.1. Proposition. If ξ : (R,+) → (A×, ·) is a homomorphism, then
im ξ ⊆ K×1. If ξ as before is a smooth homomorphism, then ξ′(0) ∈ K 1.
Thus expA× cannot be defined globally.

Proof. Let ξ : R → A× be a homomorphism. For t ∈ R, there are
0 6= pt ∈ P , st ∈ S (which we assume coprime) such that ξ(t) = pt/st. We
now consider pt and st as complex-valued polynomial functions on C, and
define Ut := s−1

t (C×). We claim that both pt and st are constant functions.
Indeed, otherwise the rational function qt : Ut → C, qt(z) := pt(z)/st(z), has
a pole or zero at some z0 ∈ C; thus qt(z) = (z−z0)kr(z) for some k ∈ Z\{0}
and some rational function r : Ut ∪ {z0} → C such that r(z0) 6= 0. Set
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W := Ut∩Ut/(2|k|). Then qt|W and (qt/(2|k|))2|k||W are holomorphic functions
on the connected set W which coincide on [0, 1] (since ξ is a homomorphism)
and which therefore coincide. Thus

|qt/(2|k|)(z)| = |z − z0|sgn(k)/2 · |r(z)|1/(2|k|) ∼ |z − z0|sgn(k)/2 · |r(z0)|1/(2|k|)

as z → z0. This asymptotic is incompatible with the fact that qt/(2|k|) is a
rational function: contradiction. Thus both pt and st have to be constant,
and so ξ(t) = pt/st ∈ K×1. The remaining assertions follow immediately.

7. Example: algebras of test functions. Let M be a finite-dimensio-
nal, σ-compact Cr-manifold (where r ∈ N0∪{∞}), and A be a locally convex
topological algebra. Given a compact subset K ⊆M , we define

C r
K(M,A) := {γ ∈ Cr(M,A) : supp(γ) ⊆ K},

and equip this space with the topology of uniform convergence of the partial
derivatives ∂α(γ ◦κ−1) on compact subsets of X̃κ, for every coordinate chart
κ : Xκ → X̃κ ⊆ Rd (where |α| ≤ r and d := dim(M)). We equip the space
Dr(M,A) of compactly supported Cr-functions from M to A with the topol-
ogy making it the direct limit locally convex space of the spaces Cr

K(M,A),
where K ranges through the set of compact subsets of M , directed by inclu-
sion (cf. [15, Section 4] for more details). Thus C r

K(M,A) and Dr(M,A) are
locally convex topological K-vector spaces with respect to pointwise scalar
multiplication and addition. Pointwise multiplication turns Cr

K(M,A) and
Dr(M,A) into K-algebras.

7.1. Proposition. CrK(M,A) and Dr(M,A) are locally convex topolog-
ical algebras. If A is a continuous quasi-inverse algebra, then so is CrK(M,A)
as well as Dr(M,A), and the associated unital algebras CrK(M,A)e = Ke⊕
CrK(M,A) and Dr(M,A)e = Ke⊕Dr(M,A) are continuous inverse algebras.

Proof. Let µ : A × A → A be the multiplication map, which is a con-
tinuous bilinear map and thus smooth. We have Dr(M,A) × Dr(M,A) ∼=
Dr(M,A × A) as a locally convex K-vector space [15, Lemma 4.12]. Un-
der this identification, the multiplication map Dr(M,A) × Dr(M,A) →
Dr(M,A) corresponds to

Dr(M,µ) : Dr(M,A× A)→ Dr(M,A), γ 7→ µ ◦ γ.
This mapping is smooth (and thus continuous) by [15, Corollary 4.16].

Now assume A is a continuous quasi-inverse algebra. Let W ⊆ Q(A) be a
balanced open 0-neighbourhood in A. Then Dr(M,W ) := Dr(M,A) ∩WM

is an open 0-neighbourhood in Dr(M,A) [15, Lemma 4.9], and the mapping

Dr(M, q|W ) : Dr(M,W )→ Dr(M,A), γ 7→ q|W ◦ γ,
is smooth [15, Corollary 4.16]. Given γ ∈ Dr(M,W ), we have q(γ(x)) · γ(x)
= γ(x) · q(γ(x)) and γ(x) + q(γ(x))− γ(x) · q(γ(x)) = 0 for each x ∈M and
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thus (q◦γ)·γ = γ ·(q◦γ) and γ+q◦γ−γ ·(q◦γ) = 0, showing that q◦γ is the
quasi-inverse of γ. Thus Dr(M,W ) ⊆ Q(Dr(M,A)), and formation of quasi-
inverses is smooth on Dr(M,W ) (being given by Dr(M, q|W ) there). By
Lemma 2.8, Dr(M,A) and Dr(M,A)e are continuous quasi-inverse algebras.
The proof for C r

K(M,A) is analogous, using [15, Corollary 3.11] instead of
[15, Corollary 4.16].

In particular, choosing K = M , we find that Cr(K,A) is a continuous
inverse algebra for every compact smooth manifoldK and continuous inverse
algebra A. For non-compact M (not necessarily finite-dimensional actually),
Cr(M,A) is still a locally convex topological algebra (by [16, Corollary 2.6]).
The example Cr(R,R) shows that, if A is a continuous inverse algebra,
Cr(M,A) need not have an open unit group.

8. Example: algebras of measurable mappings. Given a locally
convex topological algebra A, and measure space (X,Σ, µ), we let L∞(X,A)
be the space of classes, modulo functions vanishing µ-almost everywhere, of
Borel measurable mappings f : X → A such that the closure of im(f)
is compact and metrizable (5). We equip L∞(X,A) with the topology of
essentially uniform convergence (see [17] for details), and with the algebra
structure induced by pointwise multiplication. Then we have:

8.1. Proposition. L∞(X,A) is a locally convex topological algebra. If
A is a continuous inverse algebra, then so is L∞(X,A).

Proof. The proof directly parallels the one of Proposition 7.1, replacing
[15, Corollary 4.16] with its analogue for L∞-spaces to be found in [17].

If X is a σ-compact locally compact space, µ a Radon measure on X,
and A a locally convex topological algebra as before, we consider the sub-
space L∞c (X,A) ≤ L∞(X,A) of classes of functions having a representative
vanishing off some compact set. We equip L∞c (X,A) with the natural al-
gebra structure and its natural locally convex direct limit topology. Then
L∞c (X,A) is a locally convex topological algebra, which is a continuous
quasi-inverse algebra if A is, due to appropriate results in [17]. We mention
that L∞(X,G) can be made a smooth (resp., K-analytic) Lie group, for
every smooth (resp., K-analytic) Lie group G and measure space (X,Σ, µ)
(see [17, Section 5]).

9. Example: locally finite algebras of countable dimension. In
this section, we show that every locally finite unital algebra of countable

(5) In the most relevant case where A is a Fréchet space, a function f : X → A
has these properties if and only if it is a uniform limit of finitely-valued measurable
mappings [17]. Then L∞(X,A) is a Fréchet space.
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dimension is a continuous inverse algebra when equipped with the finest
locally convex topology.

9.1. Definition. An algebra A is called locally finite if every finite
subset of A generates a finite-dimensional subalgebra of A.

9.2. Remark. Apparently, a unital algebra A is locally finite if and
only if it is the direct limit of its finite-dimensional unital subalgebras. If A
is a locally finite unital algebra of countable dimension, then there exists an
ascending sequence A1 ⊆ A2 ⊆ . . . of finite-dimensional unital subalgebras
of A such that A =

⋃
nAn.

We recall two simple facts.

9.3. Lemma. If A is a finite-dimensional unital algebra, then the fol-
lowing conditions are equivalent for x ∈ A:

(a) x ∈ A×;
(b) the left multiplication map λx : A→ A, a 7→ xa, is invertible;
(c) λx is injective.

Proof. As λx is a linear map between finite-dimensional spaces, (b)⇔(c).
Furthermore, (a)⇒(b), since λx◦λx−1 = λxx−1 = id and similarly λx−1◦λx =
id, entailing that (λx)−1 = λx−1 whenever x−1 exists.

(b)⇒(a). If λx is invertible, we set y := (λx)−1(1). Given a ∈ A, we
let %a : A → A denote right multiplication by a. Since %a commutes with
λx, it commutes with (λx)−1. In particular, (λx)−1(a) = (λx)−1(%a(1)) =
%a((λx)−1(1)) = %a(y) = ya. Thus (λx)−1 = λy, entailing that xy =
λx(λy(1)) = 1 and yx = λy(λx(1)) = 1.

9.4. Lemma. Let B be a finite-dimensional unital algebra, and A be a
unital subalgebra of B. Then A× = B× ∩ A.

Proof. Apparently A× ⊆ B× ∩ A. Conversely, if x ∈ A \ A×, then left
multiplication λAx is not injective (Lemma 9.3) and hence neither is λBx ,
entailing that x 6∈ B×.

9.5. Proposition. Let A be a locally finite unital algebra of countable
dimension. Then the finest locally convex vector topology turns A into a
continuous inverse algebra.

Proof. We equip A with the finest locally convex topology and recall
that this topology coincides with the so-called finite topology (6) as A has
countable dimension ([21], also [5]). We choose an ascending sequence A1 ⊆
A2 ⊆ . . . of finite-dimensional unital subalgebras of A such that

⋃
n∈NAn

= A. The product topology on A × A is again the finest locally convex

(6) This is the topology making A the direct limit topological space of its finite-
dimensional vector subspaces.
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topology (cf. [20, Proposition 7.25(ii)]) and thus the finite topology; therefore
the continuity of multiplication on An × An entails that the multiplication
map A× A→ A is continuous, and so A is a topological algebra.

By Lemma 9.4, we have A×m∩An = A×n for all m ≥ n and thus A×∩An =
A×n , which is open in An. Thus A× is open in A. The topology induced by
A on its open subset A× coincides with the topology making A× the direct
limit topological space of its subsets A×n ([14, Lemma 3.1], or [30]). Let
ιn : A×n → A×n denote the continuous inversion on A×n , and ι : A× → A×

denote inversion on A×. Then ι = lim−→ ιn, and so ι is continuous.

9.6. Remark. Given any uncountable set I, the locally finite algebra
M(I,K) = K(I×I) of I × I-matrices with finitely many non-zero entries has
discontinuous multiplication when equipped with the finest locally convex
topology [14, Lemma 7.6]. The same then holds for the locally finite unital
algebra M(I,K)e.

10. Ascending unions of continuous inverse algebras. Let A1 ⊆
A2 ⊆ . . . be an ascending sequence of continuous inverse algebras, each a
unital subalgebra of the next and equipped with the induced topology. It is
then natural to give A :=

⋃
n∈NAn the locally convex direct limit topology;

furthermore, A inherits an algebra structure from the An’s. Encouraged by
our discussions in Sections 7–9, one may wonder whether, equipped with
these structures, A will always be a continuous inverse algebra. In this sec-
tion, we describe counterexamples showing that this is not so, even if each
An is a Fréchet continuous inverse algebra: both the multiplication map
A× A→ A and inversion A× → A× can fail to be continuous (7).

Various well known facts will be used. See [23, Introduction] for the first
of these:

10.1. Lemma. Let E be a locally convex space, and E ′b be its topological
dual , equipped with the topology of uniform convergence on bounded sets.
Then the evaluation map ε : E′b × E → K, ε(λ, x) := λ(x), is continuous if
and only if E is normable.

10.2. Lemma. If E = lim−→En is a countable strict direct limit of com-
plete locally convex spaces, then E′b

∼= lim←− (En)′b as a locally convex space.

Proof. Without loss of generality E =
⋃
nEn. It follows from the uni-

versal properties of direct and projective limits that φ : E ′b → lim←− (En)′b,
λ 7→ (λ|En), is a continuous bijection. Every bounded subset of E being
contained in En for some n [34, Chapter II, §6.5], it is easy to see that φ is
in fact a topological isomorphism.

(7) Sufficient conditions ensuring that A be a continuous inverse algebra can be found
in [27].
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10.3. Lemma. If E = lim−→En and F = lim−→ Fn as locally convex spaces,
then E × F = lim−→(En × Fn).

10.4. We consider a strictly ascending sequence E1 ⊂ E2 ⊂ . . . of Ba-
nach spaces such that En+1 induces the given topology on En. We form the
locally convex direct limit E := lim−→En, and define F := E′b. By Lemma 10.2,
F = lim←− (En)′b as a topological vector space. Being a countable projective
limit of Banach spaces, F is a Fréchet space.

10.5. Clearly E is not normable, whence the evaluation map ε : F ×E
→ K, ε(λ, x) := λ(x), is discontinuous (Lemma 10.1). However, ε|F×En :
F × En → K is continuous, as ε|F×En = εn ◦ (λ′n × idEn), where evaluation
εn : (En)′b × En → K is continuous as En is a Banach space, and where
λn : En → E is inclusion. Here E induces the original topology on En, being
a countable strict direct limit [34, Chapter II, §6.4].

10.6. For each n ∈ N, the locally convex space Hn := F × En × K
becomes a locally convex topological K-algebra via (λ1, x1, z1)(λ2, x2, z2) :=
(0, 0, λ1(x2)) for λ1, λ2 ∈ F , x1, x2 ∈ En, z1, z2 ∈ K. The algebra structure is
best visualized by writing (λ, x, z) as a strict upper triangular 3× 3-matrix;
the associativity follows from (ab)c = a(bc) = 0 for all a, b, c ∈ Hn.

10.7. Each Hn is a continuous quasi-inverse algebra. Indeed, we have
Q(Hn) = Hn, the quasi-inverses being given by

qn(λ, x, z) = (−λ,−x,−z − λ(x))(10)

for all (λ, x, z) ∈ Hn, as is readily verified. In view of the continuity of
the bilinear map ε|F×En established above, it is apparent from (10) that
quasi-inversion qn : Hn → Hn is continuous.

10.8. In view of the preceding and Lemma 2.8, An := (Hn) e = Ke⊕Hn

is a Fréchet continuous inverse algebra for each n ∈ N. The An’s form a
strict ascending sequence of locally convex unital topological algebras in an
apparent way. We give A :=

⋃
nAn the algebra structure making it the

direct limit of the An’s in the category of unital K-algebras, and equip it
with the locally convex direct limit topology.

10.9. Lemma 10.3 entails that A = He = Ke ⊕ H, equipped with
the product topology, where H := F × E × K as a locally convex space,
and considered as an algebra with multiplication (λ1, x1, z1)(λ2, x2, z2) :=
(0, 0, λ1(x2)) for λ1, λ2 ∈ F , x1, x2 ∈ E, z1, z2 ∈ K. As ε : F × E → K is
discontinuous, we deduce that multiplication on H is discontinuous, whence
multiplication on A is discontinuous. Thus A is not a topological algebra.
Furthermore, inversion A× → A× is discontinuous.
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11. Examples of c∞-inverse algebras. In Remark 9.6 and the pre-
ceding section, we encountered algebras whose multiplication (and inversion)
fails to be continuous with respect to a natural vector topology. All of these
examples are c∞-inverse algebras, as we now show.

Ascending unions, revisited

11.1. Proposition. Let A1 ⊆ A2 ⊆ . . . be an ascending sequence of
bounded algebras such that An is closed in An+1 and carries the induced
topology , for each n ∈ N. Then the direct limit algebra A :=

⋃
nAn, equipped

with the topology of direct limit locally convex space, is a bounded algebra
(in fact , it is the direct limit of the An’s in the category of bounded alge-
bras and c∞-homomorphisms). If each An is a c∞-inverse algebra, then so
is A.

Proof. It is easy to see that A is Mackey complete [23, Theorem 2.15]. To
verify that the algebra multiplication µ : A×A→ A is c∞, let γ : R→ A×A
be a smooth curve, and r ∈ R. Then I := ]r−1, r+1[ is a relatively compact
open neighbourhood of r. Thus γ(I) is a relatively compact subset of the
countable strict direct limit A×A = lim−→(An ×An) and therefore contained
in An × An for some n. As the countable strict locally convex direct limit
A × A induces the original topology on An × An, which is closed in A × A
(see [9, Chapter II, §4.6, Proposition 9]), we see that γ|An×AnI : I → An×An
is a smooth curve. The multiplication µn : An ×An → An being a c∞-map,
we deduce that (µ ◦ γ)|I = incl ◦µn ◦ (γ|An×AnI ) is smooth. Thus µ ◦ γ is
smooth and so µ is a c∞-map. We have shown that A is a bounded al-
gebra. If φ : A → E is a mapping from A to a Mackey complete locally
convex space such that φ|An is a c∞-map for each n, we deduce by an ar-
gument very similar to the preceding one that φ is a c∞-map. Combining
this information with the fact that the algebra A is the direct limit of its
subalgebras An (algebraically), we readily see that A is the direct limit of
the An’s in the category of bounded algebras and algebra homomorphisms
of class c∞.

Now suppose that every An is a c∞-inverse algebra. It is clear that A× =⋃
nA
×
n . Given a smooth curve γ : R → A and r ∈ γ−1(A×), we define I as

before and find n ∈ N such that γ(I) ⊆ An and γ(r) ∈ A×n . As above, we
see that γ|AnI : I → An is a smooth curve. Then γ−1(A×) ⊇ (γ|AnI )−1(A×n ),
where the latter set is an open neighbourhood of r as A×n is c∞-open in An
by hypothesis. We have shown that γ−1(A×) is open in R for each smooth
curve γ : R→ A. Thus A× is c∞-open in A. For a smooth curve γ : R→ A
with image in A×, and r ∈ R, there is n ∈ N such that γ(I) ⊆ A× (where I

is as above). Then (ι ◦ γ)|I = incl ◦ ιn ◦ (γ|A
×
n

I ), where ι : A× → A× and
ιn : A×n → A×n are the respective inversion maps. As ιn is a c∞-map, the
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preceding formula shows that so is (ι ◦ γ)|I . Thus ι ◦ γ is a smooth curve for
all γ, whence in turn ι is a c∞-map. We have shown that A is a c∞-inverse
algebra.

Locally finite algebras of arbitrary dimension. As observed earlier, locally
finite unital algebras of uncountable dimension need not be topological alge-
bras when equipped with the finest locally convex topology. However, they
always are c∞-inverse algebras.

11.2. Proposition. Let A be any locally finite unital algebra, equipped
with the finest locally convex topology. Then A is a c∞-inverse algebra.

Proof. It is well known that the finest locally convex topology on any
vector space is complete [22] and thus Mackey complete. Let F be the set
of finite-dimensional unital subalgebras of A, directed by inclusion; then
A = lim−→ F∈FF both as an algebra and as a locally convex space. A being
equipped with the finest locally convex topology, any bounded subset of A
is contained in some finite-dimensional subspace of A (see [22]) and thus
contained in some F ∈ F . Furthermore, we have A× =

⋃
F∈F F

×, and A
induces the usual euclidean topology on each finite-dimensional subspace.
Using the information just compiled, we see that all arguments used in the
proof of Proposition 11.1 can be adapted to the present situation.
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[12] W. Fischer und I. Lieb, Funktionentheorie, Vieweg, 1988.
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