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Characterising weakly almost periodic functionals
on the measure algebra

by

Matthew Daws (Leeds)

Abstract. Let G be a locally compact group, and consider the weakly almost periodic
functionals on M(G), the measure algebra of G, denoted by WAP(M(G)). This is a C∗-
subalgebra of the commutative C∗-algebra M(G)∗, and so has character space, say KWAP.
In this paper, we investigate properties of KWAP. We present a short proof that KWAP

can naturally be turned into a semigroup whose product is separately continuous; at
the Banach algebra level, this product is simply the natural one induced by the Arens
products. This is in complete agreement with the classical situation when G is discrete.
A study of how KWAP is related to G is made, and it is shown that KWAP is related to
the weakly almost periodic compactification of the discretisation of G. Similar results are
shown for the space of almost periodic functionals on M(G).

1. Introduction. In [7], we developed a theory of corepresentations on
reflexive Banach spaces, and used this to show, in particular, that the space
of weakly almost periodic functionals on the measure algebra M(G) forms a
C∗-subalgebra of M(G)∗ = C0(G)∗∗. We write WAP(M(G)) for this space,
so we see that WAP(M(G)) = C(KWAP) for some compact Hausdorff space
KWAP. By analogy with the discrete case, when M(G) = `1(G) and when
WAP(M(G)) can be identified with WAP(G), we would expect KWAP to
become a semigroup in a natural way, perhaps with continuity properties,
and perhaps with some sort of universal property related to G. For more
information on weakly almost periodic functionals, see [13] or [1]; a recent
study of the measure algebra is [6].

In this paper, we show that KWAP does indeed carry a natural semigroup
product which is separately continuous. By “natural”, we mean that the
product is directly induced by the product on G: at the level of Banach
algebras, this is simply the Arens product. We show that, formally, the
passage from G to KWAP is a functor between natural categories. We might

2010 Mathematics Subject Classification: Primary 43A10, 46L89, 46G10; Secondary
43A20, 43A60, 81R50.
Key words and phrases: measure algebra, separately continuous, almost periodic, weakly
almost periodic.

DOI: 10.4064/sm204-3-2 [213] c© Instytut Matematyczny PAN, 2011



214 M. Daws

hope, as in the discrete case, to be able to give a satisfactory description of
KWAP in terms of G, but without reference to specific algebras of functions.
We show some general properties of KWAP, but at present we fail to find
such a description of KWAP purely in terms of G.

As well as weakly almost periodic functionals, one can consider almost
periodic functionals. We do this in the first section, which the readers may
skip on a first reading, if they are interested mainly in the weakly almost pe-
riodic case. Here the functional analytic tools required are simpler, but this
easier setting allows us to develop some methods without undue worry about
technicalities. We also make links with some classical notions, in particular,
Taylor’s Structure Semigroup for M(G).

In the next section, we present a short proof that the character space of
the C∗-algebra of weakly almost periodic functionals becomes a semigroup
whose product is separately continuous. The key idea is to use a suitable
space of separately continuous functions. This was communicated to us by
the anonymous referee of a previous version of this paper. The motivation
of the construction in [7] was to build a theory which might be applicable
to the non-commutative case; recently Runde has shown in [14] that this is
rather unlikely to work. Similarly, the methods of the present paper, being
essentially the study of function spaces, also seem unlikely to generalise
directly to the non-commutative case.

So, we have WAP(M(G)) = C(KWAP) where KWAP becomes a semi-
group whose product is separately continuous, a semitopological compact
semigroup. In the final section we study KWAP as a semigroup, much in the
theme of Section 3. Our aim here is to give some sort of “functorial” descrip-
tion of KWAP in terms of G; this is still a work in progress. Of course, to
fully understand the semigroup KWAP is rather hard, even for the classical
case of, say, G = Z.

2. Commutative Hopf von Neumann algebras. We now quickly
recall some notions and results from [7]. A commutative Hopf von Neumann
algebra is a commutative von Neumann algebra L∞(X) equipped with a
normal ∗-homomorphism ∆ : L∞(X)→ L∞(X ×X) which is coassociative
in the sense that (id⊗∆)∆ = (∆⊗ id)∆. In classical situations ∆ is induced
by some map X ×X → X, but it is important for our applications that we
work with more generality. The preadjoint of ∆, denoted by ∆∗, induces a
map L1(X) ⊗̂ L1(X) = L1(X ×X) → L1(X) which is associative, turning
L1(X) into a Banach algebra. Here ⊗̂ denotes the projective tensor product.
For the basics on tensor products, see [3, Appendix A.3], [12, Section 1.10]
or [17, Section 2, Chapter IV].

Our main reason for considering such objects is because, for suitable X
and ∆, we have M(G) = L1(X). Let us quickly recall how to see this. Define
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Φ : C0(G)→ C(G×G) by

Φ(f)(s, t) = f(st) (f ∈ C0(G), s, t ∈ G).

Here C(G × G) is the space of bounded continuous functions on G × G.
We can identify C(G × G) as a subspace of the dual of M(G) ⊗̂M(G) by
integration,

〈F, µ⊗ λ〉 =
�

G×G
F (s, t) dµ(s) dλ(t) (F ∈ C(G×G), s, t ∈ G).

Then, as C0(G)∗∗ = M(G)∗ is a commutative von Neumann algebra, there
exists a measure space X with C0(G)∗∗ = L∞(X), and so M(G) = L1(X) as
Banach spaces. Thus we regard Φ as a∗-homomorphismC0(G)→L∞(X×X).
There exists a unique normal coassociative ∗-homomorphism ∆ : L∞(X)→
L∞(X×X) such that ∆κC0(G)(f) = Φ(f) for f ∈ C0(G). Here, for a Banach
space E, κE : E → E∗∗ is the canonical map from E to its bidual. A check
shows that the preadjoint ∆∗ induces the usual convolution product on
M(G). See [7, Section 2.1] for further details.

As in [7], it is convenient to work with the abstraction of commutative
Hopf von Neumann algebras, using M(G) as our main example.

Let A be a Banach algebra. We turn A∗ into an A-bimodule in the usual
way:

〈a · µ, b〉 = 〈µ, ba〉, 〈µ · a, b〉 = 〈µ, ab〉 (a, b ∈ A, µ ∈ A∗).
We define µ ∈ A∗ to be weakly almost periodic if the map

Rµ : A → A∗, a 7→ a · µ (a ∈ A),

is weakly compact. We write µ ∈WAP(A). Similarly, if Rµ is compact, then
µ is almost periodic, written µ ∈ AP(A). It is easy to see that AP(A) and
WAP(A) are closed submodules of A∗. Here we used actions on the left, but
we get the same concepts if we instead look at the map Lµ(a) = µ · a for
a ∈ A.

We shall use the Arens products in a few places, so we define them here.
We define contractive bilinear maps A∗∗ ×A∗,A∗ ×A∗∗ → A∗ by

〈Φ · µ, a〉 = 〈Φ, µ · a〉, 〈µ · Φ, a〉 = 〈Φ, a · µ〉 (a ∈ A, µ ∈ A∗, Φ ∈ A∗∗).
Then we define contractive bilinear maps 2,3 : A∗∗ ×A∗∗ → A∗∗ by

〈Φ2 Ψ, µ〉 = 〈Φ, Ψ · µ〉, 〈Φ3 Ψ, µ〉 = 〈Ψ, µ · Φ〉 (µ ∈ A∗, Φ, Ψ ∈ A∗∗).
These are actually associative algebra products such that a·Φ = κA(a)2Φ =
κA(a) 3 Φ for a ∈ A, Φ ∈ A∗∗, and similarly for Φ · a. See [12, Section 1.4]
or [3, Theorem 2.6.15] for further details.

3. Almost periodic case. In this section we shall investigate further
properties of AP(L1(X)) for a commutative Hopf von Neumann algebra
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(L∞(X), ∆). This case is easier than the weakly almost periodic case, and
will allow us to build some general theory without added complication. By
[7, Theorem 1], we know that AP(L1(X)) is a C∗-subalgebra of L∞(X), and
so AP(L1(X)) = C(KAP) for some compact Hausdorff space KAP.

In the following proof, we write ⊗̌ for the injective tensor product, which
for commutative C∗-algebras agrees with the minimal or spacial tensor prod-
uct ; see, for example, [17, Section 4, Chapter IV].

Theorem 3.1. Let L∞(X) be a commutative Hopf von Neumann alge-
bra, and let AP(L1(X)) = C(KAP). Then ∆ restricts to a map C(KAP)→
C(KAP×KAP), and hence naturally induces a jointly continuous semigroup
product on KAP.

Proof. As in the proof of [7, Theorem 1], we know that F ∈ AP(L1(X))
if and only if ∆(F ) ∈ L∞(X) ⊗̌ L∞(X). That AP(L1(X)) is an L1(X)-
submodule of L∞(X) is equivalent to

(a⊗ id)∆(F ), (id⊗ a)∆(F ) ∈ AP(L1(X)) (a ∈ L1(X), F ∈ AP(L1(X))).

As L∞(X) is commutative, this is equivalent to ∆(F ) ∈ AP(L1(X)) ⊗̌
AP(L1(X)) for F ∈ AP(L1(X)). Thus ∆ restricts to give a ∗-homomorphism
C(KAP)→ C(KAP) ⊗̌C(KAP) = C(KAP×KAP). Hence there is a continu-
ous homomorphism KAP×KAP → KAP, which we shall write as (s, t) 7→ st,
such that

∆(f)(s, t) = f(st) (f ∈ C(KAP), s, t ∈ KAP).

As ∆ is coassociative, it easily follows that this product on KAP is associa-
tive, as required.

It is almost immediate that KAP can be characterised, rather abstractly,
as follows. Let S be a compact semigroup, and let ∆S : C(S) → C(S × S)
be the canonical coproduct given by ∆S(f)(s, t) = f(st) for f ∈ C(S) and
s, t ∈ S. Then an operator θ : C(S) → L∞(X) intertwines the coproducts
if (θ ⊗ θ)∆S = ∆θ. This is equivalent to θ∗ : L1(X) → M(S) being a
Banach algebra homomorphism. If θ is also a ∗-homomorphism, then we
write θ ∈ Mor(S,L∞(X)). The following is now immediate.

Proposition 3.2. Let S be a compact semigroup, and let θ ∈
Mor(S,L∞(X)). Then the image of θ is contained in AP(L1(X)). Further-
more, AP(L1(X)) is the union of the images of all such θ.

Let G1 = (L∞(X1), ∆1) and G2 = (L∞(X2), ∆2) be commutative Hopf
von Neumann algebras. A morphism between G1 and G2 is a normal unital
∗-homomorphism T : L∞(X2)→ L∞(X1) which intertwines the coproducts,
that is, (T ⊗ T ) ◦∆2 = ∆1 ◦ T . Again, this is equivalent to the preadjoint
T∗ : L1(X1)→ L1(X2) being a homomorphism of Banach algebras.
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Lemma 3.3. Let A and B be Banach algebras, and let T : A → B be a
homomorphism. Then T ∗ maps AP(B∗) to AP(A∗), and maps WAP(B∗) to
WAP(A∗).

Proof. This is folklore, and follows by observing that for µ ∈ B∗, we have
RT ∗(µ) = T ∗ ◦Rµ ◦ T .

Given commutative Hopf von Neumann algebras G1 and G2, let
AP(L∞(Xi)) = C(K(i)

AP) for i = 1, 2. Given a morphism T from G1 to G2,
the lemma shows that T (AP(L∞(X2))) ⊆ AP(L∞(X1)), and so as T is a
∗-homomorphism, we get a continuous map TAP : K(1)

AP → K
(2)
AP. As T inter-

twines the coproducts, it follows that TAP is a semigroup homomorphism.

Proposition 3.4. The assignment of KAP to (L∞(X), ∆), and of TAP

to T , is a functor between the category of commutative Hopf von Neumann
algebras and the category of compact topological semigroups with continuous
homomorphisms.

Proof. The only thing to check is that maps compose correctly; but this
is an easy, if tedious, verification.

We now specialise to the case when L1(X) = M(G) for a locally compact
group G. Let G and H be locally compact groups, and let θ : G → H be a
continuous group homomorphism. As θ need not be proper, we only get an
induced map θ∗ : C0(H)→ C(G) given by

θ∗(f)(s) = f(θ(s)) (f ∈ C0(H), s ∈ G).

However, we embed C(G) into M(G)∗ as in Section 2, which gives a ∗-
homomorphism T0 : C0(H)→M(G)∗ which satisfies

〈T0(f), µ〉 =
�

G

f(θ(s)) dµ(s) (f ∈ C0(H), µ ∈M(G)).

We can extend T0 by weak∗-continuity to get a normal ∗-homomorphism
T : M(H)∗ → M(G)∗, which is easily checked to be unital. For f ∈ C0(H)
and µ, λ ∈M(G), we have

〈T∗(µ)T∗(λ), f〉 =
�

H×H
f(gh) dT∗(µ)(g) dT∗(λ)(h)

=
�

H

�

G

f(θ(s)h) dµ(s) dT∗(λ)(h)

=
�

G

�

G

f(θ(s)θ(t) dλ(t) dµ(s)

=
�

G×G
f(θ(st)) dµ(s) dλ(t) = 〈T∗(µλ), f〉.

Hence T∗ is a Banach algebra homomorphism.
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Let us take a diversion briefly, and think about the converse. That is,
let G and H be locally compact groups, and let T : M(H)∗ →M(G)∗ be a
normal unital ∗-homomorphism such that T∗ : M(G) → M(H) is a homo-
morphism. Then T0 = TκC0(H) : C0(H) → M(G)∗ is a ∗-homomorphism.
Notice that if T were given by some θ as in the previous paragraph, then
T0 would map into C(G) ⊆M(G)∗. For each g ∈ G, δg ∈M(G) is a normal
character on M(G)∗, and so C0(H) → C, f 7→ 〈T0(f), δg〉, is a character
(which cannot be zero, as T is unital). We thus get a map θ : G→ H such
that T∗(δg) = δθ(g) for g ∈ G. It follows that θ is a homomorphism; and if
T0 takes values in C(G), it follows that θ is continuous. We have thus shown
that T is associated to a continuous group homomorphism G → H if and
only if T (C0(H)) ⊆ C(G).

The Borel measurable functions form a “large” subalgebra of M(G)∗, but
we gain nothing by considering Borel measurable homomorphisms G→ H,
as these are automatically continuous, [16].

The following is now easily proved.

Proposition 3.5. The assignment of KAP to (M(G)∗, ∆), and of TAP

to θ, defines a functor between the category of locally compact groups with
continuous homomorphisms and compact topological semigroups with con-
tinuous homomorphisms.

From now on, fix a locally compact group G and a compact topologi-
cal semigroup KAP with C(KAP) = AP(M(G)). The above proposition, in
the abstract, tells us that KAP depends only upon G. In the remainder of
this section, we study some properties of KAP, with the eventual aim (not
realised yet) of describing KAP “directly” using G. For example, if G is dis-
crete, then KAP is nothing but the usual almost periodic compactification
of G, that is, the group compactification of G.

Let Gd be the group G with the discrete topology. For each s ∈ G, the
point mass measure δs ∈M(G) induces a normal character on L∞(X), and
hence by restriction a character on AP(M(G)) = C(KAP). Hence we get a
map θ0 : Gd → KAP.

Proposition 3.6. The map θ0 : Gd → KAP is a semigroup homomor-
phism sending the unit of Gd to the unit of KAP.

Proof. Let f ∈ C(KAP) = AP(M(G)) so that for s, t ∈ G,

f(θ0(st)) = 〈f, δst〉 = 〈f,∆∗(δs ⊗ δt)〉 = 〈∆(f), δs ⊗ δt)〉 = f(θ0(s)θ0(t)).

This is enough to show that θ0(st) = θ0(s)θ0(t), as required. Finally, let
e ∈ Gd be the unit. Then δe ∈ M(G) is the unit of the Banach algebra
M(G), and so the image of δe in AP(M(G))∗ is a unit. It follows that θ0(e)
is a unit for KAP.
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Following [1, Section 4.1], for example, let AP(Gd) ⊆ `∞(G) be the
space of almost periodic functions on Gd. Then AP(Gd) is a commutative
C∗-subalgebra of `∞(G) with character space (Gd)AP, the almost periodic
compactification of Gd. As Gd is a group, this agrees with the strongly almost
periodic compactification, so that (Gd)AP is a group. This follows easily by
extending the inverse from Gd, and using that the product in (Gd)AP is
jointly continuous. See [1, Corollary 4.1.12] for further details, for example.

As KAP is a topological semigroup, by the universal property of the
almost periodic compactification, there exists a continuous semigroup ho-
momorphism θ : (Gd)AP → KAP making the following diagram commute:

Gd //

θ0 ##GGGGGGGGG (Gd)AP

θ
��

KAP

We regard AP(Gd) = C((Gd)AP) as a subalgebra of l∞(G) = C(Gd).
Recall (see [3, Section 3.3] for further details) that M(G) = Mc(G)⊕1 `

1(G),
where `1(G) is identified with the discrete measures in M(G), and Mc(G) is
the space of continuous measures. Then Mc(G) is an ideal in M(G), and so
the projection P : M(G)→ `1(G) is an algebra homomorphism.

Lemma 3.7. P ∗ : `∞(G) → M(G)∗ is an algebra homomorphism which
maps AP(Gd) into AP(M(G)).

Proof. Let µ ∈M(G) and P (µ) = a =
∑

s∈G asδs ∈ `1(G). The product
on M(G)∗ is simply the Arens product on C0(G)∗∗. For f, g ∈ C0(G), we
have 〈µ · f, g〉 =

	
G f(s)g(s) dµ(s) and so µ · f = fµ, the pointwise product.

It is hence easy to see that

P (µ · f) = P (fµ) =
∑
s∈G

f(s)as = P (µ) · f.

For Φ = (Φs)s∈G ∈ `∞(G), we see that

〈P ∗(Φ) · µ, f〉 = 〈Φ,P (µ · f)〉 =
∑
s∈G

Φsf(s)as =
〈 ∑

s

Φsasδs, f
〉
.

Thus for Ψ = (Ψs)s∈G ∈ `∞(G),

〈P ∗(Ψ)P ∗(Φ), µ〉 =
〈
P ∗(Ψ),

∑
s

Φsasδs

〉
=

∑
s∈G

ΨsΦsas = 〈ΨΦ, P (µ)〉

= 〈P ∗(ΨΦ), µ〉,
showing that P ∗ is a homomorphism, as required.

As P is a Banach algebra homomorphism M(G)→ `1(G), by Lemma 3.3,
we find that P ∗ maps AP(`1(G)) = AP(Gd) into AP(M(G)), as claimed.
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As P is an algebra homomorphism, dualising, we see that

∆ ◦ P ∗ = (P ∗ ⊗ P ∗) ◦ Φd,
where Φd : `∞(G)→ `∞(G×G) is the coproduct for Gd. As P ∗ : AP(Gd)→
AP(M(G)) = C(KAP) is a homomorphism, we get a continuous map θ1 :
KAP → (Gd)AP. As P ∗ intertwines the coproducts, it follows that θ1 is a
semigroup homomorphism.

Lemma 3.8. Consider the continuous semigroup homomorphisms θ :
(Gd)AP → KAP and θ1 : KAP → (Gd)AP. Then θ1 ◦ θ is the identity on
(Gd)AP and so θ is a homeomorphism onto its range.

Proof. For s ∈ G and F ∈ AP(Gd), we calculate that

F (θ1θ0(s)) = 〈δθ0(s), P
∗(F )〉 = 〈P ∗(F ), δs〉 = 〈F, δs〉 = F (s).

Hence θ1 ◦ θ0 : G→ (Gd)AP is the canonical inclusion. By continuity, it fol-
lows that θ1◦θ is the identity on (Gd)AP, and so θ must be a homeomorphism
onto its range.

We now prove a simple fact about semigroups: this is surely a folklore
result.

Lemma 3.9. Let K be a semigroup, let H be a group, let θ : H → K and
ψ : K → H be semigroup homomorphisms with ψθ the identity on H and
θ(eH) a unit for K. Let K0 be the kernel of ψ, so K0 = ψ−1({eH}). Then
K = H nK0 as semigroups.

Furthermore, if K is a topological semigroup and H is a topological group,
and θ and ψ are continuous, then K = H nK0 as topological semigroups.

Proof. Let H act on K0 by

s · k = θ(s)kθ(s−1) (s ∈ H, k ∈ K0).

As ψ(θ(s)kθ(s−1)) = sψ(k)s−1 = seHs
−1 = eH , it follows that s · k ∈ K0 as

claimed. Then H nK0 is the set H ×K0 with the semigroup product

(s, k)(t, l) = (st, k(s · l)) (s, t ∈ H, k, l ∈ K0).

We define a map φ : H nK0 → K by φ(s, k) = kθ(s). Then

φ((s, k)(t, l)) = kθ(s)lθ(s−1)θ(st) = kθ(s)lθ(t) = φ(s, k)φ(t, l),

so φ is a semigroup homomorphism. If φ(s, k) = φ(t, l) then kθ(s) = lθ(t),
and so s = ψ(kθ(s)) = ψ(lθ(t)) = t and k = kθ(eH) = lθ(ts−1) = lθ(eH) = l.
Hence φ is injective. A calculation shows that for k ∈ K, kθ(ψ(k)−1) ∈ K0

and φ(ψ(k), kθ(ψ(k)−1)) = k, so φ is a bijection, as required.
When K and H are topological and θ and ψ are continuous, then K0 is

a closed subsemigroup of K. The action of H on K0 is continuous (by joint
continuity) and φ is continuous, as required.

In our situation, we immediately see the following.
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Corollary 3.10. Form the maps θ : (Gd)AP → KAP and θ1 : KAP →
(Gd)AP as above. Let K0 be the kernel of θ1. Then KAP = (Gd)AP nK0.

By importing some results of [5] relating to derivations, we can show
that K0 is not trivial.

Proposition 3.11. For a non-discrete group G, the semigroup K0 is
non-trivial.

Proof. We have the augmentation character (see [3, Definition 3.3.29])

ϕ : `1(G)→ C,
∑
s∈G

asδs 7→
∑
s∈G

as,

which, as M(G) = Mc(G)⊕`1(G), has an extension ϕ̃ : M(G)→ C given by

ϕ̃(a⊕ µ) = ϕ(a) (a ∈ `1(G), µ ∈Mc(G)).

It is shown in [5, Theorem 3.2] that if G is non-discrete, then there is a
non-zero continuous point derivation at ϕ̃. That is, there exists a non-zero
Φ ∈M(G)∗ with

〈Φ, µλ〉 = ϕ̃(µ)〈Φ, λ〉+ 〈Φ, µ〉ϕ̃(λ) (µ, λ ∈M(G)).

Indeed, the proof proceeds as follows. There exists a non-zero, translation
invariant Φ ∈ M(G)∗ such that 〈Φ, µ〉 = 0 for µ ∈ `1(G) or µ ∈ Mc(G)2.
That Φ is a point derivation follows by a calculation.

It follows immediately that

∆(Φ) = Φ⊗ ϕ̃+ ϕ̃⊗ Φ,
so that Φ ∈ AP(M(G)). Suppose towards a contradiction that Φ = P ∗(Ψ)
for some Ψ ∈ AP(Gd). Then

〈Φ, a⊕ µ〉 = 〈Ψ, a〉 = 〈Φ, a⊕ 0〉 = 0 (a ∈ `1(G), µ ∈Mc(G)),

giving a contradiction. Hence P ∗(AP(Gd)) ( AP(M(G)), and so KAP is
strictly larger than (Gd)AP; equivalently, K0 is non-trivial.

Suppose that G is abelian, so that KAP is also abelian. By [11, Theo-
rem 2.8], as (C(KAP), ∆) is a quantum semigroup, we know that C(KAP)
admits a “Haar state”, that is, there exists µ ∈ C(KAP)∗ = M(KAP) with

(µ⊗ id)∆(F ) = (id⊗ µ)∆(F ) = 〈µ, F 〉1 (F ∈ C(KAP)).

For t ∈ K, by applying δt, we see that�

K

F (st) dµ(s) =
�

K

F (ts) dµ(s) =
�

K

F (s) dµ(s) (F ∈ C(KAP)).

Let λ be the image of µ under θ1, so that

〈λ, f〉 =
�

K

f(θ1(s)) dλ(s) (f ∈ C((Gd)AP) = AP(Gd)).

A simple calculation shows that λ is the Haar measure on (Gd)AP.
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As shown after [11, Theorem 2.8], it is not true that C(L) always carries
an invariant probability measure, for a compact semigroup L. It would be
interesting to know if C(KAP) = AP(M(G)) always carries an invariant
probability measure.

3.1. Structure semigroup. Let P(M(G)) be the closure of the collec-
tion of F ∈ M(G)∗ such that ∆(F ) is a (finite-rank) tensor in M(G)∗ ⊗
M(G)∗. This is easily seen to be a C∗-subalgebra of M(G)∗, and an M(G)-
submodule of M(G)∗. Repeating the argument of Theorem 3.1 shows that
P(M(G)) = C(KP) for some topological semigroup KP.

Taylor introduced the structure semigroup of G in [18] (we remark that
this is usually only considered for abelian groups G). We shall follow the
presentation of [6] instead, and define Φ = ΦM(G) to be the character space
of M(G). In our language, F ∈ ΦM(G) ⊆M(G)∗ if and only if ∆(F ) = F⊗F .
Let XG be the closed linear span of Φ in M(G)∗. Then XG ⊆ P(M(G)),
and again it can be shown that XG is a C∗-subalgebra of M(G)∗, and an
M(G)-submodule of M(G)∗. Then the structure semigroup of G, written
S(G), is the spectrum of XG, which is again a topological semigroup.

It is asked in [6] (in the abelian case) whether S(G) = KAP. We can
split this into two questions. Firstly, if G is abelian, does it follow that S(G)
= KP, or equivalently, that XG = P(M(G))? This is true for a discrete
group G, essentially because of the Peter–Weyl theorem, and Fourier anal-
ysis, applied to the compact abelian group GAP.

Secondly, for a general G, do we have KP = KAP, or equivalently,
P(M(G)) = AP(M(G))? For this question, consider F ∈ AP(M(G)). Then
by definition, ∆(F ) : L1(X) → L∞(X) is compact. As L∞(X) has the ap-
proximation property, it follows that there is a sequence (Tn) of finite-rank
maps L1(X)→ L∞(X) such that Tn → ∆(F ). Then KP = KAP if and only
if we can always choose the Tn to be of the form ∆(Fn) (so that ∆(Fn) is
finite-rank, that is, Fn ∈ P (M(G))). Again, in the discrete case, this follows
from the Peter–Weyl theorem.

3.2. The antipode. Let (L∞(X), ∆) be a commutative Hopf von Neu-
mann algebra. We shall call a normal ∗-homomorphism R : L∞(X) →
L∞(X) an antipode if R2 = id and ∆R = (R⊗R)χ∆, where χ : L∞(X ×X)
→ L∞(X ×X) is the swap map, χ(F )(s, t) = F (t, s), for F ∈ L∞(X ×X)
and s, t ∈ X.

For example, consider (C0(G), Φ) for a locally compact group G. Then
we define r : C0(G) → C0(G) by r(f)(s) = f(s−1) for f ∈ C0(G) and
s ∈ G. Then r is an antipode, if we extend the definition to C∗-algebras
in the obvious way. Let (L∞(X), ∆) be induced by (C0(G), Φ) as before,
so that L1(X) = M(G). Define R∗ : L1(X) → L1(X) to be the map r∗,
and let R = R∗∗. Then R is a normal ∗-homomorphism, and R2 = id. For
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a, b ∈M(G) and f ∈ C0(G), we see that, as∆∗ induces the usual convolution
product on M(G),

〈r∗∆∗(a⊗ b), f〉 = 〈a⊗ b,∆r(f)〉 = 〈b⊗ a, (r ⊗ r)∆(f)〉
= 〈∆∗χ(r∗ ⊗ r∗)(a⊗ b), f〉.

Hence R∗∆∗ = ∆∗χ(R∗ ⊗ R∗). So, for F ∈ L∞(X) and a, b ∈ L1(X) =
M(G), we see that

〈∆R(F ), a⊗ b〉 = 〈F,R∗∆∗(a⊗ b)〉 = 〈F,∆∗χ(R∗ ⊗R∗)(a⊗ b)〉
= 〈(R⊗R)χ∆(F ), a⊗ b〉.

Hence R is an antipode on (L∞(X), ∆).

Lemma 3.12. Let (L∞(X), ∆) be a commutative Hopf von Neumann
algebra, equipped with an anitpode R. Then R restricts to give ∗-homomor-
phisms on AP(L1(X)) and WAP(L1(X)).

Proof. We know that F ∈ AP(L1(X)) if and only if ∆(F ) ∈ L∞(X) ⊗̌
L∞(X). Hence, for F ∈ AP(L1(X)), we see that ∆R(F ) = (R⊗R)χ∆(F ) ∈
L∞(X) ⊗̌ L∞(X), and so R(F ) ∈ AP(L1(X)), as required.

Now suppose that F ∈ WAP(L1(X)), so ∆(F ) : L1(X) → L∞(X) is
weakly compact. Then, for a, b ∈ L1(X),

〈∆R(F )(a), b〉 = 〈(R⊗R)χ∆(F ), a⊗ b〉 = 〈∆(F ), R∗(b)⊗R∗(a)〉
= 〈R∆(F )∗κL1(X)R∗(a), b〉.

Thus ∆R(F ) = R∆(F )∗κL1(X)R∗, which is weakly compact if ∆(F ) is, as
required.

Hence R induces an involution on KAP, written s 7→ s′. This means that
(st)′ = t′s′ for s, t ∈ K, and R(F )(s) = F (s′) for F ∈ AP(M(G)) = C(KAP)
and s ∈ KAP. There is no reason to expect this to be an inverse map on
KAP, but we do have the following.

Proposition 3.13. Consider the map θ : (Gd)AP → KAP as above, and
recall that (Gd)AP is a (compact) group. Then θ(s−1) = θ(s)′ for s ∈ (Gd)AP.

Proof. Recall that, because of joint continuity, the inverse in (Gd)AP has
the following property. Let s ∈ (Gd)AP, so we can find a net (sα) in Gd which
converges to s. By possibly moving to a subnet, we have s−1 = limα s

−1
α .

Now let F ∈ AP(M(G)), so that

F (θ(s)′) = R(F )(θ(s)) = lim
α
R(F )(θ0(sα)) = lim

α
〈R(F ), δsα〉

= lim
α
〈F, r∗(δsα)〉 = lim

α
〈F, δs−1

α
〉 = lim

α
F (θ0(s−1

α )) = F (θ(s−1)),

as required.



224 M. Daws

We have hence demonstrated various properties of the compact semi-
group KAP. These do not, however, appear to be enough to characterise
KAP directly, just in terms of G.

4. Weakly almost periodic functionals. For a commutative Hopf
von Neumann algebra (L∞(X), ∆), we know that WAP(L1(X)) is a unital
commutative C∗-algebra, say C(KWAP). In this section, we shall show that
KWAP is a compact semitopological semigroup, that is, a semigroup whose
product is separately continuous. This is in complete agreement with what
happens for L1(G) (see [19] and [1, Section 4.2]).

4.1. Embedding spaces of separately continuous functions. Let
L∞(X) be a commutative von Neumann algebra, and let ∆ : L∞(X) →
L∞(X×X) be a coassociative normal ∗-homomorphism, turning L1(X) into
a Banach algebra. We can find a compact, Hausdorff, hyperstonian space K
such that L∞(X) = C(K) (see, for example, [17, Section 1, Chapter III]).
Notice, however, that L∞(X×X) is, in general, much larger than C(K×K).

Let SC(K×K) be the space of functionsK×K → C which are separately
continuous. Obviously SC(K×K) is a C∗-algebra. For f ∈ SC(K×K) and
µ ∈M(K), define functions (µ⊗ ι)f, (ι⊗ µ)f : K → C by

(µ⊗ ι)f(k) =
�

K

f(l, k) dµ(l), (ι⊗ µ)f(k) =
�

K

f(k, l) dµ(l) (k ∈ K).

It is shown in [15, Lemma 2.2] (using a result of Grothendieck) that actually
(µ⊗ ι)f and (ι⊗ µ)f are in C(K).

Then [15, Lemma 2.4] shows that

〈(µ⊗ ι)f, λ〉 = 〈(ι⊗ λ)f, µ〉 (f ∈ SC(K ×K), µ, λ ∈M(K)).

We write 〈µ⊗ λ, f〉 for this. Furthermore, [15, Lemma 2.4] shows that
the map M(K) × M(K) → C, (µ, λ) 7→ 〈µ⊗ λ, f〉, is separately weak∗-
continuous in each variable. These results rely upon [9], which shows that
each f ∈ SC(K ×K) is µ-measurable for any µ ∈M(K ×K).

For a ∈ L1(X), we have κL1(X)(a) ∈ L∞(X)∗ = C(K)∗ and hence
induces a measure, say µa ∈ M(K). Define a map θsc : SC(K × K) →
L∞(X ×X) = (L1(X) ⊗̂ L1(X))∗ by

〈θsc(f), a⊗ b〉 = 〈µa ⊗ µb, f〉 (f ∈ SC(K ×K), a, b ∈ L1(X)).

Proposition 4.1. The map θsc is an isometric ∗-homomorphism.

Proof. Clearly θsc is a contraction. For k ∈ K, let δk ∈M(K) = L1(X)∗∗

be the point-mass at k, so that δk is the weak∗-limit of norm-one elements
of L1(X), say a(k)

α → δk. By separate weak∗-continuity, for f ∈ SC(K ×K)
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and k, l ∈ K,

f(k, l) = lim
α

lim
β
〈µ
a
(k)
α
⊗ µ

a
(l)
α
, f〉 = lim

α
lim
β
〈θsc(f), a(k)

α ⊗ a(l)
α 〉.

By taking the supremum over all k and l, this shows that θsc is an isometry.
To show that θsc is a ∗-homomorphism, we argue as follows. Let f ∈

SC(K × K) and x, y ∈ L∞(X) = C(K), and set g = x ⊗ y. Such g are
linearly dense in C(K×K) and hence separate the points of M(K)⊗̂M(K).
We also regard g as a member of L∞(X×X). Let a, b ∈ L1(X) and consider
θsc(f)(a⊗ b), defined as usual by

〈F, θsc(f)(a⊗ b)〉 = 〈Fθsc(f), a⊗ b〉 (F ∈ L∞(X ×X)).

Then θsc(f)(a⊗ b) ∈ L1(X) ⊗̂L1(X), so we can find sequences (cn), (dn) in
L1(X) with θsc(f)(a⊗ b) =

∑
n cn ⊗ dn and

∑
n ‖cn‖ ‖dn‖ <∞. Then∑

n

〈x, cn〉〈y, dn〉 = 〈g, θsc(f)(a⊗ b)〉 = 〈θsc(f), (a⊗ b)g〉

= 〈θsc(f), xa⊗ yb〉 = 〈µxa ⊗ µyb, f〉.
However, it is easy to see that µxa = xµa, so∑

n

〈µcn , x〉〈µdn , y〉 =
�

K×K
x(k)y(l)f(k, l) dµa(k) dµb(l).

As x, y ∈ C(K) were arbitrary, we conclude that∑
n

µcn ⊗ µdn = f(µa ⊗ µb)

as measures on K ×K. Then, for h ∈ SC(K ×K),

〈θsc(h)θsc(f), a⊗ b〉 = 〈θsc(h), θsc(f)(a⊗ b)〉 =
∑
n

〈θsc(h), cn ⊗ dn〉

=
∑
n

〈µcn ⊗ µdn , h〉 = 〈fµa ⊗ µb, h〉 = 〈µa ⊗ µb, hf〉

= 〈θsc(hf), a⊗ b〉.
As a, b ∈ L1(X) were arbitrary, this shows that θsc is a homomorphism.
A similar argument establishes that θsc is a ∗-homomorphism.

We henceforth identify SC(K ×K) with a ∗-subalgebra of L∞(X ×X).

4.2. Application to WAP functionals. For a Banach algebra A we
write WAP(A) for the space of weakly almost periodic functionals on A,
which is a closed A-submodule of A∗. As shown in [10, Lemma 1.4] (for
commutative algebras; the proof readily extends to the general case, cf.
[8, Proposition 2.4]) the Arens products drop to a well-defined product on
WAP(A)∗ which is separately weak∗-continuous; that is, WAP(A)∗ is a dual
Banach algebra.
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Proposition 4.2. Let (L∞(X), ∆) be a commutative Hopf von Neu-
mann algebra, and let L∞(X) = C(K) as before. For F ∈ L∞(X), define
f : K ×K → C by

f(k, l) = 〈δk 2 δl, F 〉 (k, l ∈ K).

If F ∈WAP(L1(X)) then f ∈ SC(K×K) and θsc(f) = ∆(F ). Conversely,
if ∆(F ) = θsc(g) for some g ∈ SC(K × K), then F ∈ WAP(L1(X)), and
f = g.

Proof. Suppose that F ∈WAP(L1(X)). As K→L∞(X)∗=M(K), k 7→δk
is continuous for the weak∗-topology, and the product on WAP(L1(X))∗ is
separately weak∗-continuous, it follows that f ∈ SC(K×K). We claim that
θsc(f) = ∆(F ). Indeed, let a ∈ L1(X), and observe that for x ∈ L∞(X) =
C(K),

〈x, a〉 = 〈µa, x〉 =
�

K

〈δk, x〉 dµa(k).

Thus, for a, b ∈ L1(X), and using that WAP(A) is a WAP(A)∗-bimodule,

〈θsc(f), a⊗ b〉 =
�

K×K
〈δk 2 δl, F 〉 dµa(k) dµb(l)

=
�

K

�

K

〈δk, δl · F 〉 dµa(k) dµb(l)

=
�

K

〈δl · F , a〉 dµb(l) =
�

K

〈δl, F · a〉 dµb(l)

= 〈F · a, b〉 = 〈∆(F ), a⊗ b〉,
as required.

Conversely, if F ∈ L∞(X) with ∆(F ) = θsc(g) for some g ∈ SC(K×K),
then for a, b ∈ L1(X),

〈(a⊗ ι)∆(F ), b〉 = 〈θsc(g), a⊗ b〉 = 〈µa ⊗ µb, g〉 = 〈µb, (µa ⊗ ι)g〉,
so that (a⊗ι)∆(F ) = (µa⊗ι)g ∈ C(K) = L∞(X). Thus, for µ ∈ L∞(X)∗ =
M(K),

〈µ, (a⊗ ι)∆(F )〉 = 〈µ, (µa ⊗ ι)g〉 = 〈µa, (ι⊗ µ)g〉.
Now let (aα) be a bounded net in L1(X). By moving to a subnet, we may
suppose that µaα → λ ∈M(K) weak∗. For µ ∈M(K), we have

lim
α
〈µ, (aα ⊗ ι)∆(F )〉 = lim

α
〈µaα , (ι⊗ µ)g〉 = 〈λ, (ι⊗ µ)g〉 = 〈µ, (λ⊗ ι)g〉,

so we see that (aα⊗ ι)∆(F )→ (λ⊗ ι)g weakly. Thus F ∈WAP(L1(X)). As
θsc is injective, it follows that f = g.

It is worth making a link with Theorem 3.1. Firstly, note that a simple
check shows that θsc extends the natural embedding of C(K×K) = L∞(X)
⊗̌ L∞(X) into L∞(X × X). If F ∈ AP(L1(X)), then as the product on
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AP(L1(X))∗ is jointly continuous, it follows that f will also be jointly con-
tinuous, so that f ∈ C(K×K) ⊆ SC(K×K). Conversely, if ∆(F ) = θsc(g)
for some g ∈ C(K ×K), then f = g and by the same weak∗-approximation
argument as used above, it follows that F is almost periodic.

The following is now immediate!

Theorem 4.3. Let (L∞(X), ∆) be a commutative Hopf von Neumann
algebra. Then WAP(L1(X)) is a C∗-algebra.

Proof. The previous proposition shows that F ∈WAP(L1(X)) if and only
if ∆(F ) ∈ θsc(SC(K×K)). As ∆ is a ∗-homomorphism, and θsc(SC(K×K))
is a C∗-subalgebra of L∞(X), it follows that WAP(L1(X)) is a C∗-algebra.

However, we can now easily prove more about the structure of
WAP(L1(X)).

Theorem 4.4. Let (L∞(X), ∆) be a commutative Hopf von Neumann
algebra, and let KWAP be the character space of WAP(L1(X)). The map
∆, which restricts to a map WAP(L1(X)) → θsc(SC(K × K)), induces a
∗-homomorphism

∆WAP : C(KWAP)→ SC(KWAP ×KWAP).

The adjoint ∆∗WAP : M(KWAP) ⊗̂M(KWAP)→ M(KWAP) is just the prod-
uct on WAP(L1(X))∗. Furthermore, ∆WAP induces a separately continuous
(that is, semitopological) semigroup product on KWAP. At the level of Ba-
nach algebras, this product “is” the Arens product.

Proof. Let F ∈ WAP(L1(X)), and let f ∈ SC(K × K) with θsc(f) =
∆(F ). Then, for k, l ∈ K,

f(k, l) = 〈δk 2 δl, F 〉 = 〈δk, (ι⊗ δl)f〉 = 〈δl, (δk ⊗ ι)f〉.
So, with reference to the proof above, (δk⊗ ι)f = F · δk ∈WAP(L1(X)) and
(ι⊗ δk)f = δk · F ∈WAP(L1(X)).

Hence (δk ⊗ ι)f, (ι ⊗ δk)f are members of C(KWAP) for each k ∈ K.
The inclusion WAP(L1(X)) = C(KWAP) → C(K) induces a continuous
surjection j : K → KWAP. We claim that we can define f0 ∈ SC(KWAP ×
KWAP) by

f0(j(k), j(l)) = f(k, l) (k, l ∈ K).

Indeed, this is well-defined, for if j(k) = j(k′) and j(l) = j(l′) then

f(k, l) = 〈δl, (δk ⊗ ι)f〉 = 〈δl′ , (δk ⊗ ι)f〉 = f(k, l′) = 〈δk, (ι⊗ δl′)f〉
= 〈δk′ , (ι⊗ δl′)f〉 = f(k′, l′).

That f0 is separately continuous is immediate, as the same is true of f , and
j is a closed map.

Denote f0 by ∆WAP(F ), so that ∆WAP is a linear map C(KWAP) →
SC(KWAP×KWAP). The map f 7→ f0 is clearly a ∗-homomorphism, and as
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f = θ−1
sc ∆(F ), it follows that ∆WAP is also a ∗-homomorphism. So we have

∆WAP : C(KWAP)→ SC(KWAP ×KWAP),

a ∗-homomorphism. The adjoint∆∗WAP induces a mapM(KWAP)⊗̂M(KWAP)
→ M(KWAP), and this is simply the Arens product on WAP(L1(X))∗ =
M(KWAP); in this sense, we could say that ∆WAP is coassociative. In par-
ticular, for k, l ∈ KWAP, we see that δk 2 δl = ∆∗WAP(δk ⊗ δl) is a character
on C(KWAP), and hence is identified with a point in KWAP. So KWAP car-
ries a product, and it is easy to see that this is associative. As the product
on M(KWAP) is separately continuous, the semigroup product is separately
continuous.

The previous result is, to the author, still surprising, for the following
reason. The fact that L∞(X) = C(K) seems, naively, to be of little use, as
the coproduct ∆ is absolutely not (in general) associated with any product
on K (indeed, [6, Section 8] shows that the (first) Arens product never
induces a product on K, unless G is discrete). Hence, one might expect
not to get far working with function spaces; nevertheless, this is exactly the
approach which has worked above.

We now explore the weakly almost periodic version of Proposition 3.2.
Let S be a compact, semitopological semigroup, and let ∆S : C(S) →
SC(S × S) be the canonical coproduct, given by ∆S(f)(s, t) = f(st) for
f ∈ C(S) and s, t ∈ S. Now let θ : C(S) → L∞(X) = C(K) be a unital
∗-homomorphism, so we have an induced continuous map θ∗ : K → S. Then
θ ⊗ θ : SC(S × S)→ SC(K ×K) is defined to be the map (θ ⊗ θ)f(k, l) =
f(θ∗(k), θ∗(l)) for f ∈ SC(S × S) and k, l ∈ K. We can now say that θ
intertwines the coproducts if ∆θ = θsc(θ ⊗ θ)∆S . Again, this is equivalent
to θ∗ : L1(X) → M(S) being a Banach algebra homomorphism, and we
write θ ∈ Mor(S,L∞(X)) in this case.

Proposition 4.5. Let S be a compact semitopological semigroup, and
let θ ∈ Mor(S,L∞(X)). Then the image of θ is contained in WAP(L1(X)).
Furthermore, WAP(L1(X)) is the union of the images of all such θ. In
particular, KWAP is the largest quotient of K which is a semitopological
semigroup with the product induced by ∆.

Proof. By Proposition 4.2, and the definition of θ ⊗ θ, it is immediate
that θ maps into WAP(L1(X)). Taking S = KWAP and θ to be the inclusion,
we see that WAP(L1(X)) arises as the image of θ.

Let G1 = (L∞(X1), ∆1) and G2 = (L∞(X2), ∆2) be commutative Hopf
von Neumann algebras, and let T : G1 → G2 be a morphism. For i = 1, 2
let WAP(L1(Xi)) = C(K(i)

WAP), so that K(i)
WAP is a compact semitopolog-

ical semigroup. By Lemma 3.3, T maps WAP(L1(X2)) = C(K(2)
WAP) to
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WAP(L1(X1)) = C(K(1)
WAP) and is a ∗-homomorphism, and so induces a

continuous map TWAP : K(1)
WAP → K

(2)
WAP.

Proposition 4.6. The assignment of KWAP to (L∞(X), ∆), and of
TWAP to T , defines a functor between the category of commutative Hopf von
Neumann algebras and the category of compact semitopological semigroups
with continuous homomorphisms.

Proof. We first show that TWAP is indeed a homomorphism. With refer-
ence to the proof of Theorem 4.4, for s, t ∈ K(1)

WAP, we have δst = δs 2 δt. As
T ∗ = T ∗∗∗ , it is easy to see that T ∗ : WAP(L1(X1))∗ →WAP(L1(X2))∗ is a
homomorphism, so that δTWAP(st) = T ∗(δst) = T ∗(δs2δt) = T ∗(δs)2T ∗(δt) =
δTWAP(s)TWAP(t), which shows that TWAP is a homomorphism.

It is now easy, though tedious, to check that we have defined a functor.

5. For the measure algebra. Let G be a locally compact group, and
consider M(G) = L1(X) as the predual of a commutative Hopf von Neu-
mann algebra. By applying the results of the previous sections, we see that
WAP(M(G)) = C(KWAP) for some compact Hausdorff space KWAP, and
that KWAP becomes a semitopological semigroup in a canonical fashion.
The following now follows in exactly the same way as Proposition 3.5 (where,
again, given a continuous group homomorphism θ, we define the associated
morphism T and thus get TWAP as above).

Proposition 5.1. The assignment of KWAP to G, and of TWAP to θ,
is a functor between the category of locally compact spaces with continuous
homomorphisms and compact semitopological semigroups with continuous
homomorphisms.

As M(G) is a dual Banach algebra with predual C0(G), we deduce that
C0(G) ⊆ WAP(M(G)); see [8, Section 2] and references therein. Clearly
1 ∈WAP(M(G)). So the inclusion ι : C0(G)→ C(KWAP) factors through

C0(G)→ C(G∞) ι∞−−→ C(KWAP),

where G∞ is the one-point compactification of G (if G is already compact,
we define G∞ = G). We can turn G∞ into a semigroup by letting the added
point ∞ be a semigroup zero, so s∞ = ∞s = ∞ for s ∈ G. Then G∞ is
semitopological, for if sα → ∞, then by definition, for each compact set
K ⊆ G, there exists α0 with sα 6∈ K for α ≥ α0. So for t ∈ G, as sαt ∈ K
if and only if sα ∈ Kt−1, and Kt−1 is compact, it follows that sαt → ∞.
Similarly tsα →∞.

Thus we have an induced continuous map ι∞∗ : KWAP → G∞, which has
dense and closed range, and hence must be surjective.

Proposition 5.2. The map ι∞∗ : KWAP → G∞ is a homomorphism.
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Proof. Let κ : C(G∞) → M(G)∗ be the canonical map, and let K be
the compact space such that M(G)∗ = C(K). Hence κ : C(G∞) → C(K)
is an injective ∗-homomorphism, and so there exists a continuous surjection
φ : K → G∞. Notice then that we have the commutative diagrams

C(G∞) ι∞ //

κ
&&MMMMMMMMMM

C(KWAP)

��
C(K)

G∞ KWAP
ι∞∗oo

K

j

OO

φ

ddHHHHHHHHH

Here j : K → KWAP is as in (the proof of) Theorem 4.4 above.
Let f ∈ C(G∞), and define α : K ×K → C by

α(k, l) = f(φ(k)φ(l)) (k, l ∈ K).

Thus α ∈ SC(K ×K) as G∞ is semitopological. For l ∈ K, let fl ∈ C(G∞)
be defined by fl(s) = f(sφ(l)) for s ∈ G∞. For a, b ∈M(G), we see that

〈θsc(α), a⊗ b〉 = 〈µa ⊗ µb, α〉 =
�

K

�

K

f(φ(k)φ(l)) dµa(k) dµb(l)

=
�

K

〈κ(fl, a〉 dµb(l) =
�

G

�

K

fl(s) dµb(l) da(s)

=
�

G

�

K

f(sφ(l)) dµb(l) da(s) =
�

G

�

G

f(st) db(t) da(s),

where the final equality comes from repeating the argument. Thus

〈θsc(α), a⊗ b〉 = 〈κ(f), ab〉 = 〈∆(κ(f)), a⊗ b〉.
We conclude that θsc(α) = ∆(κ(f)).

Now observe that ∆WAP(ι∞(f)) is the map KWAP×KWAP→ C given by

(j(k), j(l)) 7→ θ−1
sc ∆(κ(f))(k, l) = α(k, l) = f(φ(k)φ(l)) (k, l ∈ K).

Let s, t ∈ KWAP, and pick k, l ∈ K with j(k) = s and j(l) = t. Then, as
ι∞∗ j = φ, we have

f(ι∞∗ (s)ι∞∗ (t)) = f(φ(k)φ(l)) = ∆WAP(ι∞(f))(s, t)
= ι∞(f)(st) = f(ι∞∗ (st)).

As f ∈ C(G∞) was arbitrary, we conclude that ι∞∗ (s)ι∞∗ (t) = ι∞∗ (st). Thus
ι∞∗ is a homomorphism, as required.

Let K0 = (ι∞∗ )−1({∞}) a closed subset of KWAP. As ι∞∗ is a homomor-
phism, it follows that K0 is an ideal in KWAP and that KWAP \ K0 is a
locally compact subsemigroup of KWAP.

Obviously each s ∈ G induces a normal character δs on M(G)∗, and
hence by restriction, a character on WAP(M(G)). So we have a (possibly
discontinuous) map θ : G → KWAP, which we shall henceforth consider as
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a map θ : Gd → KWAP. Let s, t ∈ G and F ∈WAP(M(G)), so that

F (θ(s)θ(t)) = 〈δs 2 δt, F 〉 = 〈F, δsδt〉 = 〈F, δst〉 = F (θ(st)),
so we see that θ is a homomorphism.

Denote the unit of G by eG. As δeG is the unit of M(G), it follows that
δeG is also the unit of WAP(M(G))∗, and so θ(eG) is the unit of K.

Proposition 5.3. Restrict ι∞∗ to a homomorphism KWAP\K0 → G. Let
K1 be the kernel of this homomorphism, so that K1 is a closed subsemigroup
of KWAP\K0. Then ι∞∗ ◦θ is the identity on Gd and θ maps into KWAP\K0.
In particular, KWAP \K0 = Gd nK1.

Proof. For t ∈ G and f ∈ C0(G), clearly 〈δθ(t), ι(f)〉 = f(t), showing
that θ takes values in K \K0, and that ι∞∗ (θ(t)) = t, as required. We now
appeal to Lemma 3.9.

By the universal property for WAP, as KWAP is compact and semitopo-
logical, we have a factorisation

Gd
θ //

��

KWAP

(Gd)WAP
θWAP

99ssssssssss

Recall that θWAP must satisfy the following condition: for s ∈ (Gd)WAP,
if (sα) ⊆ Gd is a net with sα → s in (Gd)WAP, then θ(sα) → θWAP(s) in
KWAP.

We regard WAP(Gd) = C((Gd)WAP) as a subalgebra of `∞(G) =
C(Gd). As discussed before Lemma 3.7, we consider the projection
P : M(G) → `1(G), which is an algebra homomorphism. The following
has an almost identical proof to that of Lemma 3.7.

Lemma 5.4. P ∗ : `∞(G) → M(G)∗ is an algebra homomorphism which
maps WAP(Gd) into WAP(M(G)).

Again, we have ∆◦P ∗ = (P ∗⊗P ∗)◦Φd, where Φd : `∞(G)→ `∞(G×G) is
the coproduct for Gd. We hence get a continuous semigroup homomorphism
θ1 : K → (Gd)WAP.

Lemma 5.5. Consider the continuous semigroup homomorphisms θWAP :
(Gd)WAP → KWAP and θ1 : KWAP → (Gd)WAP. Then θ1 ◦ θWAP is the
identity on (Gd)WAP and so θWAP is a homeomorphism onto its range.

Proof. For s ∈ G and F ∈WAP(Gd), we calculate that

F (θ1θ(s)) = 〈δθ(s), P ∗(F )〉 = 〈P ∗(F ), δs〉 = 〈F, δs〉 = F (s).

Hence θ1 ◦ θ : G → (Gd)WAP is the canonical inclusion. By continuity, it
follows that θ1 ◦ θWAP is the identity on (Gd)WAP, and so θWAP must be a
homeomorphism onto its range.
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Lemma 5.6. The following are equivalent:
(1) G is compact;
(2) K0 is empty;
(3) θWAP maps into KWAP \K0.

Proof. As K0 is the inverse image of {∞} under ι∞∗ , it is immediate
that if G is compact, then K0 is empty. So (1) implies (2), and clearly (2)
implies (3).

Suppose that G is not compact. Then we can find some net (sα) ⊆ G
which eventually leaves every compact subset of G. But moving to a subnet
if necessary, we may suppose that (sα) converges in (Gd)WAP, to s say.
Notice that in KWAP, we have θWAP(s) = limα θ

WAP(sα) = limα θ(sα). As
ι∗∞ : KWAP → G∞ is continuous, it follows that

ι∗∞θ
WAP(s) = lim

α
ι∗∞θ(sα) = lim

α
sα =∞.

Hence θWAP(s) ∈ K0, and so we have shown that (3) implies (1).

As (Gd)WAP is not a group, we cannot apply Lemma 3.9. However, in [2],
it is shown that unless G is finite, WAP(Gd)/c0(Gd) contains a copy of `∞.
In particular, WAP(Gd) is “large”, and so also KWAP is “large” in this sense.
The following shows, again informally, that KWAP \K0 is also “large”.

Proposition 5.7. Let G be non-discrete. For any compact, non-discrete
subset A ⊆ G, the image of A in (Gd)WAP is not closed. However, the image
of the closure of A, under θWAP, is contained in KWAP \K0.

Proof. The inclusion Gd → GWAP is continuous, so by the universal
property, we get a continuous map φ : (Gd)WAP → GWAP which has dense
range. As (Gd)WAP is compact, it follows that φ is surjective. We can see φ
in a more concrete way. By [1, Section 4.2], WAP(G) = C(G) ∩WAP(Gd).
By considering both WAP(G) and WAP(Gd) as subalgebras of `∞(G), we
see that the inclusion map WAP(G) → WAP(Gd) is a ∗-homomorphism,
and so induces a continuous map φ : (Gd)WAP → GWAP.

As also C0(G) ⊆WAP(G), the above argument (cf. Proposition 5.2) also
shows the existence of a continuous homomorphism ψ : (Gd)WAP → G∞ such
that ψ(s) = s for each s ∈ G.

Suppose that A ⊆ G is compact and that the image of A in (Gd)WAP,
say denoted by A0, is closed. We can hence consider the restriction ψ|A0 :
A0 → G∞. Then ψ|A0(s) = s for each s ∈ A, and so ψ|A0 : A0 → A is a
continuous bijection between compact sets, and is hence a homeomorphism.

We then claim that for each f ∈ WAP(Gd), there exists F ∈ C0(G)
such that, if C0(G) is considered as a subspace of `∞(G), then f(s) = F (s)
for each s ∈ A. By the Tietze extension theorem, we can simply let F be
an extension of the map f ◦ ψ|−1

A0
: A → C. Thus f is continuous on A.
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However, c0(G) ⊆ WAP(Gd), so we have shown that the restriction of any
c0(G) function to A is continuous. This implies that A must be discrete, as
required.

Finally, let A ⊆ G be compact, let (sα) be a net in A, and suppose that
sα → s in (Gd)WAP. This means that f(sα)→ f(s) for each f ∈WAP(Gd),
hence for all f ∈ C0(G) ⊆ WAP(G) ⊆ WAP(Gd). So (sα) must converge
in G, and hence in A, say to t 6= ∞. Then, as in the previous lemma,
ι∗∞θ

WAP(s) = t, so that θWAP(s) 6∈ K0, as required.

Exactly the same proof as used in Proposition 3.11 shows that KWAP 6=
(Gd)WAP when G is non-discrete. We finish by mentioning that, suitably
modified, the results of Section 3.2 apply to the WAP case, although this
seems to give little insight, given, again, that (Gd)WAP is not a group. Sim-
ilarly, it seems natural to ask about invariant measure on KWAP, but we
have made no progress in this direction.
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[19] A. Ülger, Continuity of weakly almost periodic functionals on L1(G), Quart. J. Math.

Oxford Ser. 37 (1986), 495–497.

Matthew Daws
School of Mathematics
University of Leeds
Leeds, LS2 9JT, United Kingdom
E-mail: matt.daws@cantab.net

Received July 6, 2010
Revised version May 12, 2011 (6933)

http://dx.doi.org/10.1090/S0002-9939-04-07400-3
http://dx.doi.org/10.1017/S000497271000016X
http://dx.doi.org/10.1112/S0024610703004125
http://dx.doi.org/10.1090/S0002-9947-1965-0185465-9
http://dx.doi.org/10.1093/qmath/37.4.495

	Introduction
	Commutative Hopf von Neumann algebras
	Almost periodic case
	Structure semigroup
	The antipode

	Weakly almost periodic functionals
	Embedding spaces of separately continuous functions
	Application to WAP functionals

	For the measure algebra

