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On a binary relation between normal operators

by

Takateru Okayasu (Yamagata), Jan Stochel (Kraków) and
Yasunori Ueda (Yamagata)

Abstract. The main goal of this paper is to clarify the antisymmetric nature of a
binary relation� which is defined for normal operators A and B by: A� B if there exists
an operator T such that EA(∆) ≤ T ∗EB(∆)T for all Borel subset ∆ of the complex plane
C, where EA and EB are spectral measures of A and B, respectively (the operators A
and B are allowed to act in different complex Hilbert spaces). It is proved that if A� B
and B � A, then A and B are unitarily equivalent, which shows that the relation � is a
partial order modulo unitary equivalence.

1. Introduction. Let H and K be complex Hilbert spaces. The set of
all bounded linear operators from H to K is denoted by B(H,K). We shall
abbreviate B(H,H) to B(H) and write I for the identity operator on H.
The kernel, the range and the adjoint of A ∈ B(H,K) are denoted by N (A),
R(A) and A∗, respectively. As usual, |A| := (A∗A)1/2 for A ∈ B(H,K). We
say that two operators A ∈ B(H) and B ∈ B(K) are unitarily equivalent
(in symbols A ∼= B) if there exists a unitary operator U ∈ B(H,K) such
that A = U∗BU . Given an operator A ∈ B(H) with closed range, we write
rankA for the orthogonal dimension of R(A) and call it the rank of A. For
two vectors u, v ∈ H, we define the finite rank operator u ⊗ v ∈ B(H) by
(u ⊗ v)(h) = 〈h, v〉u for h ∈ H. The spectrum of A ∈ B(H) is denoted by
σ(A). Given two selfadjoint operators A,B ∈ B(H), we write A ≤ B (or
B ≥ A) if 〈Ah, h〉 ≤ 〈Bh, h〉 for all h ∈ H. The spectral measure of a normal
operator A ∈ B(H) is denoted by EA. Recall that if A ∈ B(H) is a normal
operator, then

σ(A) is equal to the closed support of EA.(1.1)

For this and related facts concerning normal operators we refer the reader
to the monographs [2] and [17].
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Given an operator T ∈ B(H,K) and two normal operators A ∈ B(H)
and B ∈ B(K), we write A�T B if

EA(∆) ≤ T ∗EB(∆)T for all ∆ ∈ B(C),(1.2)
where B(C) stands for the σ-algebra of all Borel subsets of the complex
plane C. We shall abbreviate (1.2) to EA ≤ T ∗EBT (the same convention
will be applied to other relations involving operator functions of ∆). We
write A� B if A�T B for some T ∈ B(H,K). It is clear that the relation
� is reflexive and transitive. It is also obvious that if two normal operators
A ∈ B(H) and B ∈ B(K) are unitarily equivalent, then A� B and B � A.
Moreover, the relation � is compatible with ∼= (i.e., A � B, A ∼= A′ and
B ∼= B′ imply A′ � B′). Theorem 5.2, which is the main result of this
paper, states that if A� B and B � A, then A ∼= B. This means that the
relation � is a partial order modulo unitary equivalence.

It is worth mentioning that if A� B and B � A, then the spectral mea-
sures EA and EB are mutually absolutely continuous, and so their spectral
types coincide (cf. [2] for the terminology). Since, in general, the equality
of spectral types does not imply the equality of multiplicity functions, one
cannot expect normal operators with equal spectral types to be unitarily
equivalent (1) (e.g. two normal operators with the same pure point spectra
but of different multiplicity are not unitarily equivalent). However, according
to the well-known result [3, Theorem 11.4], two star-cyclic normal operators
are unitarily equivalent if and only if their spectral types coincide. In view
of the above discussion, it is clear that this result implies a particular case of
Theorem 5.2 for star-cyclic normal operators. Proofs of these two theorems
are completely different.

The concept of the relation � is somewhat linked to the binary relation
≤u, where A ≤u B means that A,B ∈ B(H) are selfadjoint and A ≤ U∗BU
for some unitary operator U ∈ B(H) (cf. [9, 11]). Note that if B ≥ 0, then
A �U B implies A ≤ U∗BU (cf. Proposition 2.1), but the converse is not
true, as is immediately seen by taking A = 0 and B = U = I. Though
selfadjoint trace class operators A,B which satisfy A ≤u B and B ≤u A
are necessarily unitarily equivalent, we can construct a unitary operator U
and selfadjoint operators A,B such that B ≤ A ≤ U∗BU and A 6∼= B. It
is shown in [11, Theorem 5] that if B ≤ A ≤ U∗BU , where A and B are
selfadjoint operators with null spectra with respect to the Lebesgue measure
on the real line R, and U is a unitary operator whose spectrum does not fill
up the whole unit circle, then B = A = U∗BU .

The spectral order 4, another concept which is linked to the relation �,
is defined as follows: given two selfadjoint operators A,B ∈ B(H), we

(1) Recall that the spectral type and the multiplicity function form a complete set of
unitary invariants for normal operators (cf. [2, Theorem 7.4.3]).



A binary relation between normal operators 249

write A 4 B if

EB((−∞, λ]) ≤ EA((−∞, λ]), λ ∈ R.
For commuting pairs, the spectral order 4 agrees with the usual one ≤. In
general, these two notions do not coincide (see [7, 12, 8, 13]). Note that
B �I A implies A 4 B, but the converse is not true because, in general,
A 4 B does not imply A ∼= B, while B �I A does (see Corollary 3.4).

Some basic facts concerning the relation � are included in Proposition
2.1. The case when the spectral measure EA is a perturbation of the positive
operator valued measure T ∗EBT by the Dirac measure at 0 with coefficient
I − T ∗T is discussed in Theorem 2.3. Theorem 3.1 asserts that A � B if
and only if B decomposes into an orthogonal sum of two operators one of
which is unitarily equivalent to A, or equivalently if and only if there exists
an operator V ∈ B(K,H) with dense range which intertwines B and A.
In turn, Theorem 4.2 states that A � B if and only if S∗EAS ≤ EB for
some operator S ∈ B(K,H) with dense range. The concepts of the paper are
illustrated by examples in Section 6. In the Appendix we discuss conditions
(iii) and (iv′) of Theorem 3.1.

2. Basic properties of �. We begin by formulating some preparatory
facts concerning the relation �.

Proposition 2.1. Suppose that A ∈ B(H) and B ∈ B(K) are normal
operators and T ∈ B(H,K). If A�T B, then

(i) 0 ≤ T ∗EB(∆)T − EA(∆) ≤ T ∗T − I for ∆ ∈ B(C),
(ii) σ(A) ⊆ σ(B),
(iii) rankEA(∆) ≤ rankEB(∆) for all ∆ ∈ B(C),
(iv) φ(A) ≤ T ∗φ(B)T for any bounded nonnegative Borel function φ

on σ(B),
(v) φ(A)�T φ(B) for any bounded complex Borel function φ on σ(B),
(vi) |A|n ≤ T ∗|B|nT for all integers n ≥ 0,
(vii) An ≤ T ∗BnT for all integers n ≥ 0 provided that B ≥ 0.

Proof. (i) Substitute C \∆ into (1.2) in place of ∆.
(ii) By (1.1), we have

EA(C \ σ(B)) ≤ T ∗EB(C \ σ(B))T = 0,

which implies that EA(C \ σ(B)) = 0. Hence C \ σ(B) ⊆ C \ σ(A).
(iii) By assumption, EA(∆) ≤ (T ∗EB(∆))(T ∗EB(∆))∗. This combined

with [4, Theorem 1] yields R(EA(∆)) ⊆ T ∗R(EB(∆)). Since (bounded and
linear) operators with dense range do not increase the orthogonal dimension,
we have

rankEA(∆) ≤ dimT ∗R(EB(∆)) ≤ dimR(EB(∆)) = rankEB(∆).
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(iv) By (ii), we have

〈φ(A)h, h〉 =
�

σ(B)

φ(z)〈EA(dz)h, h〉

≤
�

σ(B)

φ(z)〈EB(dz)Th, Th〉 = 〈T ∗φ(B)Th, h〉, h ∈ H.

(v) Employ (ii) and the fact that for a normal operator N ∈ B(H) and
a bounded complex Borel function φ on σ(N),

Eφ(N)(∆) = EN (φ−1(∆)), ∆ ∈ B(C).

Conditions (vi) and (vii) follow from (ii) and (iv).

It follows from Proposition 2.1(i) that A�T B implies

EA(∆) ≥ T ∗EB(∆)T + I − T ∗T, ∆ ∈ B(C).

Replacing ∆ by C \∆, we see that the converse is true as well.
In view of Proposition 2.1(i), the inequality I ≤ T ∗T is necessary for the

relation A �T B to hold. Hence A �T B and ‖T‖ ≤ 1 imply that T is an
isometry. In this particular situation the inequality (iv) in Proposition 2.1
turns into equality.

Corollary 2.2. Suppose that A ∈ B(H) and B ∈ B(K) are normal
operators and T ∈ B(H,K) is a contraction. If A �T B, then φ(A) =
T ∗φ(B)T for any bounded complex Borel function φ on σ(B).

Proof. Since T is an isometry, we infer from Proposition 2.1(i) that

EA(∆) = T ∗EB(∆)T, ∆ ∈ B(C).(2.1)

Arguing as in the proof of Proposition 2.1(iv) completes the proof.

By Corollary 2.2, if A�T B and T is an isometry, then

AmA∗n = T ∗BmB∗nT, m, n ≥ 0, m+ n ≥ 1.(2.2)

We now discuss in more detail the relationship between (2.2) and A�T B.
In what follows, χ∆ stands for the characteristic function of a subset ∆ of C.

Theorem 2.3. Let A ∈ B(H) and B ∈ B(K) be normal operators and
T ∈ B(H,K). Then (2.2) holds if and only if

EA(∆) = T ∗EB(∆)T + χ∆(0)(I − T ∗T ), ∆ ∈ B(C).(2.3)

Moreover, if (2.2) holds, then

(i) T is an isometry if and only if EA = T ∗EBT ,
(ii) I ≤ T ∗T if and only if EA ≤ T ∗EBT ,
(iii) T ∗T ≤ I if and only if T ∗EBT ≤ EA,
(iv) if T ∗T 6= I, then 0 ∈ σ(A) ∪ σ(B),
(v) if 0 ∈ σ(B), then σ(A) ⊆ σ(B),
(vi) if 0 /∈ σ(B), then T is a contraction.
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Proof. Set Ω = σ(A) ∪ σ(B) ∪ {0}.
We first prove that (2.2) implies (2.3) and assertions (i) to (vi). Assume

that (2.2) holds. Take a continuous function f : Ω → C. By the Stone–
Weierstrass theorem, there exists a sequence {pk}∞k=1 of complex polynomials
in two complex variables such that limk→∞ supz∈Ω |f(z) − pk(z, z̄)| = 0. It
follows from (2.2) that

pk(A,A∗) = T ∗pk(B,B∗)T + pk(0, 0)(I − T ∗T ), k ≥ 1.(2.4)

After passage to the limit in (2.4) as k → ∞ (which is possible due to the
uniform continuity of the Stone–von Neumann operator calculus), we obtain

f(A) = T ∗f(B)T + f(0)(I − T ∗T ), f : Ω → C continuous.(2.5)

Fix ∆ ∈ B(C) and h ∈ H. Since the measures µ(·) := 〈EA(·)h, h〉 and
ν(·) := 〈EB(·)Th, Th〉 are regular (cf. [15, Theorem 2.18]), there exist an
ascending sequence {Kn}∞n=1 of compact sets in C and a descending sequence
{Gn}∞n=1 of open sets in C such that Kn ⊆ ∆ ⊆ Gn, µ(Gn \Kn) < 1/n and
ν(Gn \Kn) < 1/n. There is no loss of generality in assuming that 0 ∈ Kn

for all n ≥ 1 provided that 0 ∈ ∆, and 0 /∈ Gn for all n ≥ 1 provided that
0 /∈ ∆. Set K∞ =

⋃∞
n=1Kn and G∞ =

⋂∞
n=1Gn. Then K∞, G∞ ∈ B(C),

K∞ ⊆ ∆ ⊆ G∞, µ(G∞ \K∞) = 0 and ν(G∞ \K∞) = 0. For every n ≥ 1
there exists a continuous function fn : C → [0, 1] such that fn(Kn) = {1}
and fn(C \ Gn) = {0}. It is now clear that limn→∞ fn(z) = χ∆(z) for all
z ∈ C\(G∞\K∞). Hence limn→∞ fn(0) = χ∆(0) and limn→∞ fn(z) = χ∆(z)
for almost every z ∈ C with respect to µ and ν. By Lebesgue’s dominated
convergence theorem, we have

‖fn(A)h− EA(∆)h‖2 =
�

C
|fn − χ∆|2 dµ→ 0 as n→∞.

Similar reasoning gives limn→∞ T
∗fn(B)Th = T ∗EB(∆)Th. Hence, by (2.5),

we have EA(∆)h = T ∗EB(∆)Th+ χ∆(0)(I − T ∗T )h, which yields (2.3).
(i) Necessity follows from (2.3), while sufficiency from (2.1) with ∆ = C.
(ii) Necessity follows from (2.3), while sufficiency from Proposition 2.1(i).
(iii) Argue as in the proof of (ii).
(iv) Suppose contrary to our claim that 0 /∈ σ(A) ∪ σ(B). Then there

exists an open set ∆ in C such that 0 ∈ ∆ and ∆ ∩ (σ(A) ∪ σ(B)) = ∅.
Hence, by (1.1) and (2.3), we have T ∗T = I, which is a contradiction.

(v) This can be deduced from (2.3) by substituting ∆ = C \ σ(B).
(vi) If 0 /∈ σ(B), then there exists an open set ∆ in C such that 0 ∈ ∆

and ∆ ∩ σ(B) = ∅. This and (2.3) imply that I − T ∗T = EA(∆) ≥ 0.
To complete the proof it is therefore enough to show that (2.3) im-

plies (2.2). It follows from (2.3) that

φ(A) = T ∗φ(B)T + φ(0)(I − T ∗T )(2.6)
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for any simple Borel function φ : C → C. Applying the standard approxi-
mation procedure, we see that (2.6) holds for any bounded complex Borel
function φ on Ω. In particular, substituting φ(z) = zmz̄n (z ∈ Ω) into (2.6),
we get (2.2).

Corollary 2.4. Let A ∈ B(H) and B ∈ B(K) be selfadjoint operators
and T ∈ B(H,K). Then Ak = T ∗BkT for all k ≥ 1 if and only if

EA(∆) = T ∗EB(∆)T + χ∆(0)(I−T ∗T ) for all Borel sets ∆⊆R.(2.7)

Moreover, if (2.7) holds, then the assertions (i) to (vi) of Theorem 2.3 hold.

Combining Corollaries 2.2 and 2.4, we see that if A ∈ B(H) and B ∈
B(K) are selfadjoint operators and T ∈ B(H,K) is an isometry, then EA ≤
T ∗EBT if and only if EA = T ∗EBT , or equivalently if and only if Ak =
T ∗BkT for all k ≥ 1.

For examples illustrating Theorem 2.3 we refer the reader to Section 6
(see Examples 6.1 and 6.2). It is shown there that (2.3) may hold with
I − T ∗T 6= 0.

3. Characterizations of �

Theorem 3.1. Suppose that A ∈ B(H) and B ∈ B(K) are normal
operators. Then the following conditions are equivalent:

(i) there exists T ∈ B(H,K) such that A�T B,
(ii) there exist T ∈ B(H,K) and a surjective contraction V ∈ B(K,H)

such that V B = AV and V T = I,
(ii′) there exists an operator V ∈ B(K,H) with dense range such that

V B = AV ,
(iii) there exists an isometry W ∈ B(H,K) such that A = W ∗BW and

R(W ) reduces B,
(iv) there exists an isometry W ∈ B(H,K) such that EA = W ∗EBW

and R(W ) reduces B,
(iv′) there exists an isometry W ∈ B(H,K) such that EA = W ∗EBW .

Moreover, if T is as in (i), then the same T can be chosen in (ii), and vice
versa. This is also true for W appearing in (iii) and (iv).

Remark 3.2. By the Putnam–Fuglede theorem (cf. [14]), if A ∈ B(H)
and B ∈ B(K) are normal operators and V ∈ B(K,H), then V B = AV
if and only if V EB = EAV . Arguing as in the proof of the implication
(iii)⇒(iv), we see that (iii) is equivalent to the existence of a closed linear
subspace N of K reducing B such that A ∼= B|N . For a discussion concerning
the assumption that R(W ) reduces B, which appears in (iii) and (iv), we
refer the reader to the Appendix. It is clear that if EA = W ∗EBW , then W
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is an isometry. It follows from Proposition 7.3 in the Appendix that if W is
as in (iv′), then R(W ) reduces B.

Proof of Theorem 3.1. (i)⇒(ii). Let ∆1, . . . ,∆n ∈ B(C) and h1, . . . , hn
∈ H be fixed finite systems. Then there exist finite systems ∆′1, . . . ,∆′m
∈ B(C) and J1, . . . , Jn ⊆ {1, . . . ,m} such that ∆′k ∩ ∆′l = ∅ for all k 6= l,
and ∆i =

⋃
j∈Ji ∆

′
j for all i ∈ {1, . . . , n}. Set h′j =

∑n
i=1 χJi(j)hi for j ∈

{1, . . . ,m}. Then we have∥∥∥ n∑
i=1

EA(∆i)hi
∥∥∥2

=
∥∥∥ n∑
i=1

∑
j∈Ji

EA(∆′j)hi
∥∥∥2

(3.1)

=
∥∥∥ n∑
i=1

m∑
j=1

χJi(j)EA(∆′j)hi
∥∥∥2

=
∥∥∥ m∑
j=1

EA(∆′j)
( n∑
i=1

χJi(j)hi
)∥∥∥2

=
m∑
j=1

〈EA(∆′j)h
′
j , h
′
j〉.

Similar reasoning leads to∥∥∥ n∑
i=1

EB(∆i)Thi
∥∥∥2

=
m∑
j=1

〈EB(∆′j)Th
′
j , Th

′
j〉.(3.2)

Since EA ≤ T ∗EBT , we infer from (3.1) and (3.2) that∥∥∥ n∑
i=1

EA(∆i)hi
∥∥∥2
≤
∥∥∥ n∑
i=1

EB(∆i)Thi
∥∥∥2

(3.3)

for all finite systems ∆1, . . . ,∆n ∈ B(C) and h1, . . . , hn ∈ H. Define the
space N by (2) N =

∨
∆∈B(C)EB(∆)R(T ). It is clear that R(T ) ⊆ N and

N reduces EB. It follows from (3.3) that there exists a unique contraction
V0 ∈ B(N ,H) such that V0EB(∆)Th = EA(∆)h for all ∆ ∈ B(C) and
h ∈ H. Define V ∈ B(K,H) by V f = V0Pf for f ∈ K, where P ∈ B(K)
is the orthogonal projection of K onto N . Then V is a contractive linear
extension of V0 such that

V EB(∆)T = EA(∆), ∆ ∈ B(C).(3.4)

Substituting ∆ = C into (3.4), we get V T = I. It follows from (3.4) that

V EB(∆)(EB(∆′)Th) = V EB(∆ ∩∆′)Th
= EA(∆ ∩∆′)h = EA(∆)V (EB(∆′)Th)

(2)
W
∆∈B(C)EB(∆)R(T ) stands for the closure of the linear span of the setS

∆∈B(C) EB(∆)R(T ).
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for all h ∈ H and ∆,∆′ ∈ B(C). Hence V EB(∆)|N = EA(∆)V |N for all
∆ ∈ B(C). Since N reduces EB, we deduce that V EB(∆)|K	N = 0 =
EA(∆)V |K	N for all∆∈B(C). Hence VEB=EAV , which implies VB =AV.

(ii)⇒(ii′). Evident.
(ii′)⇒(iii). Let V = U |V | be the polar decomposition of V . Then U ∈

B(K,H) is a partial isometry with initial space R(|V |) and final space H
(because R(V ) = H). By the Putnam–Fuglede theorem, V B = AV implies
V ∗A = BV ∗. This yields

|V |2B = V ∗V B = V ∗AV = BV ∗V = B|V |2.

By the square root theorem, |V |B = B|V | and thusR(|V |) reduces B. Hence

UB(|V |f) = U |V |Bf = V Bf = AV f = AU(|V |f), f ∈ K,

which yields UB|R(|V |) = AU |R(|V |). Since UB|K	R(|V |) = 0 = AU |K	R(|V |),
we get UB = AU . SetW = U∗. ThenW is an isometry,W ∗BW = UBU∗ =
AUU∗ = A and R(W ) = R(U∗) = R(|V |), which shows that R(W ) re-
duces B.

(iii)⇒(iv). Since W is an isometry, the space R(W ) is closed. Define
the operator Ŵ ∈ B(H,R(W )) by Ŵh = Wh for h ∈ H. Then R(W )
reduces B, Ŵ is a unitary operator and A = Ŵ ∗(B|R(W ))Ŵ . This implies
that R(W ) reduces EB, and EA = Ŵ ∗(EB|R(W ))Ŵ . Hence EA = W ∗EBW ,
as is easily verified.

The implications (iv)⇒(iv′) and (iv′)⇒(i) are obvious.
We now proceed to the proof of the “moreover” part. If T is as in (i), then

in view of the proof of (i)⇒(ii) the same T can be chosen in (ii). Conversely,
if T is as in (ii), then by the Putnam–Fuglede theorem V EB = EAV , and
therefore

〈EA(∆)h, h〉 = ‖EA(∆)V Th‖2 = ‖V EB(∆)Th‖2

≤ ‖EB(∆)Th‖2 = 〈EB(∆)Th, Th〉, h ∈ H, ∆ ∈ B(C).

In turn, if W is as in (iii), then by the proof of (iii)⇒(iv) the same W can
be chosen in (iv). Conversely, if W is as in (iv), then obviously the same W
works for (iii). This completes the proof.

Corollary 3.3. If A ∈ B(H) and B ∈ B(K) are normal operators such
that EA = T ∗EBT for some T ∈ B(H,K) and

∨
∆∈B(C)EB(∆)R(T ) = K,

then T is a unitary operator and A ∼= B.

Proof. Taking a quick look at the proof of the implication (i)⇒(ii) of
Theorem 3.1, we conclude that V = V0 is a unitary operator, V T = I
and V B = AV . This implies that T = V −1 and therefore T is a unitary
operator.
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Corollary 3.4. Let A ∈ B(H) and B ∈ B(K) be normal operators and
T ∈ B(H,K). Suppose that A�T B. If any of the following two conditions
is satisfied, then A ∼= B:

(i) T has dense range.
(ii) H is finite-dimensional.

Proof. (i) Let V be as in Theorem 3.1(ii). Since T ∗T ≥ I, the range of T
is closed, and so R(T ) = K. As a consequence, we see that T is a bijection.
It follows from V T = I that V is a bijection as well. Since V B = AV ,
the normal operators A and B are similar, and so they are automatically
unitarily equivalent (cf. [14]).

(ii) It follows from T ∗T ≥ I that T is injective and thus surjective.
Applying the previous case completes the proof.

A normal operator A ∈ B(H) is said to be star-cyclic if there exists a
vector e ∈ H, called a star-cyclic vector of A, such that the closure of the
linear span of the vectors {AmA∗ne : m,n ≥ 0} is equal to H.

Corollary 3.5. If A ∈ B(H) and B ∈ B(K) are normal operators
such that A� B and B is star-cyclic, then A is star-cyclic.

Proof. Let V be as in Theorem 3.1(ii) and let e be a star-cyclic vector
of B. It follows from V B = AV and the Putnam–Fuglede theorem that
V BmB∗ne = AmA∗nV e for all m,n ≥ 0. This and R(V ) = H imply that V e
is a star-cyclic vector (3) of A.

Remark 3.6. Note that Corollary 3.3 is also a direct consequence of the
following fact whose proof goes through as for Theorem 3.1.

If A ∈ B(H) and B ∈ B(K) are normal operators and T ∈ B(H,K),
then EA = T ∗EBT if and only if there exists a (unique) partial isom-
etry V ∈ B(K,H) with initial space

∨
∆∈B(C)EB(∆)R(T ) and final

space H such that V T = I and V B = AV .

By Proposition 7.3, if EA = T ∗EBT , then
∨
∆∈B(C)EB(∆)R(T ) = R(T ).

4. Variations on�. In this section we analyze the connections between
the relations EA ≤ T ∗EBT and S∗EAS ≤ EB. We begin with the following
simple observation.

Proposition 4.1. If A ∈ B(H) and B ∈ B(K) are normal operators
and S ∈ B(K,H) is a bijection such that S∗EAS ≤ EB, then A ∼= B.

Proof. It follows from S∗EAS ≤ EB that A �S−1 B. Hence, by Corol-
lary 3.4, the operators A and B are unitarily equivalent.

(3) We can also show that if e is a star-cyclic vector of B and W is as in Theo-
rem 3.1(iii), then W ∗e is a star-cyclic vector of A.
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It turns out that if the assumption on the bijectivity of S in Propo-
sition 4.1 is weakened to the requirement that S have dense range, then
A� B.

Theorem 4.2. Let A ∈ B(H) and B ∈ B(K) be normal operators. Then
the following two conditions are equivalent:

(i) A� B,
(ii) there exists S ∈ B(K,H) with dense range such that S∗EAS ≤ EB.

Moreover, the operator S in (ii) can always be chosen to be a surjection.

Proof. (i)⇒(ii). Take W ∈ B(H,K) as in Theorem 3.1(iv). Then the
operator S := W ∗ is a surjection. Since R(W ) reduces B, and WW ∗ is the
orthogonal projection of K onto R(W ), we deduce that WW ∗ commutes
with B and thus with EB. This fact combined with EA = W ∗EBW gives

〈S∗EA(∆)Sf, f〉 = ‖WW ∗EB(∆)f‖2 ≤ 〈EB(∆)f, f〉, f ∈ K, ∆ ∈ B(C).

(ii)⇒(i). As in the proof of the implication (i)⇒(ii) of Theorem 3.1 we
show that ∥∥∥ n∑

i=1

EA(∆i)Sfi
∥∥∥2
≤
∥∥∥ n∑
i=1

EB(∆i)fi
∥∥∥2

for all finite systems ∆1, . . . ,∆n ∈ B(C) and f1, . . . , fn ∈ K. Hence, there
exists a unique contraction V ∈ B(K,H) such that

V EB(∆)f = EA(∆)Sf, f ∈ K, ∆ ∈ B(C).(4.1)

This implies that V f = V EB(C)f = EA(C)Sf = Sf for all f ∈ K, which
means that V = S. As a consequence of (4.1), we have SEB(∆) = EA(∆)S
for all ∆ ∈ B(C), which by the Putnam–Fuglede theorem is equivalent to
SB = AS. As R(S) = H, we infer from Theorem 3.1(ii′) that A� B.

It follows from the proof of the implication (i)⇒(ii) of Theorem 4.2 that
if W ∈ B(H,K) is an isometry such that A = W ∗BW and R(W ) reduces B
(cf. Theorem 3.1(iii)), then EA = W ∗EBW and WEAW

∗ ≤ EB.
The relation S∗EAS ≤ EB, when considered in a general setting, can be

characterized as follows.

Proposition 4.3. Assume that A ∈ B(H) and B ∈ B(K) are normal
operators and S ∈ B(K,H). Then the following conditions are equivalent:

(i) S∗EAS ≤ EB,
(ii) S is a contraction and SB = AS.

Moreover, S∗EAS = EB if and only if S is an isometry and SB = AS.

Proof. (i)⇒(ii). Argue as in the proof of the implication (ii)⇒(i) of The-
orem 4.2.
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(ii)⇒(i). By the Putnam–Fuglede theorem, we have SEB(∆) = EA(∆)S
and S∗EA(∆) = EB(∆)S∗ for all ∆ ∈ B(C). Hence

S∗SEB(∆) = S∗EA(∆)S = EB(∆)S∗S, ∆ ∈ B(C).

This fact combined with ‖S‖ ≤ 1 yields

〈S∗EA(∆)Sf, f〉 = 〈S∗SEB(∆)f, f〉 = ‖(S∗S)1/2EB(∆)f‖2

≤ ‖EB(∆)f‖2 = 〈EB(∆)f, f〉, f ∈ K, ∆ ∈ B(C),

which means that S∗EAS ≤ EB.
The proof of the “moreover” part proceeds along the same lines as that

of (i)⇔(ii) (see also Appendix).

As a consequence of Proposition 4.3, we see that if T ∈ B(H,K) and
V ∈ B(K,H) are such that V is a contraction, V B = AV and V T = I (cf.
Theorem 3.1(ii)), then EA ≤ T ∗EBT and V ∗EAV ≤ EB.

Corollary 4.4. Let A ∈ B(H) and B ∈ B(K) be normal operators.

(i) If S∗EAS ≤ EB for some S ∈ B(K,H), then there exist closed linear
subspacesM and N of H and K, respectively, such thatM reduces A,
N reduces B, A|M ∼= B|N and dimM = dimN = dimR(S).

(ii) If there exist closed linear subspaces M and N of H and K, re-
spectively, such that M reduces A, N reduces B, and A|M ∼= B|N ,
then S∗EAS ≤ EB for some partial isometry S ∈ B(K,H) with ini-
tial space N and final space M; in particular, dimM = dimN =
dimR(S).

Proof. (i) It follows from Proposition 4.3 that SB = AS. Hence, by [5,
Lemma 4.1], the spacesM := R(S) andN := K	N (S) have all the required
properties.

(ii) By assumption, there exists a unitary operator U ∈ B(N ,M) such
that B|N = U∗A|MU . This implies thatM reduces EA, N reduces EB, and
EB|N = U∗EA|MU . Define S ∈ B(K,H) by Sf = UPf for f ∈ K, where
P ∈ B(K) is the orthogonal projection of K onto N . Clearly, the operator
S is a partial isometry with initial space N and final space M. Since N
reduces EB, we have PEB(∆) = EB(∆)P for all ∆ ∈ B(C). Hence

〈S∗EA(∆)Sf, f〉 = 〈U∗EA(∆)|MUPf, Pf〉 = 〈EB(∆)Pf, Pf〉
= ‖PEB(∆)f‖2≤‖EB(∆)f‖2 = 〈EB(∆)f, f〉, f ∈K, ∆∈B(C),

which means that S∗EAS ≤ EB. This completes the proof.

In analogy with the relation �, we can define a binary relation - for
normal operators A ∈ B(H) and B ∈ B(K) by: A - B if S∗EAS ≤ EB for
some S ∈ B(K,H). However, this relation is uninteresting because A - B
for all normal operators A ∈ B(H) and B ∈ B(K).
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The following corollary should be compared with Theorem 4.2.

Corollary 4.5. Let A ∈ B(H) and B ∈ B(K) be normal operators.
Then S∗EAS = EB for some S ∈ B(K,H) if and only if B � A.

Proof. The “only if” part is obvious. In turn, the “if” part follows from
Theorem 3.1(iv′).

5. Antisymmetry of the relation �. We start by stating a result
originally proved by Ernest (cf. [6, Theorem 1.3]) and recently rediscovered
by the present authors. It can be thought of as an operator analogue of
the Cantor–Bernstein theorem from elementary set theory. We include its
proof (which is different from that given by Ernest) to keep the exposition
as self-contained as possible.

Theorem 5.1. Let A ∈ B(H) and B ∈ B(K) be arbitrary operators.
Suppose there exist closed linear subspaces M and N of H and K, respec-
tively, such thatM reduces A, N reduces B, A ∼= B|N and B ∼= A|M. Then
A ∼= B.

Proof. We split the proof into two steps.

Step 1. Let A ∈ B(H) be an arbitrary operator, U ∈ B(H) be an
isometry and N be a closed linear subspace of H such that R(U) ⊆ N ,
R(U) and N reduce A, and A = U∗AU . Then A and A|N are unitarily
equivalent.

Indeed, it follows from Proposition 7.1 in the Appendix that UA = AU
and UA∗ = A∗U . Hence

UnA = AUn and UnA∗ = A∗Un for every integer n ≥ 0.(5.1)

This implies that R(Un) reduces A for all n ≥ 0.
Set Hu =

⋂∞
n=0R(Un) and Mn = Un(H 	 R(U)) for n ≥ 0. By the

von Neumann–Wold decomposition theorem [10, Theorem 4.7.1], H	Hu =⊕∞
n=0Mn. SinceMn = R(Un)	R(Un+1) for all n ≥ 0 and R(Um) reduces

A for all m ≥ 0, we deduce that Hu and Mn reduce A for all n ≥ 0. Set
Au = A|Hu and An = A|Mn for n ≥ 0. It follows from (5.1) that

AnU
nh = AUnh = UnAh = UnA0h, h ∈M0, n ≥ 0.(5.2)

By assumption, P := N 	R(U) reduces A, and P ⊆M0. Hence P and
Q := M0 	 P reduce A0, and M0 = P ⊕ Q . Since R(U) = Hu ⊕ {0} ⊕
M1⊕M2⊕ · · · , we get N = P ⊕R(U) = Hu⊕P ⊕M1⊕M2⊕ · · · . Define
X ∈ B(N ,H) by

X(hu ⊕ U0p0 ⊕ U1(p1 ⊕ q1)⊕ U2(p2 ⊕ q2)⊕ · · · )
= hu ⊕ U0(p0 ⊕ q1)⊕ U1(p1 ⊕ q2)⊕ U2(p2 ⊕ q3)⊕ · · ·
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for hu ∈ Hu, pn ∈ P and qn ∈ Q. Then, by (5.2), X is unitary and AX =
X(A|N ).

Step 2. Let A ∈ B(H) and B ∈ B(K) be arbitrary operators. Suppose
there exist isometries W ∈ B(H,K) and V ∈ B(K,H) such that A =
W ∗BW , B = V ∗AV , R(W ) reduces B and R(V ) reduces A. Then A ∼= B.

Indeed, set U = VW . The operator U is an isometry on H. It follows
from Proposition 7.1 that WA = BW , WA∗ = B∗W , V B = AV and
V B∗ = A∗V . Hence UA = V BW = AU and UA∗ = V B∗W = A∗U ,
which implies that R(U) reduces A. Moreover, A = W ∗BW = W ∗V ∗AVW
= U∗AU . Applying Step 1 with N = R(V ), we get A ∼= A|R(V ). Since
B = V̂ ∗(A|R(V ))V̂ , where V̂ ∈ B(K,R(V )) is the unitary operator defined
by V̂ f = V f for f ∈ K, we conclude that A ∼= B.

Using Step 2 and Remark 3.2 completes the proof.

Applying Theorem 3.1(iii) and Step 2 of the proof of Theorem 5.1, we
obtain the main result of this paper.

Theorem 5.2. If A ∈ B(H) and B ∈ B(K) are normal operators such
that A� B and B � A, then A and B are unitarily equivalent.

Corollary 5.3. Let A ∈ B(H) and B ∈ B(K) be normal operators and
let S ∈ B(K,H) and T ∈ B(H,K) be operators with dense ranges such that
S∗EAS ≤ EB and T ∗EBT ≤ EA. Then A and B are unitarily equivalent.

Proof. Employ Theorems 4.2 and 5.2.

Corollary 5.4. Let A ∈ B(H) and B ∈ B(K) be normal operators.
Suppose that there exist operators V ∈ B(K,H) and W ∈ B(H,K) with
dense ranges such that V B = AV and WA = BW . Then A and B are
unitarily equivalent.

Proof. Apply Theorems 3.1(ii′) and 5.2.

6. Examples. In this section {αn}∞n=1, {βn}∞n=1 and {λn}∞n=1 are as-
sumed to be bounded sequences of complex numbers such that λn 6= 0 for
all n ≥ 1. Let A ∈ B(`2) and B ∈ B(`2) be diagonal operators with diag-
onals {αn}∞n=1 and {βn}∞n=1, respectively, and let T ∈ B(`2) be a weighted
shift with weights {λn}∞n=1 (i.e., Aen = αnen, Ben = βnen and Ten = λnen+1

for n ≥ 1, where {en}∞n=1 stands for the standard orthonormal basis of `2).
The operators A,B are known to be normal. Their spectral measures are
given by

EA(∆) = (sot)
∑
n≥1
αn∈∆

en ⊗ en, ∆ ∈ B(C),(6.1)
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EB(∆) = (sot)
∑
n≥1
βn∈∆

en ⊗ en, ∆ ∈ B(C),(6.2)

where both series in (6.1) and (6.2) are convergent in the strong operator
topology. Since in general X(u ⊗ v)Y = (Xu) ⊗ (Y ∗v) for u, v ∈ H and
X,Y ∈ B(H), we get

T ∗EB(∆)T = (sot)
∑
n≥1

βn+1∈∆

|λn|2en ⊗ en, ∆ ∈ B(C),(6.3)

TEA(∆)T ∗ = (sot)
∑
n≥1
αn∈∆

|λn|2en+1 ⊗ en+1, ∆ ∈ B(C).(6.4)

All the examples that follow come from the above triplet (A,B, T ) by
specifying the sequences {αn}∞n=1, {βn}∞n=1 and {λn}∞n=1. We begin with two
examples illustrating Theorem 2.3.

Example 6.1. Fix an integer κ ≥ 2 and a complex number γ 6= 0, and
set

α1 = · · · = ακ−1 = 0, αn = γ for n ≥ κ,
β1 = · · · = βκ = 0, βn = γ for n ≥ κ + 1,
λn = 1 for n ≥ κ.

We claim that A,B, T satisfy (2.3). Take ∆ ∈ B(C) and consider four pos-
sible cases relating 0 and γ to ∆. If 0 /∈ ∆ and γ /∈ ∆, then the equality in
(2.3) follows from (6.1) and (6.3) directly. If 0 /∈ ∆ and γ ∈ ∆, then by (6.1)
and (6.3) we have

EA(∆) = T ∗EB(∆)T = (sot)
∞∑
n=κ

en ⊗ en,

which means that the equality in (2.3) is valid. In turn, if 0 ∈ ∆ and γ /∈ ∆,
then

EA(∆)− T ∗EB(∆)T
(6.1)&(6.3)

=
κ−1∑
n=1

(1− |λn|2)en ⊗ en
(6.3)
= I − T ∗T.(6.5)

Finally, if 0 ∈ ∆ and γ ∈ ∆, then the equality in (2.3) holds automatically.
This proves our claim. The present example can be summarized as follows:

• the operators A,B, T satisfy (2.3),
• A and B are not unitarily equivalent (as dimN (A) < dimN (B) <∞),
• σ(A) = σ(B) = {0, γ},
• any of the two possibilities A �T B and A 6�T B may occur (cf.

(6.5)),
• for fixed A and B, there exist infinitely many operators T satisfy-

ing (2.3).
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Employing (6.2) and (6.4), we can also show that

• EB(∆) = TEA(∆)T ∗ + χ∆(0)(I − TT ∗) for all ∆ ∈ B(C),
• I − TT ∗ =

∑κ
n=1(1− |λn−1|2)en ⊗ en with λ0 = 0, and so the relation

B �T ∗ A never holds.

Note that if triplets (An, Bn, Tn), n ≥ 1, are as in Example 6.1 (diagonals
of An, Bn and weights of Tn may vary with n) and supn≥1(‖An‖ + ‖Bn‖
+ ‖Tn‖) < ∞, then the operators A :=

⊕∞
n=1An, B :=

⊕∞
n=1Bn and

T :=
⊕∞

n=1 Tn satisfy (2.3), A ∼= B and any of the two possibilities A�T B
and A 6�T B may occur. Moreover, if {Tn}∞n=1 is suitably chosen, then the
operator I − T ∗T may not be compact.

Example 6.2. Fix a complex number γ 6= 0, and set

αn = 0 for odd n ≥ 1, αn = γ for even n ≥ 1,
βn = 0 for even n ≥ 1, βn = γ for odd n ≥ 1,
λn = 1 for even n ≥ 1.

Now we can verify that

• the operators A,B, T satisfy (2.3),
• A and B are unitarily equivalent (indeed, the operator U ∈ B(`2)

defined by Ue2n = e2n−1 and Ue2n−1 = e2n for n ≥ 1 is unitary and
U∗AU = B),
• σ(A) = σ(B) = {0, γ},
• I − T ∗T = (sot)

∑
n≥1, n odd(1 − |λn|2)en ⊗ en, and so any of the

two possibilities A �T B and A 6�T B may occur with noncompact
I − T ∗T .

We conclude this section with yet another example showing that A�T B
may not imply A ∼= B.

Example 6.3. Suppose that {βn}∞n=1 is a (bounded) strictly decreasing
sequence of real numbers, αn = βn+1 for all n ≥ 1, and infn≥1 |λn| ≥ 1. It
follows from (6.1) and (6.3) that EA ≤ T ∗EBT , i.e., A �T B. Since β1 ∈
σ(B) \ σ(A), the operators A and B are not unitarily equivalent. Note also
that if ∆ ∈ B(C) and β1 /∈ ∆, then by (6.2) and (6.4), EB(∆) ≤ TEA(∆)T ∗.
Moreover, if S ∈ B(`2) is a weighted shift with weights {µn}∞n=1 ⊆ C \ {0}
such that supn≥1 |µn| ≤ 1, then by (6.1) and (6.3), S∗EBS ≤ EA. Finally,
if λn=1 for all n ≥ 1, then T is an isometry and EA = T ∗EBT (though
A 6∼= B).

7. Appendix. We begin by proving a general fact which is closely re-
lated to Theorem 3.1(iii) and the proofs of Theorems 5.1 and 5.2.
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Proposition 7.1. Let A ∈ B(H) and B ∈ B(K) be arbitrary operators
and let W ∈ B(H,K) be an isometry. Then the following two conditions are
equivalent:

(i) A = W ∗BW and R(W ) is invariant for B,
(ii) WA = BW .

Moreover, the following two conditions are equivalent:

(iii) A = W ∗BW and R(W ) reduces B,
(iv) WA = BW and WA∗ = B∗W .

Proof. (i)⇒(ii). Since R(W ) is invariant for B, andWW ∗ is the orthog-
onal projection of K onto R(W ), we have WA = WW ∗BW = BW .

(ii)⇒(i). The equality WA = BW immediately implies that R(W ) is
invariant for B. In turn, multiplying WA = BW on the left by W ∗, we get
A = W ∗BW .

Applying the equivalence (i)⇔(ii) to the pairs (A,B) and (A∗, B∗), we
obtain (iii)⇔(iv).

In general, WA = BW does not imply WA∗ = B∗W even if W is an
isometry and A = B. Indeed, let W ∈ B(`2) be the unilateral shift and let
A ∈ B(`2) be an operator represented by a lower triangular Toeplitz matrix
which is not diagonal (see [1, p. 109] for a necessary and sufficient condition
for a formal Toeplitz matrix to represent a bounded linear operator on `2).
Then WA = AW and WA∗ 6= A∗W . As a consequence, A = W ∗AW and
R(W ) is an invariant subspace for A that does not reduce A.

Of course, if A ∈ B(H) and B ∈ B(K) are normal operators and WA =
BW , then, by the Putnam–Fuglede theorem, WA∗ = B∗W regardless of
whether W is an isometry or not. The natural question which now arises is
whether the implication

A = W ∗BW ⇒ R(W ) is invariant for B

holds for all normal operators A ∈ B(H) and B ∈ B(K) and all isometries
W ∈ B(H,K). In general, the answer is no even if A = B. Indeed, if W ∈
B(`2) is the unilateral shift and A ∈ B(`2), then the equality A = W ∗AW
holds if and only if the operator A is represented by a Toeplitz matrix (cf.
[1, Proposition 4.2.3]). Hence, if A is represented by a symmetric Toeplitz
matrix which is not diagonal (it is enough to consider a band matrix), then
A = W ∗AW , A is selfadjoint and R(W ) is not invariant for A. In fact, the
operator A can be chosen to be positive and invertible. Indeed, if W is the
Hardy shift on the Hardy space H2 and A is a Toeplitz operator on H2 with
a symbol φ ∈ L∞ such that φ is not a scalar multiple of the unit 1 of L∞
and φ ≥ δ1 for some positive real number δ, then A = W ∗AW , R(W ) is
not invariant for A (because there exists an integer n 6= 0 such that the



A binary relation between normal operators 263

nth Fourier coefficient of φ is nonzero) and A ≥ δI, which implies that A is
invertible in the algebra B(H2). For more information on Toeplitz operators
we refer the reader to [1, Section 4.2]).

We now indicate two situations in which the equality A = W ∗BW implies
that R(W ) reduces B. The first one requires the subspace R(W ) to be
invariant for B. The other one does not require this, and is closely related
to Theorem 3.1(iv′).

Proposition 7.2. Let A ∈ B(H) and B ∈ B(K) be normal operators
and letW ∈ B(H,K) be an isometry. If A = W ∗BW and R(W ) is invariant
for B, then R(W ) reduces B.

Proof. Since A = Ŵ ∗(B|R(W ))Ŵ , where Ŵ ∈ B(H,R(W )) is the uni-
tary operator defined by Ŵh = Wh for h ∈ H, we see that B|R(W ) is normal.
As B is normal, the space R(W ) reduces B (see, e.g., [16, Corollary 1]).

Proposition 7.3. Let A ∈ B(H) and B ∈ B(K) be orthogonal projec-
tions and letW ∈ B(H,K) be an isometry. Then the following two conditions
are equivalent:

(i) A = W ∗BW ,
(ii) W (R(A)) ⊆ R(B) and W (H	R(A)) ⊆ K 	R(B).

In particular, if A = W ∗BW , then R(W ) reduces B.

Proof. (i)⇒(ii). Since A and B are orthogonal projections, we get

‖Ah‖2 = 〈Ah, h〉 = 〈W ∗BWh, h〉 = ‖BWh‖2, h ∈ H.(7.1)

This yields

‖Wh‖ = ‖h‖ = ‖Ah‖ (7.1)
= ‖BWh‖ ≤ ‖Wh‖, h ∈ R(A).

Hence Wh ∈ R(B) for any h ∈ R(A), which means that W (R(A)) ⊆ R(B).
In turn, if h ∈ H 	 R(A), then Ah = 0, which together with (7.1) gives
BWh = 0. Thus W (H	R(A)) ⊆ K 	R(B). As a consequence,

B(R(W )) = B(W (R(A))) +B(W (H	R(A))) = W (R(A)) ⊆ R(W ),

which shows that R(W ) reduces B.
(ii)⇒(i). Note that if f ∈ R(A) and g ∈ H 	R(A), then

W ∗BW (f + g) = W ∗BWf +W ∗BWg = W ∗Wf = f = A(f + g).

This completes the proof.
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