
STUDIA MATHEMATICA 193 (2) (2009)

Embedding a topological group into its
WAP-compactification

by

Stefano Ferri (Bogotá) and Jorge Galindo (Castellón)

Abstract. We prove that the topology of the additive group of the Banach space c0

is not induced by weakly almost periodic functions or, what is the same, that this group
cannot be represented as a group of isometries of a reflexive Banach space. We show, in
contrast, that additive groups of Schwartz locally convex spaces are always representable
as groups of isometries on some reflexive Banach space.

1. Introduction. A bounded continuous function f : G → C defined
on a topological group G is said to be weakly almost periodic if the set of
left translates {fx : x ∈ G} (where fx(y) = f(xy)) is a weakly relatively
compact subset of the Banach space Cb(G) of all continuous bounded func-
tions on G. The set WAP(G) of all weakly almost periodic functions on G is
a uniformly closed and translation invariant subalgebra of Cb(G) and thus
has the structure of a commutative C∗-algebra. The maximal ideal space of
WAP(G) is known as the weakly almost periodic compactification of G and
will be denoted by GWAP. Thus WAP(G) is isomorphic (as a C∗-algebra)
to C(GWAP,C). The term compactification is justified by the existence of
a naturally defined continuous map j : G → GWAP with dense range. This
function is one-to-one exactly when WAP(G) is a point separating subset
of Cb(G).

One of the main features of GWAP is the existence of a product extending
that of G (that is, with j(xy) = j(x)j(y)). This multiplication makes GWAP

a semitopological semigroup in which the functions y 7→ gy are continuous
on GWAP for every g ∈ G. Hence GWAP is what is known as a semigroup
compactification (see [3, Chapter 2] for more on this subject).

Every compact semitopological group can be represented as a group of
linear isometries of a reflexive Banach space, the latter equipped with the
weak operator topology [23]. Recall here that the weak operator topology
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on the space B(E) of all continuous linear endomorphisms of a Banach
space E is defined, by analogy with the Hilbert space case, as the weak
topology induced by the maps ψv,f (T ) = 〈f, Tv〉, where v ∈ E, f ∈ E∗, and
〈·, ·〉 denotes the dual pairing between E and E∗. Following again Hilbert
space theory, the strong operator topology on B(E) is defined as the weak
topology defined by the maps ρv(T ) = T (v), v ∈ E. It is well known that
both the weak and the strong operator topologies coincide on the unitary
group of a Hilbert space. Megrelishvili [19] proved that the same is true for
the isometry group of any reflexive Banach space.

Putting all this together, and taking into account that every continuous
function on a compact semitopological semigroup is weakly almost periodic,
we have the following result.

Theorem 1.1 ([19]). Let G be a topological group. The following are
equivalent :

(1) There is a topological isomorphism of G into the isometry group of
a reflexive Banach space with the strong operator topology.

(2) There is a semitopological semigroup isomorphism of G into a com-
pact semitopological semigroup.

(3) The algebra WAP(G) separates the identity e of G from every closed
subset of G not containing e.

(4) The canonical morphism εWAP(G) : G → GWAP is a semitopologi-
cal semigroup isomorphism (i.e. a homeomorphism and a semigroup
isomorphism).

Because of property (1), groups satisfying these conditions are called
reflexively representable.

Reflexive representability of a topological group, besides being an inter-
esting property in its own right, can be regarded as an indicator of how
much information about the topology of G is encoded in GWAP and as a
measure of the richness of the algebra WAP(G).

When G is locally compact, the left regular representation λ(g)f = fg−1 ,
g ∈ G, f ∈ Lp(G), p ≥ 2, establishes a topological isomorphism of G into the
isometry group of the reflexive Banach space Lp(G). Locally compact groups
are therefore reflexively representable. At the other extreme we find Megrel-
ishvili’s example [18] of a topological group with no nonconstant weakly
almost periodic function; this is the group H+[0, 1] of all orientation pre-
serving homeomorphisms of [0, 1] with the topology of uniform convergence
on compact subsets.

Locally compact groups belonging to the class [IN] (i.e. admitting a com-
pact neighbourhood of the identity which is invariant under conjugation)
have WAP-compactifications of formidable cardinality (see [5] and [6]), an
indication of their sheer richness in WAP-functions. This led to the conjec-
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ture that all Abelian topological groups might be reflexively representable.
We find however (see Section 2) an Abelian group (namely, the additive
group of the Banach space c0) that is not reflexively representable and thus
disprove that conjecture. This answers, in the negative, questions posed by
Megrelishvili in [20], [17] and [18] and by Glasner and Megrelishvili in [9].
In the last section we deal with Schwartz locally convex spaces. In [8] it was
shown that Schwartz spaces need not be representable as groups of isome-
tries of any Hilbert space. We see here in contrast that Schwartz spaces are
always representable as groups of isometries on some reflexive Banach space.

1.1. Same problem, other algebras. The problem of establishing whether
a topological group belonging to a particular class embeds into the semi-
group compactification induced by a given admissible algebra is interesting
for many different spaces of functions. Here we briefly sketch what is known
concerning the above question when WAP(G) is replaced by other classical
admissible algebras. We shall refer to the algebra AP(G) of almost periodic
functions on G and to the uniform closure of the Fourier–Stieltjes algebra
B(G) of G. We recall that a function f : G → C is almost periodic pro-
vided that the set {fx : x ∈ G} is norm relatively compact in Cb(G). The
Fourier–Stieltjes algebra of G is defined as the linear span of the set of
positive-definite functions.

The compactification GAP induced by AP(G) is often called the Bohr
compactification of G and it is a compact topological group. This makes
impossible for the homeomorphism εAP : G→ GAP to be an embedding un-
less G is precompact. The compactification GB(G) is Mayer’s [16] Eberlein
compactification. The morphism εB(G) : G → GB(G) is a homeomorphism
exactly when G is unitarily representable, that is to say, when G is topolog-
ically isomorphic to the unitary group (= isometry group) of some Hilbert
space. As we stated above, the left regular representation establishes a topo-
logical isomorphism of G into the isometry group of Lp(G). Taking p = 2
we see that all locally compact groups are unitarily representable. There
are some other interesting classes of unitarily representable groups, such as
the additive groups of some Banach spaces, like Lp(µ), 1 ≤ p ≤ 2, or free
Abelian topological groups [24]. The question of unitary representability is
treated in more detail in [8].

2. An Abelian group G need not embed into GWAP. We begin with
a few technical facts concerning p-limits which will be needed to present
our main result. We recall that, given a set 〈xd〉d∈D indexed by D in a
topological space X and an ultrafilter p on D, we say that L is the p-limit
of 〈xd〉d∈D and write p-limxd = L if for every neighbourhood U of L we
have {d ∈ D : xd ∈ U} ∈ p. In any topological space, if p-limits exist they
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are unique (see [10, Theorem 3.48]). Moreover, X is compact if and only if,
for every D, every indexed set 〈xd〉d∈D and every ultrafilter p on D, p-limxd
exists (see [10, Theorem 3.52]).

An important tool in dealing with weakly almost periodic functions is
Grothendieck’s double limit criterion, which says that a bounded, complex-
valued function f defined on G is in WAP(G) if and only if the equality

lim
m

lim
n
f(xn + xm) = lim

n
lim
m
f(xn + xm)

holds for all sequences 〈xn〉 and 〈xm〉 in G for which the above two lim-
its exist (see [3, Theorem 2.3]). We need an extension of Grothendieck’s
double limit criterion to certain iterated p-limits of weakly almost periodic
functions. We start with a definition.

Definition 2.1. We say that a permutation π of the set {1, . . . , n}
is a shuffle with cut k (where k is an integer 1 ≤ k ≤ n), if, whenever
i and j both belong to {1, . . . , k} or both belong to {k + 1, . . . , n}, then
i < j implies that π(i) < π(j).

In other words, a shuffle with cut k preserves the order of both the set
{1, . . . , k} and the set {k+ 1, . . . , n}. Shuffles are so called because they are
exactly the permutations we can achieve with a usual riffle shuffle of a deck
of n cards.

The next lemma is [2, Lemma 9.19]. There attention was restricted to a
distance function but the proof is exactly the same.

Lemma 2.2. Let G be a topological group, φ ∈WAP(G) and fix integers
n > k ≥ 1. Let 〈xi1,...,ik〉 and 〈yik+1,...,in〉 be two multi-indexed sequences
in G. Fix n free ultrafilters p1, . . . , pn on N. If π is a shuffle with cut k, then

p1-lim
i1
. . . pn-lim

in
φ(xi1,...,ik + yik+1,...,in)

= pπ(1)- lim
iπ(1)

. . . pπ(n)- lim
iπ(n)

φ(xi1,...,ik + yik+1,...,in).

Proof. If n = 2 (and k = 1) the equality

p1-lim
i1
p2-lim

i2
φ(xi1 + yi2) = p2-lim

i2
p1-lim

i1
φ(xi1 + yi2)

follows directly from the definition of WAP-function. Since the set {φx :
x ∈ G} is relatively weakly compact, there is a continuous bounded function
f0 : G → C with p1-limi1 φxi1 = f0 (the limit is taken in the weak topology
of C(G)). Let on the other hand p2-limi2 yi2 = y0 ∈ GWAP. Now, since
WAP-functions are exactly those extending continuously to GWAP, we have

p1-lim
i1
p2-lim

i2
φ(xi1 + yi2) = p1-lim

i1
p2-lim

i2
φxi1 (yi2) = p1-lim

i1
φxi1 (y0)

= f0(y0) = p2-lim
i2
f0(yi2)
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= p2-lim
i2
p1-lim

i1
φxi1 (yi2)

= p2-lim
i2
p1-lim

i1
φ(xi1 + yi2).

Once the case n = 2 is proven, the proof follows by induction just as in
[2, Lemma 9.19].

As stated in Theorem 1.1 a topological group G embeds into GWAP if
and only if it admits enough weakly almost periodic functions to separate
its identity e from every closed subset C which does not contain e. The
following lemma shows that, if this happens, then every neighbourhood of
the identity contains another one which is defined by a single continuous
weakly almost periodic function.

Lemma 2.3. Let G be a metrizable group equipped with a translation
invariant metric d and let e denote its identity. If the embedding w : G →
GWAP is a homeomorphism, then for every ε > 0 there exists a continuous
weakly almost periodic function φε and some δε > 0 such that φε(e) = 0
and , for every x ∈ G,

|φε(x)| < δε implies d(x, e) < ε.

Proof. For each m ∈ N consider a weakly almost periodic function φm
such that 0 = φm(e) /∈ φm(Cm) where Cm denotes the closed set {x ∈ G :
d(x, e) ≥ 1/m} and the closure is taken inG. The existence of such a function
is guaranteed by Theorem 1.1.

Take n such that 1/n ≤ ε. The lemma then follows with φε = φn and
δε = inf{|φn(x)| : x ∈ Cn}.

The proof of the following theorem is modelled on Raynaud’s proof [22]
of nonuniform embeddability of c0 into `2, as it appears in [2, Theorem 9.20].

Theorem 2.4. The additive group of the Banach space c0 is not reflex-
ively representable.

Proof. Suppose towards a contradiction that c0 embeds into its WAP-
compactification and consider the weakly almost periodic function φ and the
number δ > 0 determined by ε = 1/2 in Lemma 2.3. Since φ is continuous,
there is some α > 0 such that ‖x− y‖∞ < α implies |φ(x− y)| < δ/2.

Fix k such that 1/k < α and consider the vectors sn ∈ c0 with their first
n coordinates 1/k and the rest 0. Then ‖

∑2k
j=1(−1)jsj‖∞ < α.

Clearly, the same inequality will hold for every sequence of indices n1 <
· · · < n2k: ∥∥∥ k∑

j=1

sn2j
−

k∑
j=1

sn2j−1

∥∥∥
∞
< α.
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Thus, for any n1, . . . , n2k (with n1 < · · · < n2k) we have∣∣∣φ( k∑
j=1

sn2j −
k∑
j=1

sn2j−1

)∣∣∣ < δ

2
.

Taking p-limits along free ultrafilters p1, . . . , p2k, we get∣∣∣p1-lim
n1

p2-lim
n2

. . . p2k-lim
n2k

φ
( k∑
j=1

sn2j −
k∑
j=1

sn2j−1

)∣∣∣ ≤ δ

2
.

The permutation 1 → 1, 2 → 3, 3 → 5, . . . , k → 2k − 1, k + 1 → 2,
k + 2→ 4, . . . , 2k → 2k is a shuffle. By Lemma 2.2 (recall that φ is weakly
almost periodic) the above limit equals

p1-lim
n1

p3-lim
n3

p5-lim
n5

. . . p2k−1- lim
n2k−1

p2-lim
n2

. . .

. . . p2k-lim
n2k

∣∣∣φ( k∑
j=1

sn2j −
k∑
j=1

sn2j−1

)∣∣∣,
hence for large enough n1 < n3 < · · · < n2k−1 < n2 < n4 < · · · < n2k we
have ∣∣∣φ( k∑

j=1

sn2j −
k∑
j=1

sn2j−1

)∣∣∣ < δ.

The choice of φ and δ implies that∥∥∥ k∑
j=1

sn2j −
k∑
j=1

sn2j−1

∥∥∥
∞
<

1
2
.

But a moment’s reflection taking into account that n1 < n3 < . . . < n2k−1 <
n2 < n4 < · · · < n2k shows that∥∥∥ k∑

j=1

sn2j −
k∑
j=1

sn2j−1

∥∥∥
∞

=
∥∥∥ k∑
j=1

sj −
2k∑

j=k+1

sj

∥∥∥
∞

= 1.

This is the desired contradiction.

Remark 2.5. Megrelishvili [20, 19, 18] and Megrelishvili and Glasner [9,
Problem 6.11] asked whether the map εWAP is a homeomorphism for every
Abelian group. Megrelishvili specifically asked the same question for Banach
spaces and, in particular, for c0. This is natural, as it is well known that c0
cannot be uniformly embedded into `2, and therefore does not embed into
its Eberlein compactification GB(G). Theorem 2.4 answers Megrelishvili’s
questions. Theorem 2.4 also answers Question 6.12 of [20] by showing that
quotients of reflexively representable groups may fail to be reflexively rep-
resentable. It suffices to observe that c0, just as every separable Banach
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space, is a quotient of `1 and that `1 is reflexively representable. In fact, this
shows that even a quotient of a unitarily representable space need not be
reflexively representable.

Remark 2.6. The proof of Theorem 2.4 could have been trivially modi-
fied to show that every spreading basis in a reflexively representable Banach
space must be unconditional. We have chosen this simple statement to make
the paper more accessible to nonspecialists in Banach space theory. For the
concept of spreading and conditional basis we refer the reader to [2]. It
should be added however that the proof of Theorem 2.4 cannot be applied
to weakly sequentially complete, let alone reflexive, spaces, for in such a
space every spreading basis is unconditional [15, Théorème 5].

3. More reflexively representable, not unitarily representable
groups. Most of the known classes of reflexively representable groups are
also classes of unitarily representable groups: locally compact groups, Hilbert
spaces, Lp(µ) spaces with 1 ≤ p ≤ 2, free Abelian topological groups. The
only well-known source of reflexively representable groups that contains
groups that are not unitarily representable is the class of stable Banach
spaces introduced by Krivine and Maurey [14]. A Banach space E is stable
if for all bounded sequences 〈xn〉n and 〈yn〉n in E and for all nontrivial
ultrafilters p1 and p2, the following equality on the p-limits holds:

p1-lim
n
p2-lim

m
‖xn + ym‖ = p2-lim

m
p1-lim

n
‖xn + ym‖.

The function ‖ · ‖/(1 + ‖ · ‖) on a stable Banach space is weakly almost
periodic by Grothendieck’s double limit criterion and thus stable Banach
spaces are reflexively representable. This was first proved by Chaatit [4]
without referring explicitly to weakly almost periodic functions. Among
stable spaces we find all Lp(µ)-spaces for 1 ≤ p < ∞. It is known on the
other hand that Lp(µ) is not unitarily representable for p > 2 (this depends
on results of Schoenberg and Megrelishvili, see the discussion in [8]). For a
proof of the reflexive representability of some Lp(µ)-spaces that does not
refer to the stability of the norm, see [17]. Using stable Banach spaces as
a basis we show here that the Schwartz locally convex spaces constitute
another class of reflexively representable topological groups with nonunitar-
ily representable members. Schwartz spaces can be characterized as those
locally convex vector spaces that can be represented as a subspace of a pro-
jective limit of Banach spaces {Ei, Tij} with Tij : Ej → Ei compact for every
j > i (recall that a linear operator T : E → F between Banach spaces E
and F is compact provided the image T (BE) of the unit ball BE of E has
compact closure in F ). Let now E denote a Banach space and equip its con-
jugate space E∗ with the topology τk(E) of uniform convergence on compact
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subsets of E, the space (E∗, τk(E)) is then a Schwartz space. Jarchow [11]
and Randtke [21] independently proved that a locally convex space E is a
Schwartz space if and only if it is linearly homeomorphic to a subspace of
some power of (c0, τk(`1)), i.e., that the space (c0, τk(`1)) is universal in the
class of Schwartz spaces. We shall denote (c0, τk(`1)) as S(c0) (τk(`1) is the
strongest locally convex Schwartz topology that is weaker than the norm
topology of c0).

While it is proved in [8] that S(c0) is not unitarily representable, we prove
below that it is reflexively representable. We shall derive this fact from the
following factorization theorem of Fonf, Johnson, Plichko, and Shevchyk
that uses Johnson’s space R defined in [12]. The Banach space R is defined
as the `2-sum R = (

∑∞
n=1Mn)`2 of a suitable family of finite-dimensional

spaces Mn (see [7] or [12] for more details).

Theorem 3.1 (Theorem 2.1 of [7]). For each Banach space X with the
approximation property and for each compact subset K of X, there is a
compact one-to-one operator TK : R → X with T (BR) ⊃ K, where BR
denotes the unit ball of BR.

Remark 3.2. We refer the nonspecialist reader to the monograph [25]
where the meaning and significance of the approximation property is ex-
plained and `p-sums (

∑
En)`p (and their duality properties) are introduced.

We will content ourselves here with remarking that `1 does have the approx-
imation property.

Corollary 3.3. The space S(c0) and , a fortiori, every Schwartz space
is reflexively representable.

Proof. The proof is as that of [8, Theorem 3.3]. Let K(`1) denote any
set that is cofinal in the family of all compact subsets of `1 (ordered by
inclusion). For each K ∈ K(`1) we consider the compact operator TK : RK →
`1 defined on a copy RK of R that is provided by Theorem 3.1.

Define now
Ψ : `∞ →

∏
K∈K(E)

R∗K

as the product Ψ =
∏
K∈K(E) T

∗
K , where again R∗K represents a copy of R∗:

This map is easily seen to be one-to-one. We now regard Ψ as an op-
erator defined on (`∞, τk(`1)). Since all TK ’s are compact operators, Ψ is
continuous, and the covering property of the TK ’s makes Ψ an open map-
ping onto its image. We thus conclude that Ψ is a linear homeomorphism of
(`∞, τk(`1)) onto a subspace of

∏
K∈K(E)R

∗
K .

We see next that
∏
K∈K(E)R

∗
K is reflexively representable. Each R∗K is

linearly isometric to (
∑

nM
∗
n)`2 . Since each M∗n is finite-dimensional, it is

stable. As the `2-sum of stable Banach spaces is known to be stable (see
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[14, Théorème II.1]), we find that R∗K is a stable Banach space and thus
reflexively representable. We observe finally that reflexive representability is
preserved by arbitrary products: this follows from Theorem 1.1 because the
composition of a projection with a weakly almost periodic function is again
weakly almost periodic.

The space (`∞, τk(`1)), being isomorphic to a subspace of the product∏
K∈K(E)R

∗
K , is therefore reflexively representable, since S(c0) is a subspace

of (`∞, τk(`1)) and is universal in the class of Schwartz spaces, and every
Schwartz space is reflexively representable.

Remark 3.4. Let us mention two recent results improving or generaliz-
ing Theorem 2.4. First, in a paper published shortly after the submission of
the present article, Kalton [13] answered a long-standing question in non-
linear functional analysis by proving that c0 does not admit a uniform em-
bedding in any reflexive Banach space. This is a far reaching generalization
of [22, Théorème 5.1] from which Theorem 2.4 follows if one uses the fact
([19]) that every reflexively representable group can be uniformly embedded
in a reflexive Banach space. Later on, A. Berenstein, I. Ben-Yaacov and the
first named author [1] proved that every reflexively representable topological
group whose topology is induced by an invariant metric admits an equiva-
lent distance that is both invariant and stable. Using this fact, nonreflexive
representability of c0 could be derived directly from [22, Théorème 5.1].
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Exp. Math. 27, de Gruyter, Berlin, 1998.
[11] H. Jarchow, Die Universalität des Raumes c0 für die Klasse der Schwartz-Räume,
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uniformes, Israel J. Math. 44 (1983), 33–52.
[23] A. I. Shtern, Compact semitopological semigroups and reflexive representability of

topological groups, Russian J. Math. Phys. 2 (1994), 131–132.
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