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Compact perturbations of linear differential equations
in locally convex spaces

by

S. A. SHKARIN (London)

Abstract. Herzog and Lemmert have proven that if F is a Fréchet space and T: E — E
is a continuous linear operator, then solvability (in [0, 1]) of the Cauchy problem & = T'z,
x2(0) = zo for any zo € E implies solvability of the problem z(t) = Tx(t) + f(¢,z(t)),
z(0) = zo for any zp € E and any continuous map f : [0,1] x E — E with relatively
compact image. We prove the same theorem for a large class of locally convex spaces
including;:

e DFS-spaces, i.e., strong duals of Fréchet—Schwartz spaces, in particular the spaces
of Schwartz distributions S’(R"), the spaces of distributions with compact support
E'(2) and the spaces of germs of holomorphic functions H(K) over an arbitrary
compact set K C C";

e complete LFS-spaces, i.e., complete inductive limits of sequences of Fréchet—Schwartz
spaces, in particular the spaces D(§2) of test functions;

e PLS-spaces, i.e., projective limits of sequences of DFS-spaces, in particular, the
spaces D'({2) of distibutions and .A({2) of real-analytic functions.

Here {2 is an arbitrary open domain in R". We construct an example showing that the
analogous statement for (smoothly) time-dependent linear operators is invalid already for
Fréchet spaces.

1. Introduction. In this paper all linear spaces are spaces over the
field R. All locally convex topological vector spaces (LCS) are assumed to be
Hausdorff. Below R is always the set of real numbers, N is the set of positive
integers and Z, = NU {0}.

Ordinary differential equations in abstract spaces
(1) a(t) = f(t, =(t))

(Eisa LCS, f: I x E— E and [ is an interval of R) have been intensely

studied during the last decades (see e.g. [1, 4, 6-12, 17-20, 23, 29-31]). One
of the reasons to study them is the fact that any partial differential equation
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can be interpreted as an ordinary differential equation in an appropriate LCS.
Linear differential equations form an interesting and important subclass of
ordinary differential equations in LCS (see e.g. [4, 6, 9, 10, 12, 1820, 29, 32,
33]). A solution of (1) is a function z € C*(I, E) such that 2(t) = f(¢, z(t))
for any ¢t € I (we consider only strong solutions). The symbol L(E) stands
for the space of continuous linear operators on a LCS FE, and £L(I, E) is the
set of continuous maps T' : I x E — E, (t,z) — Ty, linear with respect
to x € E. We say that a map f : X — Y is M-compact (X and Y are
topological spaces) if f is continuous and f(X) is compact and metrizable.

Let EbeaLCS,a >0, f € C([0,a], E),zo € Eand g : [0,a] x E — E be
M-compact. We consider Cauchy problems for non-perturbed and perturbed
linear ordinary differential equations:

(2) z(t) = Tx(t), z(0) = zo

(3) z(t) =Tx(t) + f(t), x(0) = xo

(4) o(t) = Tx(t) + g(t, z(t)), (0) =0

where T' € L(E). For the time-dependent case we consider Cauchy problems
(5) i(t) = Tyx(t), z(0) = o,

(6) i(t) = Tix(t) + g(t,x(t)), (0) = o,

where T' € £([0,al, E). Following [4, 32, 12| we define

(7) ex(F) ={T € L(FE) : (2) is solvable in [0, a] for any z¢ € E},

(8) ex' (E) ={T € L(E) : (3) is solvable in [0, a]
for any (zo, f) € E x C(R, E)},
9) unex(E) = {T' € L(E) : (2) is uniquely solvable in [0, a]
for any z¢ € E},
(10)  unex'(E) ={T € L(E) : (3) is uniquely solvable in [0, a
for any (zo, f) € E x C(R, E)},
(11) ex(E)={T € L(FE) : (4) is solvable in [0, a
for any xp € F and any M-compact map g : [0,a] X E — E}.
The sets ex(FE), ex'(E), unex(E), unex'(E) and €x(E) do not depend

on the choice of a > 0. Moreover, these sets do not change if one replaces
[0,a] in their definition by [0,00) (). Obviously ex(E) C ex'(E) C ex(E),

(*) Indeed, if b € (0,00] and T € L(E) satisfies one of the conditions (7)—(11) for some
a > 0, then we can represent the interval I = [0,b] (I = [0,00) if b = 00) as a finite (or
countable if b = 0o) union of intervals [z, z;41] such that z; < ;41 and ;41 —z; < a
for any j. Then we can produce a solution of (2), (3) or (4) on I solving the equation on
[, xj+1] consecutively and using the value of the solution at the right end of the previous
interval as the initial data.
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unex’(E) C unex(F) C ex(E) and unex'(F) C ex/(F). If E is a Banach space
then L(E) = unex'(FE) according to the Picard theorem. When F is a Fréchet
space, this equality is in general invalid. For example, L(E) # ex(E) #
unex(E) for E = C*°[0,1] (see [20, 19]) and L(E) = ex(E) # unex(FE) for
E =R (see [32, 9, 10]). Moreover, there exists 7' € £L(R,RY) such that (5)
has no solutions for any zo € RY \ {0} (see [33]). However, there exists a
non-normable Fréchet space E such that L(E) = unex(F) (see [18]). The
following theorem is proved by Herzog and Lemmert [12].

THEOREM HL. Let E be a Fréchet space. Then ex(E) =ex(E).

Note that the weaker equality ex(F) = ex/(E) for Fréchet spaces is also
proved in [29]. Let

CP={F:FEisalLCS and ex(F) =ex(E)}.

In this paper we prove a sufficient condition for a LCS E (in terms of metric
compact lifting property) to be an element of CP. Using this condition, we
prove that CP includes three classes of LCS )V, X N UF and X N UOPU{)]—"
defined below and show that ) contains the duals of separable metrizable lo-
cally convex spaces with the pre-compact convergence topology, X NUF con-
tains the compactly regular (?) countable inductive limits of Fréchet spaces
and X ﬂUOPU{)}' which contains compactly regular LCS which are countable
inductive limits of countable projective limits of countable inductive limits of
separable Fréchet spaces. In particular, the spaces D({2) of infinitely differ-
entiable functions with compact support, S’'(R™) of Schwartz distributions,
D'(12) of generalized functions and A({2) of real-analytic functions belong
to CP, where {2 is an open subset of R".

Let S = S(R) be the space of rapidly decreasing infinitely differentiable
functions on R:

(12) S =1{f € C(R): |flhs = sup | (&) (ol + 1) < o
xre
for any n,k € Z },
endowed with the topology defined by the seminorms || - ||, . Note that S
is a nuclear Fréchet space [21]. We construct T' € L(R,S) and yg € S such
that for any (tg,x0) € R x S, the problem
(13) z(t) = Tyx(t), x(to) = xo,

is uniquely solvable in any interval containing ¢y, and the equation #(t) =
Tix(t) 4+ yo has no solutions in [0, ) for any € > 0. This example shows that
the natural analog of Theorem HL for time-dependent linear operators on
Fréchet spaces is invalid.

(2) A LCS F is said to be compactly reqular if it is sequentially complete and its dual
E’ with the convex compact convergence topology is a Schwartz space.



206 S. A. Shkarin

We also construct a complete ultrabornological LCS which does not be-
long to CP.

2. Notation and definitions. Everywhere below, I is a compact inter-
val of the real line. For a subset A of a LCS FE, aco A stands for the closure
of the balanced convex hull of A in E, U(E) is the set of open convex and
balanced neighborhoods of zero in the LCS E, and KC(F) is the set of con-
vex balanced metrizable compact subsets of E. A set B C K(E) is called a
base of IC(E) if any ) € K(E) is contained in some K € B. For a convex
balanced set M C FE, Ej; stands for the linear hull of M, endowed with the
locally convex topology 7 = 7(M, E) having the set {UNM : U € U(FE)}
as a pre-base of neighborhoods of zero. As usual, a disk is a closed bounded
convex balanced subset of a LCS E (see [5]). Note that for a disk D C E, the
topology 7(D, E) on Ep is defined by the norm pp, which is the Minkowski
functional of D, i.e., E'p is a normed space. For two disks Dy, Dy C E, we
write D1 < Dy if D; is pre-compact in the normed space Ep, and there
exists € € (0,1) such that Dy C eDs.

DEFINITION 1. A LCS F is said to be integrally complete if any f €
C(I, E) is Riemann integrable in E, or equivalently (see [16] for the proof),
for any metrizable compact set K C F, aco K is compact (and automatically
metrizable [5]).

REMARK 1. The last property is usually called the metric convex com-
pactness property |5]. Evidently any sequentially complete LCS is integrally
complete. Note that any LCS quasicomplete in the Mackey topology [13] is
integrally complete [16].

DEFINITION 2. We say that a map 7' : £ — F (E and F are LCS)
lifts metric compacts if for any K € K(F') there exists @ € K(FE) such that
T(Q) 2 K. We say that a pair (E, F') of LCS has the metric compact lifting
property if any surjective linear sequentially continuous operator T : £ — F
lifts metric compacts.

DEFINITION 3. A subset A of a topological space X is said to be Baire-
measurable if A is a symmetric difference of an open set and a Baire first
category set. A topological space is called Polish if it is separable metrizable
and its topology is defined by a complete metric. A topological space is called
Suslin if it is a continuous image of a Polish space. A metrizable Suslin space
is called analytic.

It is well known that Baire-measurable subsets of a topological space form
a o-algebra, containing the Borel o-algebra [24]. We need several classes of
LCS. As usual F is the class of Fréchet spaces. By X we denote the class
of sequentially complete LCS E such that for any @) € KC(F) there exists
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K € K(FE) for which @ < K. The symbol ) stands for the class of integrally
complete LCS E with IC(E) having a countable base. If A is a class of
LCS then by UA we denote the class of LCS E for which there exist linear
subspaces F,, C E and stronger locally convex topologies 7,, on E,, such that

oo
(U0) E= U E, and for any n € N, (E,,7,) € Aand E, C E,,11.

n=1

We denote by PA the class of sequentially closed subspaces of countable

products of spaces from A. The symbol UypA stands for the class of LCS
(E,T) such that there exist linear subspaces FE,, C E and stronger locally
convex topologies 7, on E,, satisfying (U0) and
(U1) for any n € N, the space (E,, 7|g,) is Suslin.
The symbols ULA and [U%)A stand for the classes of integrally complete spaces
from UA and Uy.A respectively.

DEFINITION 4. Let E be a LCS and T € L(I, E). We denote by X(I,T)
the space of solutions in I of the equation #(t) = Tix(t), endowed with the
uniform convergence topology. We say that a linear subspace F C C(I, E)
is an S-space if F = X (1,T) for some T € L(I, E).

DEFINITION 5. Let I = [a,b], E be a LCS, f € C(I x E,E) and K €
K(FE). We say that equation (1) is compactly solvable over K if there exists
M € K(F) such that

(14)  for any (tg,z0) € I x K there exists a solution x : [tg,b] — M of the
problem z(t) = f(t,z(t)), z(to) = xo.

We say that (1) is uniformly compactly solvable if for any K € IC(E), (1) is
compactly solvable over K. We write Lycs(I, F) for the set of T' € L(I, E)
for which the equation @(¢) = Tyx(t) is uniformly compactly solvable.

3. Main results

PROPOSITION 1. Leta >0, I = [0,a|, E be an integrally complete LCS
and T € Lyes(I, E). Then for any M-compact map g : I x E — E and any
xo € E, problem (6) is solvable in I.

THEOREM 1. Let E be an integrally complete LCS, a > 0, I = [0,a] and
T € L(E). Suppose that

(15)  the operator T : X(I,T) — E, Tx = x(0) lifts metric compacts.
Then T € eX(E) (in particular T € ex'(E)).

THEOREM 2. Let E and F' be LCS such that either E € Y or ' €¢ X
and E € UgPUyFUUF. Then the pair (E, F') has the metric compact lifting

property.
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PROPOSITION 2. Let E be a LCS and F C C(I, E) be an S-space. Then
EcY=>Fe)),EcX=>FecX, EcUF=FcUFandFE ¢
UiPULF = F € U PULF.

Theorem 2 and Proposition 2 immediately imply

COROLLARY 1. Let E € (XNUF)U(XNUPULF)UY and F C C(I,E)
be an S-space. Then the pair (F, E) has the metric compact lifting property.

Theorem 1 and Corollary 1 imply
COROLLARY 2. (X NUF)U (X NUPULF)UY C CP.

The following proposition describes properties of the classes ) and UF
and [UO]P’Ué}" . In particular, together with Corollary 1 it shows that natural
LCS belong to CP.

PROPOSITION 3.

(A) Let E be a separable metrizable LCS, E. be its dual endowed with the
locally convez topology T such that o C 7 C 7, where 0 = o(E', E) is
the weak topology and m = w(E', E) is the pre-compact convergence
topology. Then E. € ).

(B) UF contains all countable inductive limits of Fréchet spaces. All
sequentially complete LFS-spaces (= inductive limits of sequences
of Fréchet spaces) belong to X N UF. In particular, DFS-spaces
(= strong duals of Fréchet Schwartz spaces) belong to X N UF.

(C) [UOIP’TU%)}" contains all countable inductive limits of sequentially com-
plete countable projective limits of integrally complete countable in-
ductive limits of separable Fréchet spaces.

COROLLARY 3. S'(R™) € CP; for any open set 2 C R™,
{D(2),D'(£2), A(2)} C CP;

and for any compact set K C C", H(K) € CP, where H(K) is the space of
germs of holomorphic functions.

We construct two examples, whose properties are summarized in the
following theorem.

THEOREM 3.

(i) There exist an infinitely Fréchet differentiable map T € L(R,S) and
yo € S such that problem (5) is uniquely solvable in any interval
containing ty for any (to, o) € R xS and the equation &(t) = Tyz(t)
+ yo has no solutions in [0,¢) for any ¢ > 0.

(ii) There exists a complete ultrabornological LCS E such that E ¢ CP.
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4. Proofs
4.1. Auziliary lemmas

LEMMA 1.1. Let (E,7) be a LCS (T is the topology of E), M C E be a
balanced convex set, U, € U(E), o € A be such that {UyN(2M) : a € A} is
a base of neighborhoods of zero in (2M,T|apr) and 6 be the (non-Hausdorff
in general) locally convex topology on E, having the set {U, : o € A} as a
base of neighborhoods of zero. Then 0|y = T|pr.

Proof. Obviously 0|p; C 7|as. Let € M and U be an open neighborhood
of z in (M, 7|pr). Then there exists W € U(E, 7) such that (z+W)NM C U.
Pick @ € A for which U, N (2M) € W N (2M). Clearly (z + U,) N M C

+ (Us N (2M)). Therefore,

(x+Us)NM=(x+ U,NE2M)))NMC (z+(WnNE2M)))NM
Clz+W)NMCU.

Since (x+U,)NM is a neighborhood of x in (M, 6|5s), we obtain the inclusion
‘9|M D) T|M. u

LEMMA 1.2. Let M be a paracompact subset of a LCS F', A be a convex
subset of a LCS E and T : E — F be a linear operator such that T(A) 2O M.
Then for any U € U(F') there exists a continuous map f : M — A such that
Tf(y)€y+U for anyy € M.

Proof. Evidently, {(y + U)N M : y € M} is an open cover of M. Since
M is paracompact, there exists a locally finite positive continuous partition
of unity {0n : @ € 2} on M and a map y : 2 — M such that g,(y) = 0 if
y ¢ y(a)+ U for any a € 2 (see [14]). For any « € (2, let z(a) € A be such
that Tx(a) = y(a). Consider the map

fiM—E,  fy) =) ealy)z(a)
a€el?

Since A is convex, we have f(M) C A. Local finiteness and continuity of g,
imply continuity of f. Let y € M. Since y(«) € y + U when g,(y) # 0, we

obtain
:Zga(y ZQa y+U =y+U n
a€cf? a€ef?

LEMMA 1.3. Let E be a LCS and G = C(I, E). Then any S-space F C G

1s closed in G. Moreover:

o I is integrally complete = G is integrally complete;
o F is sequentially complete = G is sequentially complete.
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Proof. Let to € I and T € L(I, E) be such that F' = X (I,T). Evidently,

F={xeG:Ax=0foranytel}, where
¢
A = x(t) — x(ty) — S Trx(T)drt.

to
Therefore F' is closed in G as the intersection of the kernels of the linear
continuous operators A; : G — E, where E is the completion of E. If E
is sequentially complete then sequential completeness of G is obvious. Let
FE be integrally complete. It remains to prove integral completeness of G.
Let f :[0,1] — G be a continuous map. Since E is integrally complete, for
any s € I there exists ¢(s) = S(l) f(t)(s)dt € E. Uniform continuity of the
map (t,s) — f(t)(s) implies continuity of ¢ : I — E. Therefore there exists
Sé f(t)dt = ¢ € G. Hence G is integrally complete. m

LEMMA 1.4. Let B be a Banach space and A be a balanced conver Baire-
measurable subset of B. Then either A is a Baire first category set, or for
any € € (0,1), the set (1 —¢)A is contained in the interior of A in B.

Proof. Let U = {z € B : ||z|| < 1}. Suppose that A is a Baire second
category set. Since A is Baire-measurable, there exist zg € B, ¢ > 0 and
a Baire first category set P C U such that zg + 3¢(U \ P) C A. Since A
is convex and balanced, we have 3¢(U \ Q) C A, where Q = P U (—P).
Let us show that ¢cU C A. Suppose that there exists 1 € ¢U \ A. Then
(221 + A) N A = (). Therefore

2214+ cU = 2x1+ (cU\ A) U ((2z1 +cU) \ A) C (221 + cQ) U 3cQ.

Since @ is a Baire first category set, so is the ball 2214 cU, which contradicts
Baire’s theorem. Thus, cU C A. Let now ¢ € (0,1) and x € (1 — ¢)A. Since
A is convex and balanced, x4+ ccU C z+¢eA C A. Therefore z is an interior
point of A. =

LEMMA 1.5. Let E be a LCS, X be a Suslin topological space, K € K(E)
and f: X — E be a sequentially continuous map. Then the set f(X)N Ek
18 a Baire-measurable subset of the Banach space Ef .

Proof. Let X,, = f~!(nK). Then X, is a Suslin space as a sequentially
closed subset of a Suslin space X. So for any n € N, there exists a Polish space
Y, and a continuous surjective map g, : Y,, — X,. Since Y}, is metrizable,
the map fog, : Y, — FE is continuous and therefore Borel-measurable. Since
the Borel o-algebras of subsets of Fx with respect to the induced topology
and to the Banach space topology coincide (both o-algebras are generated
by the set {x + cK : © € Eg, ¢ > 0}), f o g, is a Borel-measurable map
from Y,, to the Banach space Fi. According to Luzin’s theorem [14], the
image of a Polish space under a Borel-measurable map (taking values in a
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metric space) is analytic. Hence f(X,,) = (f o g,)(Y,) is analytic. Since any
analytic subset of a metric space is Baire-measurable [14], we see that f(X},)
is Baire-measurable in E. Since f(X) N Ek is the union of the f(X,), we
obtain Baire-measurability of f(X)N Ex in Ex. =

LEMMA 1.6.

(i) Let E be a Fréchet space and Q € K(E). Then there exists K € K(E)
such that Q < K.

(ii) Let E be a LCS, K1,K3 € K(E) and K; < Ks3. Then there ezists
Ky € K(E) such that K1 < Ky < Ks.

Proof. (i) is proved in [21]. For a simpler proof see Lemma 3 of [28].

(ii) Assertion (i) implies the existence of Q € K(Ek,) for which K; < Q.
Since K7 < K3, there exists ¢ € (0,1) such that K; C ¢?Kj3. Clearly,
Ky = @ N ¢K3 satisfies the required conditions. m

LEMMA 1.7. Let E and F be LCS, T : E — F be a linear operator,
K,Q € K(F), Q < K, and U, M be convexr balanced Suslin subsets of E
such that U C M, U is absorbing in the linear hull of M, the restriction
T|nr is sequentially continuous and T'(M) 2O K. Then there exist ¢ > 0 and
L € K(E) such that L 4+ U C M, the linear hull of L is finite-dimensional
and T(L+¢eU) 2 Q.

Proof. Let e € (0,1) be such that @ C (1—¢)K. Since U is Suslin and T'|¢/
is sequentially continuous, Lemma 1.5 implies that T'(U) is Baire-measurable
in the Banach space F. Since T'(U) is absorbing in F, Lemma 1.4 implies
the existence of ¢ > 0 such that ¢K C T'(U). Since @ is compact in F and
Q C(1—-¢)K,and T(M) D K, there exist z1,...,x, € M such that

n
Qc | —aTx; +eT(U) C T(L + V),
j=1
where L = (1 — ¢)aco{z1,...,2z,}. Clearly L is compact and has finite-
dimensional linear hull. Since L C (1 —¢)M and U C M, we find that
L+eUCM. n

LEMMA 1.8. Let (E,0) be a LCS and M C E be a complete convex
balanced metrizable set. Then (En, 7(M, E)) is a Fréchet space (see Section 2
for definitions).

Proof. Clearly 7 = 7(M, E) is stronger than 0|g,,. Pick U,, € U(E) such
that the set {W,, = U, N M : n € N} is a base of 7-neighborhoods of zero
in M. Since for any U € U(FE), there exists n € N such that U N M D W,
we see that {IW,, : n € N} is a pre-base of 7-neighborhoods of zero in Ej;.
Therefore (E)s, 7) is metrizable. It remains to prove completeness of (Eps, 7).
Let x,, be a 7-Cauchy sequence in E;. Since M is a 7-neighborhood of zero,
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there exists ¢ > 0 such that x, € ¢cM for any n € N. Since x,, is a §-Cauchy
sequence and cM is complete in (E,0), we find that z,, is §-convergent to
x € ¢cM. We have to show that x,, is 7-convergent to z. According to the
definition of 7, to this end it suffices to verify that pas(z, — z) — 0, where
py is the Minkowski functional of M. Suppose the contrary. Then there
exists € > 0 and an infinite set A C N such that z,, — 2 ¢ eM for all n € A.
Since x, is a 7-Cauchy sequence, there exists an infinite set B C A such
that z,, — x,, € eM for all m,n € B. Fixing n € B, passing to the limit
as m — oo and using #-completeness of M, we deduce that x, —x € eM,
which is a contradiction. =

4.2. Proofs of Proposition 1 and Theorem 1

DEFINITION 6. Let E be a LCS, I = [a,b], J = {(t,5) € I? : t > s},
Jp = J\N{b,b)}, f e CUIxEE), AAB C E and U € U(F). A map
S:JxA— B, (ts,x)— Siz, is called a continuous approzimate system
of solutions (CASS(A, B,U)) of (1) if

(A1)  Sis continuous on JxA and differentiable with respect to ¢ on Jyx A;
(A2)  the derivative %Sfa: admits a continuous extension to J x A;

(A3) %Sfx — f(t,S;{z) € U for any (t,s,z) € Jp X A

(Ad) Sz —z €U for any (t,z) € I x A.

DEFINITION 7. Let E be a LCS, f € C(I x E,E) and K € K(E).
Equation (1) is called ACC-solvable over K if there exists @ € K(E) such
that for any U € U(F) there exists a CASS(K,Q,U) of (1). Equation (1) is
called uniformly ACC-solvable if for any K € K(FE), this equation is ACC-
solvable over K.

LEMMA 2.1. Let E be an integrally complete LCS, a > 0, I = [0,a],
TeLl(l,E),geC(IxE,E), zg€FE and K € K(E) be such that z¢ € K,
g(t,z) € K, Tig(t,x) € K for any (t,x) € I x E and the equation &(t) =
Tix(t) is ACC-solvable over K. Then (6) is solvable in I.

Proof. Without loss of generality, we can assume that a < 1. According
to Definition 7 there exists @ € K(E) such that K C @ and for any U € U(E)
there exists a CASS(K, @, U) of the equation #(t) = Tix(t). Using integral
completeness of E, we can choose N € K(E) such that Q C N and Tyx € N
for any (¢,z) € I x Q. Lemma 1.1 implies existence of U,, € U(FE) such that
2Up4+1 C Uy, for all n € N and 0|y = 7|y, where 6 is the locally convex
topology having the set {U, : n € N} as a base of neighborhoods of zero.
We denote by S a CASS(K, Q,U,) of the equation &(t) = Tyx(t). Let

(16) M={zeC(,E):z(t) € 3Q and z(t) — z(s) € 4|t — s|Q
for any t,s € I'}.
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According to the Arzela—Ascoli theorem we have M € K(C(I, E)). Let
&, : C(I,E) — C(I, E) be defined by the formula

t t T
(17) O (2)(t) =\ g(r, 2(r)) dr + \"ST T\ g(s, 2(s)) ds dr + "S{ 0.
0 0 0
Clearly @, is well defined and continuous. Moreover, for any x € C(I, E),
(18) B.(2)(t) € K +Q+Q C3Q.
Differentiating (17), we see that &, (z) € C1(I, F) for any x € C(I, E) and
¢
d
(19) 27 Pn(@)(6) = g(t,2(8) +"S{T; Va(s, (s)) ds
0
%, ¢ )
+ =87 T\ g(s, 2(s)) ds dr + —"SP o
0 ot 0 ot

Using (A1), (A2), (19) and the definition of @), we have

(20) %@n(:c)(t) EK+Q+Q+QC4Q.

Formulas (16), (18) and (20) imply that &, (M) C M. According to the
Tikhonov fixed point theorem (see, e.g., [25]) for any n € N there exists
a solution z,, € M of the equation ®,(z) = x. Since M is compact and
metrizable, the sequence x,, has a subsequence z,, uniformly converging to
x € M. It remains to show that x is a solution of (6).

From (A4) and (17) it follows that x,,(0) = ®,,(x,,)(0) = "Sgxo € 20+ Up.
Therefore x,,(0) — ¢ with respect to . Since 6 induces the initial topology
on 3Q and z,,(0) € 3Q, we find that z,,(0) — xo. Hence 2(0) = (. Applying
(19) to z, and using (A3) and (A4), we see that

t
in(t) € g(t,2n(t)) + Tt | g(s, 2n(s)) ds
0

t T
+T, | ST TTS g(s,2n(s)) ds dr + Ty xo + 3U,
0

= g(t,zn(t)) + thﬁn( n)(t) +3Un = g(t, 2n(t)) + Tewn(t) + 3Up.

According to (18) and (20), @,(t) = dt@ (zn)(t) € 4Q, g(t,z,(t)) € K
and Tix,(t) = Ty®Pp(xy)(t) € 3N. Therefore &, (t) — g(t, zn(t)) — Tizn(t) €
8N N 3U,. Since € induces the initial topology on 8N, it follows that &, (¢)
uniformly converges to Tyz(t) + g(t,z(t)). Hence, x € C1(I, E) and #(t) =
Tix(t) + g(t,x(t)). m

COROLLARY 2.1. Let E be an integrally complete LCS, a > 0, I = [0, a
and T € L(I, E) be such that the equation &(t) = Tix(t) is uniformly ACC-
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solvable. Then for any M-compact map g : I X E — E and any xo € E the
problem (6) is solvable in I.

LEMMA 2.2. Let E be an integrally complete LCS, a > 0, I = [0,a],
K € K(E) and T € L(I,E) be such that the equation &(t) = Tix(t) is
compactly solvable over K. Then i(t) = Tix(t) is ACC-solvable over K.

Proof. According to compact solvability of the equation @(t) = Tyz(t)
over K, there exists M € K(FE) such that (14) is satisfied. Since F is inte-
grally complete, there exists Q € K(E) for which M C @ and {Tix : (¢t,z) €
I x M} CQ. Let U€U(E) and let n € N be such that 22Q C U. Define
h =a/n and let j € {0,1,...,n — 1}, F; = X([jh,a],T). Consider the op-
erator T; : F; — E, Tjx = 2(jh). Formula (14) implies that T;(M;) D K,
where M; = {z € F; : ([jh,a]) C M}. According to Lemma 1.2 there exist
continuous maps f; : K — Mj for which T;f(z) —x € U/2 for any = € K.
Let J = {(t,s) € I?:t > s} and S:J x K — M be the map defined by

fo(z)(t) if0<s<h,

Stx = afj—2@)(t) + (1 — @) fi—1(2)(t)
ifs=(—qh 0<g<l,2<j<n.

It suffices to verify that S is a CASS(K,Q,U) of the equation #(t) =
Tix(t). Continuity of S follows from continuity of f;. Since for any s and
x, the map t — S/z is a solution of the equation &(t) = Tix(t), we see
that conditions (A1)—(A3) with A = K and B = @ are satisfied. It remains
to verify (A4). Let t € I and x € K. If t > h, we have t = (j — q)h
with 0 < ¢ < 1 and 2 < j < n. Therefore Siz — z = q(fj—2(z)(t) — z) +
(1—q)(fj—1(z)(t) — x). Since % fi(z)(t) € Q for any (z,t) € K x [kh, a], we
find that fi(t) — fx(kh) € |t — kh|Q. The inclusion fx(kh) —x € U/2 implies

Sta—a € U/2+ (gt — (i~ 2)h) + (1 — )t - (— DA)Q C U/2+2hQ C U.

Ift < h, then Stw—xz = fo(2)(t) -z = (fo(2)(t) - fo(2)(0)) + (fo(x)(0) —x) €
hQ + U/2 C U. Thus, in any case S{xz —x € U, which is (A4). u

LEMMA 2.3. Let E be an integrally complete LCS, a > 0, I = [0,a],
KeK(E),TeLFE), F=X1IT)and T : F — E, Tx = x(0). Suppose
also that there exists QQ € K(F) such that T(Q) 2 K. Then the equation
z(t) = Tx(t) is ACC-solvable over K.

Proof. Let U € U(E) and M = aco({z(t) : (t,x) € I x Q} U{Tx(t) :
(t,z) € IxQ}). Since E is integrally complete we have M € K(F). According
to Lemma 1.2 there exists a continuous map f : K — M such that Tf(x) —
x € Uforany v € K. Let S : J x K — M, Sfx = f(x)(t — s), where
J = {(t,s) € I? : t > s}. It remains to prove that S is a CASS(K, M,U)
of the equation @(t) = Tz (t). Continuity of S follows from continuity of f.
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Since f takes values in the space of solutions of the equation & = Tx, we
have %Sfl‘ =Tf(z)(t—s) € M. This proves (A1)-(A3). Let (t,z) € I x K.
Then S{z = f(x)(0) = Tf(z) € x + U, which is (A4). =

COROLLARY 2.2. Let E be an integrally complete LCS, a > 0, I = [0, al,
K € K(E) and T € ex(FE) be an operator satisfying (15). Then the equation
&(t) = Tx(t) is uniformly ACC-solvable in I.

Corollary 2.1 and Lemma 2.2 imply Proposition 1. Theorem 1 follows
from Corollaries 2.1 and 2.2.

4.3. Proof of Theorem 2

LEMMA 3.1. Let G be the class of LCS E such that for any LCS F', any
Q,K € K(F) and any sequentially continuous linear operator T : E — F
such that Q < K and T(E) 2O K there exists N € K(E) for which T(N)
D Q. Then UpG C G.

Proof. Let (E,7) € UoG, (Ey, ) be spaces satisfying (U0) and (U1),
F be a LCS, Q,K € K(F), Q < K and T : E — F be a sequentially
continuous linear operator such that T(E) O K. We have to verify the
existence of N € K(E) for which T(N) D Q. Since (E,,T|g,) is Suslin,
Lemma 1.5 implies that A, = T(FE,) N Fk is a Baire-measurable subset
of the Banach space Fx. According to Lemma 1.4, there exists n € N for
which K C Fx C T(E,,). Since E,, € G, there exists N € (E,) such that
T(N) 2 Q. Since the topology 7, of E,, is stronger than 7|g, , we conclude
that N € K(E). m

LEMMA 3.2. Let G be the class of LCS defined in Lemma 3.1. Then
PUyF C G.

Proof. Let E € PUyF, F be a LCS, Q, K € K(F) be such that Q < K,
and let T': EF — I be a sequentially continuous linear operator such that
T(E) O K. We have to prove the existence of N € K(E) for which T'(N)
DO Q. According to Lemma 1.6 there exist K; € K(E) such that Ky = K
and Q € Kp41 < Ky, for any n € Zy. Since E € PUyF we find that E
is a sequentially closed linear subspace of the product of E, € UyF. For
any n € N, let (E},7)') be spaces satisfying conditions (U0) and (U1) as
subspaces of F,. Define

G = ﬁEk G, = ﬁEk
k=1 k=1

and let
T :G—E, and II,:G— G,

be the natural projections. For any n, k € N, pick a base of neighborhoods of
7€ero {U]n]g :j € N} in (E}, 7}}) consisting of closed balanced convex sets and
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such that QUffl - U;L’k for all j,n, k. Let My = Vi = E. We shall construct
inductively k, € N and subsets M,,, V,, of E such that for any n € N,

(L1) My, ={z € E: Iz € Ay} and V;, = {z € £ : I,z € By}, where
A, B, are closed subsets of P, = H?:1 Eij (any Ezj is endowed

with the topology ng) and B, C ([[j_, Ugvkj) NAp;

(L2) M, +V, C M,_1, V, CV,—1 and T(Mn) D Koy D Q;

(L3)  there exists N,, € KL(E) with finite-dimensional linear hull such that
M, = N, +V,.

Let n € N. Suppose that k;, M; and V; satisfying (L1)—(L3) for j < n
(and, of course, the corresponding A;, B; and P;) are already constructed.
Let

W {reE: I, v A1, mpr € B} ifk>1
b {reE:mxe€El} if k=1.

Since the class of Suslin spaces is closed with respect to countable unions,
countable products and sequentially closed subspaces, we deduce (according
to (U1) for Ei) that W, is Suslin. Clearly, M,,_; is the union of the Wj.
Therefore, according to Lemma 1.5, T'(Wy)NFg,, , is an increasing sequence
of Baire-measurable convex balanced subsets of the Banach space F,, ,,
whose union contains Ko, 2. Lemma 1.4 implies that the open unit ball
D = (0,1) - Kop—2 of Fk,, , is contained in the union of the interiors of
T(Wi)N Fk,, , in Frk,, ,. Since Ko, is a compact subset of the ball D,
there exists k,, € N such that Ky,,—1 C T(Wy,). Let
n
B, = (I] Uf{kj) N(By1xE}), Vl={z€E:IxcB,}
j=1
Applying Lemma 1.7 to M =Wy, , U =V, Q = Ky, and K = Ko,_1,
we see that there exist N,, € K(E) and € € (0,1) such that NV, has finite-
dimensional linear hull, N, + ¢V, C Wy, and T(N, + €V,)) D K. Let

now

B, =¢Bj, Vo, =€V} ={x € E: I,z € B},

A, = Bp+¢ell,(N,), M,=N,+eV]={xe€E:Il,xecA,}.
Conditions (L1)-(L3) for k,, Ny, V;, and M, follow from the construction.

Let
o o0
N=(M, P=]]E:,
n=1 n=1
where P is endowed with the topology of the product of (Egn,T,?n). Clearly
N C PNE and N is convex and balanced. It suffices to prove that N € K(F)
and T(N) 2 Q.
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The inclusion N € K(E) will be proved if we show that N is a compact
subset of the Polish space P (the topology of PNE induced from P is stronger
than the topology induced from E). According to (L3), for any n € N, N is
contained in the union of a finite number of shifts of 2V},. Therefore, (L1)
implies pre-compactness of N in P. Since P is a Polish space it remains to
show that N is sequentially closed in P. Let x; € N be a sequence converging
to x € P. Since E N P is sequentially closed in P, we see that © € E. Let
n € N. Since A, is closed in P,, we find that IT,,(x) = lim I1,,(z}) € A, and
therefore © € M,,. Hence, x € N. Thus, N € K(E).

Let u € Q. According to (L2), for any n € N, there exists y, € M, such
that Ty, = u. Since y,, € M, for any m > n, from (L3) it follows that
for any m > n, there exist z]}, € N,, and u], € V,, such that z}}, + u;, =
Ym. Using standard diagonal procedure, we can choose a strictly increasing
sequence m,; € N such that x’fn], is converging to z" € N, for any n € N.
Since ym,; = a7y, + up,, € " + 2V, for sufficiently large j’s, from (L1) it
follows that for any n € N, II,y,,; is a Cauchy sequence in P, and therefore
II,,ym,; converges to z, € A, with respect to the topology of P,. Since 7}’
is stronger than the topology induced from E,, we see from (L1) that for
any U € U(E), there exists n € N such that V,, C U. Therefore y,,, is a
Cauchy sequence in E. Since F is sequentially complete, y,,; — y € E. Hence
I,y = zp € Ay for any n € N. Therefore y € N and Ty = lim Ty,; = u.
Thus, T(N) 2 Q. =

Now we can prove Theorem 2. Let E and F be LCS such that either
EFEe)Y or FeXand E € UFUUGPUWF, and let T : E — F be a surjective
sequentially continuous linear operator and @) € K(F'). We have to verify
that there exists K € KC(F) such that T'(K) D Q.

CASE 1: E € Y. Let {K, : n € N} be a base of (E). Then Q is the
union of the sets T'(K,,) N Q. Since they are closed in @, Baire’s theorem
implies that T'(K,,) N Q has non-empty interior in the balanced convex set @
for some n € N. For this n we see that T'(K,,) N @Q absorbs (. Hence, there
exists ¢ > 0 such that T(K) 2 Q, where K = cK,, € K(E).

CASE 2: E € UF and F € X. Let (E,,7,) € F be spaces satisfying
(U0). Since F' € X, there exists N € K(F') such that Q < N. Clearly
A, = T7Y(N)N E, is a convex balanced and closed subset of the Fréchet
space (Ey, ). Let G, = (Ey) 4, and G = Fy. According to Lemma 1.8, each
G, is a Fréchet space and G is a Banach space. The closed graph theorem [13]
implies that the restrictions T|g,, : G, — G are continuous linear operators.
Since G is the union of the L, = T(G,,), there exists n € N for which L,
is a Baire second category set in the Banach space GG, and in particular, L,
is dense in G. Since T,, = T, : G, — Ly, is a linear continuous surjective
operator from the Fréchet space GG, to the Baire metrizable LCS L,,, the
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open mapping theorem [5] implies that the operator T,, is open. Therefore
L, is isomorphic to the Fréchet space G, /kerT,. Hence, L, is complete
and therefore closed in G. Since L,, is dense in GG, we find that L, = G.
Therefore T;, : G,, — G is a surjective continuous linear operator from the
Fréchet space G, to the Banach space G. Michael’s selection theorem [22, 3]
implies the existence of a continuous right inverse map f : G — G, of T),.
Let K = aco f(Q) (we take the closure with respect to the topology of the
Fréchet space Gy,). Compactness of ) in G implies that K € IC(G,,). Clearly
T(K) = Q. Since the topology of G is stronger than the topology induced
from E, we conclude that K € IC(E).

Cask 3: E € UgPUyF and F € X. Let G be the class of LCS defined
in Lemma 3.1. It suffices to prove that £ € G. According to Lemma 3.1, to
this end it is enough to verify the inclusion PUyF C G, which follows from
Lemma 3.2.

4.4. Proof of Proposition 2

LEMMA 4.1. Let A be a class of LCS such that any sequentially closed
subspace of any element of A belongs to A and G € A = C(I,G) € A.
Let also (E,7) be a LCS and F be a sequentially closed linear subspace of
C(I, E) (endowed with the uniform convergence topology). Then E € UjA =
FeUlA and E€ PA= F € PA.

Proof. Let E € UJA, (E,, ) be spaces satisfying (U0) and (U1) and
F,={f€F:f(t) € E,forany t € I} be endowed with the uniform conver-
gence topology 0, in (E,, 7). Then (F,,0,) € A, F,, C F,+1 and F,, with the
topology induced from C(I, E) is Suslin. According to Lemma 1.3, F' is inte-
grally complete as a closed subspace of the integrally complete LCS C(I, E).
The inclusion F' € [U%A will be proved if we verify that the union of the F;,
coincides with F'. Let f € F and K = aco(f(I)). Integral completeness of
E implies that K € IC(FE). According to Lemma 1.5, each G,, = E, N E is
a Baire-measurable subset of the Banach space Ex. Lemma 1.4 and Baire’s
theorem imply the existence of n € N for which G,, = Ex and therefore
f(I) Cc K C E,. Thus, f € F,, and F is the union of the F,,. If E € PA then
F is a sequentially closed subspace of the product of the E,, € A. According
to Lemma 1.3, F' is a closed subspace of C(I,E), which is a sequentially
closed subspace of the product of the C'(I, E,,) € A. Therefore F' € PA. u

Now we can prove Proposition 2. Let E € Y, {K,, : n € N} be a base
of K(F) and M,, = {x € F : x(t) € K, Vt € I}. According to Lemma 1.3,
F is integrally complete. Since FE is integrally complete, for any n € N, there
exists m € N such that {Tyz : t € I, v € K,,} C K,,,. Hence, {&(t) : t € I,
x € M,} C K,,. The Arzela-Ascoli theorem implies that M, € IC(F). Sup-
pose now that M € K(F). Since E is integrally complete, there exists n € N
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such that {z(t) : 2 € M, t € I} C K,,. Hence, M C M, Thus, {M,, : n € N}
is a base of KC(F') and therefore F' € ).

Let E € X, M € K(F) and T € L(I,FE) be such that F' = X(I,T).
According to Lemma 1.3, F' is sequentially complete. Since FE is integrally
complete, Q) = aco{xz(t) : (t,z) € I x M} € K(FE), and since E € X, there
exists K € K(E) such that Q < K. Let N ={x € F : x(t) € K Vt € I}.
Since the set {#(t) = Tyx(t) : € N, t € I} is compact, the Arzela—Ascoli
theorem implies compactness of N. Thus, N € K(FE). Let us verify that
M < N. To this end we have to show that the topology on M defined by the
norm py coincides with the uniform convergence topology. Let x,, € M be a
sequence uniformly converging to zero. It suffices to prove that py(x,) — 0.
Suppose that py(x,) /4 0. According to the definition of IV, there exists a
sequence t, € I such that px(x,(t,)) 4 0. Since z,(t,) € Q and Q < K,
we have x,(t,) / 0 in E, which contradicts the uniform convergence of x,,
to 0. Hence, M <« N and therefore F € X.

Let £ € ULF, let (E,,7,) be spaces satisfying (U0) and let F,, = {f €
F : f(t) € E, forany t € I} be endowed with the uniform convergence
topology 0,, in (Ey,, 7). Then (F,,0,) € F and F,, C F,41. According to
Lemma 1.3, F' is integrally complete as a closed subspace of the integrally
complete LCS C(I, E). The inclusion ' € U'A will be proved if we verify that
the union of the F), coincides with F. Let f € F and K = aco(f([)). Integral
completeness of E implies that K € K(E). Since 7, is stronger than 7|g,_,
we have K € K(E,) C M(E,). According to Lemma 1.8, G,, = (E, )k is a
Fréchet space (with the topology 7,, having the set {UNK : U € U(Ep, )}
as a pre-base of neighborhoods of zero). Pick n € N for which G,, = Ex N E,
is a Baire second category subset of the Banach space Fx. For this n, the
identity operator J from (G, ny,) to (G, px) is a surjective continuous linear
operator from a Fréchet space to a Baire normed LCS. The open mapping
theorem [5] implies that J is open and therefore J is an isomorphism. Hence,
(Gn,pr) is complete and therefore G, is closed in the Banach space Ef.
On the other hand, GG, is dense in Ex and therefore GG,, = FE. Hence,
f(I)Cc K C E,. Thus, f € F,, and F is the union of the F,.

Let E € U[I)IP’[U%}" . Clearly U[I)]: is closed under taking sequentially closed
linear subspaces. Lemma 4.1 applied to A = F shows that G € [U%)}" =
C(I,G) € USF. Lemma 4.1 applied to A = ULF implies that G € PU{.F =
C(I,G) € PULF. Since PUJF is closed under taking sequentially closed lin-
ear subspaces, applying Lemma 4.1 to A = IF’U%)J’:, we obtain F' € UéPU%]—".

4.5. Proof of Proposition 3. Statement (A) follows directly from the
Banach-Dieudonné theorem [13, 21]. For (B), clearly UF contains countable
inductive limits of Frechét spaces. Let E be a sequentially complete LFS-
space and K € K(FE). Then K € K(E,,) for some step space E,, and according
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to Lemma 1.6 there exists Q € K(E,) C K(E) such that K < Q. Hence
E € X. Part (C) follows from the definition of the class UgPUL.F.

4.6. Proof of Corollary 3. Since D = D({2) is a strict inductive limit
of separable Fréchet spaces and H(K),S'(R™) are strong duals of Fréchet—
Schwartz spaces [13], Proposition 3 implies that D(£2),S'(R"), H(K) € XN
USF € X NUF. According to Corollary 2, D(£2),S'(R"), H(K) € CP.
Since D'(£2) and A({2) are projective limits of complete inductive limits of
separable Fréchet spaces, Proposition 3 implies that D'(£2), A(£2) € PU,F
C UpPULF. On the other hand D'(£2), A(2) € X (3). Corollary 2 now im-
plies that A({2) € CP and D'(£2) € CP.

4.7. Proof of Theorem 3

ExaMPLE 1. Let a, ¢, : R — R be functions defined by
a(s)=e*,  pt) = {e_t_4 %f =0
0 if t <0,
(21) 1 ift <0,
B(t)=<0 ift > 1,
eI (e7t7 4 == =1 if ¢ € (0,1).

One can easily see that ¢, 3 € C°(R) and a € S. Consider functions ~, v* :
R? - R,

{w(tHﬁ(s—t‘l) >0 )

u € R).
ift <0, y(u, s) ( )

(22) 7(t7 S) =

Let us verify that v € C*°(R?). Clearly v € C*((0,+0c0) x R) and
v € C®((—00,0) x R). Let sgp € R. Pick € > 0 such that sg +¢ -1 <0.
Then for any (t,s) from the e-neighborhood W of the point (0,sq) in R?,
we have 3(s —t~1) = 1 and therefore (t,s) = 1+ ¢(t). Hence v € C(W).
Therefore v € C°°(R?). Clearly 7 is positive. Hence v*, i € C*°(R?), where

5 () + 25 (s — 1)
(23) p(t,s) = Elnfy(t,s) = o(t) + B(s —t 1)
0

if t >0,
if t <0.

For any ¢,u € R, let T} and S}* be operators (acting on functions z : R — R)
defined by the formula

(24) Tix(s) = u(t,s)x(s), Siz(s) =v"(t, s)x(s).
(®) Any compact subset K of E € {D'(£2), A(£2)} is contained in a linear subspace

F C E carrying a stronger topology 7 such that (F, 7) is a Fréchet space and K is compact
in (F, 7). Then it remains to apply Lemma 1.6.
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For the proof of the first part of Theorem 3 it suffices to verify the
following conditions:

(1.o) T,58* € L(R,S), and the maps T,5* : Rx S — S (u € R) are
infinitely Fréchet differentiable [2], where S"(¢t,z) = S}z (T and S
are defined by (24));

(1.1)  for any (tp,z9) € R x S, problem (13) is uniquely solvable in any
interval containing ¢y. The unique solution is given by z(t) = Sfoxo;

(1.2)  the equation 4(t) = Tyx(t) + « has no solutions in [0, £] for any £ > 0.

Proof. (1.0) Let B be the set of functions ¢ € C°°(R?) such that for any

n,k € Z, there exist m = m(p,n, k), c = c¢(o,n, k) > 0 for which
an—i—k
(25) sup
teR

<c¢(14|s))™ for any (t,s) € R?.

arast )

According to (12) it suffices to prove that p € B and v* € B for any u € R.
We shift the proof of this fact to the Appendix (it is purely technical).

(1.1) Let 2 : R — S, x(t) = SPxq. Clearly z(ty) = zo. By (23), %}(t, s) =
wu(t, s)v(t, s). Therefore

©(t)(s) = u(t, s)v(t, s)zo(s)/v(to, 8) = pu(t, s)z(t)(s) = Tra(t)(s).
Hence, z is a solution in R of (13). Uniqueness of a solution of this problem
follows from the fact that for any ¢t € R, T} is an operator of multiplication
by a function (we can “pointwise” solve the equation @(t) = Tiz(t)).
(1.2) Let € > 0. One can easily verify that the function 7 : (0,¢] — S,
&€
m(t) = (t—e)a+|(e - ) Tradr

t
is a solution of the equation #(t) = Tyz(t) + «. Suppose that there exists
a solution 7 : [0,e] — S of this equation in [0,¢]. Then z = 7 — 7 is a
solution of the homogeneous equation © = T;z in (0,¢]. According to (1.1),
x admits an infinitely differentiable extension to R. Therefore 7 has a limit
in 0 in the topology of S. Hence, the limit

£

lim f(t), where f(t)= S (tr—¢e)S{T-adr,

t10

t
exists in S. Since convergence in S implies uniform convergence,
26 0 = lim £(1/t) = im(1 + @(t))e " “I(t) = lime™" "I(t),
(26) i f(1/0) = Tim(1 4+ ()™ 1) = e *10)
where

o M0
10 =)= 4

Integrating by parts, we see that for sufficiently small positive ¢,
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t—e¢ 2t dr < dr At 4 4
27) I(t) = + + > et e dr > 2te@) " g
10 = e st s 2 )

From (26) and (27) it follows that 0 = lim,ge™ " (2te®) ™" —&). On the
other hand, this limit is obviously infinite. This contradiction proves (1.2). m

EXAMPLE 2. As usual, £ = C*°(R) with the topology of uniform con-
vergence of all derivatives, and £’ is the strong dual of the nuclear Fréchet
space &, i.e., £ is the space of generalized functions with compact support
[21]. As usual, §; € &' is Dirac’s delta-function concentrated at the point
t € R: (0;,h) = h(t), h € £. Let G be the linear hull in & of the set

{5(()") :n € Zy}. For any z € C, let e, € £, e,(t) = e **. Consider the space
(28) E = {@g €€ &'® 5/}, where @5(51, s52) = (81 — 52)<651 ® 6527£>'

Clearly FE is a linear subspace of the space of entire functions of two vari-
ables. We endow E with the strongest locally convex topology with respect
to which the operators

Tj:& = E, Tlp=>ugy Pe,
T2:&8 - E, T} =%y, ¢el,

are continuous. Let T' : F — FE be the operator defined by the formula
T@Sa@w = ¢90'®w and f: [0, 1] — F, f(t) = Dsxs, -

For the proof of the second part of Theorem 3 it suffices to verify the
following conditions:

(2.0)  Eis a complete ultrabornological LCS, T'€ L(E) and feC([0,1], E);
(2.1) T € unex(FE) and for all € > 0, the equation @(t) = Tz(t) + f(t) has
no solutions in [0, ].

Proof. (2.0) One can easily see that £y = {&¢ : £ € G®E'} C F
is isomorphic to a free locally convex sum of a countable family of copies
of &'. Therefore E; is complete and hence closed in E. On the other hand,
the quotient E/Fj is isomorphic to the free locally convex sum of a con-
tinuum of copies of £ and therefore is also complete. The three-space the-
orem for completeness [5] implies that F is complete. Moreover, the space
FE is ultrabornological as an inductive limit of ultrabornological L.CS. Since
TTi = TJ)D, where D : & — &’ is the operator of differentiation Dy = ¢’
and TTz = TZ/, we find that the operators TT& for ¢ € £ and TT% for
@ € G are continuous. According to the definition of the topology of E we
see that T € L(FE). Since the function g : [0,1] — &', g(t) = &, is continuous
and f(t) = Tgog(t), we see that f is continuous.

(2.1) According to (28) and to the definition of the operator T' we have

T@(Sl, 82) = 81@(81, 82) for any deckFE.

(29)
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Since T is the operator of multiplication by a function and the topology of E
is stronger than the pointwise convergence topology, the “pointwise” solution
of problem (2) coincides with the conventional solution in E, whenever the
latter exists. This proves uniqueness of the solution. One can easily verify
that the “pointwise” solution of problem (2) is given by

(30) z(t)(s1,82) = e lao(sy, 52).

Clearly e "1® g, (51, 52) = Py, (51, 52), where ¢y is a shift of the gener-
alized function ¢: ¢y(u) = ¢(u — t). Hence the function x defined by (30)
takes values in E. Smoothness of x : [0,1] — E follows from the definition
(29) of the topology of E and smoothness of the functions t — ¢; (¢ € E’).
Therefore formula (30) defines the solution in E of problem (2). Hence,
T € unex(FE).

It remains to show that the problem #(t) = Tz (t)+ f(¢), (0) = 0, is non-
solvable in [0, €]. One can verify that the “pointwise" solution of this problem
is given by z(s1,s2) = e 2 — 71, Suppose that the problem is solvable in
[0,]. Then for any ¢ € [0, €] there exists & € £ ® £ such that @, (s1,52) =
e~ t52 — ¢7!51, Therefore the function Fy(s1,s2) = (€752 —e7151) /(51 — 89) is
the Laplace transform of & (see definition of @¢). On the other hand, F; for
t > 0 is the Laplace transform of the Lebesgue measure u; of the segment
on the plane with ends (0,¢) and (¢,0). Injectivity of the Laplace transform
implies that y; is an element of £’ ® £’, which is false. =

5. Concluding remarks

1. It is not known whether there exist a Fréchet space £, T' € L(R, E) and
f € C(R, E) such that problem (13) is solvable in R for any (tp,z9) € Rx E
and the equation #(t) = Tyz(t) + f(¢t) has no solutions in any interval.

2. It is not known whether the product of any two spaces from CP belongs
to CP. Nor do we know whether CP contains strong duals of Fréchet spaces.

3. Let E be a non-complete normed space, admitting a bigger complete
norm (for example C[0, 1] with the norm induced from L2[0,1]). Then 0 €
unex(F) \ ex'(E).

4. We say that a pair (E, F) of LCS has the inverse mapping property if
any bijective continuous linear operator 7' : E — F' has continuous inverse.

PROPOSITION 4. Let E be an integrally complete LCS, T € unex(E),
F = X([0,al], E), and suppose the pair (F, E) has the inverse mapping prop-
erty. Then T € ex(E).

Proof. Let T : FF — E, Tz = z(0) and J = {(t,s) € [0,a] : t > s}.
Then T is continuous linear and bijective and therefore T~! is continuous.

Hence, the map S : J x E — E, Sfxr = T '2(t — s), is continuous. So for
any K € KC(E), there exists () € K(E) such that Sjz € @ and T'Sjz € @
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for all (¢,s,x) € J x K. It remains to notice that for any U € U(FE), S is a
CASS(K, Q,U) of the equation & = Tx and to apply Lemma 2.1. =

5. The following proposition was suggested by D. Vogt.

PROPOSITION 5. Let E € X and T € L(E) be such that for any K €
K(E) there exists Q € K(E) such that K C Q and Q absorbs T(Q). Then
T € unex(F) Nex(E).

Proof. Let 9 € E and ¢ : [0,a] x E — E be an M-compact map. Then
we can pick K, Q € K(F) such that ¢g([0,a] x E) C K, 29 € K, K < @ and
Q absorbs T'(Q). So the restriction T'|g, : Eqg — Eq is a continous linear
operator on the Banach space Eg and the restriction glg qx £, : [0, a]xEq —
Eg is an M-compact map. Theorem HL implies solvability of (4) in Eg and
therefore in E. Hence T' € ex(E). Let now z € C'([0,a], E) be a solution of
(2) with 29 = 0. Pick K,Q € K(F) such that z(]0,a]) C K, K < @ and Q
absorbs T'(Q)). Then the restriction T|g, : Eg — Eq is a continous linear
operator on the Banach space Eg and z is a solution of (2) with g = 0
in Eg. Since L(Eqg) = unex(Eg), we have x = 0. Hence T' € unex(E). u
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Appendix: Proof of the inclusions i € B and v* € B, required in
Section 4.7. In this appendix we prove that the functions y and v* (u € R)
defined by (23) and (22) belong to the class B defined by (25). Since for any
fixed u € R, the function s — 7(u, s) is bounded from below by a positive
constant, it suffices to prove that p,v € B. We write F' < G (F and G are
functions defined on the same set) if there exists ¢ = ¢(F,G) > 0 such that
[F| < |G,

First, let us show that v € B. Clearly the function

an-i—k,y
Y (t,s): (0,+00) xR — R

is a finite linear combination of ¢(®(t) and t~!30) (s —t~1), where I,i,j € Z,
and [ < 2j. The functions ¢ (¢) and ¢t~/ (s — ¢t~ 1) for I = 0 are bounded.
If I > 0 then j > 0 and according to (21), t='8U) (s — t=1) vanishes if
s —t~1 ¢ (0,1). This implies that t/30)(s —t~') < 1+ |s|'. Hence, v € B
(and therefore v" € B).

It remains to show that u € B. Using de la Vallée Poussin’s formula for
multiple derivatives of a superposition of two functions [26] we deduce that
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an-i-k 8n+1+k1
L (ta S) = 7n(’7)(t’ S)
ot" sk otnt19sk
is a linear combination with real coefficients of the following finite set of
functions:

1 8’L+],.Y A j
1 —
(31) s UGmaes)

1,J

where i, j,a;; € Zy, v = Zi,j G5, Zi,j ta;; =n+ 1 and Zi,j Jaij; = k.
Formulas (31) and (22) imply that

an—l—klu
—(t,s)=0 ift<0
8t”83k( ) =
and the function
8n+ku
W(t78) : (0,+OO) xR — R
is a linear combination of the following finite set of functions:
(32)  w(t,s)
_ (@) (D )i (8 (s — 7)) (B (s — )i
(p(t) + B(s =t~ 1))t ’

where ig, jg,l € Zy, 7= jg+ >ty €N, 1 <2374y, > qjg < n+1and
> wiy, < k.

The inclusion p € B will be proved if we show that
(33) w(t, s)] < (1+[s)™
for any function w defined in (32) (m = m(w) > 0). From (32) and (21) it
follows that
(34) w(t,s)x1 fort>1/2
(the denominator in (32) is bounded from below by ¢"(1/2)27).

Casg 1: Y i, > 0. According to (21), w(t,s) = 0 if s — ¢t~ ¢ (0,1).
Using (34) we obtain
(35) lw(t,s)] <1 for s <2.
Let s >2 Ifl-s2<s—t1 <1, we have BO(s—t71) < e~ bt go(t)sﬁi.
If0O<s—t ' <1—s2 wehave 30 (s—t 1) g Bs—t )1 —s+t"1) 3
ﬁ(s—t‘l)sﬁi.‘Thus, if s>2and 0 <s—t"' <1 then BO(s—t71) < (p(t) +
B(s —t=1))s%% and U (t)/p(t) < t759 < s5. Using (32) we deduce that if
s>2and 0 < s—t~! < 1thenw(t,s) < s™, where m = 1+5 qj,+6 > uiy.
Since w(t,s) =0 if s —t~! ¢ (0,1), this formula and (35) imply (33).

CASE 2: > i, = 0. In this case

_ (@) (P (#))
(36) w(t,s) = TR
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where j, € Zy and 1 < r = > j, <n+ 1. If s <1/2, or s > 1/2 and
t <1/(s—1/2), then w(t,s) < 1 (the denominator in (36) is bounded from
below by 277). If s > 1/2 and t > 1/s then ) (t)/p(t) < t=% < s for
any j € N. This inequality and (36) imply that if s > 1/2 and ¢ > 1/s, then
w(t,s) < s™, where m =5 qj,, which proves (33). Therefore p € B. =
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