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Compa
t perturbations of linear di�erential equationsin lo
ally 
onvex spa
esbyS. A. Shkarin (London)Abstra
t. Herzog and Lemmert have proven that if E is a Fré
het spa
e and T : E →Eis a 
ontinuous linear operator, then solvability (in [0, 1]) of the Cau
hy problem ẋ = Tx,
x(0) = x0 for any x0 ∈ E implies solvability of the problem ẋ(t) = Tx(t) + f(t, x(t)),
x(0) = x0 for any x0 ∈ E and any 
ontinuous map f : [0, 1] × E → E with relatively
ompa
t image. We prove the same theorem for a large 
lass of lo
ally 
onvex spa
esin
luding:

• DFS-spa
es, i.e., strong duals of Fré
het�S
hwartz spa
es, in parti
ular the spa
esof S
hwartz distributions S ′(Rn), the spa
es of distributions with 
ompa
t support
E ′(Ω) and the spa
es of germs of holomorphi
 fun
tions H(K) over an arbitrary
ompa
t set K ⊂ C

n;
• 
omplete LFS-spa
es, i.e., 
omplete indu
tive limits of sequen
es of Fré
het�S
hwartzspa
es, in parti
ular the spa
es D(Ω) of test fun
tions;
• PLS-spa
es, i.e., proje
tive limits of sequen
es of DFS-spa
es, in parti
ular, thespa
es D′(Ω) of distibutions and A(Ω) of real-analyti
 fun
tions.Here Ω is an arbitrary open domain in R

n. We 
onstru
t an example showing that theanalogous statement for (smoothly) time-dependent linear operators is invalid already forFré
het spa
es.1. Introdu
tion. In this paper all linear spa
es are spa
es over the�eld R. All lo
ally 
onvex topologi
al ve
tor spa
es (LCS) are assumed to beHausdor�. Below R is always the set of real numbers, N is the set of positiveintegers and Z+ = N ∪ {0}.Ordinary di�erential equations in abstra
t spa
es(1) ẋ(t) = f(t, x(t))(E is a LCS, f : I × E → E and I is an interval of R) have been intenselystudied during the last de
ades (see e.g. [1, 4, 6�12, 17�20, 23, 29�31℄). Oneof the reasons to study them is the fa
t that any partial di�erential equation2000 Mathemati
s Subje
t Classi�
ation: Primary 34G20.Key words and phrases: ordinary di�erential equations in lo
ally 
onvex spa
es, exis-ten
e theorem, uniqueness theorem, linear di�erential equations, lifting.[203℄
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an be interpreted as an ordinary di�erential equation in an appropriate LCS.Linear di�erential equations form an interesting and important sub
lass ofordinary di�erential equations in LCS (see e.g. [4, 6, 9, 10, 12, 18�20, 29, 32,33℄). A solution of (1) is a fun
tion x ∈ C1(I, E) su
h that ẋ(t) = f(t, x(t))for any t ∈ I (we 
onsider only strong solutions). The symbol L(E) standsfor the spa
e of 
ontinuous linear operators on a LCS E, and L(I, E) is theset of 
ontinuous maps T : I × E → E, (t, x) 7→ Ttx, linear with respe
tto x ∈ E. We say that a map f : X → Y is M-
ompa
t (X and Y aretopologi
al spa
es) if f is 
ontinuous and f(X) is 
ompa
t and metrizable.Let E be a LCS, a > 0, f ∈ C([0, a], E), x0 ∈ E and g : [0, a]×E → E be
M -
ompa
t. We 
onsider Cau
hy problems for non-perturbed and perturbedlinear ordinary di�erential equations:

ẋ(t) = Tx(t), x(0) = x0,(2)
ẋ(t) = Tx(t) + f(t), x(0) = x0,(3)
ẋ(t) = Tx(t) + g(t, x(t)), x(0) = x0,(4)where T ∈ L(E). For the time-dependent 
ase we 
onsider Cau
hy problems
ẋ(t) = Ttx(t), x(0) = x0,(5)
ẋ(t) = Ttx(t) + g(t, x(t)), x(0) = x0,(6)where T ∈ L([0, a], E). Following [4, 32, 12℄ we de�ne

(7) ex(E) = {T ∈ L(E) : (2) is solvable in [0, a] for any x0 ∈ E},

(8) ex′(E) = {T ∈ L(E) : (3) is solvable in [0, a]for any (x0, f) ∈ E × C(R, E)},

(9) unex(E) = {T ∈ L(E) : (2) is uniquely solvable in [0, a]for any x0 ∈ E},

(10) unex′(E) = {T ∈ L(E) : (3) is uniquely solvable in [0, a]for any (x0, f) ∈ E × C(R, E)},

(11) ex(E) = {T ∈ L(E) : (4) is solvable in [0, a]for any x0 ∈ E and any M -
ompa
t map g : [0, a] × E → E}.The sets ex(E), ex′(E), unex(E), unex′(E) and ex(E) do not dependon the 
hoi
e of a > 0. Moreover, these sets do not 
hange if one repla
es
[0, a] in their de�nition by [0,∞) (1). Obviously ex(E) ⊆ ex′(E) ⊆ ex(E),(1) Indeed, if b ∈ (0,∞] and T ∈ L(E) satis�es one of the 
onditions (7)�(11) for some
a > 0, then we 
an represent the interval I = [0, b] (I = [0,∞) if b = ∞) as a �nite (or
ountable if b = ∞) union of intervals [xj , xj+1] su
h that xj < xj+1 and xj+1 − xj ≤ afor any j. Then we 
an produ
e a solution of (2), (3) or (4) on I solving the equation on
[xj , xj+1] 
onse
utively and using the value of the solution at the right end of the previousinterval as the initial data.
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unex′(E) ⊆ unex(E) ⊆ ex(E) and unex′(E) ⊆ ex′(E). If E is a Bana
h spa
ethen L(E) = unex′(E) a

ording to the Pi
ard theorem. When E is a Fré
hetspa
e, this equality is in general invalid. For example, L(E) 6= ex(E) 6=
unex(E) for E = C∞[0, 1] (see [20, 19℄) and L(E) = ex(E) 6= unex(E) for
E = R

N (see [32, 9, 10℄). Moreover, there exists T ∈ L(R,RN) su
h that (5)has no solutions for any x0 ∈ R
N \ {0} (see [33℄). However, there exists anon-normable Fré
het spa
e E su
h that L(E) = unex(E) (see [18℄). Thefollowing theorem is proved by Herzog and Lemmert [12℄.

Theorem HL. Let E be a Fré
het spa
e. Then ex(E) = ex(E).Note that the weaker equality ex(E) = ex′(E) for Fré
het spa
es is alsoproved in [29℄. Let
CP = {E : E is a LCS and ex(E) = ex(E)}.In this paper we prove a su�
ient 
ondition for a LCS E (in terms of metri

ompa
t lifting property) to be an element of CP. Using this 
ondition, weprove that CP in
ludes three 
lasses of LCS Y , X ∩ UF and X ∩ U0PU

I
0Fde�ned below and show that Y 
ontains the duals of separable metrizable lo-
ally 
onvex spa
es with the pre-
ompa
t 
onvergen
e topology, X ∩UF 
on-tains the 
ompa
tly regular (2) 
ountable indu
tive limits of Fré
het spa
esand X ∩U0PU

I
0F whi
h 
ontains 
ompa
tly regular LCS whi
h are 
ountableindu
tive limits of 
ountable proje
tive limits of 
ountable indu
tive limits ofseparable Fré
het spa
es. In parti
ular, the spa
es D(Ω) of in�nitely di�er-entiable fun
tions with 
ompa
t support, S ′(Rn) of S
hwartz distributions,

D′(Ω) of generalized fun
tions and A(Ω) of real-analyti
 fun
tions belongto CP, where Ω is an open subset of R
n.Let S = S(R) be the spa
e of rapidly de
reasing in�nitely di�erentiablefun
tions on R:

(12) S = {f ∈ C∞(R) : ‖f‖n,k = sup
x∈R

|f (n)(x)|(|x|k + 1) <∞for any n, k ∈ Z+},endowed with the topology de�ned by the seminorms ‖ · ‖n,k. Note that Sis a nu
lear Fré
het spa
e [21℄. We 
onstru
t T ∈ L(R,S) and y0 ∈ S su
hthat for any (t0, x0) ∈ R × S, the problem(13) ẋ(t) = Ttx(t), x(t0) = x0,is uniquely solvable in any interval 
ontaining t0, and the equation ẋ(t) =
Ttx(t) + y0 has no solutions in [0, ε) for any ε > 0. This example shows thatthe natural analog of Theorem HL for time-dependent linear operators onFré
het spa
es is invalid.

(2) A LCS E is said to be 
ompa
tly regular if it is sequentially 
omplete and its dual
E′ with the 
onvex 
ompa
t 
onvergen
e topology is a S
hwartz spa
e.
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onstru
t a 
omplete ultrabornologi
al LCS whi
h does not be-long to CP.2. Notation and de�nitions. Everywhere below, I is a 
ompa
t inter-val of the real line. For a subset A of a LCS E, acoA stands for the 
losureof the balan
ed 
onvex hull of A in E, U(E) is the set of open 
onvex andbalan
ed neighborhoods of zero in the LCS E, and K(E) is the set of 
on-vex balan
ed metrizable 
ompa
t subsets of E. A set B ⊆ K(E) is 
alled abase of K(E) if any Q ∈ K(E) is 
ontained in some K ∈ B. For a 
onvexbalan
ed set M ⊂ E, EM stands for the linear hull of M , endowed with thelo
ally 
onvex topology τ = τ(M,E) having the set {U ∩M : U ∈ U(E)}as a pre-base of neighborhoods of zero. As usual, a disk is a 
losed bounded
onvex balan
ed subset of a LCS E (see [5℄). Note that for a disk D ⊂ E, thetopology τ(D,E) on ED is de�ned by the norm pD, whi
h is the Minkowskifun
tional of D, i.e., ED is a normed spa
e. For two disks D1, D2 ⊂ E, wewrite D1 ≪ D2 if D1 is pre-
ompa
t in the normed spa
e ED2
and thereexists ε ∈ (0, 1) su
h that D1 ⊆ εD2.Definition 1. A LCS E is said to be integrally 
omplete if any f ∈

C(I, E) is Riemann integrable in E, or equivalently (see [16℄ for the proof),for any metrizable 
ompa
t set K ⊂ E, acoK is 
ompa
t (and automati
allymetrizable [5℄).Remark 1. The last property is usually 
alled the metri
 
onvex 
om-pa
tness property [5℄. Evidently any sequentially 
omplete LCS is integrally
omplete. Note that any LCS quasi
omplete in the Ma
key topology [13℄ isintegrally 
omplete [16℄.Definition 2. We say that a map T : E → F (E and F are LCS)lifts metri
 
ompa
ts if for any K ∈ K(F ) there exists Q ∈ K(E) su
h that
T (Q) ⊇ K. We say that a pair (E,F ) of LCS has the metri
 
ompa
t liftingproperty if any surje
tive linear sequentially 
ontinuous operator T : E → Flifts metri
 
ompa
ts.Definition 3. A subset A of a topologi
al spa
e X is said to be Baire-measurable if A is a symmetri
 di�eren
e of an open set and a Baire �rst
ategory set. A topologi
al spa
e is 
alled Polish if it is separable metrizableand its topology is de�ned by a 
omplete metri
. A topologi
al spa
e is 
alledSuslin if it is a 
ontinuous image of a Polish spa
e. A metrizable Suslin spa
eis 
alled analyti
.It is well known that Baire-measurable subsets of a topologi
al spa
e forma σ-algebra, 
ontaining the Borel σ-algebra [24℄. We need several 
lasses ofLCS. As usual F is the 
lass of Fré
het spa
es. By X we denote the 
lassof sequentially 
omplete LCS E su
h that for any Q ∈ K(E) there exists
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K ∈ K(E) for whi
h Q≪ K. The symbol Y stands for the 
lass of integrally
omplete LCS E with K(E) having a 
ountable base. If A is a 
lass ofLCS then by UA we denote the 
lass of LCS E for whi
h there exist linearsubspa
es En ⊂ E and stronger lo
ally 
onvex topologies τn on En su
h that(U0) E =

∞
⋃

n=1

En and for any n ∈ N, (En, τn) ∈ A and En ⊆ En+1.We denote by PA the 
lass of sequentially 
losed subspa
es of 
ountableprodu
ts of spa
es from A. The symbol U0A stands for the 
lass of LCS
(E, τ) su
h that there exist linear subspa
es En ⊂ E and stronger lo
ally
onvex topologies τn on En satisfying (U0) and
(U1) for any n ∈ N, the spa
e (En, τ |En) is Suslin.The symbols U

IA and U
I
0A stand for the 
lasses of integrally 
omplete spa
esfrom UA and U0A respe
tively.Definition 4. Let E be a LCS and T ∈ L(I, E). We denote by Σ(I, T )the spa
e of solutions in I of the equation ẋ(t) = Ttx(t), endowed with theuniform 
onvergen
e topology. We say that a linear subspa
e F ⊆ C(I, E)is an S-spa
e if F = Σ(I, T ) for some T ∈ L(I, E).Definition 5. Let I = [a, b], E be a LCS, f ∈ C(I × E,E) and K ∈

K(E). We say that equation (1) is 
ompa
tly solvable over K if there exists
M ∈ K(E) su
h that
(14) for any (t0, x0) ∈ I ×K there exists a solution x : [t0, b] →M of the

problem ẋ(t) = f(t, x(t)), x(t0) = x0.We say that (1) is uniformly 
ompa
tly solvable if for any K ∈ K(E), (1) is
ompa
tly solvable over K. We write Lucs(I, E) for the set of T ∈ L(I, E)for whi
h the equation ẋ(t) = Ttx(t) is uniformly 
ompa
tly solvable.3. Main resultsProposition 1. Let a > 0, I = [0, a], E be an integrally 
omplete LCSand T ∈ Lucs(I, E). Then for any M-
ompa
t map g : I × E → E and any
x0 ∈ E, problem (6) is solvable in I.Theorem 1. Let E be an integrally 
omplete LCS , a > 0, I = [0, a] and
T ∈ L(E). Suppose that
(15) the operator T : Σ(I, T ) → E, Tx = x(0) lifts metri
 
ompa
ts.Then T ∈ ex(E) (in parti
ular T ∈ ex′(E)).Theorem 2. Let E and F be LCS su
h that either E ∈ Y or F ∈ Xand E ∈ U0PU0F ∪UF . Then the pair (E,F ) has the metri
 
ompa
t liftingproperty.



208 S. A. ShkarinProposition 2. Let E be a LCS and F ⊂ C(I, E) be an S-spa
e. Then
E ∈ Y ⇒ F ∈ Y , E ∈ X ⇒ F ∈ X , E ∈ U

IF ⇒ F ∈ U
IF and E ∈

U
I
0PU

I
0F ⇒ F ∈ U

I
0PU

I
0F .Theorem 2 and Proposition 2 immediately implyCorollary 1. Let E ∈ (X ∩UF)∪(X ∩U0PU

I
0F)∪Y and F ⊂ C(I, E)be an S-spa
e. Then the pair (F,E) has the metri
 
ompa
t lifting property.Theorem 1 and Corollary 1 implyCorollary 2. (X ∩ UF) ∪ (X ∩ U0PU

I
0F) ∪ Y ⊂ CP.The following proposition des
ribes properties of the 
lasses Y and UFand U0PU

I
0F . In parti
ular, together with Corollary 1 it shows that naturalLCS belong to CP.Proposition 3.(A) Let E be a separable metrizable LCS , E′

τ be its dual endowed with thelo
ally 
onvex topology τ su
h that σ ⊆ τ ⊆ π, where σ = σ(E′, E) isthe weak topology and π = π(E′, E) is the pre-
ompa
t 
onvergen
etopology. Then E′
τ ∈ Y.(B) UF 
ontains all 
ountable indu
tive limits of Fré
het spa
es. Allsequentially 
omplete LFS-spa
es (= indu
tive limits of sequen
esof Fré
het spa
es) belong to X ∩ UF . In parti
ular , DFS-spa
es

(= strong duals of Fré
het S
hwartz spa
es) belong to X ∩ UF .(C) U0PU
I
0F 
ontains all 
ountable indu
tive limits of sequentially 
om-plete 
ountable proje
tive limits of integrally 
omplete 
ountable in-du
tive limits of separable Fré
het spa
es.Corollary 3. S ′(Rn) ∈ CP; for any open set Ω ⊆ R

n,
{D(Ω),D′(Ω),A(Ω)} ⊂ CP;and for any 
ompa
t set K ⊂ C

n, H(K) ∈ CP, where H(K) is the spa
e ofgerms of holomorphi
 fun
tions.We 
onstru
t two examples, whose properties are summarized in thefollowing theorem.Theorem 3.(i) There exist an in�nitely Fré
het di�erentiable map T ∈ L(R,S) and
y0 ∈ S su
h that problem (5) is uniquely solvable in any interval
ontaining t0 for any (t0, x0) ∈ R×S and the equation ẋ(t) = Ttx(t)
+ y0 has no solutions in [0, ε) for any ε > 0.(ii) There exists a 
omplete ultrabornologi
al LCS E su
h that E /∈ CP.
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t perturbations of linear di�erential equations 2094. Proofs4.1. Auxiliary lemmasLemma 1.1. Let (E, τ) be a LCS (τ is the topology of E), M ⊆ E be abalan
ed 
onvex set , Uα ∈ U(E), α ∈ A be su
h that {Uα ∩ (2M) : α ∈ A} isa base of neighborhoods of zero in (2M, τ |2M ) and θ be the (non-Hausdor�in general) lo
ally 
onvex topology on E, having the set {Uα : α ∈ A} as abase of neighborhoods of zero. Then θ|M = τ |M .Proof. Obviously θ|M ⊆ τ |M . Let x ∈M and U be an open neighborhoodof x in (M, τ |M ). Then there existsW ∈ U(E, τ) su
h that (x+W )∩M ⊆ U .Pi
k α ∈ A for whi
h Uα ∩ (2M) ⊆ W ∩ (2M). Clearly (x + Uα) ∩M ⊆
x+ (Uα ∩ (2M)). Therefore,

(x+ Uα) ∩M = (x+ (Uα ∩ (2M))) ∩M ⊆ (x+ (W ∩ (2M))) ∩M

⊆ (x+W ) ∩M ⊆ U.Sin
e (x+Uα)∩M is a neighborhood of x in (M, θ|M ), we obtain the in
lusion
θ|M ⊇ τ |M .Lemma 1.2. Let M be a para
ompa
t subset of a LCS F , A be a 
onvexsubset of a LCS E and T : E → F be a linear operator su
h that T (A) ⊇M .Then for any U ∈ U(F ) there exists a 
ontinuous map f : M → A su
h that
Tf(y) ∈ y + U for any y ∈M .Proof. Evidently, {(y + U) ∩M : y ∈ M} is an open 
over of M . Sin
e
M is para
ompa
t, there exists a lo
ally �nite positive 
ontinuous partitionof unity {̺α : α ∈ Ω} on M and a map y : Ω → M su
h that ̺α(y) = 0 if
y /∈ y(α) + U for any α ∈ Ω (see [14℄). For any α ∈ Ω, let x(α) ∈ A be su
hthat Tx(α) = y(α). Consider the map

f : M → E, f(y) =
∑

α∈Ω

̺α(y)x(α).

Sin
e A is 
onvex, we have f(M) ⊆ A. Lo
al �niteness and 
ontinuity of ̺αimply 
ontinuity of f . Let y ∈ M . Sin
e y(α) ∈ y + U when ̺α(y) 6= 0, weobtain
Tf(y) =

∑

α∈Ω

̺α(y)y(α) ∈
∑

α∈Ω

̺α(y)(y + U) = y + U.

Lemma 1.3. Let E be a LCS and G = C(I, E). Then any S-spa
e F ⊂ Gis 
losed in G. Moreover :
• E is integrally 
omplete ⇒ G is integrally 
omplete;
• E is sequentially 
omplete ⇒ G is sequentially 
omplete.



210 S. A. ShkarinProof. Let t0 ∈ I and T ∈ L(I, E) be su
h that F = Σ(I, T ). Evidently,
F = {x ∈ G : Atx = 0 for any t ∈ I}, where

Atx = x(t) − x(t0) −
t\
t0

Tτx(τ) dτ.Therefore F is 
losed in G as the interse
tion of the kernels of the linear
ontinuous operators At : G → E, where E is the 
ompletion of E. If Eis sequentially 
omplete then sequential 
ompleteness of G is obvious. Let
E be integrally 
omplete. It remains to prove integral 
ompleteness of G.Let f : [0, 1] → G be a 
ontinuous map. Sin
e E is integrally 
omplete, forany s ∈ I there exists ϕ(s) =

T1
0 f(t)(s) dt ∈ E. Uniform 
ontinuity of themap (t, s) 7→ f(t)(s) implies 
ontinuity of ϕ : I → E. Therefore there existsT1

0 f(t) dt = ϕ ∈ G. Hen
e G is integrally 
omplete.Lemma 1.4. Let B be a Bana
h spa
e and A be a balan
ed 
onvex Baire-measurable subset of B. Then either A is a Baire �rst 
ategory set , or forany ε ∈ (0, 1), the set (1 − ε)A is 
ontained in the interior of A in B.Proof. Let U = {x ∈ B : ‖x‖ < 1}. Suppose that A is a Baire se
ond
ategory set. Sin
e A is Baire-measurable, there exist x0 ∈ B, c > 0 anda Baire �rst 
ategory set P ⊂ U su
h that x0 + 3c(U \ P ) ⊆ A. Sin
e Ais 
onvex and balan
ed, we have 3c(U \ Q) ⊆ A, where Q = P ∪ (−P ).Let us show that cU ⊆ A. Suppose that there exists x1 ∈ cU \ A. Then
(2x1 +A) ∩A = ∅. Therefore

2x1 + cU = (2x1 + (cU \ A)) ∪ ((2x1 + cU) \ A) ⊆ (2x1 + cQ) ∪ 3cQ.Sin
e Q is a Baire �rst 
ategory set, so is the ball 2x1+cU , whi
h 
ontradi
tsBaire's theorem. Thus, cU ⊆ A. Let now ε ∈ (0, 1) and x ∈ (1 − ε)A. Sin
e
A is 
onvex and balan
ed, x+ cεU ⊂ x+ εA ⊂ A. Therefore x is an interiorpoint of A.Lemma 1.5. Let E be a LCS , X be a Suslin topologi
al spa
e, K ∈ K(E)and f : X → E be a sequentially 
ontinuous map. Then the set f(X) ∩ EKis a Baire-measurable subset of the Bana
h spa
e EK .Proof. Let Xn = f−1(nK). Then Xn is a Suslin spa
e as a sequentially
losed subset of a Suslin spa
eX. So for any n ∈ N, there exists a Polish spa
e
Yn and a 
ontinuous surje
tive map gn : Yn → Xn. Sin
e Yn is metrizable,the map f ◦gn : Yn → E is 
ontinuous and therefore Borel-measurable. Sin
ethe Borel σ-algebras of subsets of EK with respe
t to the indu
ed topologyand to the Bana
h spa
e topology 
oin
ide (both σ-algebras are generatedby the set {x + cK : x ∈ EK , c > 0}), f ◦ gn is a Borel-measurable mapfrom Yn to the Bana
h spa
e EK . A

ording to Luzin's theorem [14℄, theimage of a Polish spa
e under a Borel-measurable map (taking values in a
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 spa
e) is analyti
. Hen
e f(Xn) = (f ◦ gn)(Yn) is analyti
. Sin
e anyanalyti
 subset of a metri
 spa
e is Baire-measurable [14℄, we see that f(Xn)is Baire-measurable in EK . Sin
e f(X) ∩ EK is the union of the f(Xn), weobtain Baire-measurability of f(X) ∩ EK in EK .Lemma 1.6.(i) Let E be a Fré
het spa
e and Q ∈ K(E). Then there exists K ∈ K(E)su
h that Q≪ K.(ii) Let E be a LCS , K1,K3 ∈ K(E) and K1 ≪ K3. Then there exists
K2 ∈ K(E) su
h that K1 ≪ K2 ≪ K3.Proof. (i) is proved in [21℄. For a simpler proof see Lemma 3 of [28℄.(ii) Assertion (i) implies the existen
e of Q ∈ K(EK3

) for whi
h K1 ≪ Q.Sin
e K1 ≪ K3, there exists q ∈ (0, 1) su
h that K1 ⊆ q2K3. Clearly,
K2 = Q ∩ qK3 satis�es the required 
onditions.Lemma 1.7. Let E and F be LCS , T : E → F be a linear operator ,
K,Q ∈ K(F ), Q ≪ K, and U,M be 
onvex balan
ed Suslin subsets of Esu
h that U ⊆ M , U is absorbing in the linear hull of M , the restri
tion
T |M is sequentially 
ontinuous and T (M) ⊇ K. Then there exist ε > 0 and
L ∈ K(E) su
h that L + εU ⊆ M , the linear hull of L is �nite-dimensionaland T (L+ εU) ⊇ Q.Proof. Let ε ∈ (0, 1) be su
h that Q ⊆ (1−ε)K. Sin
e U is Suslin and T |Uis sequentially 
ontinuous, Lemma 1.5 implies that T (U) is Baire-measurablein the Bana
h spa
e FK . Sin
e T (U) is absorbing in FK , Lemma 1.4 impliesthe existen
e of c > 0 su
h that cK ⊂ T (U). Sin
e Q is 
ompa
t in FK and
Q ⊆ (1 − ε)K, and T (M) ⊇ K, there exist x1, . . . , xn ∈M su
h that

Q ⊆
n
⋃

j=1

(1 − ε)Txj + εT (U) ⊂ T (L+ εU),where L = (1 − ε) aco{x1, . . . , xn}. Clearly L is 
ompa
t and has �nite-dimensional linear hull. Sin
e L ⊆ (1 − ε)M and U ⊆ M , we �nd that
L+ εU ⊆M .Lemma 1.8. Let (E, θ) be a LCS and M ⊂ E be a 
omplete 
onvexbalan
ed metrizable set. Then (EM , τ(M,E)) is a Fré
het spa
e (see Se
tion 2for de�nitions).Proof. Clearly τ = τ(M,E) is stronger than θ|EM

. Pi
k Un ∈ U(E) su
hthat the set {Wn = Un ∩M : n ∈ N} is a base of τ -neighborhoods of zeroin M . Sin
e for any U ∈ U(E), there exists n ∈ N su
h that U ∩M ⊃ Wn,we see that {Wn : n ∈ N} is a pre-base of τ -neighborhoods of zero in EM .Therefore (EM , τ) is metrizable. It remains to prove 
ompleteness of (EM , τ).Let xn be a τ -Cau
hy sequen
e in EM . Sin
e M is a τ -neighborhood of zero,
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h that xn ∈ cM for any n ∈ N. Sin
e xn is a θ-Cau
hysequen
e and cM is 
omplete in (E, θ), we �nd that xn is θ-
onvergent to
x ∈ cM . We have to show that xn is τ -
onvergent to x. A

ording to thede�nition of τ , to this end it su�
es to verify that pM (xn − x) → 0, where
pM is the Minkowski fun
tional of M . Suppose the 
ontrary. Then thereexists ε > 0 and an in�nite set A ⊂ N su
h that xn − x /∈ εM for all n ∈ A.Sin
e xn is a τ -Cau
hy sequen
e, there exists an in�nite set B ⊂ A su
hthat xn − xm ∈ εM for all m,n ∈ B. Fixing n ∈ B, passing to the limitas m → ∞ and using θ-
ompleteness of M , we dedu
e that xn − x ∈ εM ,whi
h is a 
ontradi
tion.4.2. Proofs of Proposition 1 and Theorem 1Definition 6. Let E be a LCS, I = [a, b], J = {(t, s) ∈ I2 : t ≥ s},
Jb = J \ {(b, b)}, f ∈ C(I × E,E), A,B ⊆ E and U ∈ U(E). A map
S : J × A → B, (t, s, x) 7→ Sst x, is 
alled a 
ontinuous approximate systemof solutions (CASS(A,B,U)) of (1) if(A1) S is 
ontinuous on J×A and di�erentiable with respe
t to t on Jb×A;(A2) the derivative ∂

∂t
Sst x admits a 
ontinuous extension to J ×A;(A3) ∂

∂t
Sst x− f(t, Sst x) ∈ U for any (t, s, x) ∈ Jb ×A;(A4) Sttx− x ∈ U for any (t, x) ∈ I ×A.Definition 7. Let E be a LCS, f ∈ C(I × E,E) and K ∈ K(E).Equation (1) is 
alled ACC-solvable over K if there exists Q ∈ K(E) su
hthat for any U ∈ U(E) there exists a CASS(K,Q,U) of (1). Equation (1) is
alled uniformly ACC-solvable if for any K ∈ K(E), this equation is ACC-solvable over K.Lemma 2.1. Let E be an integrally 
omplete LCS , a > 0, I = [0, a],

T ∈ L(I, E), g ∈ C(I × E,E), x0 ∈ E and K ∈ K(E) be su
h that x0 ∈ K,
g(t, x) ∈ K, Ttg(t, x) ∈ K for any (t, x) ∈ I × E and the equation ẋ(t) =
Ttx(t) is ACC-solvable over K. Then (6) is solvable in I.Proof. Without loss of generality, we 
an assume that a ≤ 1. A

ordingto De�nition 7 there exists Q ∈ K(E) su
h thatK ⊆ Q and for any U ∈ U(E)there exists a CASS(K,Q,U) of the equation ẋ(t) = Ttx(t). Using integral
ompleteness of E, we 
an 
hoose N ∈ K(E) su
h that Q ⊆ N and Ttx ∈ Nfor any (t, x) ∈ I ×Q. Lemma 1.1 implies existen
e of Un ∈ U(E) su
h that
2Un+1 ⊆ Un for all n ∈ N and θ|N = τ |N , where θ is the lo
ally 
onvextopology having the set {Un : n ∈ N} as a base of neighborhoods of zero.We denote by nS a CASS(K,Q,Un) of the equation ẋ(t) = Ttx(t). Let
(16) M = {x ∈ C(I, E) : x(t) ∈ 3Q and x(t) − x(s) ∈ 4|t− s|Qfor any t, s ∈ I}.



Compa
t perturbations of linear di�erential equations 213A

ording to the Arzelà�As
oli theorem we have M ∈ K(C(I, E)). Let
Φn : C(I, E) → C(I, E) be de�ned by the formula(17) Φn(x)(t) =

t\
0

g(τ, x(τ)) dτ +

t\
0

nSτt Tτ

τ\
0

g(s, x(s)) ds dτ + nS0
t x0.Clearly Φn is well de�ned and 
ontinuous. Moreover, for any x ∈ C(I, E),(18) Φn(x)(t) ∈ K +Q+Q ⊆ 3Q.Di�erentiating (17), we see that Φn(x) ∈ C1(I, E) for any x ∈ C(I, E) and

d

dt
Φn(x)(t) = g(t, x(t)) + nSttTt

t\
0

g(s, x(s)) ds(19)
+

t\
0

∂

∂t
nSτt Tτ

τ\
0

g(s, x(s)) ds dτ +
∂

∂t
nS0
t x0.Using (A1), (A2), (19) and the de�nition of Q, we have(20) d

dt
Φn(x)(t) ∈ K +Q+Q+Q ⊆ 4Q.Formulas (16), (18) and (20) imply that Φn(M) ⊆ M . A

ording to theTikhonov �xed point theorem (see, e.g., [25℄) for any n ∈ N there existsa solution xn ∈ M of the equation Φn(x) = x. Sin
e M is 
ompa
t andmetrizable, the sequen
e xn has a subsequen
e xnk

uniformly 
onverging to
x ∈M . It remains to show that x is a solution of (6).From (A4) and (17) it follows that xn(0) = Φn(xn)(0) = nS0

0x0 ∈ x0+Un.Therefore xn(0) → x0 with respe
t to θ. Sin
e θ indu
es the initial topologyon 3Q and xn(0) ∈ 3Q, we �nd that xn(0) → x0. Hen
e x(0) = x0. Applying(19) to xn and using (A3) and (A4), we see that
ẋn(t) ∈ g(t, xn(t)) + Tt

t\
0

g(s, xn(s)) ds

+ Tt

t\
0

nSτt Tτ

τ\
0

g(s, xn(s)) ds dτ + Tt
nS0
t x0 + 3Un

= g(t, xn(t)) + TtΦn(xn)(t) + 3Un = g(t, xn(t)) + Ttxn(t) + 3Un.A

ording to (18) and (20), ẋn(t) = d
dt
Φn(xn)(t) ∈ 4Q, g(t, xn(t)) ∈ Kand Ttxn(t) = TtΦn(xn)(t) ∈ 3N . Therefore ẋn(t) − g(t, xn(t)) − Ttxn(t) ∈

8N ∩ 3Un. Sin
e θ indu
es the initial topology on 8N , it follows that ẋnk
(t)uniformly 
onverges to Ttx(t) + g(t, x(t)). Hen
e, x ∈ C1(I, E) and ẋ(t) =

Ttx(t) + g(t, x(t)).Corollary 2.1. Let E be an integrally 
omplete LCS , a > 0, I = [0, a]and T ∈ L(I, E) be su
h that the equation ẋ(t) = Ttx(t) is uniformly ACC-
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ompa
t map g : I × E → E and any x0 ∈ E theproblem (6) is solvable in I.Lemma 2.2. Let E be an integrally 
omplete LCS , a > 0, I = [0, a],
K ∈ K(E) and T ∈ L(I, E) be su
h that the equation ẋ(t) = Ttx(t) is
ompa
tly solvable over K. Then ẋ(t) = Ttx(t) is ACC-solvable over K.Proof. A

ording to 
ompa
t solvability of the equation ẋ(t) = Ttx(t)over K, there exists M ∈ K(E) su
h that (14) is satis�ed. Sin
e E is inte-grally 
omplete, there exists Q ∈ K(E) for whi
h M ⊆ Q and {Ttx : (t, x) ∈
I ×M} ⊆ Q. Let U ∈ U(E) and let n ∈ N be su
h that 4a

n
Q ⊂ U . De�ne

h = a/n and let j ∈ {0, 1, . . . , n − 1}, Fj = Σ([jh, a], T ). Consider the op-erator Tj : Fj → E, Tjx = x(jh). Formula (14) implies that Tj(Mj) ⊃ K,where Mj = {x ∈ Fj : x([jh, a]) ⊂M}. A

ording to Lemma 1.2 there exist
ontinuous maps fj : K → Mj for whi
h Tjf(x) − x ∈ U/2 for any x ∈ K.Let J = {(t, s) ∈ I2 : t ≥ s} and S : J ×K →M be the map de�ned by
Sst x =







f0(x)(t) if 0 ≤ s ≤ h,

qfj−2(x)(t) + (1 − q)fj−1(x)(t)if s = (j − q)h, 0 ≤ q < 1, 2 ≤ j ≤ n.It su�
es to verify that S is a CASS(K,Q,U) of the equation ẋ(t) =
Ttx(t). Continuity of S follows from 
ontinuity of fj . Sin
e for any s and
x, the map t 7→ Sst x is a solution of the equation ẋ(t) = Ttx(t), we seethat 
onditions (A1)�(A3) with A = K and B = Q are satis�ed. It remainsto verify (A4). Let t ∈ I and x ∈ K. If t > h, we have t = (j − q)hwith 0 ≤ q < 1 and 2 ≤ j ≤ n. Therefore Sttx − x = q(fj−2(x)(t) − x) +
(1− q)(fj−1(x)(t)− x). Sin
e d

dt
fk(x)(t) ∈ Q for any (x, t) ∈ K × [kh, a], we�nd that fk(t)− fk(kh) ∈ |t− kh|Q. The in
lusion fk(kh)−x ∈ U/2 implies

Sttx−x ∈ U/2+ [q(t− (j− 2)h) + (1− q)(t− (j− 1)h)]Q ⊆ U/2+2hQ ⊆ U.If t ≤ h, then Sttx−x = f0(x)(t)−x = (f0(x)(t)−f0(x)(0))+(f0(x)(0)−x) ∈
hQ+ U/2 ⊆ U . Thus, in any 
ase Sttx− x ∈ U , whi
h is (A4).Lemma 2.3. Let E be an integrally 
omplete LCS , a > 0, I = [0, a],
K ∈ K(E), T ∈ L(E), F = Σ(I, T ) and T : F → E, Tx = x(0). Supposealso that there exists Q ∈ K(F ) su
h that T(Q) ⊇ K. Then the equation
ẋ(t) = Tx(t) is ACC-solvable over K.Proof. Let U ∈ U(E) and M = aco({x(t) : (t, x) ∈ I × Q} ∪ {Tx(t) :
(t, x) ∈ I×Q}). Sin
e E is integrally 
omplete we haveM ∈ K(E). A

ordingto Lemma 1.2 there exists a 
ontinuous map f : K →M su
h that Tf(x)−
x ∈ U for any x ∈ K. Let S : J × K → M , Sst x = f(x)(t − s), where
J = {(t, s) ∈ I2 : t ≥ s}. It remains to prove that S is a CASS(K,M,U)of the equation ẋ(t) = Ttx(t). Continuity of S follows from 
ontinuity of f .



Compa
t perturbations of linear di�erential equations 215Sin
e f takes values in the spa
e of solutions of the equation ẋ = Tx, wehave ∂
∂t
Sst x = Tf(x)(t− s) ∈M . This proves (A1)�(A3). Let (t, x) ∈ I ×K.Then Sttx = f(x)(0) = Tf(x) ∈ x+ U , whi
h is (A4).Corollary 2.2. Let E be an integrally 
omplete LCS , a > 0, I = [0, a],

K ∈ K(E) and T ∈ ex(E) be an operator satisfying (15). Then the equation
ẋ(t) = Tx(t) is uniformly ACC-solvable in I.Corollary 2.1 and Lemma 2.2 imply Proposition 1. Theorem 1 followsfrom Corollaries 2.1 and 2.2.4.3. Proof of Theorem 2Lemma 3.1. Let G be the 
lass of LCS E su
h that for any LCS F , any
Q,K ∈ K(F ) and any sequentially 
ontinuous linear operator T : E → Fsu
h that Q ≪ K and T (E) ⊇ K there exists N ∈ K(E) for whi
h T (N)
⊇ Q. Then U0G ⊆ G.Proof. Let (E, τ) ∈ U0G, (En, τn) be spa
es satisfying (U0) and (U1),
F be a LCS, Q,K ∈ K(F ), Q ≪ K and T : E → F be a sequentially
ontinuous linear operator su
h that T (E) ⊇ K. We have to verify theexisten
e of N ∈ K(E) for whi
h T (N) ⊇ Q. Sin
e (En, τ |En) is Suslin,Lemma 1.5 implies that An = T (En) ∩ FK is a Baire-measurable subsetof the Bana
h spa
e FK . A

ording to Lemma 1.4, there exists n ∈ N forwhi
h K ⊂ FK ⊂ T (En). Sin
e En ∈ G, there exists N ∈ K(En) su
h that
T (N) ⊇ Q. Sin
e the topology τn of En is stronger than τ |En , we 
on
ludethat N ∈ K(E).Lemma 3.2. Let G be the 
lass of LCS de�ned in Lemma 3.1. Then
PU0F ⊂ G.Proof. Let E ∈ PU0F , F be a LCS, Q,K ∈ K(F ) be su
h that Q≪ K,and let T : E → F be a sequentially 
ontinuous linear operator su
h that
T (E) ⊇ K. We have to prove the existen
e of N ∈ K(E) for whi
h T (N)
⊇ Q. A

ording to Lemma 1.6 there exist Kj ∈ K(E) su
h that K0 = Kand Q ≪ Kn+1 ≪ Kn for any n ∈ Z+. Sin
e E ∈ PU0F we �nd that Eis a sequentially 
losed linear subspa
e of the produ
t of En ∈ U0F . Forany n ∈ N, let (Enk , τ

n
k ) be spa
es satisfying 
onditions (U0) and (U1) assubspa
es of En. De�ne
G =

∞
∏

k=1

Ek, Gn =
n

∏

k=1

Ekand let
πn : G→ En and Πn : G→ Gnbe the natural proje
tions. For any n, k ∈ N, pi
k a base of neighborhoods ofzero {Un,kj : j ∈ N} in (Enk , τ

n
k ) 
onsisting of 
losed balan
ed 
onvex sets and



216 S. A. Shkarinsu
h that 2Un,kj+1 ⊆ Un,kj for all j, n, k. Let M0 = V0 = E. We shall 
onstru
tindu
tively kn ∈ N and subsets Mn, Vn of E su
h that for any n ∈ N,(L1) Mn = {x ∈ E : Πnx ∈ An} and Vn = {x ∈ E : Πnx ∈ Bn}, where
An, Bn are 
losed subsets of Pn =

∏n
j=1E

j
kj

(any Ejkj
is endowedwith the topology τ jkj

) and Bn ⊂ (
∏n
j=1 U

j,kj
n ) ∩An;(L2) Mn + Vn ⊆Mn−1, Vn ⊆ Vn−1 and T (Mn) ⊇ K2n ⊃ Q;(L3) there exists Nn ∈ K(E) with �nite-dimensional linear hull su
h that

Mn = Nn + Vn.Let n ∈ N. Suppose that kj , Mj and Vj satisfying (L1)�(L3) for j < n(and, of 
ourse, the 
orresponding Aj , Bj and Pj) are already 
onstru
ted.Let
Wk =

{

{x ∈ E : Πn−1x ∈ An−1, πnx ∈ Enk } if k > 1

{x ∈ E : π1x ∈ E1
k} if k = 1.Sin
e the 
lass of Suslin spa
es is 
losed with respe
t to 
ountable unions,
ountable produ
ts and sequentially 
losed subspa
es, we dedu
e (a

ordingto (U1) for Ejk) that Wk is Suslin. Clearly, Mn−1 is the union of the Wk.Therefore, a

ording to Lemma 1.5, T (Wk)∩FK2n−2

is an in
reasing sequen
eof Baire-measurable 
onvex balan
ed subsets of the Bana
h spa
e FK2n−2
,whose union 
ontains K2n−2. Lemma 1.4 implies that the open unit ball

D = (0, 1) · K2n−2 of FK2n−2
is 
ontained in the union of the interiors of

T (Wk) ∩ FK2n−2
in FK2n−2

. Sin
e K2n−1 is a 
ompa
t subset of the ball D,there exists kn ∈ N su
h that K2n−1 ⊂ T (Wkn
). Let

B′
n =

(

n
∏

j=1

U
j,kj
n

)

∩ (Bn−1 ×Enkn
), V ′

n = {x ∈ E : Πnx ∈ B′
n}.Applying Lemma 1.7 to M = Wkn

, U = V ′
n, Q = K2n and K = K2n−1,we see that there exist Nn ∈ K(E) and ε ∈ (0, 1) su
h that Nn has �nite-dimensional linear hull, Nn + εV ′

n ⊂ Wkn
and T (Nn + εV ′

n) ⊃ K2n. Letnow
Bn = εB′

n, Vn = εV ′
n = {x ∈ E : Πnx ∈ Bn},

An = Bn + εΠn(Nn), Mn = Nn + εV ′
n = {x ∈ E : Πnx ∈ An}.Conditions (L1)�(L3) for kn, Nn, Vn and Mn follow from the 
onstru
tion.Let

N =
∞
⋂

n=1

Mn, P =
∞
∏

n=1

Enkn
,where P is endowed with the topology of the produ
t of (Enkn

, τnkn
). Clearly

N ⊂ P ∩E and N is 
onvex and balan
ed. It su�
es to prove that N ∈ K(E)and T (N) ⊇ Q.
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lusion N ∈ K(E) will be proved if we show that N is a 
ompa
tsubset of the Polish spa
e P (the topology of P∩E indu
ed from P is strongerthan the topology indu
ed from E). A

ording to (L3), for any n ∈ N, N is
ontained in the union of a �nite number of shifts of 2Vn. Therefore, (L1)implies pre-
ompa
tness of N in P . Sin
e P is a Polish spa
e it remains toshow that N is sequentially 
losed in P . Let xk ∈ N be a sequen
e 
onvergingto x ∈ P . Sin
e E ∩ P is sequentially 
losed in P , we see that x ∈ E. Let
n ∈ N. Sin
e An is 
losed in Pn, we �nd that Πn(x) = limΠn(xk) ∈ An andtherefore x ∈Mn. Hen
e, x ∈ N . Thus, N ∈ K(E).Let u ∈ Q. A

ording to (L2), for any n ∈ N, there exists yn ∈Mn su
hthat Tyn = u. Sin
e ym ∈ Mn for any m ≥ n, from (L3) it follows thatfor any m ≥ n, there exist xnm ∈ Nn and unm ∈ Vn su
h that xnm + unm =
ym. Using standard diagonal pro
edure, we 
an 
hoose a stri
tly in
reasingsequen
e mj ∈ N su
h that xnmj

is 
onverging to xn ∈ Nn for any n ∈ N.Sin
e ymj
= xnmj

+ unmj
∈ xn + 2Vn for su�
iently large j's, from (L1) itfollows that for any n ∈ N, Πnymj

is a Cau
hy sequen
e in Pn and therefore
Πnymj


onverges to zn ∈ An with respe
t to the topology of Pn. Sin
e τnkis stronger than the topology indu
ed from En, we see from (L1) that forany U ∈ U(E), there exists n ∈ N su
h that Vn ⊆ U . Therefore ymj
is aCau
hy sequen
e in E. Sin
e E is sequentially 
omplete, ymj

→ y ∈ E. Hen
e
Πny = zn ∈ An for any n ∈ N. Therefore y ∈ N and Ty = limTymj

= u.Thus, T (N) ⊇ Q.Now we 
an prove Theorem 2. Let E and F be LCS su
h that either
E ∈ Y , or F ∈ X and E ∈ UF ∪U0PU0F , and let T : E → F be a surje
tivesequentially 
ontinuous linear operator and Q ∈ K(F ). We have to verifythat there exists K ∈ K(E) su
h that T (K) ⊇ Q.
Case 1: E ∈ Y . Let {Kn : n ∈ N} be a base of K(E). Then Q is theunion of the sets T (Kn) ∩ Q. Sin
e they are 
losed in Q, Baire's theoremimplies that T (Kn)∩Q has non-empty interior in the balan
ed 
onvex set Qfor some n ∈ N. For this n we see that T (Kn) ∩Q absorbs Q. Hen
e, thereexists c > 0 su
h that T (K) ⊇ Q, where K = cKn ∈ K(E).
Case 2: E ∈ UF and F ∈ X . Let (En, τn) ∈ F be spa
es satisfying(U0). Sin
e F ∈ X , there exists N ∈ K(F ) su
h that Q ≪ N . Clearly

An = T−1(N) ∩ En is a 
onvex balan
ed and 
losed subset of the Fré
hetspa
e (En, τn). LetGn = (En)An and G = FN . A

ording to Lemma 1.8, ea
h
Gn is a Fré
het spa
e and G is a Bana
h spa
e. The 
losed graph theorem [13℄implies that the restri
tions T |Gn : Gn → G are 
ontinuous linear operators.Sin
e G is the union of the Ln = T (Gn), there exists n ∈ N for whi
h Lnis a Baire se
ond 
ategory set in the Bana
h spa
e G, and in parti
ular, Lnis dense in G. Sin
e Tn = T |Gn : Gn → Ln is a linear 
ontinuous surje
tiveoperator from the Fré
het spa
e Gn to the Baire metrizable LCS Ln, the
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Ln is isomorphi
 to the Fré
het spa
e Gn/kerTn. Hen
e, Ln is 
ompleteand therefore 
losed in G. Sin
e Ln is dense in G, we �nd that Ln = G.Therefore Tn : Gn → G is a surje
tive 
ontinuous linear operator from theFré
het spa
e Gn to the Bana
h spa
e G. Mi
hael's sele
tion theorem [22, 3℄implies the existen
e of a 
ontinuous right inverse map f : G → Gn of Tn.Let K = aco f(Q) (we take the 
losure with respe
t to the topology of theFré
het spa
e Gn). Compa
tness of Q in G implies that K ∈ K(Gn). Clearly
T (K) = Q. Sin
e the topology of G is stronger than the topology indu
edfrom E, we 
on
lude that K ∈ K(E).
Case 3: E ∈ U0PU0F and F ∈ X . Let G be the 
lass of LCS de�nedin Lemma 3.1. It su�
es to prove that E ∈ G. A

ording to Lemma 3.1, tothis end it is enough to verify the in
lusion PU0F ⊆ G, whi
h follows fromLemma 3.2.4.4. Proof of Proposition 2Lemma 4.1. Let A be a 
lass of LCS su
h that any sequentially 
losedsubspa
e of any element of A belongs to A and G ∈ A ⇒ C(I,G) ∈ A.Let also (E, τ) be a LCS and F be a sequentially 
losed linear subspa
e of

C(I, E) (endowed with the uniform 
onvergen
e topology). Then E ∈ U
I
0A ⇒

F ∈ U
I
0A and E ∈ PA ⇒ F ∈ PA.Proof. Let E ∈ U

I
0A, (En, τn) be spa
es satisfying (U0) and (U1) and

Fn = {f ∈ F : f(t) ∈ En for any t ∈ I} be endowed with the uniform 
onver-gen
e topology θn in (En, τn). Then (Fn, θn) ∈ A, Fn ⊂ Fn+1 and Fn with thetopology indu
ed from C(I, E) is Suslin. A

ording to Lemma 1.3, F is inte-grally 
omplete as a 
losed subspa
e of the integrally 
omplete LCS C(I, E).The in
lusion F ∈ U
I
0A will be proved if we verify that the union of the Fn
oin
ides with F . Let f ∈ F and K = aco(f(I)). Integral 
ompleteness of

E implies that K ∈ K(E). A

ording to Lemma 1.5, ea
h Gn = En ∩ EK isa Baire-measurable subset of the Bana
h spa
e EK . Lemma 1.4 and Baire'stheorem imply the existen
e of n ∈ N for whi
h Gn = EK and therefore
f(I) ⊂ K ⊂ En. Thus, f ∈ Fn and F is the union of the Fn. If E ∈ PA then
E is a sequentially 
losed subspa
e of the produ
t of the En ∈ A. A

ordingto Lemma 1.3, F is a 
losed subspa
e of C(I, E), whi
h is a sequentially
losed subspa
e of the produ
t of the C(I, En) ∈ A. Therefore F ∈ PA.Now we 
an prove Proposition 2. Let E ∈ Y , {Kn : n ∈ N} be a baseof K(E) and Mn = {x ∈ F : x(t) ∈ Kn ∀t ∈ I}. A

ording to Lemma 1.3,
F is integrally 
omplete. Sin
e E is integrally 
omplete, for any n∈N, thereexists m ∈ N su
h that {Ttx : t ∈ I, x ∈ Kn} ⊆ Km. Hen
e, {ẋ(t) : t ∈ I,
x ∈Mn} ⊆ Km. The Arzelà�As
oli theorem implies that Mn ∈ K(F ). Sup-pose now that M ∈ K(F ). Sin
e E is integrally 
omplete, there exists n ∈ N
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h that {x(t) : x ∈M, t ∈ I} ⊆ Kn. Hen
e,M ⊆Mn. Thus, {Mn : n ∈ N}is a base of K(F ) and therefore F ∈ Y .Let E ∈ X , M ∈ K(F ) and T ∈ L(I, E) be su
h that F = Σ(I, T ).A

ording to Lemma 1.3, F is sequentially 
omplete. Sin
e E is integrally
omplete, Q = aco{x(t) : (t, x) ∈ I ×M} ∈ K(E), and sin
e E ∈ X , thereexists K ∈ K(E) su
h that Q ≪ K. Let N = {x ∈ F : x(t) ∈ K ∀t ∈ I}.Sin
e the set {ẋ(t) = Ttx(t) : x ∈ N, t ∈ I} is 
ompa
t, the Arzelà�As
olitheorem implies 
ompa
tness of N . Thus, N ∈ K(E). Let us verify that
M ≪ N . To this end we have to show that the topology onM de�ned by thenorm pN 
oin
ides with the uniform 
onvergen
e topology. Let xn ∈M be asequen
e uniformly 
onverging to zero. It su�
es to prove that pN (xn) → 0.Suppose that pN (xn) 6→ 0. A

ording to the de�nition of N , there exists asequen
e tn ∈ I su
h that pK(xn(tn)) 6→ 0. Sin
e xn(tn) ∈ Q and Q ≪ K,we have xn(tn) 6→ 0 in E, whi
h 
ontradi
ts the uniform 
onvergen
e of xnto 0. Hen
e, M ≪ N and therefore F ∈ X .Let E ∈ U

IF , let (En, τn) be spa
es satisfying (U0) and let Fn = {f ∈
F : f(t) ∈ En for any t ∈ I} be endowed with the uniform 
onvergen
etopology θn in (En, τn). Then (Fn, θn) ∈ F and Fn ⊂ Fn+1. A

ording toLemma 1.3, F is integrally 
omplete as a 
losed subspa
e of the integrally
omplete LCS C(I, E). The in
lusion F ∈ U

IA will be proved if we verify thatthe union of the Fn 
oin
ides with F . Let f ∈ F and K = aco(f(I)). Integral
ompleteness of E implies that K ∈ K(E). Sin
e τn is stronger than τ |En ,we have K ∈ K(En) ⊂ M(En). A

ording to Lemma 1.8, Gn = (En)K is aFré
het spa
e (with the topology ηn having the set {U ∩K : U ∈ U(En, τn)}as a pre-base of neighborhoods of zero). Pi
k n ∈ N for whi
h Gn = EK ∩Enis a Baire se
ond 
ategory subset of the Bana
h spa
e EK . For this n, theidentity operator J from (Gn, ηn) to (Gn, pK) is a surje
tive 
ontinuous linearoperator from a Fré
het spa
e to a Baire normed LCS. The open mappingtheorem [5℄ implies that J is open and therefore J is an isomorphism. Hen
e,
(Gn, pK) is 
omplete and therefore Gn is 
losed in the Bana
h spa
e EK .On the other hand, Gn is dense in EK and therefore Gn = EK . Hen
e,
f(I) ⊂ K ⊂ En. Thus, f ∈ Fn and F is the union of the Fn.Let E ∈ U

I
0PU

I
0F . Clearly U

I
0F is 
losed under taking sequentially 
losedlinear subspa
es. Lemma 4.1 applied to A = F shows that G ∈ U

I
0F ⇒

C(I,G) ∈ U
I
0F . Lemma 4.1 applied to A = U

I
0F implies that G ∈ PU

I
0F ⇒

C(I,G) ∈ PU
I
0F . Sin
e PU

I
0F is 
losed under taking sequentially 
losed lin-ear subspa
es, applying Lemma 4.1 to A = PU

I
0F , we obtain F ∈ U

I
0PU

I
0F .4.5. Proof of Proposition 3. Statement (A) follows dire
tly from theBana
h�Dieudonné theorem [13, 21℄. For (B), 
learly UF 
ontains 
ountableindu
tive limits of Fre
hét spa
es. Let E be a sequentially 
omplete LFS-spa
e andK ∈ K(E). ThenK ∈ K(En) for some step spa
e En and a

ording



220 S. A. Shkarinto Lemma 1.6 there exists Q ∈ K(En) ⊂ K(E) su
h that K ≪ Q. Hen
e
E ∈ X . Part (C) follows from the de�nition of the 
lass U0PU

I
0F .4.6. Proof of Corollary 3. Sin
e D = D(Ω) is a stri
t indu
tive limitof separable Fré
het spa
es and H(K),S ′(Rn) are strong duals of Fré
het�S
hwartz spa
es [13℄, Proposition 3 implies that D(Ω),S ′(Rn), H(K) ∈ X ∩

U
I
0F ⊂ X ∩ UF . A

ording to Corollary 2, D(Ω),S ′(Rn), H(K) ∈ CP.Sin
e D′(Ω) and A(Ω) are proje
tive limits of 
omplete indu
tive limits ofseparable Fré
het spa
es, Proposition 3 implies that D′(Ω),A(Ω) ∈ PU

I
0F

⊂ U0PU
I
0F . On the other hand D′(Ω),A(Ω) ∈ X (3). Corollary 2 now im-plies that A(Ω) ∈ CP and D′(Ω) ∈ CP.4.7. Proof of Theorem 3

Example 1. Let α, ϕ, β : R → R be fun
tions de�ned by
(21) α(s) = e−s

2

, ϕ(t) =

{

e−t
−4 if t > 0,

0 if t ≤ 0,

β(t) =







1 if t ≤ 0,
0 if t ≥ 1,
e−(1−t)−2

(e−t
−2

+ e−(1−t)−2

)−1 if t ∈ (0, 1).One 
an easily see that ϕ, β ∈ C∞(R) and α ∈ S. Consider fun
tions γ, νu :
R

2 → R,
(22) γ(t, s) =

{

ϕ(t) + β(s− t−1) if t > 0,

1 if t ≤ 0,
νu(t, s) =

γ(t, s)

γ(u, s)
(u ∈ R).Let us verify that γ ∈ C∞(R2). Clearly γ ∈ C∞((0,+∞) × R) and

γ ∈ C∞((−∞, 0) × R). Let s0 ∈ R. Pi
k ε > 0 su
h that s0 + ε − ε−1 < 0.Then for any (t, s) from the ε-neighborhood W of the point (0, s0) in R
2,we have β(s− t−1) = 1 and therefore γ(t, s) = 1 +ϕ(t). Hen
e γ ∈ C∞(W ).Therefore γ ∈ C∞(R2). Clearly γ is positive. Hen
e νu, µ ∈ C∞(R2), where

(23) µ(t, s) =
∂

∂t
ln γ(t, s) =







ϕ′(t) + t−2β′(s− t−1)

ϕ(t) + β(s− t−1)
if t > 0,

0 if t ≤ 0.For any t, u ∈ R, let Tt and Sut be operators (a
ting on fun
tions x : R → R)de�ned by the formula(24) Ttx(s) = µ(t, s)x(s), Sut x(s) = νu(t, s)x(s).

(3) Any 
ompa
t subset K of E ∈ {D′(Ω),A(Ω)} is 
ontained in a linear subspa
e
F ⊂ E 
arrying a stronger topology τ su
h that (F, τ) is a Fré
het spa
e and K is 
ompa
tin (F, τ). Then it remains to apply Lemma 1.6.
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t perturbations of linear di�erential equations 221For the proof of the �rst part of Theorem 3 it su�
es to verify thefollowing 
onditions:(1.0) T, Su ∈ L(R,S), and the maps T, Su : R × S → S (u ∈ R) arein�nitely Fré
het di�erentiable [2℄, where Su(t, x) = Sut x (T and Sare de�ned by (24));(1.1) for any (t0, x0) ∈ R × S, problem (13) is uniquely solvable in anyinterval 
ontaining t0. The unique solution is given by x(t) = St0t x0;(1.2) the equation ẋ(t) = Ttx(t)+α has no solutions in [0, ε] for any ε > 0.Proof. (1.0) Let B be the set of fun
tions ̺ ∈ C∞(R2) su
h that for any
n, k ∈ Z+, there exist m = m(̺, n, k), c = c(̺, n, k) > 0 for whi
h(25) sup

t∈R

∣

∣

∣

∣

∂n+k̺

∂tn∂sk
(t, s)

∣

∣

∣

∣

≤ c(1 + |s|)m for any (t, s) ∈ R
2.A

ording to (12) it su�
es to prove that µ ∈ B and νu ∈ B for any u ∈ R.We shift the proof of this fa
t to the Appendix (it is purely te
hni
al).(1.1) Let x : R → S, x(t) = St0t x0. Clearly x(t0) = x0. By (23), ∂γ∂t (t, s) =

µ(t, s)γ(t, s). Therefore
ẋ(t)(s) = µ(t, s)γ(t, s)x0(s)/γ(t0, s) = µ(t, s)x(t)(s) = Ttx(t)(s).Hen
e, x is a solution in R of (13). Uniqueness of a solution of this problemfollows from the fa
t that for any t ∈ R, Tt is an operator of multipli
ationby a fun
tion (we 
an �pointwise� solve the equation ẋ(t) = Ttx(t)).(1.2) Let ε > 0. One 
an easily verify that the fun
tion π : (0, ε] → S,

π(t) = (t− ε)α+

ε\
t

(ε− τ)Sτt Tταdτis a solution of the equation ẋ(t) = Ttx(t) + α. Suppose that there existsa solution π1 : [0, ε] → S of this equation in [0, ε]. Then x = π − π1 is asolution of the homogeneous equation ẋ = Ttx in (0, ε]. A

ording to (1.1),
x admits an in�nitely di�erentiable extension to R. Therefore π has a limitin 0 in the topology of S. Hen
e, the limit

lim
t↓0

f(t), where f(t) =

ε\
t

(τ − ε)Sτt Tταdτ,exists in S. Sin
e 
onvergen
e in S implies uniform 
onvergen
e,
(26) 0 = lim

t↓0
f(1/t) = lim

t↓0
(1 + ϕ(t))e−t

−2

I(t) = lim
t↓0

e−t
−2

I(t),where
I(t) =

ε\
t

(τ − ε)
µ(τ, 1/t)

γ(τ, 1/t)
dτ.Integrating by parts, we see that for su�
iently small positive t,
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(27) I(t) =

t− ε

1 + ϕ(t)
+

2t\
t

dτ

γ(τ, 1/t)
+

ε\
2t

dτ

ϕ(τ)
≥ −ε+

4t\
2t

eτ
−4

dτ ≥ 2te(2t)
−4

−ε.

From (26) and (27) it follows that 0 = limt↓0 e
−t−2

(2te(2t)
−4

− ε). On theother hand, this limit is obviously in�nite. This 
ontradi
tion proves (1.2).
Example 2. As usual, E = C∞(R) with the topology of uniform 
on-vergen
e of all derivatives, and E ′ is the strong dual of the nu
lear Fré
hetspa
e E , i.e., E ′ is the spa
e of generalized fun
tions with 
ompa
t support[21℄. As usual, δt ∈ E ′ is Dira
's delta-fun
tion 
on
entrated at the point

t ∈ R: 〈δt, h〉 = h(t), h ∈ E . Let G be the linear hull in E ′ of the set
{δ

(n)
0 : n ∈ Z+}. For any z ∈ C, let ez ∈ E , ez(t) = e−tz. Consider the spa
e(28) E = {Φξ : ξ ∈ E ′ ⊗ E ′}, where Φξ(s1, s2) = (s1 − s2)

〈

es1 ⊗ es2 , ξ
〉

.Clearly E is a linear subspa
e of the spa
e of entire fun
tions of two vari-ables. We endow E with the strongest lo
ally 
onvex topology with respe
tto whi
h the operators(29) T 1
ψ : E ′ → E, T 1

ψϕ = Φϕ⊗ψ, ψ ∈ E ′,

T 2
ϕ : E ′ → E, T 2

ϕψ = Φϕ⊗ψ, ϕ ∈ G,are 
ontinuous. Let T : E → E be the operator de�ned by the formula
TΦϕ⊗ψ = Φϕ′⊗ψ and f : [0, 1] → E, f(t) = Φδ⊗δt .For the proof of the se
ond part of Theorem 3 it su�
es to verify thefollowing 
onditions:(2.0) E is a 
omplete ultrabornologi
al LCS, T ∈L(E) and f ∈C([0, 1], E);(2.1) T ∈ unex(E) and for all ε > 0, the equation ẋ(t) = Tx(t) + f(t) hasno solutions in [0, ε].Proof. (2.0) One 
an easily see that E1 = {Φξ : ξ ∈ G ⊗ E ′} ⊂ Eis isomorphi
 to a free lo
ally 
onvex sum of a 
ountable family of 
opiesof E ′. Therefore E1 is 
omplete and hen
e 
losed in E. On the other hand,the quotient E/E1 is isomorphi
 to the free lo
ally 
onvex sum of a 
on-tinuum of 
opies of E ′ and therefore is also 
omplete. The three-spa
e the-orem for 
ompleteness [5℄ implies that E is 
omplete. Moreover, the spa
e
E is ultrabornologi
al as an indu
tive limit of ultrabornologi
al LCS. Sin
e
TT 1

ψ = T 1
ψD, where D : E ′ → E ′ is the operator of di�erentiation Dϕ = ϕ′and TT 2

ϕ = T 2
ϕ′ , we �nd that the operators TT 1

ψ for ψ ∈ E ′ and TT 2
ϕ for

ϕ ∈ G are 
ontinuous. A

ording to the de�nition of the topology of E wesee that T ∈ L(E). Sin
e the fun
tion g : [0, 1] → E ′, g(t) = δt, is 
ontinuousand f(t) = T 2
δ0
g(t), we see that f is 
ontinuous.(2.1) A

ording to (28) and to the de�nition of the operator T we have
TΦ(s1, s2) = s1Φ(s1, s2) for any Φ ∈ E.
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e T is the operator of multipli
ation by a fun
tion and the topology of Eis stronger than the pointwise 
onvergen
e topology, the �pointwise� solutionof problem (2) 
oin
ides with the 
onventional solution in E, whenever thelatter exists. This proves uniqueness of the solution. One 
an easily verifythat the �pointwise� solution of problem (2) is given by(30) x(t)(s1, s2) = e−ts1x0(s1, s2).Clearly e−ts1Φϕ⊗ψ(s1, s2) = Φϕt,ψ(s1, s2), where ϕt is a shift of the gener-alized fun
tion ϕ: ϕt(u) = ϕ(u − t). Hen
e the fun
tion x de�ned by (30)takes values in E. Smoothness of x : [0, 1] → E follows from the de�nition(29) of the topology of E and smoothness of the fun
tions t 7→ ϕt (ϕ ∈ E′).Therefore formula (30) de�nes the solution in E of problem (2). Hen
e,
T ∈ unex(E).It remains to show that the problem ẋ(t) = Tx(t)+f(t), x(0) = 0, is non-solvable in [0, ε]. One 
an verify that the �pointwise" solution of this problemis given by x(s1, s2) = e−ts2 − e−ts1 . Suppose that the problem is solvable in
[0, ε]. Then for any t ∈ [0, ε] there exists ξt ∈ E ′ ⊗ E ′ su
h that Φξt(s1, s2) =
e−ts2 − e−ts1 . Therefore the fun
tion Ft(s1, s2) = (e−ts2 − e−ts1)/(s1 − s2) isthe Lapla
e transform of ξt (see de�nition of Φξ). On the other hand, Ft for
t > 0 is the Lapla
e transform of the Lebesgue measure µt of the segmenton the plane with ends (0, t) and (t, 0). Inje
tivity of the Lapla
e transformimplies that µt is an element of E ′ ⊗ E ′, whi
h is false.5. Con
luding remarks1. It is not known whether there exist a Fré
het spa
e E, T ∈ L(R, E) and
f ∈ C(R, E) su
h that problem (13) is solvable in R for any (t0, x0) ∈ R×Eand the equation ẋ(t) = Ttx(t) + f(t) has no solutions in any interval.2. It is not known whether the produ
t of any two spa
es from CP belongsto CP. Nor do we know whether CP 
ontains strong duals of Fré
het spa
es.3. Let E be a non-
omplete normed spa
e, admitting a bigger 
ompletenorm (for example C[0, 1] with the norm indu
ed from L2[0, 1]). Then 0 ∈
unex(E) \ ex′(E).4. We say that a pair (E,F ) of LCS has the inverse mapping property ifany bije
tive 
ontinuous linear operator T : E → F has 
ontinuous inverse.Proposition 4. Let E be an integrally 
omplete LCS , T ∈ unex(E),
F = Σ([0, a], E), and suppose the pair (F,E) has the inverse mapping prop-erty. Then T ∈ ex(E).Proof. Let T : F → E, Tx = x(0) and J = {(t, s) ∈ [0, a] : t ≥ s}.Then T is 
ontinuous linear and bije
tive and therefore T

−1 is 
ontinuous.Hen
e, the map S : J × E → E, Sst x = T
−1x(t − s), is 
ontinuous. So forany K ∈ K(E), there exists Q ∈ K(E) su
h that Sst x ∈ Q and TSst x ∈ Q



224 S. A. Shkarinfor all (t, s, x) ∈ J ×K. It remains to noti
e that for any U ∈ U(E), S is aCASS(K,Q,U) of the equation ẋ = Tx and to apply Lemma 2.1.5. The following proposition was suggested by D. Vogt.Proposition 5. Let E ∈ X and T ∈ L(E) be su
h that for any K ∈
K(E) there exists Q ∈ K(E) su
h that K ⊆ Q and Q absorbs T (Q). Then
T ∈ unex(E) ∩ ex(E).Proof. Let x0 ∈ E and g : [0, a] × E → E be an M -
ompa
t map. Thenwe 
an pi
k K,Q ∈ K(E) su
h that g([0, a]×E) ⊂ K, x0 ∈ K, K ≪ Q and
Q absorbs T (Q). So the restri
tion T |EQ

: EQ → EQ is a 
ontinous linearoperator on the Bana
h spa
e EQ and the restri
tion g|[0,a]×EQ
: [0, a]×EQ →

EQ is an M -
ompa
t map. Theorem HL implies solvability of (4) in EQ andtherefore in E. Hen
e T ∈ ex(E). Let now x ∈ C1([0, a], E) be a solution of(2) with x0 = 0. Pi
k K,Q ∈ K(E) su
h that x([0, a]) ⊂ K, K ≪ Q and Qabsorbs T (Q). Then the restri
tion T |EQ
: EQ → EQ is a 
ontinous linearoperator on the Bana
h spa
e EQ and x is a solution of (2) with x0 = 0in EQ. Sin
e L(EQ) = unex(EQ), we have x ≡ 0. Hen
e T ∈ unex(E).A
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lusions µ ∈ B and νu ∈ B, required inSe
tion 4.7. In this appendix we prove that the fun
tions µ and νu (u ∈ R)de�ned by (23) and (22) belong to the 
lass B de�ned by (25). Sin
e for any�xed u ∈ R, the fun
tion s 7→ γ(u, s) is bounded from below by a positive
onstant, it su�
es to prove that µ, γ ∈ B. We write F 4 G (F and G arefun
tions de�ned on the same set) if there exists c = c(F,G) > 0 su
h that

|F | ≤ c|G|.First, let us show that γ ∈ B. Clearly the fun
tion
∂n+kγ

∂tn∂sk
(t, s) : (0,+∞) × R → Ris a �nite linear 
ombination of ϕ(i)(t) and t−lβ(j)(s−t−1), where l, i, j ∈ Z+and l ≤ 2j. The fun
tions ϕ(i)(t) and t−lβ(j)(s− t−1) for l = 0 are bounded.If l > 0 then j > 0 and a

ording to (21), t−lβ(j)(s − t−1) vanishes if

s − t−1 /∈ (0, 1). This implies that t−lβ(j)(s − t−1) 4 1 + |s|l. Hen
e, γ ∈ B(and therefore νu ∈ B).It remains to show that µ ∈ B. Using de la Vallée Poussin's formula formultiple derivatives of a superposition of two fun
tions [26℄ we dedu
e that
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∂n+kµ

∂tn∂sk
(t, s) =

∂n+1+k ln(γ)

∂tn+1∂sk
(t, s)is a linear 
ombination with real 
oe�
ients of the following �nite set offun
tions:(31) 1

γν(t, s)

∏

i,j

(

∂i+jγ

∂ti∂sj
(t, s)

)ai,j

,where i, j, ai,j ∈ Z+, ν =
∑

i,j ai,j , ∑

i,j iai,j = n+ 1 and ∑

i,j jai,j = k.Formulas (31) and (22) imply that
∂n+kµ

∂tn∂sk
(t, s) = 0 if t ≤ 0and the fun
tion

∂n+kµ

∂tn∂sk
(t, s) : (0,+∞) × R → Ris a linear 
ombination of the following �nite set of fun
tions:

(32) ω(t, s)

=
(ϕ′(t))j1 · · · (ϕ(n+1)(t))jn+1(β′(s− t−1))i1 · · · (β(n+k+1)(s− t−1))in+k+1

(ϕ(t) + β(s− t−1))rtl
,where iq, jq, l ∈ Z+, r =

∑

jq +
∑

iu ∈ N, l ≤ 2
∑

iu, ∑

qjq ≤ n + 1 and
∑

uiu ≤ k.The in
lusion µ ∈ B will be proved if we show that(33) |ω(t, s)| 4 (1 + |s|)mfor any fun
tion ω de�ned in (32) (m = m(ω) ≥ 0). From (32) and (21) itfollows that(34) ω(t, s) 4 1 for t ≥ 1/2(the denominator in (32) is bounded from below by ϕr(1/2)2−l).
Case 1:

∑

iu > 0. A

ording to (21), ω(t, s) = 0 if s − t−1 /∈ (0, 1).Using (34) we obtain(35) |ω(t, s)| 4 1 for s ≤ 2.Let s > 2. If 1−s−2 < s− t−1 < 1, we have β(i)(s− t−1) 4 e−s
4

s6i 4 ϕ(t)s6i.If 0 < s− t−1 < 1− s−2, we have β(i)(s− t−1) 4 β(s− t−1)(1− s+ t−1)−3i
4

β(s− t−1)s6i. Thus, if s > 2 and 0 < s− t−1 < 1 then β(i)(s− t−1) 4 (ϕ(t)+
β(s − t−1))s6i and ϕ(j)(t)/ϕ(t) 4 t−5j

4 s5j . Using (32) we dedu
e that if
s > 2 and 0 < s−t−1 < 1 then ω(t, s) 4 sm, wherem = l+5

∑

qjq+6
∑

uiu.Sin
e ω(t, s) = 0 if s− t−1 /∈ (0, 1), this formula and (35) imply (33).
Case 2:

∑

iu = 0. In this 
ase
(36) ω(t, s) =

(ϕ′(t))j1 · · · (ϕ(n+1)(t))jn+1

(ϕ(t) + β(s− t−1))r
,



226 S. A. Shkarinwhere jq ∈ Z+ and 1 ≤ r =
∑

jq ≤ n + 1. If s ≤ 1/2, or s > 1/2 and
t ≤ 1/(s− 1/2), then ω(t, s) 4 1 (the denominator in (36) is bounded frombelow by 2−r). If s > 1/2 and t ≥ 1/s then ϕ(j)(t)/ϕ(t) 4 t−5j

4 s5j forany j ∈ N. This inequality and (36) imply that if s > 1/2 and t ≥ 1/s, then
ω(t, s) 4 sm, where m = 5

∑

qjq, whi
h proves (33). Therefore µ ∈ B.
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