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Compat perturbations of linear di�erential equationsin loally onvex spaesbyS. A. Shkarin (London)Abstrat. Herzog and Lemmert have proven that if E is a Fréhet spae and T : E →Eis a ontinuous linear operator, then solvability (in [0, 1]) of the Cauhy problem ẋ = Tx,
x(0) = x0 for any x0 ∈ E implies solvability of the problem ẋ(t) = Tx(t) + f(t, x(t)),
x(0) = x0 for any x0 ∈ E and any ontinuous map f : [0, 1] × E → E with relativelyompat image. We prove the same theorem for a large lass of loally onvex spaesinluding:

• DFS-spaes, i.e., strong duals of Fréhet�Shwartz spaes, in partiular the spaesof Shwartz distributions S ′(Rn), the spaes of distributions with ompat support
E ′(Ω) and the spaes of germs of holomorphi funtions H(K) over an arbitraryompat set K ⊂ C

n;
• omplete LFS-spaes, i.e., omplete indutive limits of sequenes of Fréhet�Shwartzspaes, in partiular the spaes D(Ω) of test funtions;
• PLS-spaes, i.e., projetive limits of sequenes of DFS-spaes, in partiular, thespaes D′(Ω) of distibutions and A(Ω) of real-analyti funtions.Here Ω is an arbitrary open domain in R

n. We onstrut an example showing that theanalogous statement for (smoothly) time-dependent linear operators is invalid already forFréhet spaes.1. Introdution. In this paper all linear spaes are spaes over the�eld R. All loally onvex topologial vetor spaes (LCS) are assumed to beHausdor�. Below R is always the set of real numbers, N is the set of positiveintegers and Z+ = N ∪ {0}.Ordinary di�erential equations in abstrat spaes(1) ẋ(t) = f(t, x(t))(E is a LCS, f : I × E → E and I is an interval of R) have been intenselystudied during the last deades (see e.g. [1, 4, 6�12, 17�20, 23, 29�31℄). Oneof the reasons to study them is the fat that any partial di�erential equation2000 Mathematis Subjet Classi�ation: Primary 34G20.Key words and phrases: ordinary di�erential equations in loally onvex spaes, exis-tene theorem, uniqueness theorem, linear di�erential equations, lifting.[203℄



204 S. A. Shkarinan be interpreted as an ordinary di�erential equation in an appropriate LCS.Linear di�erential equations form an interesting and important sublass ofordinary di�erential equations in LCS (see e.g. [4, 6, 9, 10, 12, 18�20, 29, 32,33℄). A solution of (1) is a funtion x ∈ C1(I, E) suh that ẋ(t) = f(t, x(t))for any t ∈ I (we onsider only strong solutions). The symbol L(E) standsfor the spae of ontinuous linear operators on a LCS E, and L(I, E) is theset of ontinuous maps T : I × E → E, (t, x) 7→ Ttx, linear with respetto x ∈ E. We say that a map f : X → Y is M-ompat (X and Y aretopologial spaes) if f is ontinuous and f(X) is ompat and metrizable.Let E be a LCS, a > 0, f ∈ C([0, a], E), x0 ∈ E and g : [0, a]×E → E be
M -ompat. We onsider Cauhy problems for non-perturbed and perturbedlinear ordinary di�erential equations:

ẋ(t) = Tx(t), x(0) = x0,(2)
ẋ(t) = Tx(t) + f(t), x(0) = x0,(3)
ẋ(t) = Tx(t) + g(t, x(t)), x(0) = x0,(4)where T ∈ L(E). For the time-dependent ase we onsider Cauhy problems
ẋ(t) = Ttx(t), x(0) = x0,(5)
ẋ(t) = Ttx(t) + g(t, x(t)), x(0) = x0,(6)where T ∈ L([0, a], E). Following [4, 32, 12℄ we de�ne

(7) ex(E) = {T ∈ L(E) : (2) is solvable in [0, a] for any x0 ∈ E},

(8) ex′(E) = {T ∈ L(E) : (3) is solvable in [0, a]for any (x0, f) ∈ E × C(R, E)},

(9) unex(E) = {T ∈ L(E) : (2) is uniquely solvable in [0, a]for any x0 ∈ E},

(10) unex′(E) = {T ∈ L(E) : (3) is uniquely solvable in [0, a]for any (x0, f) ∈ E × C(R, E)},

(11) ex(E) = {T ∈ L(E) : (4) is solvable in [0, a]for any x0 ∈ E and any M -ompat map g : [0, a] × E → E}.The sets ex(E), ex′(E), unex(E), unex′(E) and ex(E) do not dependon the hoie of a > 0. Moreover, these sets do not hange if one replaes
[0, a] in their de�nition by [0,∞) (1). Obviously ex(E) ⊆ ex′(E) ⊆ ex(E),(1) Indeed, if b ∈ (0,∞] and T ∈ L(E) satis�es one of the onditions (7)�(11) for some
a > 0, then we an represent the interval I = [0, b] (I = [0,∞) if b = ∞) as a �nite (orountable if b = ∞) union of intervals [xj , xj+1] suh that xj < xj+1 and xj+1 − xj ≤ afor any j. Then we an produe a solution of (2), (3) or (4) on I solving the equation on
[xj , xj+1] onseutively and using the value of the solution at the right end of the previousinterval as the initial data.
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unex′(E) ⊆ unex(E) ⊆ ex(E) and unex′(E) ⊆ ex′(E). If E is a Banah spaethen L(E) = unex′(E) aording to the Piard theorem. When E is a Fréhetspae, this equality is in general invalid. For example, L(E) 6= ex(E) 6=
unex(E) for E = C∞[0, 1] (see [20, 19℄) and L(E) = ex(E) 6= unex(E) for
E = R

N (see [32, 9, 10℄). Moreover, there exists T ∈ L(R,RN) suh that (5)has no solutions for any x0 ∈ R
N \ {0} (see [33℄). However, there exists anon-normable Fréhet spae E suh that L(E) = unex(E) (see [18℄). Thefollowing theorem is proved by Herzog and Lemmert [12℄.

Theorem HL. Let E be a Fréhet spae. Then ex(E) = ex(E).Note that the weaker equality ex(E) = ex′(E) for Fréhet spaes is alsoproved in [29℄. Let
CP = {E : E is a LCS and ex(E) = ex(E)}.In this paper we prove a su�ient ondition for a LCS E (in terms of metriompat lifting property) to be an element of CP. Using this ondition, weprove that CP inludes three lasses of LCS Y , X ∩ UF and X ∩ U0PU

I
0Fde�ned below and show that Y ontains the duals of separable metrizable lo-ally onvex spaes with the pre-ompat onvergene topology, X ∩UF on-tains the ompatly regular (2) ountable indutive limits of Fréhet spaesand X ∩U0PU

I
0F whih ontains ompatly regular LCS whih are ountableindutive limits of ountable projetive limits of ountable indutive limits ofseparable Fréhet spaes. In partiular, the spaes D(Ω) of in�nitely di�er-entiable funtions with ompat support, S ′(Rn) of Shwartz distributions,

D′(Ω) of generalized funtions and A(Ω) of real-analyti funtions belongto CP, where Ω is an open subset of R
n.Let S = S(R) be the spae of rapidly dereasing in�nitely di�erentiablefuntions on R:

(12) S = {f ∈ C∞(R) : ‖f‖n,k = sup
x∈R

|f (n)(x)|(|x|k + 1) <∞for any n, k ∈ Z+},endowed with the topology de�ned by the seminorms ‖ · ‖n,k. Note that Sis a nulear Fréhet spae [21℄. We onstrut T ∈ L(R,S) and y0 ∈ S suhthat for any (t0, x0) ∈ R × S, the problem(13) ẋ(t) = Ttx(t), x(t0) = x0,is uniquely solvable in any interval ontaining t0, and the equation ẋ(t) =
Ttx(t) + y0 has no solutions in [0, ε) for any ε > 0. This example shows thatthe natural analog of Theorem HL for time-dependent linear operators onFréhet spaes is invalid.

(2) A LCS E is said to be ompatly regular if it is sequentially omplete and its dual
E′ with the onvex ompat onvergene topology is a Shwartz spae.



206 S. A. ShkarinWe also onstrut a omplete ultrabornologial LCS whih does not be-long to CP.2. Notation and de�nitions. Everywhere below, I is a ompat inter-val of the real line. For a subset A of a LCS E, acoA stands for the losureof the balaned onvex hull of A in E, U(E) is the set of open onvex andbalaned neighborhoods of zero in the LCS E, and K(E) is the set of on-vex balaned metrizable ompat subsets of E. A set B ⊆ K(E) is alled abase of K(E) if any Q ∈ K(E) is ontained in some K ∈ B. For a onvexbalaned set M ⊂ E, EM stands for the linear hull of M , endowed with theloally onvex topology τ = τ(M,E) having the set {U ∩M : U ∈ U(E)}as a pre-base of neighborhoods of zero. As usual, a disk is a losed boundedonvex balaned subset of a LCS E (see [5℄). Note that for a disk D ⊂ E, thetopology τ(D,E) on ED is de�ned by the norm pD, whih is the Minkowskifuntional of D, i.e., ED is a normed spae. For two disks D1, D2 ⊂ E, wewrite D1 ≪ D2 if D1 is pre-ompat in the normed spae ED2
and thereexists ε ∈ (0, 1) suh that D1 ⊆ εD2.Definition 1. A LCS E is said to be integrally omplete if any f ∈

C(I, E) is Riemann integrable in E, or equivalently (see [16℄ for the proof),for any metrizable ompat set K ⊂ E, acoK is ompat (and automatiallymetrizable [5℄).Remark 1. The last property is usually alled the metri onvex om-patness property [5℄. Evidently any sequentially omplete LCS is integrallyomplete. Note that any LCS quasiomplete in the Makey topology [13℄ isintegrally omplete [16℄.Definition 2. We say that a map T : E → F (E and F are LCS)lifts metri ompats if for any K ∈ K(F ) there exists Q ∈ K(E) suh that
T (Q) ⊇ K. We say that a pair (E,F ) of LCS has the metri ompat liftingproperty if any surjetive linear sequentially ontinuous operator T : E → Flifts metri ompats.Definition 3. A subset A of a topologial spae X is said to be Baire-measurable if A is a symmetri di�erene of an open set and a Baire �rstategory set. A topologial spae is alled Polish if it is separable metrizableand its topology is de�ned by a omplete metri. A topologial spae is alledSuslin if it is a ontinuous image of a Polish spae. A metrizable Suslin spaeis alled analyti.It is well known that Baire-measurable subsets of a topologial spae forma σ-algebra, ontaining the Borel σ-algebra [24℄. We need several lasses ofLCS. As usual F is the lass of Fréhet spaes. By X we denote the lassof sequentially omplete LCS E suh that for any Q ∈ K(E) there exists
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K ∈ K(E) for whih Q≪ K. The symbol Y stands for the lass of integrallyomplete LCS E with K(E) having a ountable base. If A is a lass ofLCS then by UA we denote the lass of LCS E for whih there exist linearsubspaes En ⊂ E and stronger loally onvex topologies τn on En suh that(U0) E =

∞
⋃

n=1

En and for any n ∈ N, (En, τn) ∈ A and En ⊆ En+1.We denote by PA the lass of sequentially losed subspaes of ountableproduts of spaes from A. The symbol U0A stands for the lass of LCS
(E, τ) suh that there exist linear subspaes En ⊂ E and stronger loallyonvex topologies τn on En satisfying (U0) and
(U1) for any n ∈ N, the spae (En, τ |En) is Suslin.The symbols U

IA and U
I
0A stand for the lasses of integrally omplete spaesfrom UA and U0A respetively.Definition 4. Let E be a LCS and T ∈ L(I, E). We denote by Σ(I, T )the spae of solutions in I of the equation ẋ(t) = Ttx(t), endowed with theuniform onvergene topology. We say that a linear subspae F ⊆ C(I, E)is an S-spae if F = Σ(I, T ) for some T ∈ L(I, E).Definition 5. Let I = [a, b], E be a LCS, f ∈ C(I × E,E) and K ∈

K(E). We say that equation (1) is ompatly solvable over K if there exists
M ∈ K(E) suh that
(14) for any (t0, x0) ∈ I ×K there exists a solution x : [t0, b] →M of the

problem ẋ(t) = f(t, x(t)), x(t0) = x0.We say that (1) is uniformly ompatly solvable if for any K ∈ K(E), (1) isompatly solvable over K. We write Lucs(I, E) for the set of T ∈ L(I, E)for whih the equation ẋ(t) = Ttx(t) is uniformly ompatly solvable.3. Main resultsProposition 1. Let a > 0, I = [0, a], E be an integrally omplete LCSand T ∈ Lucs(I, E). Then for any M-ompat map g : I × E → E and any
x0 ∈ E, problem (6) is solvable in I.Theorem 1. Let E be an integrally omplete LCS , a > 0, I = [0, a] and
T ∈ L(E). Suppose that
(15) the operator T : Σ(I, T ) → E, Tx = x(0) lifts metri ompats.Then T ∈ ex(E) (in partiular T ∈ ex′(E)).Theorem 2. Let E and F be LCS suh that either E ∈ Y or F ∈ Xand E ∈ U0PU0F ∪UF . Then the pair (E,F ) has the metri ompat liftingproperty.



208 S. A. ShkarinProposition 2. Let E be a LCS and F ⊂ C(I, E) be an S-spae. Then
E ∈ Y ⇒ F ∈ Y , E ∈ X ⇒ F ∈ X , E ∈ U

IF ⇒ F ∈ U
IF and E ∈

U
I
0PU

I
0F ⇒ F ∈ U

I
0PU

I
0F .Theorem 2 and Proposition 2 immediately implyCorollary 1. Let E ∈ (X ∩UF)∪(X ∩U0PU

I
0F)∪Y and F ⊂ C(I, E)be an S-spae. Then the pair (F,E) has the metri ompat lifting property.Theorem 1 and Corollary 1 implyCorollary 2. (X ∩ UF) ∪ (X ∩ U0PU

I
0F) ∪ Y ⊂ CP.The following proposition desribes properties of the lasses Y and UFand U0PU

I
0F . In partiular, together with Corollary 1 it shows that naturalLCS belong to CP.Proposition 3.(A) Let E be a separable metrizable LCS , E′

τ be its dual endowed with theloally onvex topology τ suh that σ ⊆ τ ⊆ π, where σ = σ(E′, E) isthe weak topology and π = π(E′, E) is the pre-ompat onvergenetopology. Then E′
τ ∈ Y.(B) UF ontains all ountable indutive limits of Fréhet spaes. Allsequentially omplete LFS-spaes (= indutive limits of sequenesof Fréhet spaes) belong to X ∩ UF . In partiular , DFS-spaes

(= strong duals of Fréhet Shwartz spaes) belong to X ∩ UF .(C) U0PU
I
0F ontains all ountable indutive limits of sequentially om-plete ountable projetive limits of integrally omplete ountable in-dutive limits of separable Fréhet spaes.Corollary 3. S ′(Rn) ∈ CP; for any open set Ω ⊆ R

n,
{D(Ω),D′(Ω),A(Ω)} ⊂ CP;and for any ompat set K ⊂ C

n, H(K) ∈ CP, where H(K) is the spae ofgerms of holomorphi funtions.We onstrut two examples, whose properties are summarized in thefollowing theorem.Theorem 3.(i) There exist an in�nitely Fréhet di�erentiable map T ∈ L(R,S) and
y0 ∈ S suh that problem (5) is uniquely solvable in any intervalontaining t0 for any (t0, x0) ∈ R×S and the equation ẋ(t) = Ttx(t)
+ y0 has no solutions in [0, ε) for any ε > 0.(ii) There exists a omplete ultrabornologial LCS E suh that E /∈ CP.



Compat perturbations of linear di�erential equations 2094. Proofs4.1. Auxiliary lemmasLemma 1.1. Let (E, τ) be a LCS (τ is the topology of E), M ⊆ E be abalaned onvex set , Uα ∈ U(E), α ∈ A be suh that {Uα ∩ (2M) : α ∈ A} isa base of neighborhoods of zero in (2M, τ |2M ) and θ be the (non-Hausdor�in general) loally onvex topology on E, having the set {Uα : α ∈ A} as abase of neighborhoods of zero. Then θ|M = τ |M .Proof. Obviously θ|M ⊆ τ |M . Let x ∈M and U be an open neighborhoodof x in (M, τ |M ). Then there existsW ∈ U(E, τ) suh that (x+W )∩M ⊆ U .Pik α ∈ A for whih Uα ∩ (2M) ⊆ W ∩ (2M). Clearly (x + Uα) ∩M ⊆
x+ (Uα ∩ (2M)). Therefore,

(x+ Uα) ∩M = (x+ (Uα ∩ (2M))) ∩M ⊆ (x+ (W ∩ (2M))) ∩M

⊆ (x+W ) ∩M ⊆ U.Sine (x+Uα)∩M is a neighborhood of x in (M, θ|M ), we obtain the inlusion
θ|M ⊇ τ |M .Lemma 1.2. Let M be a paraompat subset of a LCS F , A be a onvexsubset of a LCS E and T : E → F be a linear operator suh that T (A) ⊇M .Then for any U ∈ U(F ) there exists a ontinuous map f : M → A suh that
Tf(y) ∈ y + U for any y ∈M .Proof. Evidently, {(y + U) ∩M : y ∈ M} is an open over of M . Sine
M is paraompat, there exists a loally �nite positive ontinuous partitionof unity {̺α : α ∈ Ω} on M and a map y : Ω → M suh that ̺α(y) = 0 if
y /∈ y(α) + U for any α ∈ Ω (see [14℄). For any α ∈ Ω, let x(α) ∈ A be suhthat Tx(α) = y(α). Consider the map

f : M → E, f(y) =
∑

α∈Ω

̺α(y)x(α).

Sine A is onvex, we have f(M) ⊆ A. Loal �niteness and ontinuity of ̺αimply ontinuity of f . Let y ∈ M . Sine y(α) ∈ y + U when ̺α(y) 6= 0, weobtain
Tf(y) =

∑

α∈Ω

̺α(y)y(α) ∈
∑

α∈Ω

̺α(y)(y + U) = y + U.

Lemma 1.3. Let E be a LCS and G = C(I, E). Then any S-spae F ⊂ Gis losed in G. Moreover :
• E is integrally omplete ⇒ G is integrally omplete;
• E is sequentially omplete ⇒ G is sequentially omplete.



210 S. A. ShkarinProof. Let t0 ∈ I and T ∈ L(I, E) be suh that F = Σ(I, T ). Evidently,
F = {x ∈ G : Atx = 0 for any t ∈ I}, where

Atx = x(t) − x(t0) −
t\
t0

Tτx(τ) dτ.Therefore F is losed in G as the intersetion of the kernels of the linearontinuous operators At : G → E, where E is the ompletion of E. If Eis sequentially omplete then sequential ompleteness of G is obvious. Let
E be integrally omplete. It remains to prove integral ompleteness of G.Let f : [0, 1] → G be a ontinuous map. Sine E is integrally omplete, forany s ∈ I there exists ϕ(s) =

T1
0 f(t)(s) dt ∈ E. Uniform ontinuity of themap (t, s) 7→ f(t)(s) implies ontinuity of ϕ : I → E. Therefore there existsT1

0 f(t) dt = ϕ ∈ G. Hene G is integrally omplete.Lemma 1.4. Let B be a Banah spae and A be a balaned onvex Baire-measurable subset of B. Then either A is a Baire �rst ategory set , or forany ε ∈ (0, 1), the set (1 − ε)A is ontained in the interior of A in B.Proof. Let U = {x ∈ B : ‖x‖ < 1}. Suppose that A is a Baire seondategory set. Sine A is Baire-measurable, there exist x0 ∈ B, c > 0 anda Baire �rst ategory set P ⊂ U suh that x0 + 3c(U \ P ) ⊆ A. Sine Ais onvex and balaned, we have 3c(U \ Q) ⊆ A, where Q = P ∪ (−P ).Let us show that cU ⊆ A. Suppose that there exists x1 ∈ cU \ A. Then
(2x1 +A) ∩A = ∅. Therefore

2x1 + cU = (2x1 + (cU \ A)) ∪ ((2x1 + cU) \ A) ⊆ (2x1 + cQ) ∪ 3cQ.Sine Q is a Baire �rst ategory set, so is the ball 2x1+cU , whih ontraditsBaire's theorem. Thus, cU ⊆ A. Let now ε ∈ (0, 1) and x ∈ (1 − ε)A. Sine
A is onvex and balaned, x+ cεU ⊂ x+ εA ⊂ A. Therefore x is an interiorpoint of A.Lemma 1.5. Let E be a LCS , X be a Suslin topologial spae, K ∈ K(E)and f : X → E be a sequentially ontinuous map. Then the set f(X) ∩ EKis a Baire-measurable subset of the Banah spae EK .Proof. Let Xn = f−1(nK). Then Xn is a Suslin spae as a sequentiallylosed subset of a Suslin spaeX. So for any n ∈ N, there exists a Polish spae
Yn and a ontinuous surjetive map gn : Yn → Xn. Sine Yn is metrizable,the map f ◦gn : Yn → E is ontinuous and therefore Borel-measurable. Sinethe Borel σ-algebras of subsets of EK with respet to the indued topologyand to the Banah spae topology oinide (both σ-algebras are generatedby the set {x + cK : x ∈ EK , c > 0}), f ◦ gn is a Borel-measurable mapfrom Yn to the Banah spae EK . Aording to Luzin's theorem [14℄, theimage of a Polish spae under a Borel-measurable map (taking values in a



Compat perturbations of linear di�erential equations 211metri spae) is analyti. Hene f(Xn) = (f ◦ gn)(Yn) is analyti. Sine anyanalyti subset of a metri spae is Baire-measurable [14℄, we see that f(Xn)is Baire-measurable in EK . Sine f(X) ∩ EK is the union of the f(Xn), weobtain Baire-measurability of f(X) ∩ EK in EK .Lemma 1.6.(i) Let E be a Fréhet spae and Q ∈ K(E). Then there exists K ∈ K(E)suh that Q≪ K.(ii) Let E be a LCS , K1,K3 ∈ K(E) and K1 ≪ K3. Then there exists
K2 ∈ K(E) suh that K1 ≪ K2 ≪ K3.Proof. (i) is proved in [21℄. For a simpler proof see Lemma 3 of [28℄.(ii) Assertion (i) implies the existene of Q ∈ K(EK3

) for whih K1 ≪ Q.Sine K1 ≪ K3, there exists q ∈ (0, 1) suh that K1 ⊆ q2K3. Clearly,
K2 = Q ∩ qK3 satis�es the required onditions.Lemma 1.7. Let E and F be LCS , T : E → F be a linear operator ,
K,Q ∈ K(F ), Q ≪ K, and U,M be onvex balaned Suslin subsets of Esuh that U ⊆ M , U is absorbing in the linear hull of M , the restrition
T |M is sequentially ontinuous and T (M) ⊇ K. Then there exist ε > 0 and
L ∈ K(E) suh that L + εU ⊆ M , the linear hull of L is �nite-dimensionaland T (L+ εU) ⊇ Q.Proof. Let ε ∈ (0, 1) be suh that Q ⊆ (1−ε)K. Sine U is Suslin and T |Uis sequentially ontinuous, Lemma 1.5 implies that T (U) is Baire-measurablein the Banah spae FK . Sine T (U) is absorbing in FK , Lemma 1.4 impliesthe existene of c > 0 suh that cK ⊂ T (U). Sine Q is ompat in FK and
Q ⊆ (1 − ε)K, and T (M) ⊇ K, there exist x1, . . . , xn ∈M suh that

Q ⊆
n
⋃

j=1

(1 − ε)Txj + εT (U) ⊂ T (L+ εU),where L = (1 − ε) aco{x1, . . . , xn}. Clearly L is ompat and has �nite-dimensional linear hull. Sine L ⊆ (1 − ε)M and U ⊆ M , we �nd that
L+ εU ⊆M .Lemma 1.8. Let (E, θ) be a LCS and M ⊂ E be a omplete onvexbalaned metrizable set. Then (EM , τ(M,E)) is a Fréhet spae (see Setion 2for de�nitions).Proof. Clearly τ = τ(M,E) is stronger than θ|EM

. Pik Un ∈ U(E) suhthat the set {Wn = Un ∩M : n ∈ N} is a base of τ -neighborhoods of zeroin M . Sine for any U ∈ U(E), there exists n ∈ N suh that U ∩M ⊃ Wn,we see that {Wn : n ∈ N} is a pre-base of τ -neighborhoods of zero in EM .Therefore (EM , τ) is metrizable. It remains to prove ompleteness of (EM , τ).Let xn be a τ -Cauhy sequene in EM . Sine M is a τ -neighborhood of zero,



212 S. A. Shkarinthere exists c > 0 suh that xn ∈ cM for any n ∈ N. Sine xn is a θ-Cauhysequene and cM is omplete in (E, θ), we �nd that xn is θ-onvergent to
x ∈ cM . We have to show that xn is τ -onvergent to x. Aording to thede�nition of τ , to this end it su�es to verify that pM (xn − x) → 0, where
pM is the Minkowski funtional of M . Suppose the ontrary. Then thereexists ε > 0 and an in�nite set A ⊂ N suh that xn − x /∈ εM for all n ∈ A.Sine xn is a τ -Cauhy sequene, there exists an in�nite set B ⊂ A suhthat xn − xm ∈ εM for all m,n ∈ B. Fixing n ∈ B, passing to the limitas m → ∞ and using θ-ompleteness of M , we dedue that xn − x ∈ εM ,whih is a ontradition.4.2. Proofs of Proposition 1 and Theorem 1Definition 6. Let E be a LCS, I = [a, b], J = {(t, s) ∈ I2 : t ≥ s},
Jb = J \ {(b, b)}, f ∈ C(I × E,E), A,B ⊆ E and U ∈ U(E). A map
S : J × A → B, (t, s, x) 7→ Sst x, is alled a ontinuous approximate systemof solutions (CASS(A,B,U)) of (1) if(A1) S is ontinuous on J×A and di�erentiable with respet to t on Jb×A;(A2) the derivative ∂

∂t
Sst x admits a ontinuous extension to J ×A;(A3) ∂

∂t
Sst x− f(t, Sst x) ∈ U for any (t, s, x) ∈ Jb ×A;(A4) Sttx− x ∈ U for any (t, x) ∈ I ×A.Definition 7. Let E be a LCS, f ∈ C(I × E,E) and K ∈ K(E).Equation (1) is alled ACC-solvable over K if there exists Q ∈ K(E) suhthat for any U ∈ U(E) there exists a CASS(K,Q,U) of (1). Equation (1) isalled uniformly ACC-solvable if for any K ∈ K(E), this equation is ACC-solvable over K.Lemma 2.1. Let E be an integrally omplete LCS , a > 0, I = [0, a],

T ∈ L(I, E), g ∈ C(I × E,E), x0 ∈ E and K ∈ K(E) be suh that x0 ∈ K,
g(t, x) ∈ K, Ttg(t, x) ∈ K for any (t, x) ∈ I × E and the equation ẋ(t) =
Ttx(t) is ACC-solvable over K. Then (6) is solvable in I.Proof. Without loss of generality, we an assume that a ≤ 1. Aordingto De�nition 7 there exists Q ∈ K(E) suh thatK ⊆ Q and for any U ∈ U(E)there exists a CASS(K,Q,U) of the equation ẋ(t) = Ttx(t). Using integralompleteness of E, we an hoose N ∈ K(E) suh that Q ⊆ N and Ttx ∈ Nfor any (t, x) ∈ I ×Q. Lemma 1.1 implies existene of Un ∈ U(E) suh that
2Un+1 ⊆ Un for all n ∈ N and θ|N = τ |N , where θ is the loally onvextopology having the set {Un : n ∈ N} as a base of neighborhoods of zero.We denote by nS a CASS(K,Q,Un) of the equation ẋ(t) = Ttx(t). Let
(16) M = {x ∈ C(I, E) : x(t) ∈ 3Q and x(t) − x(s) ∈ 4|t− s|Qfor any t, s ∈ I}.



Compat perturbations of linear di�erential equations 213Aording to the Arzelà�Asoli theorem we have M ∈ K(C(I, E)). Let
Φn : C(I, E) → C(I, E) be de�ned by the formula(17) Φn(x)(t) =

t\
0

g(τ, x(τ)) dτ +

t\
0

nSτt Tτ

τ\
0

g(s, x(s)) ds dτ + nS0
t x0.Clearly Φn is well de�ned and ontinuous. Moreover, for any x ∈ C(I, E),(18) Φn(x)(t) ∈ K +Q+Q ⊆ 3Q.Di�erentiating (17), we see that Φn(x) ∈ C1(I, E) for any x ∈ C(I, E) and

d

dt
Φn(x)(t) = g(t, x(t)) + nSttTt

t\
0

g(s, x(s)) ds(19)
+

t\
0

∂

∂t
nSτt Tτ

τ\
0

g(s, x(s)) ds dτ +
∂

∂t
nS0
t x0.Using (A1), (A2), (19) and the de�nition of Q, we have(20) d

dt
Φn(x)(t) ∈ K +Q+Q+Q ⊆ 4Q.Formulas (16), (18) and (20) imply that Φn(M) ⊆ M . Aording to theTikhonov �xed point theorem (see, e.g., [25℄) for any n ∈ N there existsa solution xn ∈ M of the equation Φn(x) = x. Sine M is ompat andmetrizable, the sequene xn has a subsequene xnk

uniformly onverging to
x ∈M . It remains to show that x is a solution of (6).From (A4) and (17) it follows that xn(0) = Φn(xn)(0) = nS0

0x0 ∈ x0+Un.Therefore xn(0) → x0 with respet to θ. Sine θ indues the initial topologyon 3Q and xn(0) ∈ 3Q, we �nd that xn(0) → x0. Hene x(0) = x0. Applying(19) to xn and using (A3) and (A4), we see that
ẋn(t) ∈ g(t, xn(t)) + Tt

t\
0

g(s, xn(s)) ds

+ Tt

t\
0

nSτt Tτ

τ\
0

g(s, xn(s)) ds dτ + Tt
nS0
t x0 + 3Un

= g(t, xn(t)) + TtΦn(xn)(t) + 3Un = g(t, xn(t)) + Ttxn(t) + 3Un.Aording to (18) and (20), ẋn(t) = d
dt
Φn(xn)(t) ∈ 4Q, g(t, xn(t)) ∈ Kand Ttxn(t) = TtΦn(xn)(t) ∈ 3N . Therefore ẋn(t) − g(t, xn(t)) − Ttxn(t) ∈

8N ∩ 3Un. Sine θ indues the initial topology on 8N , it follows that ẋnk
(t)uniformly onverges to Ttx(t) + g(t, x(t)). Hene, x ∈ C1(I, E) and ẋ(t) =

Ttx(t) + g(t, x(t)).Corollary 2.1. Let E be an integrally omplete LCS , a > 0, I = [0, a]and T ∈ L(I, E) be suh that the equation ẋ(t) = Ttx(t) is uniformly ACC-



214 S. A. Shkarinsolvable. Then for any M -ompat map g : I × E → E and any x0 ∈ E theproblem (6) is solvable in I.Lemma 2.2. Let E be an integrally omplete LCS , a > 0, I = [0, a],
K ∈ K(E) and T ∈ L(I, E) be suh that the equation ẋ(t) = Ttx(t) isompatly solvable over K. Then ẋ(t) = Ttx(t) is ACC-solvable over K.Proof. Aording to ompat solvability of the equation ẋ(t) = Ttx(t)over K, there exists M ∈ K(E) suh that (14) is satis�ed. Sine E is inte-grally omplete, there exists Q ∈ K(E) for whih M ⊆ Q and {Ttx : (t, x) ∈
I ×M} ⊆ Q. Let U ∈ U(E) and let n ∈ N be suh that 4a

n
Q ⊂ U . De�ne

h = a/n and let j ∈ {0, 1, . . . , n − 1}, Fj = Σ([jh, a], T ). Consider the op-erator Tj : Fj → E, Tjx = x(jh). Formula (14) implies that Tj(Mj) ⊃ K,where Mj = {x ∈ Fj : x([jh, a]) ⊂M}. Aording to Lemma 1.2 there existontinuous maps fj : K → Mj for whih Tjf(x) − x ∈ U/2 for any x ∈ K.Let J = {(t, s) ∈ I2 : t ≥ s} and S : J ×K →M be the map de�ned by
Sst x =







f0(x)(t) if 0 ≤ s ≤ h,

qfj−2(x)(t) + (1 − q)fj−1(x)(t)if s = (j − q)h, 0 ≤ q < 1, 2 ≤ j ≤ n.It su�es to verify that S is a CASS(K,Q,U) of the equation ẋ(t) =
Ttx(t). Continuity of S follows from ontinuity of fj . Sine for any s and
x, the map t 7→ Sst x is a solution of the equation ẋ(t) = Ttx(t), we seethat onditions (A1)�(A3) with A = K and B = Q are satis�ed. It remainsto verify (A4). Let t ∈ I and x ∈ K. If t > h, we have t = (j − q)hwith 0 ≤ q < 1 and 2 ≤ j ≤ n. Therefore Sttx − x = q(fj−2(x)(t) − x) +
(1− q)(fj−1(x)(t)− x). Sine d

dt
fk(x)(t) ∈ Q for any (x, t) ∈ K × [kh, a], we�nd that fk(t)− fk(kh) ∈ |t− kh|Q. The inlusion fk(kh)−x ∈ U/2 implies

Sttx−x ∈ U/2+ [q(t− (j− 2)h) + (1− q)(t− (j− 1)h)]Q ⊆ U/2+2hQ ⊆ U.If t ≤ h, then Sttx−x = f0(x)(t)−x = (f0(x)(t)−f0(x)(0))+(f0(x)(0)−x) ∈
hQ+ U/2 ⊆ U . Thus, in any ase Sttx− x ∈ U , whih is (A4).Lemma 2.3. Let E be an integrally omplete LCS , a > 0, I = [0, a],
K ∈ K(E), T ∈ L(E), F = Σ(I, T ) and T : F → E, Tx = x(0). Supposealso that there exists Q ∈ K(F ) suh that T(Q) ⊇ K. Then the equation
ẋ(t) = Tx(t) is ACC-solvable over K.Proof. Let U ∈ U(E) and M = aco({x(t) : (t, x) ∈ I × Q} ∪ {Tx(t) :
(t, x) ∈ I×Q}). Sine E is integrally omplete we haveM ∈ K(E). Aordingto Lemma 1.2 there exists a ontinuous map f : K →M suh that Tf(x)−
x ∈ U for any x ∈ K. Let S : J × K → M , Sst x = f(x)(t − s), where
J = {(t, s) ∈ I2 : t ≥ s}. It remains to prove that S is a CASS(K,M,U)of the equation ẋ(t) = Ttx(t). Continuity of S follows from ontinuity of f .



Compat perturbations of linear di�erential equations 215Sine f takes values in the spae of solutions of the equation ẋ = Tx, wehave ∂
∂t
Sst x = Tf(x)(t− s) ∈M . This proves (A1)�(A3). Let (t, x) ∈ I ×K.Then Sttx = f(x)(0) = Tf(x) ∈ x+ U , whih is (A4).Corollary 2.2. Let E be an integrally omplete LCS , a > 0, I = [0, a],

K ∈ K(E) and T ∈ ex(E) be an operator satisfying (15). Then the equation
ẋ(t) = Tx(t) is uniformly ACC-solvable in I.Corollary 2.1 and Lemma 2.2 imply Proposition 1. Theorem 1 followsfrom Corollaries 2.1 and 2.2.4.3. Proof of Theorem 2Lemma 3.1. Let G be the lass of LCS E suh that for any LCS F , any
Q,K ∈ K(F ) and any sequentially ontinuous linear operator T : E → Fsuh that Q ≪ K and T (E) ⊇ K there exists N ∈ K(E) for whih T (N)
⊇ Q. Then U0G ⊆ G.Proof. Let (E, τ) ∈ U0G, (En, τn) be spaes satisfying (U0) and (U1),
F be a LCS, Q,K ∈ K(F ), Q ≪ K and T : E → F be a sequentiallyontinuous linear operator suh that T (E) ⊇ K. We have to verify theexistene of N ∈ K(E) for whih T (N) ⊇ Q. Sine (En, τ |En) is Suslin,Lemma 1.5 implies that An = T (En) ∩ FK is a Baire-measurable subsetof the Banah spae FK . Aording to Lemma 1.4, there exists n ∈ N forwhih K ⊂ FK ⊂ T (En). Sine En ∈ G, there exists N ∈ K(En) suh that
T (N) ⊇ Q. Sine the topology τn of En is stronger than τ |En , we onludethat N ∈ K(E).Lemma 3.2. Let G be the lass of LCS de�ned in Lemma 3.1. Then
PU0F ⊂ G.Proof. Let E ∈ PU0F , F be a LCS, Q,K ∈ K(F ) be suh that Q≪ K,and let T : E → F be a sequentially ontinuous linear operator suh that
T (E) ⊇ K. We have to prove the existene of N ∈ K(E) for whih T (N)
⊇ Q. Aording to Lemma 1.6 there exist Kj ∈ K(E) suh that K0 = Kand Q ≪ Kn+1 ≪ Kn for any n ∈ Z+. Sine E ∈ PU0F we �nd that Eis a sequentially losed linear subspae of the produt of En ∈ U0F . Forany n ∈ N, let (Enk , τ

n
k ) be spaes satisfying onditions (U0) and (U1) assubspaes of En. De�ne
G =

∞
∏

k=1

Ek, Gn =
n

∏

k=1

Ekand let
πn : G→ En and Πn : G→ Gnbe the natural projetions. For any n, k ∈ N, pik a base of neighborhoods ofzero {Un,kj : j ∈ N} in (Enk , τ

n
k ) onsisting of losed balaned onvex sets and



216 S. A. Shkarinsuh that 2Un,kj+1 ⊆ Un,kj for all j, n, k. Let M0 = V0 = E. We shall onstrutindutively kn ∈ N and subsets Mn, Vn of E suh that for any n ∈ N,(L1) Mn = {x ∈ E : Πnx ∈ An} and Vn = {x ∈ E : Πnx ∈ Bn}, where
An, Bn are losed subsets of Pn =

∏n
j=1E

j
kj

(any Ejkj
is endowedwith the topology τ jkj

) and Bn ⊂ (
∏n
j=1 U

j,kj
n ) ∩An;(L2) Mn + Vn ⊆Mn−1, Vn ⊆ Vn−1 and T (Mn) ⊇ K2n ⊃ Q;(L3) there exists Nn ∈ K(E) with �nite-dimensional linear hull suh that

Mn = Nn + Vn.Let n ∈ N. Suppose that kj , Mj and Vj satisfying (L1)�(L3) for j < n(and, of ourse, the orresponding Aj , Bj and Pj) are already onstruted.Let
Wk =

{

{x ∈ E : Πn−1x ∈ An−1, πnx ∈ Enk } if k > 1

{x ∈ E : π1x ∈ E1
k} if k = 1.Sine the lass of Suslin spaes is losed with respet to ountable unions,ountable produts and sequentially losed subspaes, we dedue (aordingto (U1) for Ejk) that Wk is Suslin. Clearly, Mn−1 is the union of the Wk.Therefore, aording to Lemma 1.5, T (Wk)∩FK2n−2

is an inreasing sequeneof Baire-measurable onvex balaned subsets of the Banah spae FK2n−2
,whose union ontains K2n−2. Lemma 1.4 implies that the open unit ball

D = (0, 1) · K2n−2 of FK2n−2
is ontained in the union of the interiors of

T (Wk) ∩ FK2n−2
in FK2n−2

. Sine K2n−1 is a ompat subset of the ball D,there exists kn ∈ N suh that K2n−1 ⊂ T (Wkn
). Let

B′
n =

(

n
∏

j=1

U
j,kj
n

)

∩ (Bn−1 ×Enkn
), V ′

n = {x ∈ E : Πnx ∈ B′
n}.Applying Lemma 1.7 to M = Wkn

, U = V ′
n, Q = K2n and K = K2n−1,we see that there exist Nn ∈ K(E) and ε ∈ (0, 1) suh that Nn has �nite-dimensional linear hull, Nn + εV ′

n ⊂ Wkn
and T (Nn + εV ′

n) ⊃ K2n. Letnow
Bn = εB′

n, Vn = εV ′
n = {x ∈ E : Πnx ∈ Bn},

An = Bn + εΠn(Nn), Mn = Nn + εV ′
n = {x ∈ E : Πnx ∈ An}.Conditions (L1)�(L3) for kn, Nn, Vn and Mn follow from the onstrution.Let

N =
∞
⋂

n=1

Mn, P =
∞
∏

n=1

Enkn
,where P is endowed with the topology of the produt of (Enkn

, τnkn
). Clearly

N ⊂ P ∩E and N is onvex and balaned. It su�es to prove that N ∈ K(E)and T (N) ⊇ Q.



Compat perturbations of linear di�erential equations 217The inlusion N ∈ K(E) will be proved if we show that N is a ompatsubset of the Polish spae P (the topology of P∩E indued from P is strongerthan the topology indued from E). Aording to (L3), for any n ∈ N, N isontained in the union of a �nite number of shifts of 2Vn. Therefore, (L1)implies pre-ompatness of N in P . Sine P is a Polish spae it remains toshow that N is sequentially losed in P . Let xk ∈ N be a sequene onvergingto x ∈ P . Sine E ∩ P is sequentially losed in P , we see that x ∈ E. Let
n ∈ N. Sine An is losed in Pn, we �nd that Πn(x) = limΠn(xk) ∈ An andtherefore x ∈Mn. Hene, x ∈ N . Thus, N ∈ K(E).Let u ∈ Q. Aording to (L2), for any n ∈ N, there exists yn ∈Mn suhthat Tyn = u. Sine ym ∈ Mn for any m ≥ n, from (L3) it follows thatfor any m ≥ n, there exist xnm ∈ Nn and unm ∈ Vn suh that xnm + unm =
ym. Using standard diagonal proedure, we an hoose a stritly inreasingsequene mj ∈ N suh that xnmj

is onverging to xn ∈ Nn for any n ∈ N.Sine ymj
= xnmj

+ unmj
∈ xn + 2Vn for su�iently large j's, from (L1) itfollows that for any n ∈ N, Πnymj

is a Cauhy sequene in Pn and therefore
Πnymj

onverges to zn ∈ An with respet to the topology of Pn. Sine τnkis stronger than the topology indued from En, we see from (L1) that forany U ∈ U(E), there exists n ∈ N suh that Vn ⊆ U . Therefore ymj
is aCauhy sequene in E. Sine E is sequentially omplete, ymj

→ y ∈ E. Hene
Πny = zn ∈ An for any n ∈ N. Therefore y ∈ N and Ty = limTymj

= u.Thus, T (N) ⊇ Q.Now we an prove Theorem 2. Let E and F be LCS suh that either
E ∈ Y , or F ∈ X and E ∈ UF ∪U0PU0F , and let T : E → F be a surjetivesequentially ontinuous linear operator and Q ∈ K(F ). We have to verifythat there exists K ∈ K(E) suh that T (K) ⊇ Q.
Case 1: E ∈ Y . Let {Kn : n ∈ N} be a base of K(E). Then Q is theunion of the sets T (Kn) ∩ Q. Sine they are losed in Q, Baire's theoremimplies that T (Kn)∩Q has non-empty interior in the balaned onvex set Qfor some n ∈ N. For this n we see that T (Kn) ∩Q absorbs Q. Hene, thereexists c > 0 suh that T (K) ⊇ Q, where K = cKn ∈ K(E).
Case 2: E ∈ UF and F ∈ X . Let (En, τn) ∈ F be spaes satisfying(U0). Sine F ∈ X , there exists N ∈ K(F ) suh that Q ≪ N . Clearly

An = T−1(N) ∩ En is a onvex balaned and losed subset of the Fréhetspae (En, τn). LetGn = (En)An and G = FN . Aording to Lemma 1.8, eah
Gn is a Fréhet spae and G is a Banah spae. The losed graph theorem [13℄implies that the restritions T |Gn : Gn → G are ontinuous linear operators.Sine G is the union of the Ln = T (Gn), there exists n ∈ N for whih Lnis a Baire seond ategory set in the Banah spae G, and in partiular, Lnis dense in G. Sine Tn = T |Gn : Gn → Ln is a linear ontinuous surjetiveoperator from the Fréhet spae Gn to the Baire metrizable LCS Ln, the



218 S. A. Shkarinopen mapping theorem [5℄ implies that the operator Tn is open. Therefore
Ln is isomorphi to the Fréhet spae Gn/kerTn. Hene, Ln is ompleteand therefore losed in G. Sine Ln is dense in G, we �nd that Ln = G.Therefore Tn : Gn → G is a surjetive ontinuous linear operator from theFréhet spae Gn to the Banah spae G. Mihael's seletion theorem [22, 3℄implies the existene of a ontinuous right inverse map f : G → Gn of Tn.Let K = aco f(Q) (we take the losure with respet to the topology of theFréhet spae Gn). Compatness of Q in G implies that K ∈ K(Gn). Clearly
T (K) = Q. Sine the topology of G is stronger than the topology induedfrom E, we onlude that K ∈ K(E).
Case 3: E ∈ U0PU0F and F ∈ X . Let G be the lass of LCS de�nedin Lemma 3.1. It su�es to prove that E ∈ G. Aording to Lemma 3.1, tothis end it is enough to verify the inlusion PU0F ⊆ G, whih follows fromLemma 3.2.4.4. Proof of Proposition 2Lemma 4.1. Let A be a lass of LCS suh that any sequentially losedsubspae of any element of A belongs to A and G ∈ A ⇒ C(I,G) ∈ A.Let also (E, τ) be a LCS and F be a sequentially losed linear subspae of

C(I, E) (endowed with the uniform onvergene topology). Then E ∈ U
I
0A ⇒

F ∈ U
I
0A and E ∈ PA ⇒ F ∈ PA.Proof. Let E ∈ U

I
0A, (En, τn) be spaes satisfying (U0) and (U1) and

Fn = {f ∈ F : f(t) ∈ En for any t ∈ I} be endowed with the uniform onver-gene topology θn in (En, τn). Then (Fn, θn) ∈ A, Fn ⊂ Fn+1 and Fn with thetopology indued from C(I, E) is Suslin. Aording to Lemma 1.3, F is inte-grally omplete as a losed subspae of the integrally omplete LCS C(I, E).The inlusion F ∈ U
I
0A will be proved if we verify that the union of the Fnoinides with F . Let f ∈ F and K = aco(f(I)). Integral ompleteness of

E implies that K ∈ K(E). Aording to Lemma 1.5, eah Gn = En ∩ EK isa Baire-measurable subset of the Banah spae EK . Lemma 1.4 and Baire'stheorem imply the existene of n ∈ N for whih Gn = EK and therefore
f(I) ⊂ K ⊂ En. Thus, f ∈ Fn and F is the union of the Fn. If E ∈ PA then
E is a sequentially losed subspae of the produt of the En ∈ A. Aordingto Lemma 1.3, F is a losed subspae of C(I, E), whih is a sequentiallylosed subspae of the produt of the C(I, En) ∈ A. Therefore F ∈ PA.Now we an prove Proposition 2. Let E ∈ Y , {Kn : n ∈ N} be a baseof K(E) and Mn = {x ∈ F : x(t) ∈ Kn ∀t ∈ I}. Aording to Lemma 1.3,
F is integrally omplete. Sine E is integrally omplete, for any n∈N, thereexists m ∈ N suh that {Ttx : t ∈ I, x ∈ Kn} ⊆ Km. Hene, {ẋ(t) : t ∈ I,
x ∈Mn} ⊆ Km. The Arzelà�Asoli theorem implies that Mn ∈ K(F ). Sup-pose now that M ∈ K(F ). Sine E is integrally omplete, there exists n ∈ N



Compat perturbations of linear di�erential equations 219suh that {x(t) : x ∈M, t ∈ I} ⊆ Kn. Hene,M ⊆Mn. Thus, {Mn : n ∈ N}is a base of K(F ) and therefore F ∈ Y .Let E ∈ X , M ∈ K(F ) and T ∈ L(I, E) be suh that F = Σ(I, T ).Aording to Lemma 1.3, F is sequentially omplete. Sine E is integrallyomplete, Q = aco{x(t) : (t, x) ∈ I ×M} ∈ K(E), and sine E ∈ X , thereexists K ∈ K(E) suh that Q ≪ K. Let N = {x ∈ F : x(t) ∈ K ∀t ∈ I}.Sine the set {ẋ(t) = Ttx(t) : x ∈ N, t ∈ I} is ompat, the Arzelà�Asolitheorem implies ompatness of N . Thus, N ∈ K(E). Let us verify that
M ≪ N . To this end we have to show that the topology onM de�ned by thenorm pN oinides with the uniform onvergene topology. Let xn ∈M be asequene uniformly onverging to zero. It su�es to prove that pN (xn) → 0.Suppose that pN (xn) 6→ 0. Aording to the de�nition of N , there exists asequene tn ∈ I suh that pK(xn(tn)) 6→ 0. Sine xn(tn) ∈ Q and Q ≪ K,we have xn(tn) 6→ 0 in E, whih ontradits the uniform onvergene of xnto 0. Hene, M ≪ N and therefore F ∈ X .Let E ∈ U

IF , let (En, τn) be spaes satisfying (U0) and let Fn = {f ∈
F : f(t) ∈ En for any t ∈ I} be endowed with the uniform onvergenetopology θn in (En, τn). Then (Fn, θn) ∈ F and Fn ⊂ Fn+1. Aording toLemma 1.3, F is integrally omplete as a losed subspae of the integrallyomplete LCS C(I, E). The inlusion F ∈ U

IA will be proved if we verify thatthe union of the Fn oinides with F . Let f ∈ F and K = aco(f(I)). Integralompleteness of E implies that K ∈ K(E). Sine τn is stronger than τ |En ,we have K ∈ K(En) ⊂ M(En). Aording to Lemma 1.8, Gn = (En)K is aFréhet spae (with the topology ηn having the set {U ∩K : U ∈ U(En, τn)}as a pre-base of neighborhoods of zero). Pik n ∈ N for whih Gn = EK ∩Enis a Baire seond ategory subset of the Banah spae EK . For this n, theidentity operator J from (Gn, ηn) to (Gn, pK) is a surjetive ontinuous linearoperator from a Fréhet spae to a Baire normed LCS. The open mappingtheorem [5℄ implies that J is open and therefore J is an isomorphism. Hene,
(Gn, pK) is omplete and therefore Gn is losed in the Banah spae EK .On the other hand, Gn is dense in EK and therefore Gn = EK . Hene,
f(I) ⊂ K ⊂ En. Thus, f ∈ Fn and F is the union of the Fn.Let E ∈ U

I
0PU

I
0F . Clearly U

I
0F is losed under taking sequentially losedlinear subspaes. Lemma 4.1 applied to A = F shows that G ∈ U

I
0F ⇒

C(I,G) ∈ U
I
0F . Lemma 4.1 applied to A = U

I
0F implies that G ∈ PU

I
0F ⇒

C(I,G) ∈ PU
I
0F . Sine PU

I
0F is losed under taking sequentially losed lin-ear subspaes, applying Lemma 4.1 to A = PU

I
0F , we obtain F ∈ U

I
0PU

I
0F .4.5. Proof of Proposition 3. Statement (A) follows diretly from theBanah�Dieudonné theorem [13, 21℄. For (B), learly UF ontains ountableindutive limits of Frehét spaes. Let E be a sequentially omplete LFS-spae andK ∈ K(E). ThenK ∈ K(En) for some step spae En and aording



220 S. A. Shkarinto Lemma 1.6 there exists Q ∈ K(En) ⊂ K(E) suh that K ≪ Q. Hene
E ∈ X . Part (C) follows from the de�nition of the lass U0PU

I
0F .4.6. Proof of Corollary 3. Sine D = D(Ω) is a strit indutive limitof separable Fréhet spaes and H(K),S ′(Rn) are strong duals of Fréhet�Shwartz spaes [13℄, Proposition 3 implies that D(Ω),S ′(Rn), H(K) ∈ X ∩

U
I
0F ⊂ X ∩ UF . Aording to Corollary 2, D(Ω),S ′(Rn), H(K) ∈ CP.Sine D′(Ω) and A(Ω) are projetive limits of omplete indutive limits ofseparable Fréhet spaes, Proposition 3 implies that D′(Ω),A(Ω) ∈ PU

I
0F

⊂ U0PU
I
0F . On the other hand D′(Ω),A(Ω) ∈ X (3). Corollary 2 now im-plies that A(Ω) ∈ CP and D′(Ω) ∈ CP.4.7. Proof of Theorem 3

Example 1. Let α, ϕ, β : R → R be funtions de�ned by
(21) α(s) = e−s

2

, ϕ(t) =

{

e−t
−4 if t > 0,

0 if t ≤ 0,

β(t) =







1 if t ≤ 0,
0 if t ≥ 1,
e−(1−t)−2

(e−t
−2

+ e−(1−t)−2

)−1 if t ∈ (0, 1).One an easily see that ϕ, β ∈ C∞(R) and α ∈ S. Consider funtions γ, νu :
R

2 → R,
(22) γ(t, s) =

{

ϕ(t) + β(s− t−1) if t > 0,

1 if t ≤ 0,
νu(t, s) =

γ(t, s)

γ(u, s)
(u ∈ R).Let us verify that γ ∈ C∞(R2). Clearly γ ∈ C∞((0,+∞) × R) and

γ ∈ C∞((−∞, 0) × R). Let s0 ∈ R. Pik ε > 0 suh that s0 + ε − ε−1 < 0.Then for any (t, s) from the ε-neighborhood W of the point (0, s0) in R
2,we have β(s− t−1) = 1 and therefore γ(t, s) = 1 +ϕ(t). Hene γ ∈ C∞(W ).Therefore γ ∈ C∞(R2). Clearly γ is positive. Hene νu, µ ∈ C∞(R2), where

(23) µ(t, s) =
∂

∂t
ln γ(t, s) =







ϕ′(t) + t−2β′(s− t−1)

ϕ(t) + β(s− t−1)
if t > 0,

0 if t ≤ 0.For any t, u ∈ R, let Tt and Sut be operators (ating on funtions x : R → R)de�ned by the formula(24) Ttx(s) = µ(t, s)x(s), Sut x(s) = νu(t, s)x(s).

(3) Any ompat subset K of E ∈ {D′(Ω),A(Ω)} is ontained in a linear subspae
F ⊂ E arrying a stronger topology τ suh that (F, τ) is a Fréhet spae and K is ompatin (F, τ). Then it remains to apply Lemma 1.6.



Compat perturbations of linear di�erential equations 221For the proof of the �rst part of Theorem 3 it su�es to verify thefollowing onditions:(1.0) T, Su ∈ L(R,S), and the maps T, Su : R × S → S (u ∈ R) arein�nitely Fréhet di�erentiable [2℄, where Su(t, x) = Sut x (T and Sare de�ned by (24));(1.1) for any (t0, x0) ∈ R × S, problem (13) is uniquely solvable in anyinterval ontaining t0. The unique solution is given by x(t) = St0t x0;(1.2) the equation ẋ(t) = Ttx(t)+α has no solutions in [0, ε] for any ε > 0.Proof. (1.0) Let B be the set of funtions ̺ ∈ C∞(R2) suh that for any
n, k ∈ Z+, there exist m = m(̺, n, k), c = c(̺, n, k) > 0 for whih(25) sup

t∈R

∣

∣

∣

∣

∂n+k̺

∂tn∂sk
(t, s)

∣

∣

∣

∣

≤ c(1 + |s|)m for any (t, s) ∈ R
2.Aording to (12) it su�es to prove that µ ∈ B and νu ∈ B for any u ∈ R.We shift the proof of this fat to the Appendix (it is purely tehnial).(1.1) Let x : R → S, x(t) = St0t x0. Clearly x(t0) = x0. By (23), ∂γ∂t (t, s) =

µ(t, s)γ(t, s). Therefore
ẋ(t)(s) = µ(t, s)γ(t, s)x0(s)/γ(t0, s) = µ(t, s)x(t)(s) = Ttx(t)(s).Hene, x is a solution in R of (13). Uniqueness of a solution of this problemfollows from the fat that for any t ∈ R, Tt is an operator of multipliationby a funtion (we an �pointwise� solve the equation ẋ(t) = Ttx(t)).(1.2) Let ε > 0. One an easily verify that the funtion π : (0, ε] → S,

π(t) = (t− ε)α+

ε\
t

(ε− τ)Sτt Tταdτis a solution of the equation ẋ(t) = Ttx(t) + α. Suppose that there existsa solution π1 : [0, ε] → S of this equation in [0, ε]. Then x = π − π1 is asolution of the homogeneous equation ẋ = Ttx in (0, ε]. Aording to (1.1),
x admits an in�nitely di�erentiable extension to R. Therefore π has a limitin 0 in the topology of S. Hene, the limit

lim
t↓0

f(t), where f(t) =

ε\
t

(τ − ε)Sτt Tταdτ,exists in S. Sine onvergene in S implies uniform onvergene,
(26) 0 = lim

t↓0
f(1/t) = lim

t↓0
(1 + ϕ(t))e−t

−2

I(t) = lim
t↓0

e−t
−2

I(t),where
I(t) =

ε\
t

(τ − ε)
µ(τ, 1/t)

γ(τ, 1/t)
dτ.Integrating by parts, we see that for su�iently small positive t,
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(27) I(t) =

t− ε

1 + ϕ(t)
+

2t\
t

dτ

γ(τ, 1/t)
+

ε\
2t

dτ

ϕ(τ)
≥ −ε+

4t\
2t

eτ
−4

dτ ≥ 2te(2t)
−4

−ε.

From (26) and (27) it follows that 0 = limt↓0 e
−t−2

(2te(2t)
−4

− ε). On theother hand, this limit is obviously in�nite. This ontradition proves (1.2).
Example 2. As usual, E = C∞(R) with the topology of uniform on-vergene of all derivatives, and E ′ is the strong dual of the nulear Fréhetspae E , i.e., E ′ is the spae of generalized funtions with ompat support[21℄. As usual, δt ∈ E ′ is Dira's delta-funtion onentrated at the point

t ∈ R: 〈δt, h〉 = h(t), h ∈ E . Let G be the linear hull in E ′ of the set
{δ

(n)
0 : n ∈ Z+}. For any z ∈ C, let ez ∈ E , ez(t) = e−tz. Consider the spae(28) E = {Φξ : ξ ∈ E ′ ⊗ E ′}, where Φξ(s1, s2) = (s1 − s2)

〈

es1 ⊗ es2 , ξ
〉

.Clearly E is a linear subspae of the spae of entire funtions of two vari-ables. We endow E with the strongest loally onvex topology with respetto whih the operators(29) T 1
ψ : E ′ → E, T 1

ψϕ = Φϕ⊗ψ, ψ ∈ E ′,

T 2
ϕ : E ′ → E, T 2

ϕψ = Φϕ⊗ψ, ϕ ∈ G,are ontinuous. Let T : E → E be the operator de�ned by the formula
TΦϕ⊗ψ = Φϕ′⊗ψ and f : [0, 1] → E, f(t) = Φδ⊗δt .For the proof of the seond part of Theorem 3 it su�es to verify thefollowing onditions:(2.0) E is a omplete ultrabornologial LCS, T ∈L(E) and f ∈C([0, 1], E);(2.1) T ∈ unex(E) and for all ε > 0, the equation ẋ(t) = Tx(t) + f(t) hasno solutions in [0, ε].Proof. (2.0) One an easily see that E1 = {Φξ : ξ ∈ G ⊗ E ′} ⊂ Eis isomorphi to a free loally onvex sum of a ountable family of opiesof E ′. Therefore E1 is omplete and hene losed in E. On the other hand,the quotient E/E1 is isomorphi to the free loally onvex sum of a on-tinuum of opies of E ′ and therefore is also omplete. The three-spae the-orem for ompleteness [5℄ implies that E is omplete. Moreover, the spae
E is ultrabornologial as an indutive limit of ultrabornologial LCS. Sine
TT 1

ψ = T 1
ψD, where D : E ′ → E ′ is the operator of di�erentiation Dϕ = ϕ′and TT 2

ϕ = T 2
ϕ′ , we �nd that the operators TT 1

ψ for ψ ∈ E ′ and TT 2
ϕ for

ϕ ∈ G are ontinuous. Aording to the de�nition of the topology of E wesee that T ∈ L(E). Sine the funtion g : [0, 1] → E ′, g(t) = δt, is ontinuousand f(t) = T 2
δ0
g(t), we see that f is ontinuous.(2.1) Aording to (28) and to the de�nition of the operator T we have
TΦ(s1, s2) = s1Φ(s1, s2) for any Φ ∈ E.



Compat perturbations of linear di�erential equations 223Sine T is the operator of multipliation by a funtion and the topology of Eis stronger than the pointwise onvergene topology, the �pointwise� solutionof problem (2) oinides with the onventional solution in E, whenever thelatter exists. This proves uniqueness of the solution. One an easily verifythat the �pointwise� solution of problem (2) is given by(30) x(t)(s1, s2) = e−ts1x0(s1, s2).Clearly e−ts1Φϕ⊗ψ(s1, s2) = Φϕt,ψ(s1, s2), where ϕt is a shift of the gener-alized funtion ϕ: ϕt(u) = ϕ(u − t). Hene the funtion x de�ned by (30)takes values in E. Smoothness of x : [0, 1] → E follows from the de�nition(29) of the topology of E and smoothness of the funtions t 7→ ϕt (ϕ ∈ E′).Therefore formula (30) de�nes the solution in E of problem (2). Hene,
T ∈ unex(E).It remains to show that the problem ẋ(t) = Tx(t)+f(t), x(0) = 0, is non-solvable in [0, ε]. One an verify that the �pointwise" solution of this problemis given by x(s1, s2) = e−ts2 − e−ts1 . Suppose that the problem is solvable in
[0, ε]. Then for any t ∈ [0, ε] there exists ξt ∈ E ′ ⊗ E ′ suh that Φξt(s1, s2) =
e−ts2 − e−ts1 . Therefore the funtion Ft(s1, s2) = (e−ts2 − e−ts1)/(s1 − s2) isthe Laplae transform of ξt (see de�nition of Φξ). On the other hand, Ft for
t > 0 is the Laplae transform of the Lebesgue measure µt of the segmenton the plane with ends (0, t) and (t, 0). Injetivity of the Laplae transformimplies that µt is an element of E ′ ⊗ E ′, whih is false.5. Conluding remarks1. It is not known whether there exist a Fréhet spae E, T ∈ L(R, E) and
f ∈ C(R, E) suh that problem (13) is solvable in R for any (t0, x0) ∈ R×Eand the equation ẋ(t) = Ttx(t) + f(t) has no solutions in any interval.2. It is not known whether the produt of any two spaes from CP belongsto CP. Nor do we know whether CP ontains strong duals of Fréhet spaes.3. Let E be a non-omplete normed spae, admitting a bigger ompletenorm (for example C[0, 1] with the norm indued from L2[0, 1]). Then 0 ∈
unex(E) \ ex′(E).4. We say that a pair (E,F ) of LCS has the inverse mapping property ifany bijetive ontinuous linear operator T : E → F has ontinuous inverse.Proposition 4. Let E be an integrally omplete LCS , T ∈ unex(E),
F = Σ([0, a], E), and suppose the pair (F,E) has the inverse mapping prop-erty. Then T ∈ ex(E).Proof. Let T : F → E, Tx = x(0) and J = {(t, s) ∈ [0, a] : t ≥ s}.Then T is ontinuous linear and bijetive and therefore T

−1 is ontinuous.Hene, the map S : J × E → E, Sst x = T
−1x(t − s), is ontinuous. So forany K ∈ K(E), there exists Q ∈ K(E) suh that Sst x ∈ Q and TSst x ∈ Q



224 S. A. Shkarinfor all (t, s, x) ∈ J ×K. It remains to notie that for any U ∈ U(E), S is aCASS(K,Q,U) of the equation ẋ = Tx and to apply Lemma 2.1.5. The following proposition was suggested by D. Vogt.Proposition 5. Let E ∈ X and T ∈ L(E) be suh that for any K ∈
K(E) there exists Q ∈ K(E) suh that K ⊆ Q and Q absorbs T (Q). Then
T ∈ unex(E) ∩ ex(E).Proof. Let x0 ∈ E and g : [0, a] × E → E be an M -ompat map. Thenwe an pik K,Q ∈ K(E) suh that g([0, a]×E) ⊂ K, x0 ∈ K, K ≪ Q and
Q absorbs T (Q). So the restrition T |EQ

: EQ → EQ is a ontinous linearoperator on the Banah spae EQ and the restrition g|[0,a]×EQ
: [0, a]×EQ →

EQ is an M -ompat map. Theorem HL implies solvability of (4) in EQ andtherefore in E. Hene T ∈ ex(E). Let now x ∈ C1([0, a], E) be a solution of(2) with x0 = 0. Pik K,Q ∈ K(E) suh that x([0, a]) ⊂ K, K ≪ Q and Qabsorbs T (Q). Then the restrition T |EQ
: EQ → EQ is a ontinous linearoperator on the Banah spae EQ and x is a solution of (2) with x0 = 0in EQ. Sine L(EQ) = unex(EQ), we have x ≡ 0. Hene T ∈ unex(E).Aknowledgments. The author would like to thank Professors O. Smol-yanov, D. Vogt and G. Herzog for their interest and omments, and thereferee for useful remarks. The author appreiates the �nanial support ofthe Alexander von Humboldt Foundation and the British Engineering andPhysial Researh Counil Grant GR/T25552/01.Appendix: Proof of the inlusions µ ∈ B and νu ∈ B, required inSetion 4.7. In this appendix we prove that the funtions µ and νu (u ∈ R)de�ned by (23) and (22) belong to the lass B de�ned by (25). Sine for any�xed u ∈ R, the funtion s 7→ γ(u, s) is bounded from below by a positiveonstant, it su�es to prove that µ, γ ∈ B. We write F 4 G (F and G arefuntions de�ned on the same set) if there exists c = c(F,G) > 0 suh that

|F | ≤ c|G|.First, let us show that γ ∈ B. Clearly the funtion
∂n+kγ

∂tn∂sk
(t, s) : (0,+∞) × R → Ris a �nite linear ombination of ϕ(i)(t) and t−lβ(j)(s−t−1), where l, i, j ∈ Z+and l ≤ 2j. The funtions ϕ(i)(t) and t−lβ(j)(s− t−1) for l = 0 are bounded.If l > 0 then j > 0 and aording to (21), t−lβ(j)(s − t−1) vanishes if

s − t−1 /∈ (0, 1). This implies that t−lβ(j)(s − t−1) 4 1 + |s|l. Hene, γ ∈ B(and therefore νu ∈ B).It remains to show that µ ∈ B. Using de la Vallée Poussin's formula formultiple derivatives of a superposition of two funtions [26℄ we dedue that



Compat perturbations of linear di�erential equations 225
∂n+kµ

∂tn∂sk
(t, s) =

∂n+1+k ln(γ)

∂tn+1∂sk
(t, s)is a linear ombination with real oe�ients of the following �nite set offuntions:(31) 1

γν(t, s)

∏

i,j

(

∂i+jγ

∂ti∂sj
(t, s)

)ai,j

,where i, j, ai,j ∈ Z+, ν =
∑

i,j ai,j , ∑

i,j iai,j = n+ 1 and ∑

i,j jai,j = k.Formulas (31) and (22) imply that
∂n+kµ

∂tn∂sk
(t, s) = 0 if t ≤ 0and the funtion

∂n+kµ

∂tn∂sk
(t, s) : (0,+∞) × R → Ris a linear ombination of the following �nite set of funtions:

(32) ω(t, s)

=
(ϕ′(t))j1 · · · (ϕ(n+1)(t))jn+1(β′(s− t−1))i1 · · · (β(n+k+1)(s− t−1))in+k+1

(ϕ(t) + β(s− t−1))rtl
,where iq, jq, l ∈ Z+, r =

∑

jq +
∑

iu ∈ N, l ≤ 2
∑

iu, ∑

qjq ≤ n + 1 and
∑

uiu ≤ k.The inlusion µ ∈ B will be proved if we show that(33) |ω(t, s)| 4 (1 + |s|)mfor any funtion ω de�ned in (32) (m = m(ω) ≥ 0). From (32) and (21) itfollows that(34) ω(t, s) 4 1 for t ≥ 1/2(the denominator in (32) is bounded from below by ϕr(1/2)2−l).
Case 1:

∑

iu > 0. Aording to (21), ω(t, s) = 0 if s − t−1 /∈ (0, 1).Using (34) we obtain(35) |ω(t, s)| 4 1 for s ≤ 2.Let s > 2. If 1−s−2 < s− t−1 < 1, we have β(i)(s− t−1) 4 e−s
4

s6i 4 ϕ(t)s6i.If 0 < s− t−1 < 1− s−2, we have β(i)(s− t−1) 4 β(s− t−1)(1− s+ t−1)−3i
4

β(s− t−1)s6i. Thus, if s > 2 and 0 < s− t−1 < 1 then β(i)(s− t−1) 4 (ϕ(t)+
β(s − t−1))s6i and ϕ(j)(t)/ϕ(t) 4 t−5j

4 s5j . Using (32) we dedue that if
s > 2 and 0 < s−t−1 < 1 then ω(t, s) 4 sm, wherem = l+5

∑

qjq+6
∑

uiu.Sine ω(t, s) = 0 if s− t−1 /∈ (0, 1), this formula and (35) imply (33).
Case 2:

∑

iu = 0. In this ase
(36) ω(t, s) =

(ϕ′(t))j1 · · · (ϕ(n+1)(t))jn+1

(ϕ(t) + β(s− t−1))r
,



226 S. A. Shkarinwhere jq ∈ Z+ and 1 ≤ r =
∑

jq ≤ n + 1. If s ≤ 1/2, or s > 1/2 and
t ≤ 1/(s− 1/2), then ω(t, s) 4 1 (the denominator in (36) is bounded frombelow by 2−r). If s > 1/2 and t ≥ 1/s then ϕ(j)(t)/ϕ(t) 4 t−5j

4 s5j forany j ∈ N. This inequality and (36) imply that if s > 1/2 and t ≥ 1/s, then
ω(t, s) 4 sm, where m = 5

∑

qjq, whih proves (33). Therefore µ ∈ B.
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