Bounded elements and spectrum in Banach quasi *-algebras

by

CAMILLO TRAPANI (Palermo)

Abstract. A normal Banach quasi *-algebra $(\mathfrak{X},\mathfrak{A}_0)$ has a distinguished Banach *-algebra \mathfrak{X}_b consisting of bounded elements of \mathfrak{X} . The latter *-algebra is shown to coincide with the set of elements of \mathfrak{X} having finite spectral radius. If the family $\mathcal{P}(\mathfrak{X})$ of bounded invariant positive sesquilinear forms on \mathfrak{X} contains sufficiently many elements then the Banach *-algebra of bounded elements can be characterized via a C^* -seminorm defined by the elements of $\mathcal{P}(\mathfrak{X})$.

1. Introduction. A quasi *-algebra [15] is a couple $(\mathfrak{X}, \mathfrak{A}_0)$, where \mathfrak{X} is a vector space with involution *, \mathfrak{A}_0 is a *-algebra and a vector subspace of \mathfrak{X} , and \mathfrak{X} is an \mathfrak{A}_0 -bimodule whose module operations and involution extend those of \mathfrak{A}_0 .

Quasi *-algebras were introduced by Lassner [11, 12] with the purpose of providing a reasonable mathematical environment for properly dealing with the thermodynamical limit of local observables of certain quantum statistical models that did not fit into the set-up developed by Haag and Kastler [10]. For this purpose, of course, a topological structure with sufficiently many reasonable properties is needed; in other terms, locally convex quasi *-algebras have to be considered [1, 18]. The simplest way to construct such an object consists in taking the completion of a locally convex *-algebra (\mathfrak{A}_0, τ) where the multiplication is separately but not jointly continuous. Of particular interest is, of course, the case where τ is a norm topology. This situation has however received so far a rather limited attention, in spite of the fact that it covers very familiar examples such as L^p -spaces (both commutative and non-commutative). Some results in this direction have been obtained for the so called CQ^* -algebras in a series of papers [3]-[7], [19]-[21].

In this paper we consider the more general case where $(\mathfrak{X}, \mathfrak{A}_0)$ is a *Banach quasi* *-algebra. This means, roughly speaking, that \mathfrak{X} is a Banach space whose norm $\|\cdot\|$ has certain coupling properties related to the *partial* multiplication of $(\mathfrak{X}, \mathfrak{A}_0)$. In Section 2 we study the set \mathfrak{X}_b of bounded

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L08; Secondary 46L51, 47L60. Key words and phrases: quasi *-algebra, CQ^* -algebra, spectrum, sesquilinear form.

elements of \mathfrak{X} , i.e. elements whose associated multiplication operators are bounded linear maps in \mathfrak{X} . Then we focus our attention on the class of normal Banach quasi *-algebras: they are characterized by the fact that \mathfrak{X}_b is a Banach *-algebra. If $(\mathfrak{X}, \mathfrak{A}_0)$ is normal, the Banach *-algebra \mathfrak{X}_b turns out to be useful for defining a notion of *spectrum* of an element $x \in \mathfrak{X}$, which enjoys properties analogous to the spectrum of an element of a Banach *-algebra.

In Section 3 we discuss some properties of the family of bounded positive sesquilinear forms on \mathfrak{X} with certain *invariance* properties and, starting from them, we construct two seminorms \mathfrak{p} , \mathfrak{q} that emulate the Gel'fand–Naĭmark seminorm on a Banach *-algebra (but \mathfrak{q} is only defined on a domain $D(\mathfrak{q}) \subseteq \mathfrak{X}$; it is actually an *unbounded* C^* -seminorm in the sense of [2]). These seminorms are then used to derive some properties of the spectrum of an element $x \in \mathfrak{X}$, under the assumption that the class $\mathcal{P}(\mathfrak{X})$ of bounded invariant positive sesquilinear forms is rich enough. The outcome is that, in this case, $D(\mathfrak{q})$ exactly equals the *-algebra of bounded elements of \mathfrak{X} (or, equivalently, the set of elements of \mathfrak{X} that have finite spectral radius). Furthermore, it is shown that $(\mathfrak{X}, \mathfrak{A}_0)$ admits a faithful *-representation π and that $D(\mathfrak{q})$ also coincides with the set of elements whose image under π is a bounded operator.

2. Banach quasi *-algebras

2.1. Basic definitions

DEFINITION 2.1. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a quasi *-algebra. $(\mathfrak{X}, \mathfrak{A}_0)$ is called a Banach quasi *-algebra if a norm $\|\cdot\|$ is defined on \mathfrak{X} with the properties:

- (i) $(\mathfrak{X}, \|\cdot\|)$ is a Banach space;
- (ii) $||x^*|| = ||x||, \ \forall x \in \mathfrak{X};$
- (iii) \mathfrak{A}_0 is dense in \mathfrak{X} ;
- (iv) for each $a \in \mathfrak{A}_0$, the map $R_a : x \in \mathfrak{X} \mapsto xa \in \mathfrak{X}$ is continuous in \mathfrak{X} .

The continuity of the involution implies that

(iv') for each $a \in \mathfrak{A}_0$, the map $L_a : x \in \mathfrak{X} \mapsto ax \in \mathfrak{X}$ is continuous in \mathfrak{X} .

The unit of $(\mathfrak{X}, \mathfrak{A}_0)$ is an element $e \in \mathfrak{A}_0$ such that xe = ex = x for every $x \in \mathfrak{X}$. If $(\mathfrak{X}, \mathfrak{A}_0)$ is a Banach quasi*-algebra with unit e, we will assume (without loss of generality) that ||e|| = 1. If $(\mathfrak{X}, \mathfrak{A}_0)$ has no unit, it can always be embedded in a Banach quasi *-algebra with unit e in a standard fashion.

In what follows, we will always assume that if xa = 0 for every $a \in \mathfrak{A}_0$, then x = 0 (of course, this is automatically true if $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit).

If $(\mathfrak{X}, \mathfrak{A}_0)$ is a Banach quasi*-algebra a norm topology can be defined on \mathfrak{A}_0 in the following way. Define

$$||a||_L = \sup_{||x|| \le 1} ||R_a x|| = \sup_{||x|| \le 1} ||xa||$$

and

$$||a||_R = \sup_{||x|| \le 1} ||L_a x|| = \sup_{||x|| \le 1} ||ax||$$

and finally

$$||a||_0 = \max\{||a||, ||a||_L, ||a||_R\}.$$

Then

Proposition 2.2. $(\mathfrak{A}_0, \|\cdot\|_0)$ is a normed *-algebra. Moreover

$$||ab|| \le ||a|| \, ||b||_0, \qquad ||ba|| \le ||a|| \, ||b||_0, \qquad \forall a, b \in \mathfrak{A}_0.$$

The above statements follow immediately from the corresponding properties of algebras of bounded operators on a normed space. The two inequalities come directly from the definitions.

Clearly, $||b|| \le ||b||_0$ for each $b \in \mathfrak{A}_0$.

DEFINITION 2.3. A Banach quasi *-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ is called a BQ^* -algebra if $(\mathfrak{A}_0, \|\cdot\|_0)$ is a Banach *-algebra, and a proper CQ^* -algebra if $(\mathfrak{A}_0, \|\cdot\|_0)$ is a C^* -algebra.

2.1.1. *Examples*

EXAMPLE 2.4 (Banach function spaces). Many Banach function spaces provide examples of Banach quasi *-algebras since they often contain a dense *-algebra of functions. For instance, if I = [0,1] then $(L^p(I), C(I))$, where C(I) denotes the C^* -algebra of all continuous functions on I and $p \geq 1$, is a Banach quasi *-algebra (more precisely a proper CQ^* -algebra). Similarly $(L^p(\mathbb{R}), C_0^0(\mathbb{R}))$ is a Banach quasi *-algebra without unit (here $C_0^0(\mathbb{R})$ is the *-algebra of continuous functions in \mathbb{R} with compact support). Other examples are easily found among Sobolev spaces, Besov spaces etc.

EXAMPLE 2.5 (Non-commutative L^p -spaces). Let \mathfrak{M} be a von Neumann algebra and τ a normal semifinite faithful trace [17] on \mathfrak{M} . Then the completion of the *-ideal

$$\mathcal{J}_p = \{ X \in \mathfrak{M} : \tau(|X|^p) < \infty \}$$

with respect to the norm

$$||X||_p = \tau(|X|^p)^{1/p}, \quad X \in \mathfrak{M},$$

is usually called $L^p(\tau)$ [13, 16] and is a Banach space consisting of operators affiliated with \mathfrak{M} . Then $(L^p(\tau), \mathcal{J}_p)$ is a Banach quasi *-algebra (without unit). If τ is a finite trace then $(L^p(\tau), \mathfrak{M})$ is a BQ^* -algebra.

EXAMPLE 2.6 (Hilbert algebras). A Hilbert algebra [14, Section 11.7] is a *-algebra \mathfrak{A}_0 which is also a pre-Hilbert space with inner product $\langle \cdot | \cdot \rangle$ such that

- (i) the map $b \mapsto ab$ is continuous with respect to the norm defined by the inner product;
- (ii) $\langle ab | c \rangle = \langle b | a^*c \rangle$ for all $a, b, c \in \mathfrak{A}_0$;
- (iii) $\langle a | b \rangle = \langle b^* | a^* \rangle$ for all $a, b \in \mathfrak{A}_0$;
- (iv) \mathfrak{A}_0^2 is total in \mathfrak{A}_0 .

Let \mathcal{H} denote the Hilbert space which is the completion of \mathfrak{A}_0 with respect to the norm defined by the inner product. The involution of \mathfrak{A}_0 extends to the whole of \mathcal{H} , since (iii) implies that * is isometric. Then $(\mathcal{H}, \mathfrak{A}_0)$ is a Banach quasi *-algebra.

2.2. Bounded elements

DEFINITION 2.7. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra and $x \in \mathfrak{X}$. We say that x is *left bounded* if there exists $\gamma_x > 0$ such that

$$||xa|| \le \gamma_x ||a||, \quad \forall a \in \mathfrak{A}_0.$$

The set of all left bounded elements of \mathfrak{X} is denoted by $\mathfrak{X}_{\blacktriangleright}$. Analogously, we say that x is right bounded if there exists $\gamma'_x > 0$ such that

$$||ax|| \le \gamma_x' ||a||, \quad \forall a \in \mathfrak{A}_0.$$

The set of all right bounded elements of $\mathfrak X$ is denoted by $\mathfrak X_{\blacktriangleleft}.$

The terminology is motivated by the fact that, if x is left bounded, the map

$$a \in \mathfrak{A}_0 \mapsto L_x a = xa$$

is bounded on \mathfrak{A}_0 and so it has a bounded extension \overline{L}_x to \mathfrak{X} . We put

$$||x||_{\blacktriangleright} = \max\{||x||, ||\overline{L}_x||\}.$$

Analogously, we define a norm on $\mathfrak{X}_{\blacktriangleleft}$ by

$$||x||_{\blacktriangleleft} = \max\{||x||, ||\overline{R}_x||\}.$$

We put $\mathfrak{X}_b = \mathfrak{X}_{\blacktriangleright} \cap \mathfrak{X}_{\blacktriangleleft}$. Clearly, $\mathfrak{A}_0 \subseteq \mathfrak{X}_b$. On \mathfrak{X}_b we define the norm

$$||x||_{\mathbf{b}} = \max\{||x||, ||\overline{L}_x||, ||\overline{R}_x||\}.$$

REMARK 2.8. If $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit e, then since ||e|| = 1, we have $||\bar{L}_x|| \ge ||x||$ for every $x \in \mathfrak{X}_{\blacktriangleright}$, and therefore $||x||_{\blacktriangleright} = ||\bar{L}_x||$. Analogous statements hold for $||\cdot||_{\blacktriangleleft}$ and $||\cdot||_{\mathbf{b}}$.

As usual, we denote by $\mathcal{B}(\mathfrak{X})$ the Banach algebra of bounded operators in the Banach space \mathfrak{X} . From the definition it follows that $\mathfrak{X}_{\blacktriangleright}$, as well as $\mathfrak{X}_{\blacktriangleleft}$, can be identified with a subspace of $\mathcal{B}(\mathfrak{X})$.

Let $x \in \mathfrak{X}_{\blacktriangleright}$ and $y \in \mathfrak{X}$. Then we put

$$(2.1) x \triangleright y = \overline{L}_x y.$$

Similarly, if $y \in \mathfrak{X}_{\blacktriangleleft}$ and $x \in \mathfrak{X}$, we put

$$(2.2) x \blacktriangleleft y = \overline{R}_y x.$$

Remark 2.9. We notice that an element $x \in \mathfrak{X}_{\blacktriangleright}$ is not necessarily right bounded.

If $x, y \in \mathfrak{X}_b$ then both $x \triangleright y$ and $x \triangleleft y$ are well defined, but, in general, $x \triangleright y \neq x \triangleleft y$. Conditions for the equality to hold will be given later.

It is easy to show that if $x, y \in \mathfrak{X}_{\blacktriangleright}$ and $\mu \in \mathbb{C}$ then both x + y and μx belong to $\mathfrak{X}_{\blacktriangleright}$.

PROPOSITION 2.10. If $(\mathfrak{X}, \mathfrak{A}_0)$ is a Banach quasi *-algebra, then the set $\mathfrak{X}_{\blacktriangleright}$ of all left bounded elements is a Banach algebra with respect to the multiplication \blacktriangleright and the norm $\|\cdot\|_{\blacktriangleright}$.

Proof. (i) We prove that if $x, y \in \mathfrak{X}_{\triangleright}$ then $x \triangleright y \in \mathfrak{X}_{\triangleright}$ and

$$||x \triangleright y||_{\blacktriangleright} \le ||x||_{\blacktriangleright} ||y||_{\blacktriangleright}.$$

Indeed, for each $a \in \mathfrak{A}_0$ one has, using the associativity properties of the multiplication in \mathfrak{X} ,

$$(\overline{L}_x y)a = \lim_{m \to \infty} (xb_m)a = \lim_{m \to \infty} x(b_m a) = \overline{L}_x(ya) = \overline{L}_x(L_y a),$$

where $\{b_m\}$ is a sequence in \mathfrak{A}_0 , $\|\cdot\|$ -converging to y. Therefore,

$$\|(\overline{L}_x y)a\| \le \|\overline{L}_x\| \|\overline{L}_y\| \|a\|, \quad \forall a \in \mathfrak{A}_0.$$

Hence $x \triangleright y \in \mathfrak{X}_{\triangleright}$, $\overline{L}_{x \triangleright y} = \overline{L}_x \overline{L}_y$ and

$$\|\bar{L}_{x \triangleright y}\| \le \|\bar{L}_x\| \|\bar{L}_y\| \le \|x\|_{\triangleright} \|y\|_{\triangleright}.$$

Since $||x \triangleright y|| \le ||x||_{\triangleright} ||y||_{\triangleright}$, we finally get

$$||x \triangleright y||_{\blacktriangleright} \le ||x||_{\blacktriangleright} ||y||_{\blacktriangleright}.$$

Thus, $\mathfrak{X}_{\blacktriangleright}$ endowed with $\|\cdot\|_{\blacktriangleright}$ is a normed algebra. We will now show that $(\mathfrak{X}_{\blacktriangleright}, \|\cdot\|_{\blacktriangleright})$ is complete. Let $\{x_n\}$ be a Cauchy sequence in $(\mathfrak{X}_{\blacktriangleright}, \|\cdot\|_{\blacktriangleright})$. Then $\{\bar{L}_{x_n}\}$ is a Cauchy sequence in $\mathcal{B}(\mathfrak{X})$. Thus there exists $L \in \mathcal{B}(\mathfrak{X})$ such that $\bar{L}_{x_n} \to L$ with respect to the natural norm of $\mathcal{B}(\mathfrak{X})$. Since $\|x_n - x_m\| \to 0$, there exists $x \in \mathfrak{X}$ such that $\|x_n - x\| \to 0$. Since the right multiplication by a is continuous in \mathfrak{X} , it follows that $x_n \to x_n = \bar{L}_x a$ in the norm of \mathfrak{X} . This implies that $\bar{L}_x = L$. From these facts it follows easily that x is left bounded and $x_n \to x$ with respect to $\|\cdot\|_{\blacktriangleright}$.

A similar result can be proved for $\mathfrak{X}_{\blacktriangleleft}$ taking into account the following facts concerning the involution * of \mathfrak{X} :

$$(1^*) x \in \mathfrak{X}_{\blacktriangleright} \Leftrightarrow x^* \in \mathfrak{X}_{\blacktriangleleft};$$

- $(2^*) \|x^*\|_{\blacktriangleleft} = \|x\|_{\blacktriangleright} \text{ for every } x \in \mathfrak{X}_{\blacktriangleright};$
- (3^*) $(x \triangleright y)^* = y^* \blacktriangleleft x^*$ for every $x, y \in \mathfrak{X}_{\triangleright}$.

Definition 2.7 easily yields

Lemma 2.11.

- (i) If $x \in \mathfrak{X}_{\blacktriangleright}$ and $y \in \mathfrak{X}$, then $||x \blacktriangleright y|| \le ||x||_{\blacktriangleright} ||y||$.
- (ii) If $y \in \mathfrak{X}_{\blacktriangleleft}$ and $x \in \mathfrak{X}$, then $||x \blacktriangleleft y|| \le ||x|| ||y||_{\blacktriangleleft}$.

If $x, y \in \mathfrak{X}_b$ then, as noticed before, both $x \triangleright y$ and $x \blacktriangleleft y$ are well defined, but, in general, $x \triangleright y \neq x \blacktriangleleft y$. We want to analyze this situation more carefully. First of all, if $x, y \in \mathfrak{X}_b$, then $\overline{L}_x, \overline{L}_y \in \mathcal{B}(\mathfrak{X})$. As shown in the proof of Proposition 2.10, $\overline{L}_x \overline{L}_y = \overline{L}_{x \triangleright y}$. Similarly, if $x, y \in \mathfrak{X}_b$, then $\overline{R}_y \overline{R}_x = \overline{R}_{x \blacktriangleleft y}$.

In what follows, we denote by \mathfrak{X}^{\sharp} the Banach dual space of $(\mathfrak{X}, \|\cdot\|)$. The norm in \mathfrak{X}^{\sharp} is defined, as usual, by $\|f\|^{\sharp} = \sup_{\|x\| < 1} |f(x)|$ for $f \in \mathfrak{X}^{\sharp}$.

Proposition 2.12. The following statements are equivalent.

- (i) $x \triangleright y = x \triangleleft y$ for every $x, y \in \mathfrak{X}_b$.
- (ii) $x \triangleright y$ is right bounded and $||x \triangleright y|| \le ||x|| ||y||_{\blacktriangleleft}$ for every $x, y \in \mathfrak{X}_{b}$.
- (iii) $x \triangleleft y$ is left bounded and $||x \triangleleft y|| \leq ||x||_{\blacktriangleright} ||y||$ for every $x, y \in \mathfrak{X}_{b}$.
- (iv) For any pair $\{a_n\}$, $\{b_n\}$ of sequences of elements of \mathfrak{A}_0 , $\|\cdot\|$ -converging to elements of \mathfrak{X}_b , one has

$$\lim_{n\to\infty}\lim_{m\to\infty}a_nb_m=\lim_{m\to\infty}\lim_{n\to\infty}a_nb_m.$$

(v) There exists a weak *-dense subspace \mathcal{M} of \mathfrak{X}^{\sharp} such that for any pair $\{a_n\}$, $\{b_n\}$ of sequences of elements of \mathfrak{A}_0 , $\|\cdot\|$ -converging to elements of \mathfrak{X}_b , one has

$$\lim_{n \to \infty} \lim_{m \to \infty} f(a_n b_m) = \lim_{m \to \infty} \lim_{n \to \infty} f(a_n b_m), \quad \forall f \in \mathcal{M}.$$

Proof. (i) \Rightarrow (ii): Clearly, the equality $x \triangleright y = x \triangleleft y$ implies that $x \triangleright y$ is right bounded and for $x \triangleright y$ the inequality in Lemma 2.11(ii) holds.

- (ii)⇔(iii) follows easily by taking *.
- (iii) \Rightarrow (i): Assume that, for every $x, y \in \mathfrak{X}_b$, $x \blacktriangleleft y$ is left bounded and $||x \blacktriangleleft y|| \le ||x||_{\blacktriangleright} ||y||$. Let $\{b_n\} \subset \mathfrak{A}_0$ be such that $||y b_n|| \to 0$ as $n \to \infty$. Then, since $\mathfrak{A}_0 \subseteq \mathfrak{X}_b$ and \mathfrak{X}_b is a vector space, we get

$$||x \triangleleft y - xb_n|| = ||x \triangleleft y - x \triangleleft b_n|| = ||x \triangleleft (y - b_n)|| \le ||x||_{\blacktriangleright} ||y - b_n|| \to 0.$$

Hence

$$x \blacktriangleleft y = \lim_{n \to \infty} x b_n = \overline{L}_x y = x \triangleright y.$$

(i) \Rightarrow (iv): Let $\{a_n\}, \{b_n\} \subset \mathfrak{A}_0$ with $||x-a_n|| \to 0$, $||y-b_n|| \to 0$ and $x, y \in \mathfrak{X}_b$. Then

$$x \triangleright y = \overline{L}_x y = \lim_{m \to \infty} x b_m = \lim_{m \to \infty} \lim_{n \to \infty} a_n b_m.$$

On the other hand,

$$x \blacktriangleleft y = \overline{R}_y x = \lim_{n \to \infty} a_n y = \lim_{n \to \infty} \lim_{m \to \infty} a_n b_m.$$

The equality $x \triangleright y = x \triangleleft y$ then implies that the two iterated limits coincide. (iv) \Rightarrow (v): This is clear.

 $(v)\Rightarrow(i)$: Assume that (i) fails. Then there exists $f\in\mathfrak{X}^{\sharp}$ such that $f(x\triangleright y)\neq f(x\blacktriangleleft y)$. Since \mathcal{M} is weak*-dense in \mathfrak{X}^{\sharp} , we may suppose that $f\in\mathcal{M}$. Then, if $\{a_n\},\{b_n\}\subset\mathfrak{A}_0\parallel\cdot\parallel$ -converge, respectively, to x and y, we have

$$\lim_{m \to \infty} \lim_{n \to \infty} f(a_n b_m) = f(x \triangleright y) \neq f(x \blacktriangleleft y) = \lim_{n \to \infty} \lim_{m \to \infty} f(a_n b_m).$$

This completes the proof.

If any of the equivalent conditions of Proposition 2.12 holds, we put

$$x \bullet y := x \triangleright y = x \blacktriangleleft y, \quad x, y \in \mathfrak{X}_{b}.$$

DEFINITION 2.13. A Banach quasi *-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ such that $x \triangleright y = x \blacktriangleleft y$ for every $x, y \in \mathfrak{X}_b$ is called *normal*.

Corollary 2.14.

- (i) $(\mathfrak{X}, \mathfrak{A}_0)$ is normal if, and only if, \mathfrak{X}_b is a *-algebra with respect to \blacktriangleright (or, equivalently, with respect to \blacktriangleleft).
- (ii) If $(\mathfrak{X},\mathfrak{A}_0)$ is a normal Banach quasi *-algebra, then $(\mathfrak{X}_b,\|\cdot\|_b)$ is a Banach *-algebra with respect to the multiplication •.

Proof. (i) The fact that if $(\mathfrak{X},\mathfrak{A}_0)$ is normal, then \mathfrak{X}_b is a *-algebra with respect to \blacktriangleright follows from the previous discussion. On the other hand, assume that \mathfrak{X}_b is a *-algebra with respect to \blacktriangleright ; then, for every $x,y\in\mathfrak{X}_b$, $x\blacktriangleright y\in\mathfrak{X}_b$ and

$$x \blacktriangleleft y = (y^* \blacktriangleright x^*)^* = x \blacktriangleright y.$$

(ii) follows easily from Proposition 2.10 and from the properties of the involution. \blacksquare

EXAMPLE 2.15. Assume that for each $x \in \mathfrak{X}_b$ there exists a sequence $\{a_n\} \subset \mathfrak{A}_0$ such that

$$\sup_{n} \|a_n\|_0 < \infty \quad \text{and} \quad \lim_{n \to \infty} \|x - a_n\| = 0.$$

Then $(\mathfrak{X}, \mathfrak{A}_0)$ is normal. Indeed, in this case, it is easily seen that (ii) or (iii) of Proposition 2.12 holds.

REMARK 2.16. If $(\mathfrak{X},\mathfrak{A}_0)$ is a commutative Banach quasi *-algebra, i.e. xa = ax for all $x \in \mathfrak{X}$ and $a \in \mathfrak{A}_0$, then it is easily seen that each left bounded element x is also right bounded and $x \triangleright y = y \blacktriangleleft x$ for every $y \in \mathfrak{X}$. Thus if $x, y \in \mathfrak{X}_b$ then both $x \triangleright y$ and $x \blacktriangleleft y$ are in \mathfrak{X}_b but they need not be equal. In this case, in general, \mathfrak{X}_b is an algebra with respect to \triangleright (and also

with respect to \blacktriangleleft). Normality, in the commutative case, is equivalent to \mathfrak{X}_b being also commutative.

EXAMPLE 2.17. For the Banach quasi *-algebra $(L^p(I), C(I))$ considered in Example 2.4, one finds that $(L^p(I))_b = L^{\infty}(I)$ and the norm $\|\cdot\|_b$ is exactly the L^{∞} -norm. Since the multiplications \blacktriangleright and \blacktriangleleft both coincide with the ordinary multiplication of functions, $(L^p(I), C(I))$ is normal. This example also shows that, in general, \mathfrak{A}_0 is not dense in \mathfrak{X}_b with respect to $\|\cdot\|_b$ since, as is well known, C(I) is not dense in $L^{\infty}(I)$.

Similarly, $(L^p(\mathbb{R}), C_0^0(\mathbb{R}))$ is a Banach quasi *-algebra without unit. In this case $(L^p(\mathbb{R}))_b = L^{\infty}(\mathbb{R}) \cap L^p(\mathbb{R})$ and $(L^p(\mathbb{R}), C_0^0(\mathbb{R}))$ is normal. The norm $\|\cdot\|_b$ is equivalent to $\|\cdot\|_p + \|\cdot\|_{\infty}$.

For the non-commutative L^p -spaces of Example 2.5 one finds that $(L^p(\tau))_b = \mathcal{J}_p$ if τ is semifinite, while $(L^p(\tau))_b = \mathfrak{M}$ if τ is finite. Normality follows from the fact that the multiplications \blacktriangleright and \blacktriangleleft both coincide with the ordinary multiplication of bounded operators.

EXAMPLE 2.18. In the case of the Banach quasi *-algebra $(\mathcal{H}, \mathfrak{A}_0)$ constructed from a Hilbert algebra \mathfrak{A}_0 as in Example 2.6, the set \mathcal{H}_b of bounded elements of \mathcal{H} is the so-called *fulfillment* of \mathfrak{A}_0 (\mathfrak{A}_0 is called a *full* Hilbert algebra if $\mathcal{H}_b = \mathfrak{A}_0$). $(\mathcal{H}, \mathfrak{A}_0)$ is normal. Indeed, let $x, y \in \mathcal{H}_b$, and let $\{a_n\}$, $\{b_n\}$ be sequences in \mathfrak{A}_0 , $\|\cdot\|$ -converging, respectively, to x and y. Then

$$\langle x \blacktriangleright y \mid a \rangle = \lim_{n \to \infty} \langle x b_n \mid a \rangle = \lim_{n \to \infty} \langle b_n \mid x^* a \rangle = \langle y \mid x^* a \rangle, \quad \forall a \in \mathfrak{A}_0.$$

On the other hand,

$$\langle x \blacktriangleleft y \mid a \rangle = \lim_{m \to \infty} \langle a_n y \mid a \rangle = \lim_{m \to \infty} \langle y \mid a_n^* a \rangle = \langle y \mid x^* a \rangle, \quad \forall a \in \mathfrak{A}_0.$$

This implies that $x \triangleright y = x \triangleleft y$.

LEMMA 2.19. If $(\mathfrak{X}, \mathfrak{A}_0)$ is a normal Banach quasi *-algebra, then

(2.3)
$$\bar{L}_x \bar{R}_y = \bar{R}_y \bar{L}_x, \quad \forall x, y \in \mathfrak{X}_b.$$

Proof. Indeed, let $x, y \in \mathfrak{X}_b$, and let $\{a_n\}, \{b_n\} \subset \mathfrak{A}_0 \parallel \cdot \parallel$ -converge, respectively, to x and y. Then, for every $a \in \mathfrak{A}_0$,

$$(\bar{L}_x \bar{R}_y)a = \bar{L}_x(\bar{R}_y a) = \lim_{m \to \infty} x(ab_m) = \lim_{m \to \infty} \lim_{n \to \infty} a_n(ab_m).$$

On the other hand,

$$(\overline{R}_y\overline{L}_x)a = \overline{R}_y(\overline{L}_xa) = \lim_{n \to \infty} (a_na)y = \lim_{n \to \infty} \lim_{m \to \infty} (a_na)b_m.$$

The statement then follows from Proposition 2.12(iv).

REMARK 2.20. If $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit, then (2.3) implies the normality of $(\mathfrak{X}, \mathfrak{A}_0)$.

If $(\mathfrak{X}, \mathfrak{A}_0)$ is a normal Banach quasi *-algebra the products of an element $x \in \mathfrak{X}$ and an element $y \in \mathfrak{X}_b$ are defined via (2.1) and (2.2).

PROPOSITION 2.21. If $(\mathfrak{X}, \mathfrak{A}_0)$ is a normal Banach quasi *-algebra, then $(\mathfrak{X}, \mathfrak{X}_b)$ is a BQ^* -algebra.

Proof. We need only check the module associativity rules. Let $x \in \mathfrak{X}$ and $y_1, y_2 \in \mathfrak{X}_b$. Then

$$x \blacktriangleleft (y_1 \blacktriangleleft y_2) = x \blacktriangleleft (y_1 \blacktriangleleft y_2) = \overline{R}_{y_1} \blacktriangleleft y_2 x = (\overline{R}_{y_2} \overline{R}_{y_1}) x = \overline{R}_{y_2} (\overline{R}_{y_1} x) = (x \blacktriangleleft y_1) \blacktriangleleft y_2.$$
 Using (2.3), we also have

$$(y_1 \triangleright x) \blacktriangleleft y_2 = \overline{R}_{y_2}(y_1 \triangleright x) = \overline{R}_{y_2}(\overline{L}_{y_1}x) = (\overline{R}_{y_2}\overline{L}_{y_1})x = (\overline{L}_{y_1}\overline{R}_{y_2})x$$

$$= \overline{L}_{y_1}(\overline{R}_{y_2}x) = \overline{L}_{y_1}(x \blacktriangleleft y_2) = y_1 \triangleright (x \blacktriangleleft y_2). \blacksquare$$

2.3. The spectrum. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a normal Banach quasi *-algebra with unit e and $x \in \mathfrak{X}$. We say that x has a bounded inverse if there exists $y \in \mathfrak{X}_b$ such that $\overline{R}_y(x) = \overline{L}_y(x) = e$. From Proposition 2.21 it follows easily that this element y, if any, is unique. If x has a bounded inverse we denote it by x_b^{-1} .

DEFINITION 2.22. The resolvent $\varrho(x)$ of $x \in \mathfrak{X}$ is the set

$$\varrho(x) = \{\lambda \in \mathbb{C} : x - \lambda e \text{ has a bounded inverse}\}.$$

The set $\sigma(x) = \mathbb{C} \setminus \varrho(x)$ is called the *spectrum* of x.

Proposition 2.23. Let $x \in \mathfrak{X}$. Then:

- (i) The resolvent $\varrho(x)$ is an open subset of the complex plane.
- (ii) The resolvent function $R_{\lambda}(x): \lambda \in \varrho(x) \mapsto (x \lambda e)_{b}^{-1}$ is $\|\cdot\|_{b}$ analytic on each connected component of $\varrho(x)$.
- (iii) For any $\lambda, \mu \in \varrho(x)$, $R_{\lambda}(x)$ and $R_{\mu}(x)$ commute and

$$R_{\lambda}(x) - R_{\mu}(x) = (\mu - \lambda)R_{\mu}(x) \bullet R_{\lambda}(x).$$

Proof. (i) Let $\lambda_0 \in \varrho(x)$ and $\lambda \in \mathbb{C}$ be such that $|\lambda - \lambda_0| \leq (\|R_{\lambda_0}(x)\|_b)^{-1}$. Then the series

$$\sum_{n=1}^{\infty} (\lambda_0 - \lambda)^n R_{\lambda_0}(x)^n$$

converges in \mathfrak{X}_b with respect to $\|\cdot\|_b$ to an element $S_{\lambda,x}$.

Let now $T_{\lambda,x} := R_{\lambda_0}(x)(e + S_{\lambda,x})$. It is easily checked, using the $\|\cdot\|$ convergence for the product $T_{\lambda,x}(x - \lambda e)$, that $T_{\lambda,x}$ is a bounded inverse of $x - \lambda e$.

(ii) follows immediately from the proof of (i). The proof of (iii) is straightforward. \blacksquare

The classical argument based on Liouville's theorem can be applied to prove the following

Proposition 2.24. Let $x \in \mathfrak{X}$. Then $\sigma(x)$ is non-empty.

Definition 2.25. Let $x \in \mathfrak{X}$. The non-negative number

$$r(x) = \sup_{\lambda \in \sigma(x)} |\lambda|$$

is called the *spectral radius* of x.

REMARK 2.26. Of course, if $x \in \mathfrak{X}_b$ then $\sigma(x)$ coincides with the spectrum of x regarded as an element of the Banach *-algebra \mathfrak{X}_b . For an arbitrary element x, the set $\sigma(x) \subset \mathbb{C}$, which is closed, could be unbounded. The next proposition shows that $\sigma(x)$ is indeed unbounded if $x \in \mathfrak{X} \setminus \mathfrak{X}_b$.

PROPOSITION 2.27. Let $x \in \mathfrak{X}$. Then $r(x) < \infty$ if, and only if, $x \in \mathfrak{X}_b$.

Proof. The "if" part has been discussed in the previous remark. Assume now that $r(x) < \infty$. Then the function $\lambda \mapsto (x - \lambda e)^{-1}$ is $\|\cdot\|_b$ -analytic in the region $|\lambda| > r(x)$. Therefore it has there a $\|\cdot\|_b$ -convergent Laurent expansion

$$(x - \lambda e)^{-1} = \sum_{k=1}^{\infty} \frac{a_k}{\lambda^k}, \quad |\lambda| > r(x),$$

with $a_k \in \mathfrak{X}_b$ for each $k \in \mathbb{N}$. As usual,

$$a_k = \frac{1}{2\pi i} \int_{\gamma} \frac{(x - \lambda e)^{-1}}{\lambda^{-k+1}} d\lambda, \quad k \in \mathbb{N},$$

where γ is a circle centered in 0 and with radius R > r(x). The integral on the r.h.s. converges with respect to $\|\cdot\|_b$. The $\|\cdot\|$ -continuity of multiplication implies that, as in the ordinary case,

$$xa_k = \frac{1}{2\pi i} \int_{\gamma} \frac{x(x - \lambda e)^{-1}}{\lambda^{-k+1}} d\lambda = \frac{1}{2\pi i} \int_{\gamma} \frac{(x - \lambda e)^{-1}}{\lambda^{-k}} d\lambda = a_{k+1}.$$

In particular, using Cauchy's integral formula, we find $xa_1 = -x$. This implies that $x \in \mathfrak{X}_b$.

Remark 2.28. If $\lambda \in \varrho(x)$ then all powers $(x-\lambda)^{-n}$ exist in $\mathfrak{X}_{\rm b}$, for every $n \in \mathbb{N}$. This does not imply the existence of $(x-\lambda)^n$ for n>1. As an example, consider the Banach quasi *-algebra $(L^2(I),C(I))$ where I=[0,1] (cf. Example 2.4). The function $v(x)=x^{-1/4}$ is in $L^2(I)$; obviously, $0 \in \varrho(v)$ since $v^{-1}(x)=x^{1/4} \in C(I)$. We have $v^{-n}(x)=x^{n/4} \in L^2(I)$ for all $n \in \mathbb{N}$, but $v^2(x)=x^{-1/2} \not\in L^2(I)$.

3. Representations and seminorms. Families of sesquilinear forms have been shown to play a relevant role in the study of the structure of CQ^* -algebras [6] or more generally Banach C^* -modules [23]. The main reason is that they give rise to *representations* with operators acting in Hilbert space.

3.1. Representations. Before going on we recall some definitions. Let \mathcal{H} be a complex Hilbert space and \mathcal{D} a dense subspace of \mathcal{H} . We denote by $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ the set of all linear operators X such that $D(X) = \mathcal{D}$ and $D(X^*) \supseteq \mathcal{D}$. The set $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ is a partial *-algebra [1] with respect to the following operations: the usual sum $X_1 + X_2$, the scalar multiplication λX , the involution $X \mapsto X^{\dagger} = X^* \upharpoonright \mathcal{D}$ and the (weak) partial multiplication $X_1 \square X_2 = X_1^{\dagger *} X_2$, defined whenever X_2 is a weak right multiplier of X_1 (equivalently, X_1 is a weak left multiplier of X_2), that is, iff $X_2 \mathcal{D} \subset D(X_1^{\dagger *})$ and $X_1^* \mathcal{D} \subset D(X_2^*)$ (we write $X_2 \in R^w(X_1)$ or $X_1 \in L^w(X_2)$). Let

$$\mathcal{L}^{\dagger}(\mathcal{D}) = \{ X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) : X\mathcal{D} \subseteq \mathcal{D}, X^{\dagger}\mathcal{D} \subseteq \mathcal{D} \}.$$

Then $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra with respect to \square and $X_1 \square X_2 \xi = X_1(X_2 \xi)$ for each $\xi \in \mathcal{D}$ (see [15]).

A *-representation of the Banach quasi *-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ is a *-homomorphism of \mathfrak{X} into $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, for some pair $(\mathcal{D}, \mathcal{H})$ where \mathcal{D} is a dense subspace of a Hilbert space \mathcal{H} , that is, a linear map $\pi: \mathfrak{X} \to \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ such that (i) $\pi(x^*) = \pi(x)^{\dagger}$ for every $x \in \mathfrak{X}$, and (ii) if $x \in \mathfrak{X}$ and $a \in \mathfrak{A}_0$ then $\pi(x) \in L^{\mathrm{w}}(\pi(a))$ and $\pi(x) \square \pi(a) = \pi(xa)$.

A *-representation π of $(\mathfrak{X}, \mathfrak{A}_0)$ is called *cyclic* if there exists $\eta \in \mathcal{D}$ such that $\pi(\mathfrak{A}_0)\eta$ is dense in \mathcal{H} , and *faithful* if $\pi(x) = 0$ implies x = 0.

If π is a *-representation of $(\mathfrak{X}, \mathfrak{A}_0)$ in $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, then the *closure* $\widetilde{\pi}$ of π is defined, for each $x \in \mathfrak{X}$, as the restriction of $\overline{\pi(x)}$ to the domain $\widetilde{\mathcal{D}}$, which is the completion of \mathcal{D} under the *graph topology* defined by the seminorms $\xi \in \mathcal{D} \mapsto \|\pi(x)\xi\|$, $x \in \mathfrak{X}$ (see [1]). If $\pi = \widetilde{\pi}$ the representation is said to be *closed*.

The Gel'fand–Naĭmark–Segal (GNS) construction for positive linear functionals is one of the most relevant tools when studying the structure of a Banach *-algebra. As customary when a partial multiplication is involved (see [1]), we consider as starting point for the construction a positive sesquilinear form enjoying certain *invariance* properties.

As usual, a sesquilinear form φ on $\mathfrak{X} \times \mathfrak{X}$ is said to be *bounded* if there exists a positive constant γ such that

$$|\varphi(x,y)| \le \gamma ||x|| \, ||y||, \quad \forall x, y \in \mathfrak{X}.$$

In this case, we put

$$\|\varphi\|:=\sup_{\|x\|=\|y\|=1}|\varphi(x,y)|=\sup_{\|x\|=1}\varphi(x,x).$$

DEFINITION 3.1. Let $\mathcal{P}(\mathfrak{X})$ denote the set of all sesquilinear forms on $\mathfrak{X} \times \mathfrak{X}$ such that

- (i) $\varphi(x,x) \ge 0, \ \forall x \in \mathfrak{X};$
- (ii) $\varphi(xa,b) = \varphi(a,x^*b), \forall x \in \mathfrak{X}, a,b \in \mathfrak{A}_0;$
- (iii) φ is bounded.

REMARK 3.2. We notice that if $\varphi \in \mathcal{P}(\mathfrak{X})$ then an easy limit argument shows that, besides (ii) of Definition 3.1, the following equality holds:

$$\varphi(ax, y) = \varphi(x, a^*y), \quad \forall x, y \in \mathfrak{X}, a \in \mathfrak{A}_0.$$

Let $\varphi \in \mathcal{P}(\mathfrak{X})$. Then the positivity of φ implies that:

$$\varphi(x,y) = \overline{\varphi(y,x)}, \qquad \forall x, y \in \mathfrak{X};$$
$$|\varphi(x,y)|^2 \le \varphi(x,x)\varphi(y,y), \qquad \forall x, y \in \mathfrak{X}.$$

Hence

$$N_{\varphi} := \{ x \in \mathfrak{X} : \varphi(x, x) = 0 \} = \{ x \in \mathfrak{X} : \varphi(x, y) = 0, \forall y \in \mathfrak{X} \},$$

and so N_{φ} is a subspace of \mathfrak{A} . For each $x \in \mathfrak{X}$, we denote by $\lambda_{\varphi}(x)$ the coset of \mathfrak{X}/N_{φ} which contains x, and define an inner product $\langle \cdot | \cdot \rangle$ on

$$\lambda_{\varphi}(\mathfrak{X}) = \mathfrak{X}/N_{\varphi}$$

by

$$\langle \lambda_{\varphi}(x) | \lambda_{\varphi}(y) \rangle = \varphi(x, y), \quad x, y \in \mathfrak{X}.$$

We denote by \mathcal{H}_{φ} the Hilbert space obtained by the completion of the pre-Hilbert space $\lambda_{\varphi}(\mathfrak{X})$. The subspace $\lambda_{\varphi}(\mathfrak{A}_0)$ is dense in \mathcal{H}_{φ} . Indeed, if $x \in \mathfrak{X}$, there exists a sequence $\{a_n\} \subset \mathfrak{A}_0$ such that $a_n \to x$ in \mathfrak{X} . Then

$$\|\lambda_{\varphi}(x) - \lambda_{\varphi}(a_n)\|^2 = \varphi(x - a_n, x - a_n) \le \|\varphi\|^2 \|x - a_n\|^2 \to 0.$$

PROPOSITION 3.3. Let $\varphi \in \mathcal{P}(\mathfrak{X})$. Put

(3.1)
$$\pi_{\varphi}^{\circ}(x)\lambda_{\varphi}(a) = \lambda_{\varphi}(xa), \quad x \in \mathfrak{X}, \ a \in \mathfrak{A}_{0}.$$

Then π_{φ}° is a *-representation of \mathfrak{X} in $\mathcal{L}^{\dagger}(\lambda_{\varphi}(\mathfrak{A}_0), \mathcal{H}_{\varphi})$.

If $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit e, the following properties also hold:

(i)
$$\mathcal{D} = \lambda_{\varphi}(\mathfrak{A}_0) = \pi(\mathfrak{A}_0)\lambda_{\varphi}(e)$$
 (i.e. $\lambda_{\varphi}(e)$ is ultra-cyclic);

(ii)
$$\varphi(x,y) = \langle \pi_{\varphi}^{\circ}(x)\lambda_{\varphi}(e) | \pi_{\varphi}^{\circ}(y)\lambda_{\varphi}(e) \rangle, \ \forall x,y \in \mathfrak{X}.$$

Proof. First we prove that, for each $x \in \mathfrak{X}$, the map $\pi_{\varphi}^{\circ}(x)$ of (3.1) is well defined. Assume that $\lambda_{\varphi}(a) = 0$ for some $a \in \mathfrak{A}_0$. If $x \in \mathfrak{X}$, we then get $\varphi(a, x^*b) = 0$ for every $b \in \mathfrak{A}_0$. For each $y \in \mathfrak{X}$ there exists a sequence $\{b_n\} \subset \mathfrak{A}_0$ such that $\|\lambda_{\varphi}(y) - \lambda_{\varphi}(b_n)\| \to 0$. This clearly implies that $\varphi(xa, y) = 0$ for each $y \in \mathfrak{X}$. Hence $xa \in N_{\varphi}$. Thus, for each $x \in \mathfrak{X}$, the map $\pi_{\varphi}^{\circ}(x)$ is a well defined linear operator from $\lambda_{\varphi}(\mathfrak{A}_0)$ into \mathcal{H}_{φ} . We notice that the restriction of π_{φ}° to \mathfrak{A}_0 maps $\lambda_{\varphi}(\mathfrak{A}_0)$ into itself. This fact and the properties of φ listed in Definition 3.1 easily imply that π_{φ}° is a *-representation. If $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit e, then (i) and (ii) follow from the definitions. \blacksquare

Denote by π_{φ} the closure of π_{φ}° . The triple $(\pi_{\varphi}, \lambda_{\varphi}, \mathcal{H}_{\varphi})$ is called the GNS construction for φ and we refer to π_{φ} as the GNS representation of \mathfrak{X} constructed from φ . If $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit e, then $\xi_{\varphi} := \lambda_{\varphi}(e)$ is cyclic for π_{φ} .

With a proof similar to the usual one in the case of *-algebras one can prove the following

PROPOSITION 3.4. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with unit e and $\varphi \in \mathcal{P}(\mathfrak{X})$. Then the GNS construction $(\pi_{\varphi}, \lambda_{\varphi}, \mathcal{H}_{\varphi})$ is unique up to unitary equivalence.

It is easy to prove

PROPOSITION 3.5. The *-representation π_{φ} is bounded if, and only if, φ is admissible, i.e, for every $a \in \mathfrak{A}_0$ there exists $\gamma_x > 0$ such that

$$\varphi(xa, xa) \le \gamma_x \varphi(a, a), \quad \forall a \in \mathfrak{A}_0.$$

Assume that $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit e. Then it is clear that, if $\varphi \in \mathcal{P}(\mathfrak{X})$, the linear functional ω_{φ} defined by

$$\omega_{\varphi}(x) = \varphi(x, e), \quad x \in \mathfrak{X},$$

is bounded on \mathfrak{X} , i.e. $\omega_{\varphi} \in \mathfrak{X}^{\sharp}$. Moreover, it is *positive* on \mathfrak{X} , in the sense that $\omega_{\varphi}(x) \geq 0$ for every $x \in \mathfrak{X}^+$, where \mathfrak{X}^+ is the closure in \mathfrak{X} of the set

$$\mathfrak{A}_0^+ = \Big\{ \sum_{k=1}^n a_k^* a_k : a_k \in \mathfrak{A}_0, \ k = 1, \dots, n, \ n \in \mathbb{N} \Big\}.$$

The set of positive elements of \mathfrak{X}^{\sharp} is denoted by $\mathfrak{X}_{+}^{\sharp}$.

Furthermore, the map $\varphi \in \mathcal{P}(\mathfrak{X}) \mapsto \omega_{\varphi} \in \mathfrak{X}_{+}^{\sharp}$ is injective. For, if $\omega_{\varphi}(x) = 0$ for each $x \in \mathfrak{X}$, then making use of the properties (ii) and (iii) of $\mathcal{P}(\mathfrak{X})$ and of the density of \mathfrak{A}_{0} , it follows that $\varphi(x,y) = 0$ for all $x,y \in \mathfrak{X}$.

Finally, we define

$$\mathcal{S}(\mathfrak{X}) = \{ \varphi \in \mathcal{P}(\mathfrak{X}) : ||\varphi|| \le 1 \}.$$

It is easily seen that $\mathcal{S}(\mathfrak{X})$ is a convex subset of $\mathcal{P}(\mathfrak{X})$. If $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit e, then $\varphi(e, e) \leq ||e||^2 = 1$ for any $\varphi \in \mathcal{S}(\mathfrak{X})$.

Let $\mathfrak{X}_1^{\sharp} = \{\omega \in \mathfrak{X}^{\sharp} : ||\omega||^{\sharp} \leq 1\}$ be the unit ball of \mathfrak{X}^{\sharp} and

$$\mathfrak{X}_{S}^{\sharp} = \{ \omega_{\varphi} : \varphi \in \mathcal{S}(\mathfrak{X}) \}.$$

REMARK 3.6. Obviously, it is possible that $\mathcal{S}(\mathfrak{X}) = \{0\}$ (or, equivalently, $\mathfrak{X}_{\mathcal{S}}^{\sharp} = \{0\}$). It is, however much more interesting to consider Banach quasi *-algebras for which the set $\mathcal{S}(\mathfrak{X})$ is sufficiently rich (Section 3.3).

PROPOSITION 3.7. Assume that $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit and that $\mathcal{S}(\mathfrak{X}) \neq \{0\}$. Then the following statements hold:

- (i) $\mathfrak{X}_{\mathcal{S}}^{\sharp}$ is a convex, weak*-compact subset of $\mathfrak{X}_{1}^{\sharp}$.
- (ii) $\mathfrak{X}_{\mathcal{S}}^{\sharp}$ has extreme points. If ω_{φ} is extreme, then $\|\varphi\| = 1$.
- (iii) ω_{φ} is extreme in $\mathfrak{X}_{\mathcal{S}}^{\sharp}$ if, and only if, φ is extreme in $\mathcal{S}(\mathfrak{X})$.

The proof is very simple and we omit it.

3.2. Seminorms. We will now define some seminorms, closely related to families of sesquilinear forms [22] and to representations. Similar constructions have been considered in the case of *-algebras in [9, 24].

To begin with, we put

$$\mathfrak{p}(x) = \sup_{\varphi \in \mathcal{S}(\mathfrak{X})} \varphi(x, x)^{1/2}.$$

Then p is a seminorm on \mathfrak{X} with $\mathfrak{p}(x) \leq ||x||$ for every $x \in \mathfrak{X}$.

We also put

$$N(\mathfrak{p}) = \{ x \in \mathfrak{X} : \mathfrak{p}(x) = 0 \}.$$

Remark 3.8. Under the assumption of Proposition 3.7, the set $\mathcal{S}(\mathfrak{X})$, which is convex, has extreme elements (of unit norm) whose closed convex hull is exactly $\mathcal{S}(\mathfrak{X})$. Thus, in this case,

$$\mathfrak{p}(x) = \sup_{\|\varphi\|=1} \varphi(x, x)^{1/2}.$$

We also define

(3.2) $\mathfrak{q}(x) = \sup\{\varphi(xa, xa)^{1/2} : \varphi \in \mathcal{P}(\mathfrak{X}), \ a \in \mathfrak{A}_0, \ \varphi(a, a) = 1\}, \quad x \in \mathfrak{X},$ and

$$D(\mathfrak{q}) = \{ x \in \mathfrak{X} : \mathfrak{q}(x) < \infty \}.$$

If $(\mathfrak{X},\mathfrak{A}_0)$ has a unit e, then q has a simpler form. In fact, if we put

$$\mathfrak{q}'(x) = \sup{\{\varphi(x,x)^{1/2} : \varphi \in \mathcal{P}(\mathfrak{X}), \, \varphi(e,e) = 1\}}, \quad x \in \mathfrak{X},$$

and

$$D(\mathfrak{q}') = \{ x \in \mathfrak{X} : \mathfrak{q}'(x) < \infty \},\$$

then $D(\mathfrak{q}) = D(\mathfrak{q}')$ and $\mathfrak{q}(x) = \mathfrak{q}'(x)$ for every $x \in D(\mathfrak{q})$. Indeed, it is clear that

(3.3)
$$q'(x) \le q(x), \quad \forall x \in \mathfrak{X}.$$

On the other hand, if $\varphi \in \mathcal{P}(\mathfrak{X})$ and $a \in \mathfrak{A}_0$, then also $\varphi_a \in \mathcal{P}(\mathfrak{X})$, where $\varphi_a(x,y) = \varphi(xa,ya)$ for every $x,y \in \mathfrak{X}$. Clearly, if $a \in \mathfrak{A}_0$ and $\varphi(a,a) = 1$, then $\varphi_a(e,e) = 1$. This implies that

(3.4)
$$q(x) \le q'(x), \quad \forall x \in \mathfrak{X}.$$

The inequalities (3.3) and (3.4) also hold when one of their terms is ∞ . Thus the statement is proved.

The seminorms $\mathfrak p$ and $\mathfrak q$ compare as follows.

PROPOSITION 3.9. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra. Then:

- (i) $\mathfrak{p}(xa) \leq \mathfrak{q}(x)\mathfrak{p}(a), \ \forall x \in D(\mathfrak{q}), \ a \in \mathfrak{A}_0.$
- (ii) If $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit, then

$$\mathfrak{p}(x) \le \mathfrak{q}(x), \quad \forall x \in D(\mathfrak{q}).$$

Proof. (i) Let $x \in D(\mathfrak{q})$. Then from the definition of $\mathfrak{q}(x)$ we get, for each $\varphi \in \mathcal{P}(\mathfrak{X})$,

(3.5)
$$\varphi(xa, xa) \le \mathfrak{q}(x)^2 \varphi(a, a), \quad \forall a \in \mathfrak{A}_0.$$

The statement then follows by taking the supremum over $\varphi \in \mathcal{S}(\mathfrak{X})$.

(ii) This follows from (i) by choosing a=e and taking into account that $\mathfrak{p}(e)\leq 1$.

PROPOSITION 3.10. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra. Then:

- (i) $\mathfrak{A}_0 \subseteq D(\mathfrak{q})$ and $q(a) \leq ||a||_0$, $\forall a \in \mathfrak{A}_0$.
- (ii) $D(\mathfrak{q}) = \{x \in \mathfrak{X} : \pi_{\varphi}(x) \text{ bounded, } \forall \varphi \in \mathcal{P}(\mathfrak{X}), \text{ and } \}$

$$\sup_{\varphi \in \mathcal{P}(\mathfrak{X})} \|\overline{\pi_{\varphi}(x)}\| < \infty\},$$

$$x) = \sup_{\varphi \in \mathcal{P}(\mathfrak{X})} \|\overline{\pi_{\varphi}(x)}\| \quad \forall x \in D(\mathfrak{g})$$

$$\mathfrak{q}(x) = \sup_{\varphi \in \mathcal{P}(\mathfrak{X})} \| \overline{\pi_{\varphi}(x)} \|, \quad \ \forall x \in D(\mathfrak{q}).$$

- (iii) \mathfrak{q} is an extended C^* -seminorm on $(\mathfrak{X},\mathfrak{A}_0)$ (i.e. $\mathfrak{q}(x^*) = \mathfrak{q}(x)$, $\forall x \in \mathfrak{X}; \ q(a^*a) = q(a)^2, \ \forall a \in \mathfrak{A}_0, \ see \ [22]).$
- (iv) $\mathfrak{p}(ax) \leq ||a||_0 \mathfrak{p}(x), \ \forall x \in \mathfrak{X}, \ a \in \mathfrak{A}_0.$

Proof. (i) Let $\varphi \in \mathcal{P}(\mathfrak{X})$. Then the restriction of φ to $\mathfrak{A}_0 \times \mathfrak{A}_0$ is $\|\cdot\|_0$ -bounded. This fact together with a repeated use of the Cauchy–Schwarz inequality gives, for any $a, b \in \mathfrak{A}_0$,

$$\varphi(ab, ab) \leq \varphi(b, b)^{1/2 + 1/2^2 + \dots + 1/2^k} \varphi((a^*a)^{2^{k-1}}b, (a^*a)^{2^{k-1}}b)^{1/2^k}$$

$$\leq \varphi(b, b)^{1/2 + 1/2^2 + \dots + 1/2^k} \|\varphi\|^{1/2^k} (\|(a^*a)^{2^{k-1}}\|_0 \|b\|_0)^{1/2^{k-1}}.$$

For $k \to \infty$, we get

$$\varphi(ab, ab) \leq ||a||_0^2 \varphi(b, b), \quad \forall a, b \in \mathfrak{A}_0.$$

This implies that $\mathfrak{q}(a) \leq ||a||_0$ for every $a \in \mathfrak{A}_0$.

(ii) Let $x \in D(\mathfrak{q})$ and $\varphi \in \mathcal{P}(\mathfrak{X})$. If π_{φ} denotes the GNS representation constructed from φ , making use of (3.5) we obtain

$$\|\pi_{\varphi}(x)\lambda_{\varphi}(a)\|^2 = \varphi(xa,xa) \le \mathfrak{q}(x)^2\varphi(a,a) = \mathfrak{q}(x)^2\|\lambda_{\varphi}(a)\|^2, \quad \forall a \in \mathfrak{A}_0.$$

Thus $\pi_{\varphi}(x)$ is bounded and $\|\pi_{\varphi}(x)\| \leq \mathfrak{q}(x)$. This implies that

$$M(x) := \sup\{\|\overline{\pi_{\varphi}(x)}\| : \varphi \in \mathcal{P}(\mathfrak{X})\} \le \mathfrak{q}(x).$$

Conversely, assume that $x \in \mathfrak{X}$ and M(x) is finite. Then

$$\varphi(xa,xa) = \|\pi_{\varphi}(x)\lambda_{\varphi}(a)\|^2 \le M(x)^2 \|\lambda_{\varphi}(a)\|^2 = M(x)^2 \varphi(a,a), \quad \forall a \in \mathfrak{A}_0.$$

Hence, $x \in D(\mathfrak{q})$ and $\mathfrak{q}(x) \leq M(x)$.

- (iii) This follows directly from (ii).
- (iv) For $x \in \mathfrak{X}$ and $\varphi \in \mathcal{S}(\mathfrak{X})$, define

$$\omega_{\varphi}^{x}(a) = \varphi(ax, x), \quad a \in \mathfrak{A}_{0}.$$

264 C. Trapani

Then ω_{ω}^{x} is positive and $\|\cdot\|_{0}$ -bounded on \mathfrak{A}_{0} . Proceeding as in (i) one gets

$$\varphi(ax, ax) \le ||a||_0^2 \varphi(x, x), \quad \forall a \in \mathfrak{A}_0.$$

Taking the supremum over $\varphi \in \mathcal{S}(\mathfrak{X})$, we obtain the result.

So far, we have not proved (or even assumed) anything about the *size* of the families of sesquilinear forms we have considered. There are however examples of Banach quasi *-algebras $(\mathfrak{X}, \mathfrak{A}_0)$ with $\mathcal{P}(\mathfrak{X}) = \{0\}$ (see Example 3.20 below). The previous statements remain of course true, but become mostly trivial. Much more interesting is the case where $\mathcal{P}(\mathfrak{X})$ contains sufficiently many elements, by which we mean that $N(\mathfrak{p}) = \{0\}$.

3.3. Sufficient families of sesquilinear forms

DEFINITION 3.11. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra. We say that $\mathcal{S}(\mathfrak{X})$ is *sufficient* if the conditions $x \in \mathfrak{X}$ and $\varphi(x, x) = 0$ for each $\varphi \in \mathcal{S}(\mathfrak{X})$ imply x = 0.

Remark 3.12. We adopted a similar definition for CQ^* -algebras in [6]. Some of the statements that follow generalize results obtained for that situation in [6, 20].

The following lemma allows us to formulate in different ways the notion of sufficiency of $\mathcal{S}(\mathfrak{X})$.

LEMMA 3.13. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with unit e. For an element $x \in \mathfrak{X}$, the following statements are equivalent.

- (i) $\mathfrak{p}(x) = 0$, i.e. $x \in N(\mathfrak{p})$.
- (ii) $\varphi(x,x) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$.
- (iii) $\varphi(x,y) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$ and $y \in \mathfrak{X}$.
- (iv) $\omega_{\varphi}(x) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$.
- (v) $\varphi(xa, a) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$ and $a \in \mathfrak{A}_0$.
- (vi) $\varphi(xa, b) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$ and $a, b \in \mathfrak{A}_0$.

PROPOSITION 3.14. Let $(\mathfrak{X},\mathfrak{A}_0)$ be a Banach quasi *-algebra with unit e. If the set

$$\mathfrak{X}_{\mathcal{P}}^{\sharp} := \{ \omega_{\varphi} : \varphi \in \mathcal{P}(\mathfrak{X}) \}$$

is weak*-dense in $\mathfrak{X}_{+}^{\sharp}$, then $\mathcal{S}(\mathfrak{X})$ is sufficient. Conversely, if $(\mathfrak{X}, \|\cdot\|)$ is a reflexive Banach space and $\mathcal{S}(\mathfrak{X})$ is sufficient, then $\mathfrak{X}_{\mathcal{P}}^{\sharp}$ is weak*-dense in $\mathfrak{X}_{+}^{\sharp}$.

Proof. Assume that $\mathcal{S}(\mathfrak{X})$ is not sufficient. Then there exists $x \in \mathfrak{X}$, $x \neq 0$, such that $\varphi(x,x) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$. This implies that $\omega_{\varphi}(x) = 0$ for each $\varphi \in \mathcal{S}(\mathfrak{X})$. Thus the non-zero continuous linear functional f_x on \mathfrak{X}^{\sharp} defined by $f_x(\omega) = \omega(x)$ is identically zero on $\{\omega_{\varphi} : \varphi \in \mathcal{P}(\mathfrak{X})\}$. Thus this set is not weak*-dense in \mathfrak{X}^{\sharp}_+ .

Conversely, assume that $\mathfrak{X}^{\sharp}_{\mathcal{P}}$ is not weak*-dense in $\mathfrak{X}^{\sharp}_{+}$. Then, by reflexivity, there would exist an $x \in \mathfrak{X}, x \neq 0$, such that $\omega_{\varphi}(x) = \varphi(x, e) = 0$ for each $\varphi \in \mathcal{P}(\mathfrak{X})$. Then, by Lemma 3.13, we get $\varphi(x, x) = 0$ for each $\varphi \in \mathcal{P}(\mathfrak{X})$. This implies that x = 0, a contradiction.

PROPOSITION 3.15. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with unit e and let $\mathcal{S}(\mathfrak{X})$ be sufficient. Let $x \in \mathfrak{X}$. Then

(i) $x = x^*$ if, and only if, $\omega_{\varphi}(x) \in \mathbb{R}$ for each $\varphi \in \mathcal{S}(\mathfrak{X})$.

Moreover, if $\mathfrak{X}_{\mathcal{D}}^{\sharp}$ is weak*-dense in $\mathfrak{X}_{+}^{\sharp}$, then:

- (ii) If $\omega_{\varphi}(x) \geq 0$ for each $\varphi \in \mathcal{S}(\mathfrak{X})$, then x is positive.
- (iii) $x \in \mathfrak{X}^+ \cap \{-\mathfrak{X}^+\}$ if, and only if, x = 0.

Proof. (i) Assume that $\omega_{\varphi}(x) \in \mathbb{R}$ for each $\varphi \in \mathcal{S}(\mathfrak{X})$. Then

$$\omega_{\varphi}(x - x^*) = \omega_{\varphi}(x) - \omega_{\varphi}(x^*) = \omega_{\varphi}(x) - \overline{\omega_{\varphi}(x)} = 0$$

for every $\varphi \in \mathcal{S}(\mathfrak{X})$. By Lemma 3.13 one has $\varphi(x-x^*,x-x^*)=0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$. Hence $x=x^*$. The converse implication is obvious.

- (ii) This follows immediately from the weak*-denseness of $\mathfrak{X}_{\mathcal{D}}^{\sharp}$.
- (iii) Assume that $x \in \mathfrak{X}^+ \cap \{-\mathfrak{X}^+\}$; then by (ii) it follows that $\omega_{\varphi}(x) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$. From this we conclude that x = 0.

PROPOSITION 3.16. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a BQ^* -algebra with unit. If $S(\mathfrak{X})$ is sufficient, then \mathfrak{A}_0 is a *-semisimple Banach *-algebra.

Proof. It suffices to show that if $a \in \mathfrak{A}_0$ and $\omega(a^*a) = 0$ for each positive linear functional ω on \mathfrak{A}_0 , then a = 0. If this assumption is satisfied, then, in particular, $\omega_{\varphi}(a^*a) = 0$ for each $\varphi \in \mathcal{S}(\mathfrak{X})$. This implies that $\varphi(a, a) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$, and so a = 0.

If $(\mathfrak{X}, \mathfrak{A}_0)$ has a sufficient $\mathcal{S}(\mathfrak{X})$, then also the multiplications defined in Section 2 behave in a reasonable fashion:

PROPOSITION 3.17. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with sufficient $\mathcal{S}(\mathfrak{X})$. Then $(\mathfrak{X}, \mathfrak{A}_0)$ is normal.

Proof. Let $x, y \in \mathfrak{X}_b$. For every $\varphi \in \mathcal{S}(\mathfrak{X})$ and $c \in \mathfrak{A}_0$, we have

$$\varphi((x \triangleright y)c, c) = \varphi((\overline{L}_x y)c, c) = \lim_{m \to \infty} \varphi((xb_m)c, c)$$
$$= \lim_{m \to \infty} \varphi(x(b_m c), c) = \lim_{m \to \infty} \varphi(b_m c, x^*c)$$
$$= \varphi(yc, x^*c),$$

where $\{b_m\} \subset \mathfrak{A}_0$ converges to y in \mathfrak{X} . Analogously, if $\{a_n\} \subset \mathfrak{A}_0$ converges to x in \mathfrak{X} , we have

$$\varphi((x \blacktriangleleft y)c, c) = \varphi((\overline{R}_y x)c, c) = \lim_{n \to \infty} \varphi((a_n y)c, c)$$
$$= \lim_{n \to \infty} \varphi(a_n (yc), c) = \lim_{n \to \infty} \varphi(yc, a_n^*c) = \varphi(yc, x^*c).$$

Therefore

$$\varphi((x \triangleright y - x \triangleleft y)c, c) = 0, \quad \forall \varphi \in \mathcal{S}(\mathfrak{X}), c \in \mathfrak{A}_0.$$

By Lemma 3.13 it follows that $x \triangleright y = x \blacktriangleleft y$. This concludes the proof.

If $(\mathfrak{X}, \mathfrak{A}_0)$ has a sufficient $\mathcal{S}(\mathfrak{X})$, then \mathfrak{p} is a norm on \mathfrak{X} , weaker in general than the original norm of \mathfrak{X} . Thus, it makes sense to consider the case where they coincide. Hence we give the following

DEFINITION 3.18. A Banach quasi *-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ is called regular if

- (i) $\mathcal{S}(\mathfrak{X})$ is sufficient;
- (ii) $\mathfrak{p}(x) = ||x||$ for every $x \in \mathfrak{X}$.

A similar definition was given for CQ^* -algebras in [6]. We notice that the equality $\mathfrak{p}(x) = ||x||$ for every $x \in \mathfrak{X}$ implies that $\mathfrak{p}(x^*) = \mathfrak{p}(x)$ for every $x \in \mathfrak{X}$. This equality fails in general; but it is exactly what is needed to embed $(\mathfrak{X}, \mathfrak{A}_0)$ in a larger regular Banach quasi *-algebra.

PROPOSITION 3.19. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with sufficient $\mathcal{S}(\mathfrak{X})$ and $\mathfrak{p}(x^*) = \mathfrak{p}(x)$ for every $x \in \mathfrak{X}$. Then there exists a regular Banach quasi *-algebra, $(\mathfrak{X}_{\mathcal{S}}, \mathfrak{A}_0)$, such that $\mathfrak{X}_{\mathcal{S}}$ contains \mathfrak{X} as a dense subspace.

Proof. We let $\mathfrak{X}_{\mathcal{S}}$ be the completion of \mathfrak{A}_0 with respect to \mathfrak{p} ; then $(\mathfrak{X}_{\mathcal{S}}, \mathfrak{A}_0)$ is a Banach quasi *-algebra, by Proposition 3.10(vi) and the assumption that $\mathfrak{p}(x^*) = \mathfrak{p}(x)$ for every $x \in \mathfrak{X}$. We now prove that \mathfrak{X} can be identified with a subspace of $\mathfrak{X}_{\mathcal{S}}$. Indeed, if $x \in \mathfrak{X}$ then there exists a sequence $\{a_n\} \subset \mathfrak{A}_0$ such that

$$x = \|\cdot\| - \lim_{n \to \infty} a_n$$
.

It is readily seen that $\{a_n\}$ is also a Cauchy sequence with respect to \mathfrak{p} . Thus there exists an element $\overline{x} \in \mathfrak{X}_{\mathcal{S}}$ such that

$$\overline{x} = \mathfrak{p} - \lim_{n \to \infty} a_n.$$

The element \overline{x} does not depend on the particular sequence $\{a_n\}$ used to approximate x in \mathfrak{X} . Indeed, if $\{a'_n\}$ is another such sequence, then

$$\mathfrak{p}(a_n - a'_n) \le ||a_n - a'_n|| \to 0 \quad \text{as } n \to \infty.$$

We have defined in this way a map $i: x \in \mathfrak{X} \mapsto \overline{x} \in \mathfrak{X}_{\mathcal{S}}$; we will now prove that i is injective.

Assume that $\overline{x} = 0$ for some $x \in \mathfrak{X}$ and let $\{a_n\}$ be a sequence in \mathfrak{A}_0 approximating x in the norm of \mathfrak{X} and such that $\mathfrak{p}(a_n) \to 0$; this implies that $\varphi(a_n, a_n) \to 0$ for each $\varphi \in \mathcal{S}(\mathfrak{X})$. Therefore

$$\varphi(x,x) = \lim_{n \to \infty} \varphi(a_n, a_n) = 0.$$

From the sufficiency of $\mathcal{S}(\mathfrak{X})$ we get x = 0. To conclude the proof, we need to show that $\mathcal{S}(\mathfrak{X}_{\mathcal{S}})$ is sufficient and that $(\mathfrak{X}_{\mathcal{S}}, \mathfrak{A}_0)$ is regular.

First, we prove that the two families of sesquilinear forms, $\mathcal{S}(\mathfrak{X})$ and $\mathcal{S}(\mathfrak{X}_{\mathcal{S}})$, can be identified. Indeed, let $\Phi \in \mathcal{S}(\mathfrak{X}_{\mathcal{S}})$; then its restriction $\Phi_{\mathfrak{X}}$ to \mathfrak{X} belongs, as is easily seen, to $\mathcal{S}(\mathfrak{X})$. Conversely, if $\Phi_0 \in \mathcal{S}(\mathfrak{X})$, then making use of the Cauchy–Schwarz inequality, we get

$$|\Phi_0(x,y)| \le \mathfrak{p}(x)\mathfrak{p}(y), \quad \forall x, y \in \mathfrak{X}.$$

Therefore Φ_0 has a unique extension Φ to $\mathfrak{X}_{\mathcal{S}}$ and $\Phi \in \mathcal{S}(\mathfrak{X}_{\mathcal{S}})$. Taking this fact into account, the sufficiency of $\mathcal{S}(\mathfrak{X}_{\mathcal{S}})$ follows by the definition of completion. The regularity is a simple consequence of the definition of the norm in the completion.

EXAMPLE 3.20. The BQ^* -algebra $(L^p(I), C(I))$ is regular [5] if, and only if, $p \geq 2$. For $1 \leq p < 2$, $S(L^p(I)) = \{0\}$. In the case of the non-commutative L^p of Example 2.5, it has been proved in [8] that, for finite τ , $(L^p(\tau), \mathfrak{M})$ is regular if $p \geq 2$.

EXAMPLE 3.21. For the Banach quasi *-algebra $(\mathcal{H}, \mathfrak{A}_0)$ of Example 2.6, $\mathcal{S}(\mathfrak{X})$ is sufficient, since it contains the inner product $\langle \cdot | \cdot \rangle$. For the same reason, $(\mathcal{H}, \mathfrak{A}_0)$ is regular.

We consider again the seminorm \mathfrak{q} defined in (3.2). If $(\mathfrak{X}, \mathfrak{A}_0)$ has a sufficient $\mathcal{S}(\mathfrak{X})$, then \mathfrak{q} is also a norm on $D(\mathfrak{q})$ and has the C^* -property on \mathfrak{A}_0 . If, in addition, $(\mathfrak{X}, \mathfrak{A}_0)$ has a unit, then (Proposition 3.9)

$$(3.6) \mathfrak{p}(x) \le \mathfrak{q}(x), \forall x \in D(\mathfrak{q}).$$

The space $D(\mathfrak{q})$ endowed with the topology defined by \mathfrak{q} is denoted by $\mathfrak{X}_{\mathfrak{q}}$. Then we have the following

PROPOSITION 3.22. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with unit. Assume that $\mathcal{S}(\mathfrak{X})$ is sufficient. Then $\mathfrak{X}_{\mathfrak{q}}$ is a normed space containing \mathfrak{A}_0 as a subspace. Moreover if \mathfrak{X} is regular, then $\mathfrak{X}_{\mathfrak{q}}$ is a Banach space.

Proof. The first part of the statement follows from Proposition 3.10(i). In order to prove that, if \mathfrak{X} is regular, $\mathfrak{X}_{\mathfrak{q}}$ is a Banach space, we only have to show its completeness. Let $\{x_n\}$ be a \mathfrak{q} -Cauchy sequence in $\mathfrak{X}_{\mathfrak{q}}$.

Inequality (3.6) in the regular case becomes $||x|| \leq \mathfrak{q}(x)$ for all $x \in \mathfrak{X}_{\mathfrak{q}}$. Therefore $\{x_n\}$ is also $||\cdot||$ -Cauchy. Using the $||\cdot||$ -completeness of \mathfrak{X} we conclude that there exists an element $x \in \mathfrak{X}$ which is the $||\cdot||$ -limit of x_n .

Let $\varphi \in \mathcal{P}(\mathfrak{X})$. Then $\varphi(x,x) = \lim_{n \to \infty} \varphi(x_n,x_n)$. The sequence $\mathfrak{q}(x_n)$ is bounded, because $\{x_n\}$ is \mathfrak{q} -Cauchy. Let M be its supremum. Then

$$\varphi(x_n a, x_n a)^{1/2} \le q(x_n) \le M, \quad \forall a \in \mathfrak{A}_0 \text{ with } \varphi(a, a) = 1.$$

Hence

$$\varphi(xa, xa)^{1/2} = \lim_{n \to \infty} \varphi(x_n a, x_n a)^{1/2} \le M.$$

Thus, clearly, $\mathfrak{q}(x) \leq M$, i.e. $x \in \mathfrak{X}_{\mathfrak{q}}$. Finally, using the uniqueness of the limit in the completion of $\mathfrak{X}_{\mathfrak{q}}$, we conclude that $x = \mathfrak{q}\text{-lim}_{n \to \infty} x_n$. Thus $\mathfrak{X}_{\mathfrak{q}}$ is complete. \blacksquare

We observe that in general the inclusion $\mathfrak{A}_0 \subseteq \mathfrak{X}_{\mathfrak{q}}$ is proper. For instance, in $(L^p(I), C(I))$ any step function s defined on [0,1] is in $L^p(I)$ but not in C(I). It is immediate to verify that $s \in (L^p(I))_{\mathfrak{q}}$.

Our next goal is to prove that, for regular Banach quasi *-algebras, $\mathfrak{X}_{\mathfrak{q}}$ is exactly the set of elements having finite spectral radius.

We begin with the following

PROPOSITION 3.23. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with sufficient $\mathcal{S}(\mathfrak{X})$. Then for every $x \in \mathfrak{X}$ the maps

$$L_x: a \in \mathfrak{A}_0 \mapsto xa \in \mathfrak{X}, \quad R_x: a \in \mathfrak{A}_0 \mapsto ax \in \mathfrak{X}$$

are closable in \mathfrak{X} .

Proof. Let $x \in \mathfrak{X}$ and $\{a_n\} \subset \mathfrak{A}_0$ be a sequence $\|\cdot\|$ -converging to zero and such that $xa_n \to y$ with respect to $\|\cdot\|$. Then, if $\varphi \in \mathcal{S}(\mathfrak{X})$ and $b_1, b_2 \in \mathfrak{A}_0$, we get

$$|\varphi(yb_1, b_2)| \le |\varphi((y - xa_n)b_1, b_2)| + |\varphi(a_nb_1, x^*b_2)|$$

$$\le ||y - xa_n|| ||b_1||_0 ||b_2||_0 + ||a_n|| ||b_1||_0 ||x^*b_2|| \to 0.$$

Therefore $\varphi(yb_1, b_2) = 0$ for every $\varphi \in \mathcal{S}(\mathfrak{X})$ and $b_1, b_2 \in \mathfrak{A}_0$. By Lemma 3.13, y = 0. The proof for R_x is similar.

The previous proposition suggests a handy criterion for the existence of a bounded inverse of an element:

PROPOSITION 3.24. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with unit e and sufficient $\mathcal{S}(\mathfrak{X})$. Let $x \in \mathfrak{X}$ satisfy the following conditions:

(i) there exists $\gamma > 0$ such that

$$\min\{\|ax\|, \|xa\|\} \ge \gamma \|a\|, \quad \forall a \in \mathfrak{A}_0;$$

(ii) the sets $\{ax : a \in \mathfrak{A}_0\}$ and $\{xa : a \in \mathfrak{A}_0\}$ are both dense in \mathfrak{X} .

Then x has a bounded inverse.

Proof. Let $x \in \mathfrak{X}$ satisfy (i) and (ii). Then, making use of standard techniques for closable maps in Banach spaces, one can prove that the range of the closure \overline{L}_x of L_x is the whole space \mathfrak{X} . Moreover, it is easy to prove that

$$\|\overline{L}_x y\| \ge \gamma \|y\|, \quad \forall y \in D(\overline{L}_x),$$

where $D(\bar{L}_x)$ denotes the domain of \bar{L}_x . Therefore, there exists a unique $b_1 \in D(\bar{L}_x)$ such that $\bar{L}_x b_1 = e$.

Let $\{z_n\} \subset \mathfrak{A}_0$ with $||b_1 - z_n|| \to 0$ and $\{xz_n\}$ converging in \mathfrak{X} . Then, for every $a \in \mathfrak{A}_0$, $||b_1a - z_na|| \to 0$ and $\{x(z_na)\}$ converges in \mathfrak{X} . Hence $b_1a \in D(\overline{L}_x)$ and

$$\overline{L}_x(b_1a) = \lim_{n \to \infty} x(z_na) = \lim_{n \to \infty} (xz_n)a = (\overline{L}_xb_1)a = ea = a.$$

Therefore $\overline{L}_x(b_1a) = (\overline{L}_xb_1)a$ for every $a \in \mathfrak{A}_0$. Hence

$$\|\overline{L}_x(b_1a)\| \ge \gamma \|b_1a\|, \quad \forall a \in \mathfrak{A}_0.$$

This implies that

$$||b_1a|| \le \frac{1}{\gamma} ||a||, \quad \forall a \in \mathfrak{A}_0.$$

Hence b_1 is left bounded.

In a similar way one shows the existence of a unique right bounded element $b_2 \in D(\overline{R}_x)$ such that $\overline{R}_x b_2 = e$.

We now prove that $b_1 = b_2$. Let $z_{i,n}$ (i = 1, 2) be a sequence in \mathfrak{A}_0 such that $||z_{i,n} - b_i|| \to 0$ and $\{xz_{i,n}\}$ converges in \mathfrak{X} . For every $\varphi \in \mathcal{S}(\mathfrak{X})$ and $c \in \mathfrak{A}_0$, we have

$$\varphi(b_2c,c) = \varphi(b_2(\overline{L}_xb_1)c,c) = \varphi((\overline{L}_xb_1)c,b_2^*c)$$

$$= \lim_{n \to \infty} \varphi((\overline{L}_xz_{1,n})c,z_{2,n}^*c) = \lim_{n \to \infty} \varphi(x(z_{1,n}c),z_{2,n}^*c)$$

$$= \lim_{n \to \infty} \varphi(z_{1,n}c,(z_{2,n}x)^*c) = \varphi(b_1c,c),$$

since $z_{2,n}x \to \overline{R}_x b_2 = e$. The sufficiency of $\mathcal{S}(\mathfrak{X})$ implies that $b_1 = b_2$. We put $b := b_1 = b_2$. Then $b \in \mathfrak{X}_b$.

We finally prove that $\overline{L}_x b = \overline{R}_b x$. Let $\varphi \in \mathcal{S}(\mathfrak{X})$ and let $\{z_n\} \subset \mathfrak{A}_0$ with $||b-z_n|| \to 0$ and $\{xz_n\}$ converging in \mathfrak{X} . Then, for every $c \in \mathfrak{A}_0$,

$$\varphi((\bar{L}_x b)c, c) = \lim_{n \to \infty} \varphi((xz_n)c, c) = \lim_{n \to \infty} \varphi(z_n c, x^*c) = \varphi(bc, x^*c).$$

On the other hand, if $\{a_n\} \subset \mathfrak{A}_0$ with $||x - a_n|| \to 0$, then for every $c \in \mathfrak{A}_0$,

$$\varphi((\overline{R}_b x)c, c) = \lim_{n \to \infty} \varphi((R_b a_n)c, c) = \lim_{n \to \infty} \varphi((a_n b)c, c)$$
$$= \lim_{n \to \infty} \varphi(bc, a_n^* c) = \varphi(bc, x^* c).$$

The sufficiency of $\mathcal{S}(\mathfrak{X})$ implies the desired equality.

Analogously, one can prove that $\overline{R}_x b = \overline{L}_b x$. In conclusion, $b \in \mathfrak{X}_b$ and $\overline{L}_b x = \overline{R}_b x = e$, i.e. x has a bounded inverse. \blacksquare

PROPOSITION 3.25. Let $(\mathfrak{X},\mathfrak{A}_0)$ be a regular Banach quasi *-algebra with unit e. Let $x \in \mathfrak{X}_{\mathfrak{q}}$ and $\lambda \in \mathbb{C}$ with $|\lambda| > \mathfrak{q}(x)$. Then $x - \lambda e$ has a bounded inverse $(x - \lambda e)_b^{-1} \in \mathfrak{X}_b$. Thus

$$\{\lambda \in \mathbb{C} : |\lambda| > \mathfrak{q}(x)\} \subseteq \varrho(x).$$

Proof. Let $\varphi \in \mathcal{S}(\mathfrak{X})$. By definition, if $x \in D(\mathfrak{q})$, then

$$|\lambda| > \mathfrak{q}(x) \ge \varphi(xb, xb), \quad \forall b \in \mathfrak{A}_0 \text{ with } \varphi(b, b) = 1.$$

270 C. Trapani

Therefore, for every $a \in \mathfrak{A}_0$,

$$\varphi((x - \lambda e)a, (x - \lambda e)a)^{1/2} \ge |\lambda|\varphi(a, a)^{1/2} - \varphi(xa, xa)^{1/2}$$
$$\ge (|\lambda| - \mathfrak{q}(x)) \varphi(a, a)^{1/2}.$$

Taking the supremum over $\varphi \in \mathcal{S}(\mathfrak{X})$ we get

$$\mathfrak{p}((x - \lambda e)a) \ge \mathfrak{p}(a)(|\lambda| - \mathfrak{q}(x)).$$

From the regularity of $(\mathfrak{X}, \mathfrak{A}_0)$, we finally get

$$||(x - \lambda e)a|| \ge ||a||(|\lambda| - \mathfrak{q}(x)), \quad \forall a \in \mathfrak{A}_0.$$

Furthermore, if $q(x) < \infty$ and $|\lambda| > \mathfrak{q}(x)$, then the sets

Ran
$$L_{x-\lambda e} := \{(x - \lambda e)b : b \in \mathfrak{A}_0\},$$
 Ran $R_{x-\lambda e} := \{b(x - \lambda e) : b \in \mathfrak{A}_0\}$ are $\|\cdot\|$ -dense in \mathfrak{X} .

Indeed, assume, for instance, that $\operatorname{Ran} L_{x-\lambda e}$ is not dense in \mathfrak{X} . Then there exists a non-zero $\| \|$ -continuous functional f on \mathfrak{X} such that $f((x-\lambda)b) = 0$ for every $b \in \mathfrak{A}_0$. Therefore $f(xb) = \lambda f(b)$ for every $b \in \mathfrak{A}_0$. From the $\| \|$ -continuity of f we get $|f(xb)| \leq \|f\|^{\sharp} \|xb\|$ for every $b \in \mathfrak{A}_0$.

From the regularity of $(\mathfrak{X}, \mathfrak{A}_0)$ and from Proposition 3.9(i), we get

$$|f(xb)| \leq \|f\|^{\sharp} \|xb\| = \|f\|^{\sharp} \mathfrak{p}(xb) \leq \|f\|^{\sharp} \mathfrak{q}(x) \mathfrak{p}(b) = \|f\|^{\sharp} \mathfrak{q}(x) \|b\|, \quad \forall b \in \mathfrak{A}_0$$

The functional f_x defined by $f_x(b) := f(xb), b \in \mathfrak{A}_0$, is $\| \|$ -continuous, since

$$|f_x(b)| = |\lambda f(b)| \le |\lambda| \, ||f||^{\sharp} ||b||, \quad \forall b \in \mathfrak{A}_0.$$

An easy computation shows that $||f_x||^{\sharp} = |\lambda| ||f||^{\sharp}$. Thus we find the following contradictory inequality: $|\lambda| \leq \mathfrak{q}(x)$. A similar argument shows the corresponding statement for $R_{x-\lambda e}$.

Applying Proposition 3.24 we get the result. \blacksquare

We can now prove the following

Theorem 3.26. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a regular Banach quasi *-algebra with unit e. Then $D(\mathfrak{q})$ coincides with the set \mathfrak{X}_b of all bounded elements of \mathfrak{X} . Moreover

$$\mathfrak{q}(x) = ||x||_{\mathbf{b}}, \quad \forall x \in \mathfrak{X}_{\mathbf{b}}.$$

Therefore $(\mathfrak{X}_b, \|\cdot\|_b)$ is a C^* -algebra.

Proof. Propositions 2.27 and 3.25 show that $D(\mathfrak{q}) \subseteq \mathfrak{X}_b$. On the other hand, consider, for each $\varphi \in \mathcal{P}(\mathfrak{X})$, the linear functional ω_{φ} defined by

$$\omega_{\varphi}(x) = \varphi(x, e), \quad x \in \mathfrak{X}_{b}.$$

A simple limit argument shows that ω_{φ} is positive (i.e. $\omega(x^* \bullet x) \geq 0$ for each $x \in \mathfrak{X}_{\rm b}$), so if π_{φ} denotes the corresponding GNS representation, then $\pi_{\varphi}(x)$ is bounded and $\|\overline{\pi_{\varphi}(x)}\| \leq \|x\|_{\rm b}$ for every $x \in \mathfrak{X}_{\rm b}$. Thus, if $x \in \mathfrak{X}_{\rm b}$,

then by Proposition 3.10(ii),

$$\mathfrak{q}(x) = \sup_{\varphi \in \mathcal{P}(\mathfrak{X})} \|\overline{\pi_{\varphi}(x)}\| \le \|x\|_{\mathbf{b}}.$$

From Proposition 3.9(i) it follows that

$$||xa|| = \mathfrak{p}(xa) \le \mathfrak{q}(x)\mathfrak{p}(a) = \mathfrak{q}(x)||a||, \quad \forall x \in D(q), \ a \in \mathfrak{A}_0,$$

and, by taking the involution, also

$$||ax|| \le \mathfrak{q}(x)||a||, \quad \forall x \in D(q), \ a \in \mathfrak{A}_0.$$

This implies that $||x||_b \leq \mathfrak{q}(x)$. Thus, in conclusion, $||\cdot||_b$ is a C^* -norm.

A further characterization of the set of bounded elements of $(\mathfrak{X}, \mathfrak{A}_0)$, in the case where $\mathcal{S}(\mathfrak{X})$ is sufficient, can be obtained in terms of representations.

Theorem 3.27. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with unit e. Assume that $\mathcal{S}(\mathfrak{X})$ is sufficient. Then $(\mathfrak{X}, \mathfrak{A}_0)$ admits a faithful *-representation π in a Hilbert space \mathcal{H} . Moreover

$$\mathfrak{X}_{\mathrm{b}} = \{ x \in \mathfrak{X} : \overline{\pi(x)} \in \mathcal{B}(\mathcal{H}) \}$$

and

$$\|\overline{\pi(x)}\| = \mathfrak{q}(x), \quad \forall x \in \mathfrak{X}_{\mathrm{b}}.$$

Proof. For each $\varphi \in \mathcal{P}(\mathfrak{X})$, let π_{φ} be the corresponding GNS construction with dense domain $\mathcal{D}_{\varphi} \subseteq \mathcal{H}_{\varphi}$. Put

$$\mathcal{H} = \bigoplus_{\varphi \in \mathcal{P}(\mathfrak{X})} \mathcal{H}_{\varphi} = \Big\{ (\xi_{\varphi})_{\varphi \in \mathcal{P}(\mathfrak{X})} : \, \xi_{\varphi} \in \mathcal{H}_{\varphi}, \, \sum_{\varphi \in \mathcal{P}(\mathfrak{X})} \|\xi_{\varphi}\|^2 < \infty \Big\},\,$$

with the usual inner product

$$\langle (\xi_{\varphi}) \, | \, (\eta_{\varphi}) \rangle = \sum_{\varphi \in \mathcal{S}(\mathfrak{X})} \langle \xi_{\varphi} \, | \, \eta_{\varphi} \rangle, \quad (\xi_{\varphi}), (\eta_{\varphi}) \in \mathcal{H}.$$

Let

$$\mathcal{D} = \Big\{ (\xi_{\varphi}) \in \mathcal{H} : \xi_{\varphi} \in \mathcal{D}_{\varphi}, \, \varphi \in \mathcal{P}(\mathfrak{X}), \, \sum_{\varphi \in \mathcal{S}(\mathfrak{X})} \|\pi_{\varphi}(x)\xi_{\varphi}\|^{2} < \infty, \, \forall x \in \mathfrak{X} \Big\}.$$

Then \mathcal{D} is a dense domain in \mathcal{H} and so we can define, for $x \in \mathfrak{X}$,

$$\pi(x)(\xi_{\varphi}) = (\pi_{\varphi}(x)\xi_{\varphi}), \quad (\xi_{\varphi}) \in \mathcal{D}.$$

Then $\pi(x) \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ for each $x \in \mathfrak{X}$ and $\pi : x \in \mathfrak{X} \mapsto \pi(x) \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a *-representation of $(\mathfrak{X}, \mathfrak{A}_0)$. Moreover, π is faithful, since

$$\pi(x) = 0 \iff \pi_{\varphi}(x) = 0, \, \forall \varphi \in \mathcal{P}(\mathfrak{X}) \iff \varphi(x, x) = 0, \, \forall \varphi \in \mathcal{P}(\mathfrak{X}).$$

The sufficiency of $S(\mathfrak{X})$ then implies that x = 0.

Finally, $\pi(x)$ is bounded if, and only if, each π_{φ} for $\varphi \in \mathcal{P}(\mathfrak{X})$ is bounded and

$$\sup_{\varphi \in \mathcal{P}(\mathfrak{X})} \| \overline{\pi_{\varphi}(x)} \| < \infty,$$

and, in this case,

$$\|\overline{\pi(x)}\| = \sup_{\varphi \in \mathcal{P}(\mathfrak{X})} \|\overline{\pi_{\varphi}(x)}\|, \quad x \in \mathfrak{X}.$$

But, by Proposition 3.10(ii),

$$\sup_{\varphi \in \mathcal{P}(\mathfrak{X})} \|\overline{\pi_{\varphi}(x)}\| = \mathfrak{q}(x).$$

This concludes the proof.

Acknowledgments. The author wishes to thank the referee for posing good questions. It is also a pleasure to thank Prof. A. Inoue for his helpful comments.

References

- [1] J.-P. Antoine, A. Inoue, and C. Trapani, Partial *-Algebras and Their Operator Realizations, Math. Appl. 553, Kluwer, Dordrecht, 2002.
- [2] F. Bagarello, A. Inoue and C. Trapani, Unbounded C*-seminorms and *-representations of partial *-algebras, Z. Anal. Anwend. 20 (2001), 295–314.
- [3] —, —, —, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc. 129 (2001), 2973–2980.
- [4] F. Bagarello and C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré 61 (1994), 103–133.
- [5] —, —, L^p-spaces as quasi *-algebras, J. Math. Anal. Appl. 197 (1996), 810–824.
- [6] —, —, CQ*-algebras: structure properties, Publ. RIMS Kyoto Univ. 32 (1996), 85–116.
- [7] —, —, Morphisms of certain Banach C^* -modules, ibid. 36 (2000), 681–705.
- [8] F. Bagarello, C. Trapani and S. Triolo, Quasi *-algebras of measurable operators, this issue, 289–305.
- [9] S. J. Bhatt, A. Inoue and H. Ogi, Unbounded C*-seminorms and unbounded C*-spectral algebras, J. Operator Theory 45 (2001), 53-80.
- [10] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848–861.
- [11] G. Lassner, Topological algebras and their applications in Quantum Statistics, Wiss.
 Z. KMU-Leipzig Math.-Naturwiss. R. 30 (1981), 572–595.
- [12] —, Algebras of unbounded operators and quantum dynamics, Phys. A 124 (1984), 471–480.
- [13] E. Nelson, Note on non-commutative integration, J. Funct. Anal. 15 (1974), 103–116.
- [14] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. II, Cambridge Univ. Press, Cambridge, 2001.
- [15] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin, 1990.
- [16] I. E. Segal, A noncommutative extension of abstract integration, Ann. of Math. 57 (1953), 401–457.
- [17] Ş. Strătilă and L. Zsidó, Lectures on von Neumann Algebras, Editura Academiei, Bucureşti, and Abacus Press, Tunbridge Wells, 1979.
- [18] C. Trapani, Quasi *-algebras of operators and their applications, Rev. Math. Phys. 7 (1995), 1303–1332.

- [19] C. Trapani, CQ*-algebras of operators and application to quantum models, in: Proc. Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), Kluwer, 2000, 679–685.
- [20] —, Sesquilinear forms on certain Banach C*-modules, Proc. IV Internat. Conf. on Functional Analysis and Approximation Theory, Rend. Circ. Mat. Palermo Suppl. 68 (2002) 855–864.
- [21] —, CQ^* -algebras of operators: density properties, in: Operator Theory and Banach Algebras, M. Chidami et al. (eds.), Theta, Bucureşti, 2003.
- [22] —, Some seminorms on quasi *-algebras, Studia Math. 158 (2003), 99–115; Erratum/Addendum, ibid. 160 (2004), 101.
- [23] C. Trapani and S. Triolo, Representations of certain Banach C^* -modules, Mediterr. J. Math. 1 (2004), 441–461.
- [24] B. Yood, C^* -seminorms, Studia Math. 118 (1996), 19–26.

Dipartimento di Matematica ed Applicazioni Università di Palermo I-90123 Palermo, Italy E-mail: trapani@unipa.it

> Received May 5, 2005 Revised version October 6, 2005 (5640)