An extension of a multiplicity theorem by Ricceri with an application to a class of quasilinear equations

by
Francesca Faraci and Antonio Iannizzotto (Catania)

Abstract

A recent multiplicity result by Ricceri, stated for equations in Hilbert spaces, is extended to a wider class of Banach spaces. Applications to nonlinear boundary value problems involving the p-Laplacian are presented.

1. Introduction. In [5, Theorem 1], B. Ricceri has established a multiplicity theorem for the critical points of a continuously Gateaux differentiable functional J over a Hilbert space X, satisfying

$$
\begin{equation*}
\limsup _{\|x\| \rightarrow \infty} \frac{J(x)}{\|x\|^{2}} \leq 0 \tag{1}
\end{equation*}
$$

Ricceri's result ensures that, for each real r within the range of J and $x_{0} \in$ $J^{-1}(]-\infty, r[)$, either the functional

$$
x \mapsto\left\|x-x_{0}\right\|^{2} / 2-\lambda J(x) \quad(\text { for some } \lambda>0)
$$

admits at least three critical points, or the set $J^{-1}([r, \infty[)$ has a unique point minimizing the distance from x_{0}. Then he proves that, under very general hypotheses (namely, the nonconvexity of $J^{-1}\left(\left[r, \infty[)\right.\right.$), for some x_{0} in a convex dense subset of X and some positive λ, the first case occurs, thus obtaining a multiplicity result. To this end, he employs a result of Tsar'kov ([6, Corollary 2]) dealing with the problem of best approximation and Chebyshev sets, which sharpens a previous result of Efimov and Stechkin ([2, Theorem 3]).

For our purposes, Tsar'kov's result can be stated as follows: in a Hilbert space, let M be a nonconvex, sequentially weakly closed set and S be a convex, dense set; then there exists a point $x_{0} \in S$ admitting at least two points of best approximation in M.

Both in [5] and in [6], an interesting link is established between best approximation theory and critical point theory, as solutions of boundary

[^0]value problems are found as critical points of functionals of the type above. Namely, in [5] it is shown that, whenever g is a continuous, nonconstant and nondecreasing real-valued function on \mathbb{R} (with suitable asymptotic behavior to make (1) true), there exist $w_{0} \in C_{0}^{\infty}(] 0,1[)$ and a positive λ such that the two-point Dirichlet problem
\[

\left\{$$
\begin{array}{l}
\left.-u^{\prime \prime}=\lambda g(u)-w_{0}(x) \quad \text { in }\right] 0,1[\\
u(0)=u(1)=0
\end{array}
$$\right.
\]

has at least three classical solutions.
The aim of the present paper is to prove an analogous result for a more general class of problems, built on partial differential equations involving the p-Laplacian: namely, let g be a continuous function on $\Omega \times \mathbb{R}$ (where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary), satisfying standard growth conditions and a certain asymptotic assumption (see Section 3 for more details); moreover, let $g(x, \cdot)$ be nondecreasing for all $x \in \Omega$. We shall prove that, for an arbitrary convex, dense subset S of $W_{0}^{1, p}(\Omega)$, there exist $u_{0} \in S$ and $\lambda>0$ such that the Dirichlet problem

$$
\begin{cases}-\Delta_{p} u=\lambda g\left(x, u+u_{0}(x)\right) & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

has at least three weak solutions.
The same approach leads to a multiplicity theorem for the Neumann problem as well: namely, under the same assumptions on Ω and g, for an arbitrary convex, dense subset S^{\prime} of $W^{1, p}(\Omega)$, there exist $u_{0} \in S^{\prime}$ and $\lambda>0$ such that the Neumann problem

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=\lambda g\left(x, u+u_{0}(x)\right) & \text { in } \Omega \tag{Q}\\ \partial u / \partial n=0 & \text { in } \partial \Omega\end{cases}
$$

(where n denotes the outward unit normal to $\partial \Omega$) has at least three weak solutions.

Notice that u_{0} and λ are not explicitly determined.
Solutions of (P) (resp. $(Q))$ are found as critical points of a certain functional on $W_{0}^{1, p}(\Omega)$ (resp. $W^{1, p}(\Omega)$), so we need to extend Ricceri's theorem to a class of Banach spaces wide enough to embrace this case. Moreover, it will be necessary to refer to a more general form of Tsar'kov's result:

Theorem A ([6, Theorem 2], [2, Lemma 1]). Let X be a uniformly convex Banach space with strictly convex topological dual, and M a sequentially weakly closed and nonconvex subset of X. Then, for any convex, dense subset S of X, there exists $x_{0} \in S$ such that the set

$$
\left\{y \in M:\left\|y-x_{0}\right\|=d\left(x_{0}, M\right)\right\}
$$

has at least two points.

Here we denote by $d\left(x_{0}, M\right)$ the distance between x_{0} and the set M.
A further condition on the space arises from the need that the functional $x \mapsto\|x\|^{p}(p>1)$ be continuously Gateaux differentiable (which is trivial in the case of Hilbert spaces with $p=2$): for this purpose, it is sufficient to require that the norm be Fréchet differentiable on the unit sphere (see [1] and Section 2 for more details). This assumption places our space somewhere between the classes of "very smooth" and of "uniformly smooth" Banach spaces. Notice that such a space, provided it is reflexive, has a strictly convex topological dual ([1, Theorem 1 and Corollary 1, Section 1, Chapter 2]).

In the proof of our abstract result, we will refer to the following minimax theorem:

Theorem B ([4, Theorem 1 and Remark 1]). Let X be a topological space, I a real interval, and $f: X \times I \rightarrow \mathbb{R}$ a function satisfying the following conditions:
$\left(c_{1}\right) \quad$ for every $x \in X$, the function $f(x, \cdot)$ is quasi-concave and continuous;
$\left(c_{2}\right)$ for every $\lambda \in I$, the function $f(\cdot, \lambda)$ is lower semicontinuous and each of its local minima is a global minimum;
(c3) there exist $\varrho_{0}>\sup _{I} \inf _{X} f$ and $\lambda_{0} \in I$ such that the set

$$
\left\{x \in X: f\left(x, \lambda_{0}\right) \leq \varrho_{0}\right\}
$$

is compact.
Then

$$
\sup _{I} \inf _{X} f=\inf _{X} \sup _{I} f
$$

2. Abstract results. Before stating our results, we need the following definition.

Let X be a Banach space. After [1], we define a support mapping as a function $\varphi: X \backslash\{0\} \rightarrow X^{*} \backslash\{0\}$ satisfying:
$\left(\mathrm{SM}_{1}\right) \quad\|\varphi(x)\|_{X^{*}}=1=\langle\varphi(x), x\rangle$ for all $x \in S(X)$, where $S(X)$ is the unit sphere in X;
$\left(\mathrm{SM}_{2}\right) \quad \varphi(\varrho x)=\varrho \varphi(x)$ for all $\varrho>0$ and $x \in X \backslash\{0\}$.
Our main result reads as follows:
Theorem 1. Let X be a real uniformly convex Banach space with Fréchet differentiable norm on $S(X), p>1$, and J be a nonconstant, continuously Gateaux differentiable functional with compact derivative, satisfying

$$
\begin{equation*}
\limsup _{\|x\| \rightarrow \infty} \frac{J(x)}{\|x\|^{p}} \leq 0 \tag{2}
\end{equation*}
$$

Then for every $r \in] \inf _{X} J, \sup _{X} J\left[\right.$ and every $x_{0} \in J^{-1}(]-\infty, r[)$ one of the following conditions is true:
(a) there exists $\lambda>0$ such that the functional defined on X by

$$
x \mapsto\left\|x-x_{0}\right\|^{p} / p-\lambda J(x)
$$

admits at least three critical points;
(b) there exists $y \in J^{-1}(r)$ such that

$$
\left\|x-x_{0}\right\|>\left\|y-x_{0}\right\|
$$

for all $x \in J^{-1}([r, \infty[)$ with $x \neq y$.
Proof. First of all, we show that condition (a) is meaningful.
From [1, Theorem 1, Section 2, Chapter 2] it follows that, since the norm of X is Fréchet differentiable on $S(X)$, there exists a support mapping φ which is norm-to-norm continuous from $S(X)$ to $S\left(X^{*}\right)$. It is easily seen that, actually, φ is continuous on $X \backslash\{0\}$ and the functional $x \mapsto\|x\|$ is continuously Gateaux differentiable on $X \backslash\{0\}$ with derivative given by

$$
x \mapsto \varphi(x) /\|x\| .
$$

Thus, for every $x_{0} \in X$, the functional $x \mapsto\left\|x-x_{0}\right\|^{p} / p$ is continuously Gateaux differentiable in X and its derivative is the operator $A: X \rightarrow X^{*}$ defined by

$$
A(x)= \begin{cases}\left\|x-x_{0}\right\|^{p-2} \varphi\left(x-x_{0}\right) & \text { if } x \neq x_{0} \\ 0 & \text { if } x=x_{0}\end{cases}
$$

Now we can prove our result. Fix r, x_{0} as in the statement, and assume that (a) does not hold: we shall prove that (b) is true.

Set $I=[0, \infty[$ and define $f: X \times I \rightarrow \mathbb{R}$ by putting

$$
f(x, \lambda)=\left\|x-x_{0}\right\|^{p} / p+\lambda(r-J(x)) .
$$

We are going to apply Theorem B to f, endowing X with the weak topology, so let us check the hypotheses. Condition (c_{1}) is trivial. Since $r<\sup _{X} J$, it is immediately seen that $\sup _{I} \inf _{X} f<\infty$, so condition (c_{3}) is obviously fulfilled with $\lambda_{0}=0$.

The discussion of condition (c_{2}) is more complex. Fix $\lambda \geq 0$. Observe that $f(\cdot, \lambda)$ is sequentially weakly lower semicontinuous (1.s.c.), as it is the sum of $x \mapsto\left\|x-x_{0}\right\|^{p} / p$, which is weakly l.s.c., and of $x \mapsto \lambda(r-J(x))$, which is sequentially weakly continuous since J^{\prime} is compact and X is reflexive (see [7, Corollary 41].

Moreover, we prove that $f(\cdot, \lambda)$ is coercive: in fact, for every $\varepsilon \in] 0,1 / p \lambda[$ it follows from (2) that there exists $\delta>0$ such that

$$
J(x)<\varepsilon\|x\|^{p} \quad \text { whenever } \quad\|x\| \geq \delta ;
$$

thus, for all $x \in X$ with $\|x\| \geq \max \left\{\delta,\left\|x_{0}\right\|\right\}$,

$$
\begin{aligned}
f(x, \lambda) & >\|x\|^{p}\left(\frac{\left\|x-x_{0}\right\|^{p}}{p\|x\|^{p}}-\lambda \varepsilon\right)+\lambda r \\
& \geq\|x\|^{p}\left(\frac{\left(\|x\|-\left\|x_{0}\right\|\right)^{p}}{p\|x\|^{p}}-\lambda \varepsilon\right)+\lambda r
\end{aligned}
$$

and the latter goes to ∞ as $\|x\| \rightarrow \infty$. As a consequence of the EberleinShmul'yan Theorem, $f(\cdot, \lambda)$ is weakly l.s.c.

We need to verify that every local minimum of $f(\cdot, \lambda)$ is a global minimum: with this aim in mind, we first observe that $f(\cdot, \lambda)$ is a continuously Gateaux differentiable functional with derivative $A-\lambda J^{\prime}$. Then we prove that $f(\cdot, \lambda)$ satisfies the Palais-Smale condition.

Let $\left\{z_{n}\right\}$ be a Palais-Smale sequence, that is, a sequence in X such that $\left(\mathrm{PS}_{1}\right) \quad\left\{f\left(z_{n}, \lambda\right)\right\}$ is bounded;
$\left(\mathrm{PS}_{2}\right) \quad \lim _{n}\left\|A\left(z_{n}\right)-\lambda J^{\prime}\left(z_{n}\right)\right\|_{X^{*}}=0$.
From $\left(\mathrm{PS}_{1}\right)$, together with the coercivity of $f(\cdot, \lambda)$, it follows that $\left\{z_{n}\right\}$ is bounded, that is, there exists a positive constant M such that $\left\|z_{n}\right\| \leq M$ for all n, hence we find a subsequence, which we still denote $\left\{z_{n}\right\}$, weakly convergent to a point $z_{0} \in X$. Then, again by compactness of J^{\prime}, we can assume that $\left\{J^{\prime}\left(z_{n}\right)\right\}$ converges to some $\psi \in X^{*}$.

Let us prove that $\left\{z_{n}\right\}$ is strongly convergent to z_{0}.
By $\left(\mathrm{PS}_{2}\right)$, for every $\varepsilon>0$ we can find $\nu \in \mathbb{N}$ such that for all $n>\nu$,

$$
\left\|A\left(z_{n}\right)-\lambda J^{\prime}\left(z_{n}\right)\right\|_{X^{*}}<\frac{\varepsilon}{M+\left\|z_{0}\right\|}
$$

so in particular

$$
\left\langle A\left(z_{n}\right)-\lambda J^{\prime}\left(z_{n}\right), z_{n}-z_{0}\right\rangle<\varepsilon
$$

Due to the convergence of $\left\{J^{\prime}\left(z_{n}\right)\right\}$ to ψ,

$$
\lim _{n}\left\langle J^{\prime}\left(z_{n}\right), z_{n}-z_{0}\right\rangle=0
$$

so we get

$$
\lim _{n}\left\langle A\left(z_{n}\right), z_{n}-z_{0}\right\rangle=0
$$

moreover, by the weak convergence of $\left\{z_{n}\right\}$ to z_{0},

$$
\begin{equation*}
\lim _{n}\left\langle A\left(z_{n}\right)-A\left(z_{0}\right), z_{n}-z_{0}\right\rangle=0 \tag{3}
\end{equation*}
$$

To avoid trivial cases, we assume that $z_{n} \neq x_{0}$ for all n and $z_{0} \neq x_{0}$; then we have

$$
\begin{aligned}
\left\langle A\left(z_{n}\right)-\right. & \left.A\left(z_{0}\right), z_{n}-z_{0}\right\rangle \\
= & \left\langle\left\|z_{n}-x_{0}\right\|^{p-2} \varphi\left(z_{n}-x_{0}\right)-\left\|z_{0}-x_{0}\right\|^{p-2} \varphi\left(z_{0}-x_{0}\right), z_{n}-z_{0}\right\rangle \\
= & \left\langle\left\|z_{n}-x_{0}\right\|^{p-2} \varphi\left(z_{n}-x_{0}\right)-\left\|z_{0}-x_{0}\right\|^{p-2} \varphi\left(z_{0}-x_{0}\right)\right. \\
& \left.\left(z_{n}-x_{0}\right)+\left(x_{0}-z_{0}\right)\right\rangle \\
\geq & \left(\left\|z_{n}-x_{0}\right\|^{p-1}-\left\|z_{0}-x_{0}\right\|^{p-1}\right)\left(\left\|z_{n}-x_{0}\right\|-\left\|z_{0}-x_{0}\right\|\right)
\end{aligned}
$$

It is well known that there exists a constant k_{p} such that

$$
\begin{aligned}
\left(\left\|z_{n}-x_{0}\right\|^{p-1}-\left\|z_{0}-x_{0}\right\|^{p-1}\right)\left(\| z_{n}-\right. & \left.x_{0}\|-\| z_{0}-x_{0} \|\right) \\
& \geq k_{p}\left(\left\|z_{n}-x_{0}\right\|-\left\|z_{0}-x_{0}\right\|\right)^{\bar{p}}
\end{aligned}
$$

where $\bar{p}=\max \{p, 2\}$. Then, from (3) it follows that

$$
\lim _{n}\left\|z_{n}-x_{0}\right\|=\left\|z_{0}-x_{0}\right\|
$$

and hence $\left\{z_{n}\right\}$ is strongly convergent to z_{0}, that is, the Palais-Smale condition is fulfilled.

We can now check condition $\left(\mathrm{c}_{2}\right)$, arguing by contradiction: suppose that $f(\cdot, \lambda)$ admits a local, nonglobal minimum; also being coercive, it also has a global minimum too, that is, it has two strong local minima. Applying the Pucci-Serrin Mountain Pass Theorem, we deduce the existence of a third critical point for $f(\cdot, \lambda)$; thus, the functional of condition (a) would have three critical points, contrary to our assumption.

Now Theorem B ensures that

$$
\begin{equation*}
\sup _{\lambda \in I} \inf _{x \in X} f(x, \lambda)=\inf _{x \in X} \sup _{\lambda \in I} f(x, \lambda)=: \alpha . \tag{4}
\end{equation*}
$$

Notice that the function $\lambda \mapsto \inf _{x \in X} f(x, \lambda)$ is upper semicontinuous on I, and tends to $-\infty$ as $\lambda \rightarrow \infty\left(\right.$ since $\left.r<\sup _{X} J\right)$; thus, it attains its supremum at some $\lambda^{*} \in I$, that is,

$$
\begin{equation*}
\alpha=\inf _{x \in X}\left(\frac{\left\|x-x_{0}\right\|^{p}}{p}+\lambda^{*}(r-J(x))\right) \tag{5}
\end{equation*}
$$

The infimum on the right hand side of (4) is easily determined as

$$
\alpha=\inf _{x \in J^{-1}([r, \infty[)} \frac{\left\|x-x_{0}\right\|^{p}}{p}=\frac{\left\|y-x_{0}\right\|^{p}}{p}
$$

for some $y \in J^{-1}([r, \infty[)$.
Actually we have $y \in J^{-1}(r)$: in fact, if $J(y)>r$, there would exist a point z belonging to the segment joining x_{0} and y such that $J(z)=r$ and

$$
\left\|x_{0}-z\right\|<d\left(x_{0}, J^{-1}([r, \infty[))\right.
$$

which is a contradiction. Hence

$$
\begin{equation*}
\left.\alpha=\inf _{x \in J^{-1}(r)} \frac{\left\|x-x_{0}\right\|^{p}}{p} \quad \text { (in particular } \alpha>0\right) \tag{6}
\end{equation*}
$$

By (5) and (6) it follows that

$$
\begin{equation*}
\inf _{x \in X}\left(\frac{\left\|x-x_{0}\right\|^{p}}{p}-\lambda^{*} J(x)\right)=\inf _{x \in J^{-1}(r)}\left(\frac{\left\|x-x_{0}\right\|^{p}}{p}-\lambda^{*} J(x)\right) \tag{7}
\end{equation*}
$$

We deduce that $\lambda^{*}>0$: if $\lambda^{*}=0$, then (7) becomes $\alpha=0$, contrary to (6).
Now we can prove (b). Arguing by contradiction, let $z \in J^{-1}([r, \infty[) \backslash\{y\}$ be such that $\left\|z-x_{0}\right\|=\left\|y-x_{0}\right\|$. As above, we see that $z \in J^{-1}(r)$, and so both z and y are global minima of the functional

$$
x \mapsto\left\|x-x_{0}\right\|^{p} / p-\lambda^{*} J(x)
$$

on $J^{-1}(r)$, and so by (7) on X. Thus, the Pucci-Serrin Mountain Pass Theorem shows that this functional has at least three critical points, contrary to the assumption that (a) does not hold (recall that λ^{*} is positive).

This concludes the proof.
Corollary 1. Let X, J, p be as in Theorem 1 and let S be a convex, dense subset of X. Then for every $r \in] \inf _{X} J, \sup _{X} J\left[\right.$ such that $J^{-1}([r, \infty[)$ is not convex there exist $x_{0} \in J^{-1}(]-\infty, r[) \cap S$ and $\lambda>0$ such that the functional on X defined by

$$
x \mapsto\left\|x-x_{0}\right\|^{p} / p-\lambda J(x)
$$

admits at least three critical points.
Proof. First of all, since X has a norm Fréchet differentiable on $S(X)$ and is reflexive (as seen in the Introduction), it follows that X^{*} is strictly convex. Moreover, $J^{-1}([r, \infty[)$ is sequentially weakly closed.

By Theorem A, for some $x_{0} \in J^{-1}(]-\infty, r[) \cap S$ there exist two distinct points $y_{1}, y_{2} \in J^{-1}([r, \infty[)$ satisfying

$$
\left\|y_{1}-x_{0}\right\|=\left\|y_{2}-x_{0}\right\|=d\left(x_{0}, J^{-1}([r, \infty[))\right.
$$

Thus, condition (b) of Theorem 1 is false, so there exists $\lambda>0$ such that $x \mapsto\left\|x-x_{0}\right\|^{p} / p-\lambda J(x)$ has at least three critical points in X.
3. An application to PDE. Throughout the following, Ω will denote a bounded domain in \mathbb{R}^{N} with C^{1} boundary, p a real number with $1<p<N$, $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ a continuous function satisfying the growth condition

$$
\begin{equation*}
|g(x, \xi)| \leq a|\xi|^{q-1}+b(x) \quad \text { for all } x \in \Omega, \xi \in \mathbb{R} \tag{8}
\end{equation*}
$$

for some $a>0, q \in] 1, p^{*}\left[\left(p^{*}\right.\right.$ being the critical Sobolev exponent), and $b \in L^{q^{\prime}}(\Omega)$. We define $G: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ by putting

$$
G(x, \xi)=\int_{0}^{\xi} g(x, \eta) d \eta
$$

We denote by X the space $W_{0}^{1, p}(\Omega)$ endowed with the norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u(x)|^{p} d x\right)^{1 / p}
$$

and recall that for all $q \in] 1, p^{*}\left[, X\right.$ is compactly embedded in $L^{q}(\Omega)$ (we denote by c_{q} the embedding constant).

By classical results, the functional $J: X \rightarrow \mathbb{R}$ defined by

$$
J(u)=\int_{\Omega} G(x, u(x)) d x
$$

is continuously Gateaux differentiable with compact derivative given by

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega} g(x, u(x)) v(x) d x
$$

for all $u, v \in X$.
THEOREM 2. Let $\Omega \subset \mathbb{R}^{N}, g, p$ be as above and let (8) be satisfied. Moreover assume:
$\left(\mathrm{g}_{1}\right) \quad g(x, \cdot)$ is nondecreasing for all $x \in \Omega$;
$\left(\mathrm{g}_{2}\right) \quad$ there exists $x_{0} \in \Omega$ such that $g\left(x_{0}, \cdot\right)$ is not constant;
$\left(\mathrm{g}_{3}\right) \quad \lim _{|\xi| \rightarrow \infty} \sup _{x \in \Omega} \frac{G(x, \xi)}{|\xi|^{p}}=0$.
Then, for every $r \in] \inf _{X} J, \sup _{X} J[$ and every convex, dense subset S of X there exist $u_{0} \in S$ with $J\left(u_{0}\right)<r$ and $\lambda>0$ such that problem (P) has at least three weak solutions.

Proof. We observe that X is a uniformly convex Banach space and its norm is continuously Gateaux differentiable over $X \backslash\{0\}$. A fortiori, it is Fréchet differentiable on $S(X)$.

We claim that J satisfies (2). Fix $\varepsilon>0$. By $\left(\mathrm{g}_{3}\right)$, there exists $\delta>0$ such that

$$
\sup _{x \in \Omega} \frac{G(x, \xi)}{|\xi|^{p}}<\frac{\varepsilon}{2 c_{p}^{p}}
$$

whenever $|\xi| \geq \delta$.
Define $k=\sup _{x \in \Omega,|\xi| \leq \delta}|G(x, \xi)|$ (without loss of generality we may assume $k>0)$. Choose $u \in X$ with

$$
\|u\|>\left(\frac{2 k|\Omega|}{\varepsilon}\right)^{1 / p}
$$

and put

$$
\Omega_{1}=\{x \in \Omega:|u(x)| \leq \delta\} \quad \text { and } \quad \Omega_{2}=\Omega \backslash \Omega_{1}
$$

Then we have

$$
\begin{aligned}
J(u) & \leq \int_{\Omega_{1}}|G(x, u(x))| d x+\int_{\Omega_{2}} \frac{\varepsilon}{2 c_{p}^{p}}|u(x)|^{p} d x \\
& \leq k\left|\Omega_{1}\right|+\frac{\varepsilon}{2 c_{p}^{p}}\|u\|_{L^{p}(\Omega)}^{p} \leq k|\Omega|+\frac{\varepsilon}{2}\|u\|^{p} .
\end{aligned}
$$

Hence,

$$
\frac{J(u)}{\|u\|^{p}} \leq \frac{k|\Omega|}{\|u\|^{p}}+\frac{\varepsilon}{2}<\varepsilon
$$

which is our claim.
We now prove that J is not constant. By $\left(\mathrm{g}_{1}\right)$ and $\left(\mathrm{g}_{2}\right)$ there exist α^{\prime} and $\alpha^{\prime \prime}$ with $\alpha^{\prime}<\alpha^{\prime \prime}$ such that

$$
g\left(x_{0}, \alpha^{\prime}\right)<g\left(x_{0}, \alpha^{\prime \prime}\right)
$$

Assume, for instance, that $g\left(x_{0}, \alpha^{\prime}\right) \neq 0$.
Arguing by contradiction, suppose that J is constant. Then

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega} g(x, u(x)) v(x) d x=0
$$

for all $u, v \in X$, and in particular, $g(x, u(x))=0$ for all $u \in X$ and a.e. x in Ω. Choose $w \in C_{0}^{1}(\Omega)$ such that $w\left(x_{0}\right)=\alpha^{\prime}$. We deduce that $g(x, w(x))$ $=0$ for all $x \in \Omega$, and so in particular $g\left(x_{0}, \alpha^{\prime}\right)=0$, a contradiction.

Thus, we may choose $r \in] \inf _{X} J, \sup _{X} J\left[\right.$ and prove that $J^{-1}([r, \infty[)$ is not convex: first of all, by $\left(\mathrm{g}_{1}\right), G(x, \cdot)$ is a convex function over \mathbb{R} for all $x \in \Omega$, which implies that J is a convex functional over X; then $\left.\left.J^{-1}(]-\infty, r\right]\right)$ is convex, so our claim is equivalent to the nonconvexity of $J^{-1}(r)$. We will assume by contradiction that $J^{-1}(r)$ is convex.

By the continuity of g, we can find $\varepsilon \in] 0,\left(\alpha^{\prime \prime}-\alpha^{\prime}\right) / 2[$ such that

$$
\begin{equation*}
\left.g\left(x_{0}, \xi^{\prime}\right)<g\left(x_{0}, \xi^{\prime \prime}\right) \quad \text { for all } \xi^{\prime} \in\right] \alpha^{\prime}-\varepsilon, \alpha^{\prime}+\varepsilon\left[, \quad \xi^{\prime \prime} \in\right] \alpha^{\prime \prime}-\varepsilon, \alpha^{\prime \prime}+\varepsilon[\tag{9}
\end{equation*}
$$

We recall that $C_{0}^{\infty}(\Omega)$ is everywhere dense in X so since $J^{-1}(]-\infty, r[)$ and $J^{-1}(] r, \infty[)$ are nonempty open sets in X, there exist $v_{1}, v_{2} \in C_{0}^{\infty}(\Omega)$ such that

$$
J\left(v_{1}\right):=r_{1}<r<r_{2}=: J\left(v_{2}\right)
$$

Define

$$
K=\sup \left\{|G(x, \xi)|: x \in \Omega,|\xi| \leq \max \left(\left|\alpha^{\prime}\right|,\left\|v_{1}\right\|_{L^{\infty}(\Omega)},\left\|v_{2}\right\|_{L^{\infty}(\Omega)}\right)\right\}
$$

Notice that $K>0$. Fix $\sigma \in \mathbb{R}$ such that $r_{1}+\sigma<r<r_{2}-\sigma$. Since the functions $G\left(\cdot, v_{i}(\cdot)\right)(i=1,2)$ belong to $L^{1}(\Omega)$, there exists $\delta>0$ such that

$$
\left|\int_{A} G\left(x, v_{i}(x)\right) d x\right|<\frac{\sigma}{2} \quad(i=1,2)
$$

for all subsets A of Ω with $|A|<\delta$.

Denote by B a closed ball centered at x_{0} whose measure satisfies

$$
|B|<\min \left\{\frac{\sigma}{2 K}, \delta\right\} .
$$

By classical results, it is possible to construct continuous functions w_{i} : $\mathbb{R}^{N} \rightarrow \mathbb{R}(i=1,2)$ such that

$$
w_{i}(x)= \begin{cases}\alpha^{\prime} & \text { if } x=x_{0} \\ v_{i}(x) & \text { if } x \in \Omega \backslash B, \\ 0 & \text { if } x \in \mathbb{R}^{N} \backslash \Omega,\end{cases}
$$

and $\left\|w_{i}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq \max \left\{\left|\alpha^{\prime}\right|,\left\|v_{i}\right\|_{L^{\infty}(\Omega)}\right\}$.
The previous conditions yield

$$
\begin{align*}
\int_{\Omega} G\left(x, w_{1}(x)\right) d x & =\int_{B} G\left(x, w_{1}(x)\right) d x+J\left(v_{1}\right)-\int_{B} G\left(x, v_{1}(x)\right) d x \tag{10}\\
& <K|B|+r_{1}+\sigma / 2<r_{1}+\sigma<r .
\end{align*}
$$

In a similar way

$$
\begin{equation*}
\int_{\Omega} G\left(x, w_{2}(x)\right) d x>r . \tag{11}
\end{equation*}
$$

Let $\left\{\varrho_{n}\right\}$ be a mollifier sequence and $h_{n}^{i}(i=1,2)$ the convolution

$$
h_{n}^{i}=\varrho_{n} * w_{i} .
$$

By the theory of convolution h_{n}^{i} belongs to $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and in particular to X (for n large enough). Moreover $\left\{h_{n}^{i}\right\}$ uniformly converges to w_{i} on compact sets of \mathbb{R}^{N}. Thus,

$$
\lim _{n} J\left(h_{n}^{i}\right)=\int_{\Omega} G\left(x, w_{i}(x)\right) d x,
$$

so by (10) and (11) and the uniform convergence we can choose m so large that $J\left(h_{m}^{1}\right)<r<J\left(h_{m}^{2}\right)$ and $\left|h_{m}^{i}\left(x_{0}\right)-\alpha^{\prime}\right|<\varepsilon$ for $i=1,2$. The set

$$
\Gamma=\left\{u \in C_{0}^{\infty}(\Omega):\left|u\left(x_{0}\right)-\alpha^{\prime}\right|<\varepsilon\right\}
$$

is convex. So the segment joining h_{m}^{1} and h_{m}^{2} is contained in Γ; moreover by the continuity of J, there exists a point u^{\prime} of the segment such that $J\left(u^{\prime}\right)=r$. Analogously there exists $u^{\prime \prime} \in C_{0}^{\infty}(\Omega)$ such that $\left|u^{\prime \prime}\left(x_{0}\right)-\alpha^{\prime \prime}\right|<\varepsilon$ and $J\left(u^{\prime \prime}\right)=r$.

Since $J^{-1}(r)$ is assumed to be convex, the function $\mu \mapsto J\left(\mu u^{\prime}+(1-\mu) u^{\prime \prime}\right)$ is constant on $[0,1]$. Hence its derivative is zero, that is,

$$
\left\langle J^{\prime}\left(\mu u^{\prime}+(1-\mu) u^{\prime \prime}\right), u^{\prime}-u^{\prime \prime}\right\rangle=0
$$

for all $\mu \in[0,1]$. In particular

$$
\int_{\Omega}\left[g\left(x, u^{\prime}(x)\right)-g\left(x, u^{\prime \prime}(x)\right)\right]\left(u^{\prime}(x)-u^{\prime \prime}(x)\right) d x=0,
$$

and by $\left(g_{1}\right)$ we get

$$
\left[g\left(x, u^{\prime}(x)\right)-g\left(x, u^{\prime \prime}(x)\right)\right]\left(u^{\prime}(x)-u^{\prime \prime}(x)\right)=0
$$

for all $x \in \Omega$.
On the other hand,

$$
\alpha^{\prime}-\varepsilon<u^{\prime}\left(x_{0}\right)<\alpha^{\prime}+\varepsilon<\alpha^{\prime \prime}-\varepsilon<u^{\prime \prime}\left(x_{0}\right)<\alpha^{\prime \prime}+\varepsilon
$$

and so $g\left(x_{0}, u^{\prime}\left(x_{0}\right)\right)=g\left(x_{0}, u^{\prime \prime}\left(x_{0}\right)\right)$ contrary to (9).
We have thus proved that $J^{-1}([r, \infty[)$ is not convex. By Corollary 1, there exist $u_{0} \in S$ with $J\left(u_{0}\right)<r$ and $\lambda>0$ such that the functional $u \mapsto\left\|u-u_{0}\right\|^{p} / p-\lambda J(u)$ has at least three critical points in X. Since for such critical point $u \in X, u-u_{0}$ is a weak solution of (P), the proof is concluded.

If our assumptions are fulfilled for $p=2<N$ and we choose $u_{0} \in$ $C_{0}^{\infty}(\Omega)$, then due to the linearity of the Laplacian operator, problem (P) is in a sense equivalent to the following:

$$
\left(P^{\prime}\right) \begin{cases}-\Delta u=\lambda g(x, u)-\Delta u_{0}(x) & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

In fact, it is immediately seen that u is a weak solution of (P) iff $u+u_{0}$ is a weak solution of $\left(P^{\prime}\right)$. Thus, the next result follows at once from Theorem 2 :

Corollary 2. Let $\Omega \subset \mathbb{R}^{N}$ and g be as above and let (8) and $\left(g_{1}\right)-\left(g_{3}\right)$ be satisfied for $p=2$. Then for every $r \in] \inf _{X} J, \sup _{X} J[$ and every convex, dense subset S of $C_{0}^{\infty}(\Omega)$ there exist $u_{0} \in S$ with $J\left(u_{0}\right)<r$ and $\lambda>0$ such that problem $\left(P^{\prime}\right)$ has at least three weak solutions.

REMARK 1. If, in addition to the hypotheses of Theorem 2, we assume that $g(x, \cdot)$ is positively homogeneous with some exponent $\beta \neq p-1$ for all $x \in \Omega$, we can "hide" the parameter λ. Let V be a dense linear subspace of X, and fix $r \in] \inf _{X} J, \sup _{X} J\left[\right.$; then we find $u_{0} \in V$ and $\lambda>0$ such that problem (P) has at least three solutions. Now put $\gamma=1 /(\beta+1-p)$ and $v_{0}=\lambda^{\gamma} u_{0}\left(v_{0}\right.$ still belongs to $\left.V\right)$; then the problem

$$
\left(P^{\prime \prime}\right) \quad \begin{cases}-\Delta_{p} v=g\left(x, v+v_{0}(x)\right) & \text { in } \Omega \\ v=0 & \text { in } \partial \Omega\end{cases}
$$

has at least three solutions. In fact, for each solution $u \in X$ of (P), the function $v=\lambda^{\gamma} u$ is a solution of $\left(P^{\prime \prime}\right)$. Notice that $J\left(v_{0}\right)<\lambda^{\gamma(\beta+1)} r$.

REmark 2. There exist a sequence $\left\{u_{n}\right\} \subset S$ and a sequence $\left\{\lambda_{n}\right\} \subset$ $] 0, \infty[$ such that the problem

$$
\left(P_{n}\right) \begin{cases}-\Delta_{p} u=\lambda_{n} g\left(x, u+u_{n}(x)\right) & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

has at least three solutions for all $n \in \mathbb{N}, n \geq 0$. In fact, the existence of a first pair u_{0}, λ_{0} is ensured by Theorem 2, and the result can be generalized by induction: once u_{i} is determined for $i=0, \ldots, n$, there exists a subset S_{n+1} of S, convex and everywhere dense in S (hence in X), not containing the points u_{i} (see [6, Remark 1]); then it suffices to apply Theorem 2 to S_{n+1} to find a new function $u_{n+1} \in S_{n+1}$ and a positive λ_{n+1} such that problem $\left(P_{n+1}\right)$ has at least three solutions.

Example 1. The above results allow us to establish that the uniqueness of solution of boundary value problems can be unstable: that is, a problem admitting exactly one nontrivial solution can be perturbed in infinitely many ways so that each of the perturbed problems has at least three nontrivial solutions.

Namely, let Ω be as above, $q \in] 0,1[$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(\xi)= \begin{cases}0 & \text { if } \xi \leq 0 \\ \xi^{q} & \text { if } \xi>0\end{cases}
$$

Then it is well known that the problem

$$
\begin{cases}-\Delta u=g(u) & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

has exactly one nontrivial solution.
Notice that g satisfies all hypotheses of Corollary 2 and Remark 1 (with $\beta=q$); thus, recalling Remark 2, we observe that, choosing $S=C_{0}^{\infty}(\Omega)$, there exists a sequence $\left\{u_{n}\right\} \subset C_{0}^{\infty}(\Omega)\left(u_{n} \neq 0\right.$ for all $\left.n \in \mathbb{N}\right)$ such that for all $n \in \mathbb{N}$ the problem

$$
\begin{cases}-\Delta u=g(u)-\Delta u_{n}(x) & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

has at least three solutions (each of them is obviously different from zero).
Finally, we observe that a similar result can be proved for the problem (Q), as pointed out in the Introduction. Under the same hypotheses on Ω, p, g, set $Y=W^{1, p}(\Omega)$, endowed with the norm

$$
\|u\|=\left(\int_{\Omega}\left(|\nabla u(x)|^{p}+|u(x)|^{p}\right) d x\right)^{1 / p}
$$

Notice that Y has all the properties we need, and contains $C^{\infty}(\bar{\Omega})$ as a dense linear subspace. Let $G, J: Y \rightarrow \mathbb{R}$ be defined as above. Then the following result holds:

Theorem 3. Let $\Omega \subset \mathbb{R}^{N}, g$, p be as above and let (8) and $\left(\mathrm{g}_{1}\right)-\left(g_{3}\right)$ be satisfied. Then for every $r \in] \inf _{Y} J, \sup _{Y} J[$ and every convex, dense subset S^{\prime} of Y there exist $u_{0} \in S^{\prime}$ with $J\left(u_{0}\right)<r$ and $\lambda>0$ such that problem (Q) has at least three weak solutions.

References

[1] J. Diestel, Geometry of Banach Spaces-Selected Topics, Springer, Berlin, 1975.
[2] N. V. Efimov and S. B. Stechkin, Approximate compactness and Chebyshev sets, Soviet Math. Dokl. 2 (1961), 1226-1228.
[3] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), 142-149.
[4] B. Ricceri, A further improvement of a minimax theorem of Borenshtein and Shul'man, J. Nonlinear Convex Anal. 2 (2001), 279-283.
[5] -, A general multiplicity theorem for certain nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc. 133 (2005), 3255-3261.
[6] I. G. Tsar'kov, Nonunique solvability of certain differential equations and their connection with geometric approximation theory, Math. Notes 75 (2004), 259-271.
[7] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. III, Springer, 1985.

Department of Mathematics and Computer Science
University of Catania
Viale A. Doria 6
95125 Catania, Italy
E-mail: ffaraci@dmi.unict.it
iannizzotto@dmi.unict.it

Received June 16, 2005
Revised version November 8, 2005
(5675)

[^0]: 2000 Mathematics Subject Classification: 35J25, 35J60, 47H15.
 Key words and phrases: convexity, critical points, nonlinear equations, p-Laplacian.

