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An extension of a multiplicity theorem by Ricceri with

an application to a class of quasilinear equations

by

Francesca Faraci and Antonio Iannizzotto (Catania)

Abstract. A recent multiplicity result by Ricceri, stated for equations in Hilbert
spaces, is extended to a wider class of Banach spaces. Applications to nonlinear boundary
value problems involving the p-Laplacian are presented.

1. Introduction. In [5, Theorem 1], B. Ricceri has established a mul-
tiplicity theorem for the critical points of a continuously Gateaux differen-
tiable functional J over a Hilbert space X, satisfying

(1) lim sup
‖x‖→∞

J(x)

‖x‖2
≤ 0.

Ricceri’s result ensures that, for each real r within the range of J and x0 ∈
J−1(]−∞, r[), either the functional

x 7→ ‖x− x0‖
2/2 − λJ(x) (for some λ > 0)

admits at least three critical points, or the set J−1([r,∞[) has a unique
point minimizing the distance from x0. Then he proves that, under very
general hypotheses (namely, the nonconvexity of J−1([r,∞[)), for some x0

in a convex dense subset of X and some positive λ, the first case occurs,
thus obtaining a multiplicity result. To this end, he employs a result of
Tsar’kov ([6, Corollary 2]) dealing with the problem of best approximation
and Chebyshev sets, which sharpens a previous result of Efimov and Stechkin
([2, Theorem 3]).

For our purposes, Tsar’kov’s result can be stated as follows: in a Hilbert
space, let M be a nonconvex, sequentially weakly closed set and S be a
convex, dense set; then there exists a point x0 ∈ S admitting at least two
points of best approximation in M .

Both in [5] and in [6], an interesting link is established between best
approximation theory and critical point theory, as solutions of boundary
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value problems are found as critical points of functionals of the type above.
Namely, in [5] it is shown that, whenever g is a continuous, nonconstant and
nondecreasing real-valued function on R (with suitable asymptotic behavior
to make (1) true), there exist w0 ∈ C∞

0 (]0, 1[) and a positive λ such that the
two-point Dirichlet problem

{

−u′′ = λg(u) − w0(x) in ]0, 1[,

u(0) = u(1) = 0,

has at least three classical solutions.

The aim of the present paper is to prove an analogous result for a more
general class of problems, built on partial differential equations involving
the p-Laplacian: namely, let g be a continuous function on Ω × R (where
Ω ⊂ R

N is a bounded domain with smooth boundary), satisfying standard
growth conditions and a certain asymptotic assumption (see Section 3 for
more details); moreover, let g(x, ·) be nondecreasing for all x ∈ Ω. We shall

prove that, for an arbitrary convex, dense subset S of W 1,p
0 (Ω), there exist

u0 ∈ S and λ > 0 such that the Dirichlet problem

(P )

{

−∆pu = λg(x, u+ u0(x)) in Ω,

u = 0 in ∂Ω,

has at least three weak solutions.

The same approach leads to a multiplicity theorem for the Neumann
problem as well: namely, under the same assumptions on Ω and g, for an
arbitrary convex, dense subset S′ of W 1,p(Ω), there exist u0 ∈ S′ and λ > 0
such that the Neumann problem

(Q)

{

−∆pu+ |u|p−2u = λg(x, u+ u0(x)) in Ω,

∂u/∂n = 0 in ∂Ω,

(where n denotes the outward unit normal to ∂Ω) has at least three weak
solutions.

Notice that u0 and λ are not explicitly determined.

Solutions of (P ) (resp. (Q)) are found as critical points of a certain func-

tional on W 1,p
0 (Ω) (resp. W 1,p(Ω)), so we need to extend Ricceri’s theorem

to a class of Banach spaces wide enough to embrace this case. Moreover, it
will be necessary to refer to a more general form of Tsar’kov’s result:

Theorem A ([6, Theorem 2], [2, Lemma 1]). Let X be a uniformly con-

vex Banach space with strictly convex topological dual, and M a sequentially

weakly closed and nonconvex subset of X. Then, for any convex, dense subset

S of X, there exists x0 ∈ S such that the set

{y ∈M : ‖y − x0‖ = d(x0,M)}

has at least two points.
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Here we denote by d(x0,M) the distance between x0 and the set M .

A further condition on the space arises from the need that the functional
x 7→ ‖x‖p (p > 1) be continuously Gateaux differentiable (which is trivial
in the case of Hilbert spaces with p = 2): for this purpose, it is sufficient
to require that the norm be Fréchet differentiable on the unit sphere (see
[1] and Section 2 for more details). This assumption places our space some-
where between the classes of “very smooth” and of “uniformly smooth”
Banach spaces. Notice that such a space, provided it is reflexive, has a
strictly convex topological dual ([1, Theorem 1 and Corollary 1, Section 1,
Chapter 2]).

In the proof of our abstract result, we will refer to the following minimax
theorem:

Theorem B ([4, Theorem 1 and Remark 1]). Let X be a topological

space, I a real interval, and f : X×I → R a function satisfying the following

conditions:

(c1) for every x ∈ X, the function f(x, ·) is quasi-concave and continuous;

(c2) for every λ ∈ I, the function f(·, λ) is lower semicontinuous and each

of its local minima is a global minimum;

(c3) there exist ̺0 > supI infX f and λ0 ∈ I such that the set

{x ∈ X : f(x, λ0) ≤ ̺0}

is compact.

Then

sup
I

inf
X
f = inf

X
sup

I
f.

2. Abstract results. Before stating our results, we need the following
definition.

Let X be a Banach space. After [1], we define a support mapping as a
function ϕ : X \ {0} → X∗ \ {0} satisfying:

(SM1) ‖ϕ(x)‖X∗ = 1 = 〈ϕ(x), x〉 for all x ∈ S(X), where S(X) is the
unit sphere in X;

(SM2) ϕ(̺x) = ̺ϕ(x) for all ̺ > 0 and x ∈ X \ {0}.

Our main result reads as follows:

Theorem 1. Let X be a real uniformly convex Banach space with Fré-

chet differentiable norm on S(X), p > 1, and J be a nonconstant , continu-

ously Gateaux differentiable functional with compact derivative, satisfying

(2) lim sup
‖x‖→∞

J(x)

‖x‖p
≤ 0.
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Then for every r ∈ ]infX J, supX J [ and every x0 ∈ J−1(]−∞, r[) one of the

following conditions is true:

(a) there exists λ > 0 such that the functional defined on X by

x 7→ ‖x− x0‖
p/p− λJ(x)

admits at least three critical points;
(b) there exists y ∈ J−1(r) such that

‖x− x0‖ > ‖y − x0‖

for all x ∈ J−1([r,∞[) with x 6= y.

Proof. First of all, we show that condition (a) is meaningful.

From [1, Theorem 1, Section 2, Chapter 2] it follows that, since the norm
of X is Fréchet differentiable on S(X), there exists a support mapping ϕ
which is norm-to-norm continuous from S(X) to S(X∗). It is easily seen
that, actually, ϕ is continuous on X \ {0} and the functional x 7→ ‖x‖ is
continuously Gateaux differentiable on X \ {0} with derivative given by

x 7→ ϕ(x)/‖x‖.

Thus, for every x0 ∈ X, the functional x 7→ ‖x− x0‖
p/p is continuously

Gateaux differentiable in X and its derivative is the operator A : X → X∗

defined by

A(x) =

{

‖x− x0‖
p−2ϕ(x− x0) if x 6= x0,

0 if x = x0.

Now we can prove our result. Fix r, x0 as in the statement, and assume
that (a) does not hold: we shall prove that (b) is true.

Set I = [0,∞[ and define f : X × I → R by putting

f(x, λ) = ‖x− x0‖
p/p+ λ(r − J(x)).

We are going to apply Theorem B to f , endowing X with the weak
topology, so let us check the hypotheses. Condition (c1) is trivial. Since
r < supX J , it is immediately seen that supI infX f < ∞, so condition (c3)
is obviously fulfilled with λ0 = 0.

The discussion of condition (c2) is more complex. Fix λ ≥ 0. Observe that
f(·, λ) is sequentially weakly lower semicontinuous (l.s.c.), as it is the sum
of x 7→ ‖x− x0‖

p/p, which is weakly l.s.c., and of x 7→ λ(r − J(x)), which
is sequentially weakly continuous since J ′ is compact and X is reflexive (see
[7, Corollary 41].

Moreover, we prove that f(·, λ) is coercive: in fact, for every ε ∈ ]0, 1/pλ[
it follows from (2) that there exists δ > 0 such that

J(x) < ε‖x‖p whenever ‖x‖ ≥ δ;
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thus, for all x ∈ X with ‖x‖ ≥ max{δ, ‖x0‖},

f(x, λ) > ‖x‖p

(

‖x− x0‖
p

p‖x‖p
− λε

)

+ λr

≥ ‖x‖p

(

(‖x‖ − ‖x0‖)
p

p‖x‖p
− λε

)

+ λr,

and the latter goes to ∞ as ‖x‖ → ∞. As a consequence of the Eberlein–
Shmul’yan Theorem, f(·, λ) is weakly l.s.c.

We need to verify that every local minimum of f(·, λ) is a global mini-
mum: with this aim in mind, we first observe that f(·, λ) is a continuously
Gateaux differentiable functional with derivative A − λJ ′. Then we prove
that f(·, λ) satisfies the Palais–Smale condition.

Let {zn} be a Palais–Smale sequence, that is, a sequence in X such that

(PS1) {f(zn, λ)} is bounded;
(PS2) limn ‖A(zn) − λJ ′(zn)‖X∗ = 0.

From (PS1), together with the coercivity of f(·, λ), it follows that {zn}
is bounded, that is, there exists a positive constant M such that ‖zn‖ ≤M
for all n, hence we find a subsequence, which we still denote {zn}, weakly
convergent to a point z0 ∈ X. Then, again by compactness of J ′, we can
assume that {J ′(zn)} converges to some ψ ∈ X∗.

Let us prove that {zn} is strongly convergent to z0.

By (PS2), for every ε > 0 we can find ν ∈ N such that for all n > ν,

‖A(zn) − λJ ′(zn)‖X∗ <
ε

M + ‖z0‖

so in particular

〈A(zn) − λJ ′(zn), zn − z0〉 < ε.

Due to the convergence of {J ′(zn)} to ψ,

lim
n
〈J ′(zn), zn − z0〉 = 0,

so we get

lim
n
〈A(zn), zn − z0〉 = 0;

moreover, by the weak convergence of {zn} to z0,

(3) lim
n
〈A(zn) −A(z0), zn − z0〉 = 0.

To avoid trivial cases, we assume that zn 6= x0 for all n and z0 6= x0;
then we have
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〈A(zn) −A(z0), zn − z0〉

= 〈‖zn − x0‖
p−2ϕ(zn − x0) − ‖z0 − x0‖

p−2ϕ(z0 − x0), zn − z0〉

= 〈‖zn − x0‖
p−2ϕ(zn − x0) − ‖z0 − x0‖

p−2ϕ(z0 − x0),

(zn − x0) + (x0 − z0)〉

≥ (‖zn − x0‖
p−1 − ‖z0 − x0‖

p−1)(‖zn − x0‖ − ‖z0 − x0‖).

It is well known that there exists a constant kp such that

(‖zn − x0‖
p−1 − ‖z0 − x0‖

p−1)(‖zn − x0‖ − ‖z0 − x0‖)

≥ kp(‖zn − x0‖ − ‖z0 − x0‖)
p,

where p = max{p, 2}. Then, from (3) it follows that

lim
n

‖zn − x0‖ = ‖z0 − x0‖

and hence {zn} is strongly convergent to z0, that is, the Palais–Smale con-
dition is fulfilled.

We can now check condition (c2), arguing by contradiction: suppose that
f(·, λ) admits a local, nonglobal minimum; also being coercive, it also has a
global minimum too, that is, it has two strong local minima. Applying the
Pucci–Serrin Mountain Pass Theorem, we deduce the existence of a third
critical point for f(·, λ); thus, the functional of condition (a) would have
three critical points, contrary to our assumption.

Now Theorem B ensures that

(4) sup
λ∈I

inf
x∈X

f(x, λ) = inf
x∈X

sup
λ∈I

f(x, λ) =:α.

Notice that the function λ 7→ infx∈X f(x, λ) is upper semicontinuous on I,
and tends to −∞ as λ→ ∞ (since r < supX J); thus, it attains its supremum
at some λ∗ ∈ I, that is,

(5) α = inf
x∈X

(

‖x− x0‖
p

p
+ λ∗(r − J(x))

)

.

The infimum on the right hand side of (4) is easily determined as

α = inf
x∈J−1([r,∞[)

‖x− x0‖
p

p
=

‖y − x0‖
p

p

for some y ∈ J−1([r,∞[).
Actually we have y ∈ J−1(r): in fact, if J(y) > r, there would exist a

point z belonging to the segment joining x0 and y such that J(z) = r and

‖x0 − z‖ < d(x0, J
−1([r,∞[)),

which is a contradiction. Hence

(6) α = inf
x∈J−1(r)

‖x− x0‖
p

p
(in particular α > 0).
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By (5) and (6) it follows that

(7) inf
x∈X

(

‖x− x0‖
p

p
− λ∗J(x)

)

= inf
x∈J−1(r)

(

‖x− x0‖
p

p
− λ∗J(x)

)

.

We deduce that λ∗ > 0: if λ∗ = 0, then (7) becomes α = 0, contrary to (6).

Now we can prove (b). Arguing by contradiction, let z ∈ J−1([r,∞[)\{y}
be such that ‖z− x0‖ = ‖y− x0‖. As above, we see that z ∈ J−1(r), and so
both z and y are global minima of the functional

x 7→ ‖x− x0‖
p/p− λ∗J(x)

on J−1(r), and so by (7) on X. Thus, the Pucci–Serrin Mountain Pass The-
orem shows that this functional has at least three critical points, contrary
to the assumption that (a) does not hold (recall that λ∗ is positive).

This concludes the proof.

Corollary 1. Let X, J , p be as in Theorem 1 and let S be a convex ,
dense subset of X. Then for every r ∈ ]infX J, supX J [ such that J−1([r,∞[)
is not convex there exist x0 ∈ J−1(]−∞, r[) ∩ S and λ > 0 such that the

functional on X defined by

x 7→ ‖x− x0‖
p/p− λJ(x)

admits at least three critical points.

Proof. First of all, since X has a norm Fréchet differentiable on S(X)
and is reflexive (as seen in the Introduction), it follows that X∗ is strictly
convex. Moreover, J−1([r,∞[) is sequentially weakly closed.

By Theorem A, for some x0 ∈ J−1(]−∞, r[) ∩ S there exist two distinct
points y1, y2 ∈ J−1([r,∞[) satisfying

‖y1 − x0‖ = ‖y2 − x0‖ = d(x0, J
−1([r,∞[)).

Thus, condition (b) of Theorem 1 is false, so there exists λ > 0 such that
x 7→ ‖x− x0‖

p/p− λJ(x) has at least three critical points in X.

3. An application to PDE. Throughout the following,Ω will denote a
bounded domain in R

N with C1 boundary, p a real number with 1 < p < N ,
g : Ω × R → R a continuous function satisfying the growth condition

(8) |g(x, ξ)| ≤ a|ξ|q−1 + b(x) for all x ∈ Ω, ξ ∈ R

for some a > 0, q ∈ ]1, p∗[ (p∗ being the critical Sobolev exponent), and
b ∈ Lq′(Ω). We define G : Ω × R → R by putting

G(x, ξ) =

ξ\
0

g(x, η) dη.
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We denote by X the space W 1,p
0 (Ω) endowed with the norm

‖u‖ =
( \

Ω

|∇u(x)|p dx
)1/p

,

and recall that for all q ∈ ]1, p∗[, X is compactly embedded in Lq(Ω) (we
denote by cq the embedding constant).

By classical results, the functional J : X → R defined by

J(u) =
\
Ω

G(x, u(x)) dx

is continuously Gateaux differentiable with compact derivative given by

〈J ′(u), v〉 =
\
Ω

g(x, u(x))v(x) dx

for all u, v ∈ X.

Theorem 2. Let Ω ⊂ R
N , g, p be as above and let (8) be satisfied.

Moreover assume:

(g1) g(x, ·) is nondecreasing for all x ∈ Ω;

(g2) there exists x0 ∈ Ω such that g(x0, ·) is not constant ;

(g3) lim
|ξ|→∞

sup
x∈Ω

G(x, ξ)

|ξ|p
= 0.

Then, for every r ∈ ]infX J, supX J [ and every convex , dense subset S of X
there exist u0 ∈ S with J(u0) < r and λ > 0 such that problem (P ) has at

least three weak solutions.

Proof. We observe that X is a uniformly convex Banach space and its
norm is continuously Gateaux differentiable over X \ {0}. A fortiori, it is
Fréchet differentiable on S(X).

We claim that J satisfies (2). Fix ε > 0. By (g3), there exists δ > 0 such
that

sup
x∈Ω

G(x, ξ)

|ξ|p
<

ε

2cpp

whenever |ξ| ≥ δ.

Define k = supx∈Ω, |ξ|≤δ |G(x, ξ)| (without loss of generality we may as-
sume k > 0). Choose u ∈ X with

‖u‖ >

(

2k|Ω|

ε

)1/p

and put

Ω1 = {x ∈ Ω : |u(x)| ≤ δ} and Ω2 = Ω \Ω1.
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Then we have

J(u) ≤
\

Ω1

|G(x, u(x))| dx+
\

Ω2

ε

2cpp
|u(x)|p dx

≤ k|Ω1| +
ε

2cpp
‖u‖p

Lp(Ω) ≤ k|Ω| +
ε

2
‖u‖p.

Hence,
J(u)

‖u‖p
≤
k|Ω|

‖u‖p
+
ε

2
< ε,

which is our claim.
We now prove that J is not constant. By (g1) and (g2) there exist α′ and

α′′ with α′ < α′′ such that

g(x0, α
′) < g(x0, α

′′).

Assume, for instance, that g(x0, α
′) 6= 0.

Arguing by contradiction, suppose that J is constant. Then

〈J ′(u), v〉 =
\
Ω

g(x, u(x))v(x) dx = 0

for all u, v ∈ X, and in particular, g(x, u(x)) = 0 for all u ∈ X and a.e. x
in Ω. Choose w ∈ C1

0 (Ω) such that w(x0) = α′. We deduce that g(x,w(x))
= 0 for all x ∈ Ω, and so in particular g(x0, α

′) = 0, a contradiction.
Thus, we may choose r ∈ ]infX J, supX J [ and prove that J−1([r,∞[) is

not convex: first of all, by (g1), G(x, ·) is a convex function over R for all
x ∈ Ω, which implies that J is a convex functional overX; then J−1(]−∞, r])
is convex, so our claim is equivalent to the nonconvexity of J−1(r). We will
assume by contradiction that J−1(r) is convex.

By the continuity of g, we can find ε ∈ ]0, (α′′ − α′)/2[ such that

(9) g(x0, ξ
′) < g(x0, ξ

′′) for all ξ′ ∈ ]α′ − ε, α′ + ε[, ξ′′ ∈ ]α′′ − ε, α′′ + ε[.

We recall that C∞
0 (Ω) is everywhere dense in X so since J−1(]−∞, r[)

and J−1(]r,∞[) are nonempty open sets in X, there exist v1, v2 ∈ C∞
0 (Ω)

such that

J(v1) := r1 < r < r2 =: J(v2).

Define

K = sup
{

|G(x, ξ)| : x ∈ Ω, |ξ| ≤ max(|α′|, ‖v1‖L∞(Ω), ‖v2‖L∞(Ω))
}

.

Notice that K > 0. Fix σ ∈ R such that r1 + σ < r < r2 − σ. Since the
functions G(·, vi(·)) (i = 1, 2) belong to L1(Ω), there exists δ > 0 such that

∣

∣

∣

\
A

G(x, vi(x)) dx
∣

∣

∣
<
σ

2
(i = 1, 2)

for all subsets A of Ω with |A| < δ.
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Denote by B a closed ball centered at x0 whose measure satisfies

|B| < min

{

σ

2K
, δ

}

.

By classical results, it is possible to construct continuous functions wi :
R

N → R (i = 1, 2) such that

wi(x) =







α′ if x = x0,

vi(x) if x ∈ Ω \B,

0 if x ∈ R
N \Ω,

and ‖wi‖L∞(RN ) ≤ max{|α′|, ‖vi‖L∞(Ω)}.
The previous conditions yield\

Ω

G(x,w1(x)) dx =
\
B

G(x,w1(x)) dx+ J(v1) −
\
B

G(x, v1(x)) dx(10)

< K|B| + r1 + σ/2 < r1 + σ < r.

In a similar way

(11)
\
Ω

G(x,w2(x)) dx > r.

Let {̺n} be a mollifier sequence and hi
n (i = 1, 2) the convolution

hi
n = ̺n ∗ wi.

By the theory of convolution hi
n belongs to C∞

0 (RN ) and in particular to X
(for n large enough). Moreover {hi

n} uniformly converges to wi on compact
sets of R

N . Thus,

lim
n
J(hi

n) =
\
Ω

G(x,wi(x)) dx,

so by (10) and (11) and the uniform convergence we can choose m so large
that J(h1

m) < r < J(h2
m) and |hi

m(x0) − α′| < ε for i = 1, 2. The set

Γ = {u ∈ C∞
0 (Ω) : |u(x0) − α′| < ε}

is convex. So the segment joining h1
m and h2

m is contained in Γ ; moreover
by the continuity of J , there exists a point u′ of the segment such that
J(u′) = r. Analogously there exists u′′ ∈ C∞

0 (Ω) such that |u′′(x0)−α
′′| < ε

and J(u′′) = r.
Since J−1(r) is assumed to be convex, the function µ 7→ J(µu′+(1−µ)u′′)

is constant on [0, 1]. Hence its derivative is zero, that is,

〈J ′(µu′ + (1 − µ)u′′), u′ − u′′〉 = 0

for all µ ∈ [0, 1]. In particular\
Ω

[g(x, u′(x)) − g(x, u′′(x))](u′(x) − u′′(x)) dx = 0,
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and by (g1) we get

[g(x, u′(x)) − g(x, u′′(x))](u′(x) − u′′(x)) = 0

for all x ∈ Ω.

On the other hand,

α′ − ε < u′(x0) < α′ + ε < α′′ − ε < u′′(x0) < α′′ + ε,

and so g(x0, u
′(x0)) = g(x0, u

′′(x0)) contrary to (9).

We have thus proved that J−1([r,∞[) is not convex. By Corollary 1,
there exist u0 ∈ S with J(u0) < r and λ > 0 such that the functional
u 7→ ‖u− u0‖

p/p − λJ(u) has at least three critical points in X. Since for
such critical point u ∈ X, u − u0 is a weak solution of (P ), the proof is
concluded.

If our assumptions are fulfilled for p = 2 < N and we choose u0 ∈
C∞

0 (Ω), then due to the linearity of the Laplacian operator, problem (P ) is
in a sense equivalent to the following:

(P ′)

{

−∆u = λg(x, u) −∆u0(x) in Ω,

u = 0 in ∂Ω.

In fact, it is immediately seen that u is a weak solution of (P ) iff u+u0 is a
weak solution of (P ′). Thus, the next result follows at once from Theorem 2:

Corollary 2. Let Ω ⊂ R
N and g be as above and let (8) and (g1)–(g3)

be satisfied for p = 2. Then for every r ∈ ]infX J, supX J [ and every convex ,
dense subset S of C∞

0 (Ω) there exist u0 ∈ S with J(u0) < r and λ > 0 such

that problem (P ′) has at least three weak solutions.

Remark 1. If, in addition to the hypotheses of Theorem 2, we assume
that g(x, ·) is positively homogeneous with some exponent β 6= p− 1 for all
x ∈ Ω, we can “hide” the parameter λ. Let V be a dense linear subspace of
X, and fix r ∈ ]infX J, supX J [; then we find u0 ∈ V and λ > 0 such that
problem (P ) has at least three solutions. Now put γ = 1/(β + 1 − p) and
v0 = λγu0 (v0 still belongs to V ); then the problem

(P ′′)

{

−∆pv = g(x, v + v0(x)) in Ω,

v = 0 in ∂Ω,

has at least three solutions. In fact, for each solution u ∈ X of (P ), the
function v = λγu is a solution of (P ′′). Notice that J(v0) < λγ(β+1)r.

Remark 2. There exist a sequence {un} ⊂ S and a sequence {λn} ⊂
]0,∞[ such that the problem

(Pn)

{

−∆pu = λng(x, u+ un(x)) in Ω,

u = 0 in ∂Ω,
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has at least three solutions for all n ∈ N, n ≥ 0. In fact, the existence of a
first pair u0, λ0 is ensured by Theorem 2, and the result can be generalized
by induction: once ui is determined for i = 0, . . . , n, there exists a subset
Sn+1 of S, convex and everywhere dense in S (hence in X), not containing
the points ui (see [6, Remark 1]); then it suffices to apply Theorem 2 to Sn+1

to find a new function un+1 ∈ Sn+1 and a positive λn+1 such that problem
(Pn+1) has at least three solutions.

Example 1. The above results allow us to establish that the uniqueness
of solution of boundary value problems can be unstable: that is, a problem
admitting exactly one nontrivial solution can be perturbed in infinitely many
ways so that each of the perturbed problems has at least three nontrivial
solutions.

Namely, let Ω be as above, q ∈ ]0, 1[ and g : R → R be defined by

g(ξ) =

{

0 if ξ ≤ 0,

ξq if ξ > 0.

Then it is well known that the problem
{

−∆u = g(u) in Ω,

u = 0 in ∂Ω,

has exactly one nontrivial solution.
Notice that g satisfies all hypotheses of Corollary 2 and Remark 1 (with

β = q); thus, recalling Remark 2, we observe that, choosing S = C∞
0 (Ω),

there exists a sequence {un} ⊂ C∞
0 (Ω) (un 6= 0 for all n ∈ N) such that for

all n ∈ N the problem
{

−∆u = g(u) −∆un(x) in Ω,

u = 0 in ∂Ω,

has at least three solutions (each of them is obviously different from zero).

Finally, we observe that a similar result can be proved for the problem
(Q), as pointed out in the Introduction. Under the same hypotheses on Ω,
p, g, set Y = W 1,p(Ω), endowed with the norm

‖u‖ =
( \

Ω

(|∇u(x)|p + |u(x)|p) dx
)1/p

.

Notice that Y has all the properties we need, and contains C∞(Ω) as a dense
linear subspace. Let G, J : Y → R be defined as above. Then the following
result holds:

Theorem 3. Let Ω ⊂ R
N , g, p be as above and let (8) and (g1)–(g3) be

satisfied. Then for every r ∈ ]infY J, supY J [ and every convex , dense subset

S′ of Y there exist u0 ∈ S′ with J(u0) < r and λ > 0 such that problem (Q)
has at least three weak solutions.
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