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An extension of a multiplicity theorem by Ricceri with
an application to a class of quasilinear equations

by

FRANCESCA FARACI and ANTONIO IANNIZZOTTO (Catania)

Abstract. A recent multiplicity result by Ricceri, stated for equations in Hilbert
spaces, is extended to a wider class of Banach spaces. Applications to nonlinear boundary
value problems involving the p-Laplacian are presented.

1. Introduction. In [5, Theorem 1], B. Ricceri has established a mul-
tiplicity theorem for the critical points of a continuously Gateaux differen-
tiable functional J over a Hilbert space X, satisfying

J(x)
(1) lim sup —5 < 0.
]|
Ricceri’s result ensures that, for each real r within the range of J and xg €
J71(]—o0,r[), either the functional

x> ||z — 2o||?/2 — M (x)  (for some A > 0)

admits at least three critical points, or the set J~!([r,oc0[) has a unique
point minimizing the distance from xy. Then he proves that, under very
general hypotheses (namely, the nonconvexity of J~!([r,00[)), for some xq
in a convex dense subset of X and some positive A, the first case occurs,
thus obtaining a multiplicity result. To this end, he employs a result of
Tsar’kov ([6, Corollary 2]) dealing with the problem of best approximation
and Chebyshev sets, which sharpens a previous result of Efimov and Stechkin
([2, Theorem 3]).

For our purposes, Tsar’kov’s result can be stated as follows: in a Hilbert
space, let M be a nonconvex, sequentially weakly closed set and S be a
convex, dense set; then there exists a point zg € S admitting at least two
points of best approximation in M.

Both in [5] and in [6], an interesting link is established between best
approximation theory and critical point theory, as solutions of boundary

[[]| =00
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value problems are found as critical points of functionals of the type above.
Namely, in [5] it is shown that, whenever g is a continuous, nonconstant and
nondecreasing real-valued function on R (with suitable asymptotic behavior
to make (1) true), there exist wg € C§°(]0, 1]) and a positive A such that the
two-point Dirichlet problem

—u" = Ag(u) — wo(z) in ]0, 1],
{ u(0) = u(l) =0,
has at least three classical solutions.

The aim of the present paper is to prove an analogous result for a more
general class of problems, built on partial differential equations involving
the p-Laplacian: namely, let g be a continuous function on 2 x R (where
2 ¢ RY is a bounded domain with smooth boundary), satisfying standard
growth conditions and a certain asymptotic assumption (see Section 3 for
more details); moreover, let g(x, ) be nondecreasing for all z € 2. We shall
prove that, for an arbitrary convex, dense subset S of VVO1 P(£2), there exist
ug € S and A > 0 such that the Dirichlet problem

P —Apu = Ag(z,u+ up(x)) in £2,
(F) { u=20 in 012,
has at least three weak solutions.

The same approach leads to a multiplicity theorem for the Neumann
problem as well: namely, under the same assumptions on {2 and g, for an
arbitrary convex, dense subset S" of W1P(§2), there exist ug € S’ and A > 0
such that the Neumann problem

—Apu+ |ulP7?u = Ag(z,u + ug(z)) in £2,
(@) { ou/On =0 in 042,
(where n denotes the outward unit normal to 9f2) has at least three weak
solutions.
Notice that ug and A are not explicitly determined.
Solutions of (P) (resp. (Q)) are found as critical points of a certain func-
tional on VVO1 P(§2) (resp. W1P(£2)), so we need to extend Ricceri’s theorem

to a class of Banach spaces wide enough to embrace this case. Moreover, it
will be necessary to refer to a more general form of Tsar’kov’s result:

THEOREM A ([6, Theorem 2], 2, Lemma 1]). Let X be a uniformly con-
vex Banach space with strictly convex topological dual, and M a sequentially
weakly closed and nonconvex subset of X. Then, for any convex, dense subset
S of X, there exists xg € S such that the set

{y € M :|ly — wol| = d(xo, M)}

has at least two points.
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Here we denote by d(zg, M) the distance between zy and the set M.

A further condition on the space arises from the need that the functional
x +— ||z||P (p > 1) be continuously Gateaux differentiable (which is trivial
in the case of Hilbert spaces with p = 2): for this purpose, it is sufficient
to require that the norm be Fréchet differentiable on the unit sphere (see
[1] and Section 2 for more details). This assumption places our space some-
where between the classes of “very smooth” and of “uniformly smooth”
Banach spaces. Notice that such a space, provided it is reflexive, has a
strictly convex topological dual ([1, Theorem 1 and Corollary 1, Section 1,
Chapter 2]).

In the proof of our abstract result, we will refer to the following minimax
theorem:

THEOREM B ([4, Theorem 1 and Remark 1]). Let X be a topological
space, I a real interval, and f : X xI — R a function satisfying the following
conditions:

(c1)  for everyx € X, the function f(x,-) is quasi-concave and continuous;

(c2)  for every A € I, the function f(-, \) is lower semicontinuous and each
of its local minima is a global minimum;

(c3)  there exist oo > supyinfx f and \g € I such that the set

{z e X: f(z, ) < 00}
18 compact.

Then
inf f = inf .
sup iy / iny SI}pf

2. Abstract results. Before stating our results, we need the following
definition.

Let X be a Banach space. After [1], we define a support mapping as a
function ¢ : X \ {0} — X*\ {0} satisfying:

(SMy)  |le@)||lx+ = 1 = (p(x),z) for all z € S(X), where S(X) is the
unit sphere in X;
(SMs)  ¢(ox) = op(x) for all o >0 and x € X \ {0}.

Our main result reads as follows:

THEOREM 1. Let X be a real uniformly convexr Banach space with Fré-
chet differentiable norm on S(X), p > 1, and J be a nonconstant, continu-
ously Gateaux differentiable functional with compact derivative, satisfying

J(z)

(2) lim sup —— < 0.
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Then for every r € linfx J,supy J| and every xog € J~*(]—oc,r[) one of the
following conditions is true:

(a) there exists A > 0 such that the functional defined on X by
z = |l —xolP/p — A (@)

admits at least three critical points;
(b) there exists y € J1(r) such that

[ = aol| > [ly — ol
for all x € J~Y([r, 00[) with z # y.

Proof. First of all, we show that condition (a) is meaningful.

From [1, Theorem 1, Section 2, Chapter 2] it follows that, since the norm
of X is Fréchet differentiable on S(X), there exists a support mapping ¢
which is norm-to-norm continuous from S(X) to S(X*). It is easily seen
that, actually, ¢ is continuous on X \ {0} and the functional z — |z|| is
continuously Gateaux differentiable on X \ {0} with derivative given by

z = () /[|]-

Thus, for every zg € X, the functional © — |z — z¢[|?/p is continuously
Gateaux differentiable in X and its derivative is the operator A : X — X*
defined by

Alz) = { o = zolP~p(x — o) if x # w0,
0 if x = xo.
Now we can prove our result. Fix r, zg as in the statement, and assume
that (a) does not hold: we shall prove that (b) is true.
Set I = [0,00][ and define f: X x I — R by putting

f(@,A) = llz = @ol|?/p + A(r = J(2)).

We are going to apply Theorem B to f, endowing X with the weak
topology, so let us check the hypotheses. Condition (cy) is trivial. Since
r < supy J, it is immediately seen that sup;infx f < oo, so condition (c3)
is obviously fulfilled with Ag = 0.

The discussion of condition (c2) is more complex. Fix A > 0. Observe that
f(-, A) is sequentially weakly lower semicontinuous (l.s.c.), as it is the sum
of z — ||z — ||’ /p, which is weakly Ls.c., and of z — A(r — J(x)), which
is sequentially weakly continuous since J' is compact and X is reflexive (see
[7, Corollary 41].

Moreover, we prove that f(-, A) is coercive: in fact, for every € € |0, 1/pA]
it follows from (2) that there exists 6 > 0 such that

J(z) <el|lz|” whenever || > d;
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thus, for all z € X with ||z| > max{Jd, ||zo||},

o — ol
fz,A) > ||:17||p<7 —AXe | +Ar
pll(?
_ P
> ||x||p<M _ )\5) ™
pllz(?

and the latter goes to co as ||z]| — oco. As a consequence of the Eberlein—
Shmul’yan Theorem, f(-,\) is weakly l.s.c.

We need to verify that every local minimum of f(-,\) is a global mini-
mum: with this aim in mind, we first observe that f(-, \) is a continuously
Gateaux differentiable functional with derivative A — AJ’. Then we prove
that f(-,\) satisfies the Palais—Smale condition.

Let {z,} be a Palais—Smale sequence, that is, a sequence in X such that
(PS1)  {f(2zn,A)} is bounded;
(PS2)  limy, [[A(2n) — A (20)||x+ = 0.

From (PS;), together with the coercivity of f(-,\), it follows that {z,}
is bounded, that is, there exists a positive constant M such that ||z, | < M
for all n, hence we find a subsequence, which we still denote {z,}, weakly
convergent to a point zg € X. Then, again by compactness of J', we can
assume that {J'(z,)} converges to some 9 € X*.

Let us prove that {z,} is strongly convergent to zy.
By (PS2), for every € > 0 we can find v € N such that for all n > v,

3

Azn _)\J/ Zn < —
4Ga) = M Gl < 3

so in particular
(A(zn) = A (2n), 2n — 20) < €.
Due to the convergence of {J'(zy)} to v,
lim(J'(2,), 20 — 20) = 0,
n
so we get
Hm(A(zy), zn, — 20) = 0;
n
moreover, by the weak convergence of {z,} to 2o,

(3) liy]{n(A(zn) — A(z0), 2n — 20) = 0.

To avoid trivial cases, we assume that z, # xg for all n and zg # xo;
then we have
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(A(zn) — A(20), 2n — 20)
= (|lzn — zollP (20 — x0) — [l20 — 0l (20 — 70), 20 — 20)
= (|lzn — zoll" (20 — x0) — ll20 — zolP">@(20 — 20),

(zn — x0) + (20 — 20))

> (ll2n = @ol"~" = 20 = 20"~ ) (ll2n — woll = l|20 — o).
It is well known that there exists a constant k, such that
(Ilzn = @0l P~* = [l20 = 2ol ")(l|2n — woll = [|20 = zo])) )
> kp(ll2n = ol = ll20 — zo])”,

where p = max{p, 2}. Then, from (3) it follows that
lim [|z;, — o = [|z0 — o

and hence {z,} is strongly convergent to zg, that is, the Palais—Smale con-
dition is fulfilled.

We can now check condition (c2), arguing by contradiction: suppose that
f(-,\) admits a local, nonglobal minimum; also being coercive, it also has a
global minimum too, that is, it has two strong local minima. Applying the
Pucci—Serrin Mountain Pass Theorem, we deduce the existence of a third
critical point for f(-,A); thus, the functional of condition (a) would have
three critical points, contrary to our assumption.

Now Theorem B ensures that
(4) sup inf f(x,\) = inf sup f(z,\) =: a.

rel T€X z€X )\eJ
Notice that the function A — inf,cx f(z,A) is upper semicontinuous on I,
and tends to —oo as A — oo (since 7 < supy J); thus, it attains its supremum
at some \* € I, that is,

(5) aziM(

zeX

[l = xol[”

- +V&—J@»>

The infimum on the right hand side of (4) is easily determined as

[z —zoll” _ [ly — xol[”

a= inf
zeJ 1 ([r,00[) p p
for some y € J~1([r, o).

Actually we have y € J~!(r): in fact, if J(y) > 7, there would exist a
point z belonging to the segment joining x¢ and y such that J(z) = r and
[0 — z|| < d(xo, T~} ([r, o)),

which is a contradiction. Hence
[l — @oll”

(6) a= inf

in particular a > 0).
zeJ—1(r) p ( P )
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By (5) and (6) it follows that
— p — p
(7)  inf (M - X“J(:::)) ~— inf (M - A*J(a;)).

zeX p zeJ—1(r) P

We deduce that A* > 0: if \* =0, then (7) becomes a = 0, contrary to (6).

Now we can prove (b). Arguing by contradiction, let z € J~1([r, 0o[)\{y}
be such that ||z — xo|| = ||y — 20l|. As above, we see that z € J~!(r), and so
both z and y are global minima of the functional

x|z —xol[P/p — A" J ()

on J~1(r), and so by (7) on X. Thus, the Pucci-Serrin Mountain Pass The-
orem shows that this functional has at least three critical points, contrary
to the assumption that (a) does not hold (recall that \* is positive).

This concludes the proof. =

COROLLARY 1. Let X, J, p be as in Theorem 1 and let S be a conver,
dense subset of X. Then for every r € |infy J,supy J[ such that J~1([r, co])
is not convex there exist xg € J (]—oo,r[) NS and X > 0 such that the
functional on X defined by

2= |z —woll?/p — AJ ()
admits at least three critical points.

Proof. First of all, since X has a norm Fréchet differentiable on S(X)
and is reflexive (as seen in the Introduction), it follows that X™* is strictly
convex. Moreover, J1([r, 0o[) is sequentially weakly closed.

By Theorem A, for some xg € J~1(]—o0,7[) NS there exist two distinct
points y1, y2 € J1([r, 0o[) satisfying

Iy = zoll = [ly2 — woll = d(xo, J~H([r, o0]))-

Thus, condition (b) of Theorem 1 is false, so there exists A > 0 such that
x — ||z — z0||P/p — AJ(x) has at least three critical points in X. =

3. An application to PDE. Throughout the following, {2 will denote a
bounded domain in RV with C'' boundary, p a real number with 1 < p < N,
g: 82 xR — R a continuous function satisfying the growth condition

(8) l9(z,8)| < alé|" " +b(z) forallze R

for some a > 0, ¢ € |1,p*[ (p* being the critical Sobolev exponent), and
b e LY (). We define G : 2 x R — R by putting

3

0
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We denote by X the space WO1 P(£2) endowed with the norm

full = ([ IVu(@)P dz) ",
2

and recall that for all ¢ € ]1,p*[, X is compactly embedded in L9(£2) (we
denote by ¢, the embedding constant).

By classical results, the functional J : X — R defined by
J(u) = S G(z,u(z))dx
0
is continuously Gateaux differentiable with compact derivative given by
(' (), 0) = § gl u(@))o() do
0
for all u,v € X.

THEOREM 2. Let 2 C RN, g, p be as above and let (8) be satisfied.
Moreover assume:

(g1) g(z,-) is nondecreasing for all x € {2;
(g2)  there exists xg € §2 such that g(xg,-) is not constant;

: G(z,€)
lim sup =0.
(8s) L 500 e

Then, for every r € |infx J,supy J[ and every convez, dense subset S of X
there exist ug € S with J(up) < r and X\ > 0 such that problem (P) has at
least three weak solutions.

Proof. We observe that X is a uniformly convex Banach space and its
norm is continuously Gateaux differentiable over X \ {0}. A fortiori, it is
Fréchet differentiable on S(X).

We claim that J satisfies (2). Fix ¢ > 0. By (g3), there exists § > 0 such
that
G(z,¢) L€

sup
TES? |§|p 265

whenever [£| > 4.

Define k = sup,cg |¢j<s |G (2, §)| (without loss of generality we may as-
sume k > 0). Choose v € X with

2k| 02|\ /P
bl > { ——

O ={ze?:|ulx)] <} and 2 =102\ 02.

and put
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Then we have

J(w) < | |G, u(z)|dz + |
(071 {22

g
< b+ 5l ) < K121+ Sl

;—Cg lu() [P da

£ |
27
Hence,

J(u) < k|£2| 3

Tule = Jup T2 °°

which is our claim.
We now prove that J is not constant. By (g1) and (g2) there exist o/ and
o with o/ < o such that

g(zo, ') < g(z0,a").
Assume, for instance, that g(zg,a’) # 0.
Arguing by contradiction, suppose that J is constant. Then

(), v) = | gz, u(@))u(z) dz = 0
N
for all u,v € X, and in particular, g(z,u(z)) = 0 for all v € X and a.e. x
in 2. Choose w € C(£2) such that w(xg) = o/. We deduce that g(z,w(x))
=0 for all z € 2, and so in particular g(zg, ') = 0, a contradiction.

Thus, we may choose r € Jinfx J,supy J[ and prove that J~!([r,00]) is
not convex: first of all, by (g1), G(z,-) is a convex function over R for all
x € §2, which implies that J is a convex functional over X; then J~*(]—c0, 7])
is convex, so our claim is equivalent to the nonconvexity of J~1(r). We will
assume by contradiction that J~1(r) is convex.

By the continuity of g, we can find € € |0, (&’ — a')/2[ such that

9) g(x0,&) < g(x0,") forall g €]a’ —e,a/ +¢f, £ €]a” —e,a" +¢.
We recall that C§°(£2) is everywhere dense in X so since J~1(]—o0,7])
and J~1(]r, 00[) are nonempty open sets in X, there exist v1,vy € C§°(£2)
such that
J(v) :=r1 <r <rg=:J(va).
Define

K =sup {|G(x,&)| : # € 2, [¢] < max(|/], [[v1]| (@), [v2ll 1 (2)) } -

Notice that K > 0. Fix ¢ € R such that 1 + ¢ < r < r9 — 0. Since the
functions G(-,v;(+)) (i = 1,2) belong to L'({2), there exists § > 0 such that

HG(:B,Ui(:E))d:U <g (i=1,2)
A
for all subsets A of 2 with |A] < §.
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Denote by B a closed ball centered at xyp whose measure satisfies

o
B ing —,0 ¢.
|B| < mln{ 5K }
By classical results, it is possible to construct continuous functions w; :
RN — R (i = 1,2) such that
o if x = xg,
wi(z) = ¢ vi(x) ifxe R\ B,
0 if z € RV \ 02,
and [|wg| oo (mrvy < max{|a’], [|vill oo ()}
The previous conditions yield
(10) | Gz, wi(2)) dz = | Gz, wi(2)) dz + J(v1) — | G(z,v1(2)) d
Q2 B B
< K|B‘+7’1+O’/2<T‘1—|—O’<7‘.
In a similar way
(11) S G(z,w(z)) dx > r.
0
Let {0,} be a mollifier sequence and k!, (i = 1,2) the convolution
hf1 = 0y, * Wj.
By the theory of convolution hf, belongs to C§°(RY) and in particular to X

for n large enough). Moreover hz uniformly converges to w; on compact
sets of RN. ThUS,

lim J(h},) = | Gz, wi(z)) dx,
" Q
so by (10) and (11) and the uniform convergence we can choose m so large
that J(hL) <r < J(h2,) and |hi,(zg) — o'| < & for i = 1,2. The set
I'={uecCR2): |u(zy) — | <&}

is convex. So the segment joining k! and h2, is contained in I'; moreover
by the continuity of J, there exists a point u’ of the segment such that
J(u") = r. Analogously there exists u” € C§°(§2) such that |u”(zg) — | < e
and J(u") =r.

Since J~1(r) is assumed to be convex, the function p +— J (/' +(1—p)u')
is constant on [0, 1]. Hence its derivative is zero, that is,

(J'(pu’ + (1 = p)u”),u" = ") =0

for all p € [0,1]. In particular

Jlg(z, ' (2)) = gz, u"(2)))(u/ () = u"(2)) dz = 0,
9]
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and by (g1) we get

l9(z,u/(2)) — g(z,u"(2))](v(z) — u"(z)) =0
for all z € (2.
On the other hand,

o —e<u(xg) <d +e<a —e<u(x) <’ +¢,

and so g(zo, v (z9)) = g(xo,u”(x0)) contrary to (9).

We have thus proved that J~1([r,oc[) is not convex. By Corollary 1,
there exist ugp € S with J(up) < r and A > 0 such that the functional
u — |Ju —uo|[?/p — AJ(u) has at least three critical points in X. Since for
such critical point u € X, u — ugp is a weak solution of (P), the proof is
concluded. =

If our assumptions are fulfilled for p = 2 < N and we choose ug €
C3°(£2), then due to the linearity of the Laplacian operator, problem (P) is
in a sense equivalent to the following;:

(P') { —Au = Ag(x,u) — Aug(x) in £,
u=20 in 042
In fact, it is immediately seen that u is a weak solution of (P) iff u+ug is a
weak solution of (P’). Thus, the next result follows at once from Theorem 2:

COROLLARY 2. Let 2 C RN and g be as above and let (8) and (g1)—(g3)
be satisfied for p = 2. Then for every r € |infx J,supy J[ and every convez,
dense subset S of C§°(§2) there exist ug € S with J(ug) < r and X\ > 0 such
that problem (P') has at least three weak solutions.

REMARK 1. If, in addition to the hypotheses of Theorem 2, we assume
that g(z,-) is positively homogeneous with some exponent (3 # p — 1 for all
x € {2, we can “hide” the parameter \. Let V be a dense linear subspace of
X, and fix r € Jinfx J,supy J[; then we find up € V and A > 0 such that
problem (P) has at least three solutions. Now put v = 1/(5+1—p) and
vo = Nug (vg still belongs to V'); then the problem

(P//) _Apv :g(ﬂf,U—FU()(ZL')) in Qv
v=20 in 042,
has at least three solutions. In fact, for each solution u € X of (P), the
function v = Au is a solution of (P"). Notice that J(vg) < AN+,

REMARK 2. There exist a sequence {u,} C S and a sequence {\,} C
10, o[ such that the problem
—Apu = A\pg(z,u+ up(x)) in L2,
(Fn) .
u=20 in 042,
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has at least three solutions for all n € N, n > 0. In fact, the existence of a
first pair ug, Ag is ensured by Theorem 2, and the result can be generalized
by induction: once u; is determined for ¢ = 0,...,n, there exists a subset
Sp+1 of S, convex and everywhere dense in S (hence in X), not containing
the points u; (see [6, Remark 1]); then it suffices to apply Theorem 2 to S, 41
to find a new function u,11 € Sy4+1 and a positive A,4+1 such that problem
(P,+1) has at least three solutions.

ExaMPLE 1. The above results allow us to establish that the uniqueness
of solution of boundary value problems can be unstable: that is, a problem
admitting exactly one nontrivial solution can be perturbed in infinitely many
ways so that each of the perturbed problems has at least three nontrivial
solutions.

Namely, let {2 be as above, g € ]0,1][ and g : R — R be defined by

[0 ifg<o,
9(5)_{§q if € > 0.

Then it is well known that the problem
—Au = g(u) in £2,
{ u=20 in 012,
has exactly one nontrivial solution.
Notice that g satisfies all hypotheses of Corollary 2 and Remark 1 (with
B = q); thus, recalling Remark 2, we observe that, choosing S = C§°(£2),

there exists a sequence {u,} C C3°(£2) (up # 0 for all n € N) such that for
all n € N the problem

—Au = g(u) — Aup(z) in £2,
u=20 in 042,
has at least three solutions (each of them is obviously different from zero).

Finally, we observe that a similar result can be proved for the problem
(@), as pointed out in the Introduction. Under the same hypotheses on (2,
p, g, set Y = WHP(02), endowed with the norm

full = ({(ut@) + ut)p)de) "
2

Notice that Y has all the properties we need, and contains C°°({2) as a dense
linear subspace. Let G,J : Y — R be defined as above. Then the following
result holds:

THEOREM 3. Let 2 CRY, g, p be as above and let (8) and (g1)—(g3) be
satisfied. Then for every r € |infy J,supy J[ and every convez, dense subset
S" of Y there exist ug € S" with J(ug) <1 and A > 0 such that problem (Q)
has at least three weak solutions.
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