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The diagonal mapping in mixed norm spaces

by

Guangbin Ren (Hefei and Aveiro) and Jihuai Shi (Hefei)

Abstract. For any holomorphic function F in the unit polydisc Un of Cn, we con-
sider its restriction to the diagonal, i.e., the function in the unit disc U of C defined by
DF (z) = F (z, . . . , z), and prove that the diagonal mapping D maps the mixed norm space

Hp,q,α(Un) of the polydisc onto the mixed norm space Hp,q,|α|+(p/q+1)(n−1)(U) of the unit
disc for any 0 < p <∞ and 0 < q ≤ ∞.

1. Introduction. Let Un be the polydisc in Cn and Tn be its Shilov
boundary (see [Ru1]). Denote by dmn the normalized volume measure in
Un, and by dσn the normalized surface measure on T n. For any Lebesgue
measurable function f in Un, we define

(1.1) Mq(r, f) =
( �

Tn

|f(rζ)|q dσn(ζ)
)1/q

,

where 0 < q < ∞ and rζ = (r1ζ1, . . . , rnζn). When q = ∞, as usual, we
define M∞(r, f) to be the essential supremum of |f(rζ)| over ζ ∈ T n. If
0 < p <∞, 0 < q ≤ ∞, and α = (α1, . . . , αn), αj > −1, ∀j = 1, . . . , n, let

(1.2) ‖f‖pp,q,α =
�

In

n∏

j=1

(1− r2
j )
αjMp

q (r, f) dr,

where In = [0, 1)n and dr = dr1 · · · drn. The mixed norm space Lp,q,α(Un)
is then defined to be the space of functions f in Un such that ‖f‖p,q,α <∞,
and the holomorphic mixed norm space Hp,q,α(Un) is its subspace consist-
ing of holomorphic functions. The mixed norm spaces have been studied
extensively; see, for example, [BP], [AJ], [J], [L], [Sh2], [Pa] and [SR].

The main purpose of this article is to consider the action of the diagonal
mapping on mixed norm spaces on Un.
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To each holomorphic function F in the unit polydisc Un of Cn, we asso-
ciate a function DF , defined on the unit disc U of C by

(1.3) DF (z) = F (z, . . . , z).

The operator D is called the diagonal mapping. In his book [Ru1], Rudin
suggested the study of this mapping. Afterwards, the diagonal mapping has
been completely investigated in the Hardy spaces and Bergman spaces; see
[Ru1], [HO], [DS], [Sha], [MR], [Sh], [Djs], and [RL]. For instance, Shapiro
[Sha] and Shamoian [Sh] proved that

(1.4) DHp,p,α(Un) = Hp,p,|α|+2n−2(U)

for any 0 < p <∞ and αj > −1, ∀j = 1, . . . , n, where |α| = α1 + · · ·+ αn.
In view of (1.4), the interesting phenomenon in weighted Bergman spaces

is that for any given weight α, the resulting weight |α|+2n−2 is independent
of p. But this fails in mixed norm spaces, i.e.,

DHp,q,α(Un) 6= Hp,q,|α|+2n−2(U).

In fact, taking f(z1, z2) = (1−z1)−β1(1−z2)−β2 with βi = (1+αi)/2+4/5 for

i = 1, 2, one can easily verify that f ∈ H2,1,α(U2) but Df 6∈ H2,1,|α|+2(U).
Our main result is the following theorem.

Theorem 1.1. Let 0 < p < ∞, 0 < q ≤ ∞ and let α = (α1, . . . , αn),
αj > −1, ∀j = 1, . . . , n. Then

(1.5) DHp,q,α(Un) = Hp,q,|α|+(p/q+1)(n−1)(U).

Theorem 1.1 also shows that, by the closed graph theorem, the compo-
sition operator CΦ defined by

CΦF = F ◦ Φ,
where Φ(z) = (z, . . . , z) for any z ∈ U , is bounded from Hp,q,α(Un) onto

Hp,q,|α|+(p/q+1)(n−1)(U). For the theory of composition operators, we refer
to [CM].

The paper is organized as follows. In the next section, we provide an
integral representation for the diagonal mapping, given by the diagonaliza-
tion of weighted Bergman operators of Un. Similarly, we provide an integral
representation for a right inverse operator of the diagonal mapping, given by
the polarization of weighted Bergman operators of U . In the third section,
we extend Hardy’s inequalities ([HL], [Fl], [AB]) to higher dimensions, which
is a key tool to proving the boundedness of integral operators in mixed norm
spaces. In the fourth section, we show that the weighted Bergman projection
Tβ, which is the orthogonal projection from L2(Un,

∏n
j=1(1−|uj |2)βjdmn(u))

onto H2,2,β(Un), induces a bounded operator from Lp,q,α(Un) to Hp,q,α(Un).
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2. Diagonalization and polarization. Set α = (α1, . . . , αn) and β =
(β, . . . , βn).

Hypothesis 2.1. Throughout the paper , we assume that

(i) 0 < p <∞ and 0 < q ≤ ∞;
(ii) αj > −1, ∀j = 1, . . . , n;

(iii) βj >
αj + 1

p
+

1

min(q, 1)
− 2, ∀j = 1, . . . , n.

By Hypothesis 2.1, it is clear that always βj > −1. We remark that
Hypothesis 2.1(iii) is required only to assure the validity of technical lemmas
in our applications, i.e., Lemmas 3.2, 3.3 and 4.2 below.

For any u ∈ Un and r ∈ In, we write u = (u1, . . . , un) and r =
(r1, . . . , rn). We shall often use the polar coordinates formula:

�

Un

n∏

j=1

(1− |uj |2)βj |F (u)|p dmn(u) = 2n
�

In

n∏

j=1

rj(1− r2
j )
βjMp

p (r, F ) dr

for any measurable function F in Un. Further, if F is holomorphic, then it
is well known (see [Sh1]) that

�

Un

n∏

j=1

(1− |uj |2)βj |F (u)|p dmn(u) '
�

In

n∏

j=1

(1− r2
j )
βjMp

p (r, F ) dr,

where A ' B means K−1A ≤ B ≤ KA. Here and afterwards, K always
denotes some positive absolute constant which may vary from line to line.

Our starting point is the weighted Bergman projection operator. For any
function F in Un and v ∈ Un, we let

(2.1) TβF (v) =

n∏

j=1

(βj + 1)
�

Un

∏n
j=1(1− |uj |2)βj

∏n
j=1(1− vjuj)βj+2

F (u) dmn(u).

It is well known that Tβ is the orthogonal projection from the Hilbert space

L2(Un,
∏n
j=1(1−|uj|2)βjdmn(u)) onto its holomorphic Hilbert subspace, i.e.

the weighted Bergman space H2,2,β(Un).
We also consider the diagonalization and polarization of the Bergman

projection. For any functions F in Un and f in U , we define functions DβF
in U and Eβf in Un:

DβF (z) =
n∏

j=1

(βj + 1)
�

Un

∏n
j=1(1− |uj|2)βj

∏n
j=1(1− zuj)βj+2

F (u) dmn(u),(2.2)

Eβf(u) = (|β|+ 2n− 1)
�

U

(1− |z|2)|β|+2n−2

∏n
j=1(1− ujz)βj+2

f(z) dm1(z).(2.3)
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It is clear that Dβ is the diagonalization of the weighted Bergman operator
Tβ of Un, and Eβ is the polarization of the weighted Bergman projection
T|β|+2n−2 of U . We shall see that, when restricted to holomorphic mixed
norm spaces, Dβ coincides with the diagonal mapping D, while Eβ plays the
role of a right inverse of D.

Theorem 2.2. Under Hypothesis 2.1,

(i) Tβf = f for every f ∈ Hp,q,α(Un);

(ii) Dβ : Hp,q,α(Un)→ Hp,q,|α|+(p/q+1)(n−1)(U) is bounded ;

(iii) Eβ : Hp,q,|α|+(p/q+1)(n−1)(U)→ Hp,q,α(Un) is bounded.

Corollary 2.3. Under Hypothesis 2.1, for any F ∈ Hp,q,α(Un), we

have DF ∈ Hp,q,|α|+(p/q+1)(n−1)(U) and

(2.4) D = Dβ |Hp,q,α(Un) .

Proof. From (1.3), Theorem 2.2(i), (2.1) and (2.2), we have

(2.5) DF (z) = F (z, . . . , z) = TβF (z, . . . , z) = DβF (z).

Therefore Theorem 2.2(ii) shows that DF ∈ Hp,q,|α|+(p/q+1)(n−1)(U)).

Corollary 2.4. Under Hypothesis 2.1, for f ∈ Hp,q,|α|+(p/q+1)(n−1)(U),
we have Eβf ∈ Hp,q,α(Un) and

(2.6) D(Eβf) = f.

Proof. Let β be a multi-index satisfying Hypothesis 2.1. For any f ∈
Hp,q,|α|+(p/q+1)(n−1)(U), Theorem 2.2(iii) shows that Eβf ∈ Hp,q,α(Un).

Let A(Un) be the space of functions holomorphic in Un and continuous
in the closure of Un. When n = 1, it is known [Sh2 (I), Proposition 2.3] that
A(U) is dense in Hp,q,γ(U) for any γ > −1. From (2.4) and the boundedness
of Dβ and Eβ, as shown in Theorem 2.2(ii), (iii), we need only show that

Dβ(Eβf) = f, ∀f ∈ A(U).

Fix w ∈ U and define

hw(u) =

n∏

j=1

(1− ujw)−(βj+2), u ∈ Un.

Then hw is a bounded holomorphic function in Un, so that Tβhw = hw by
Theorem 2.2(i). Recalling Φ(z) = (z, . . . , z), we thus have

Tβhw(Φ(z)) = hw(Φ(z)) = (1− zw)−(|β|+2n).

From (2.2) and (2.3), Fubini’s theorem shows that for any f ∈ A(U) and
z ∈ U ,
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Dβ(Eβf)(z) = (|β|+ 2n− 1)
�

U

(1− |w|2)|β|+2n−2Tβhw(Φ(z))f(w) dm1(w)

= (|β|+ 2n− 1)
�

U

(1− |w|2)|β|+2n−2

(1− zw)|β|+2n
f(w) dm1(w)

= T|β|+2n−2f(z) = f(z).

Theorem 1.1 is a direct consequence of Corollaries 2.3 and 2.4.

3. Extended Hardy inequalities. In order to prove the boundedness
of integral operators in mixed norm spaces, we need to establish some useful
inequalities concerning mixed integrals over In or I, which are closely related
to Hardy’s inequalities when n = 1 (see [HL], [Fl], [AB]).

Proposition 3.1. Let bj > aj > 0, cj > 0, ∀j = 1, . . . , n, δ > 0, and let
g : In → [0,∞) be measurable. Assume either 0 < k < 1 and g is increasing
in each variable, or 1 ≤ k <∞. Then

(i)
�

I

(1− %)k|a|−1

( �

In

∏n
j=1(1− rj)cj−1

∏n
j=1(1− rj%)bj

g(r) dr

)k
d%

≤ K(a, b, c, k)
�

In

n∏

j=1

(1− rj)k(aj−bj+cj)−1gk(r) dr;

(ii)
�

In

n∏

j=1

(1− rj)kaj−1

( �

In

∏n
j=1(1− tj)cj−1

∏n
j=1(1− rjtj)bj

g(t) dt

)k
dr

≤ K(a, b, c, k)
�

In

n∏

j=1

(1− rj)k(aj−bj+cj)−1gk(r) dr;

(iii)
�

In

n∏

j=1

(1− rj)kaj−1

( �

I

(1− %)δ−1

∏n
j=1(1− rj%)bj

g(%) d%

)k
dr

≤ K(a, b, δ, k)
�

I

(1− %)k(|a|−|b|+δ)−1gk(%) d%.

For the proof we need some technical lemmas.

Lemma 3.2. Let bj > aj > 0, j = 1, . . . , n, and r ∈ In. Then

�

I

(1− %)|a|−1

∏n
j=1(1− rj%)bj

d% ≤ K(a, b)
1∏n

j=1(1− rj)bj−aj
;(i)

�

In

∏n
j=1(1− tj)aj−1

∏n
j=1(1− rjtj)bj

dt ≤ K(a, b)
1∏n

j=1(1− rj)bj−aj
.(ii)
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Proof. (i) When n = 1, the inequality is well known (see for example
[SW]). We now apply induction on n to deal with the general case. Assume
that (i) holds for n−1. For any given r = (r1, . . . , rn) ∈ In, let r0 = min{rj :
j = 1, . . . , n}. Then

1�

r0

(1− %)|a|−1

∏n
j=1(1− rj%)bj

d% ≤ (1− r0)a1

(1− r2
0)b1

1�

r0

(1− %)a2+···+an−1

∏n
j=2(1− rj%)bj

d%

≤ 1

(1− r1)b1−a1

K∏n
j=2(1− rj)bj−aj

.

Since
∏n
j=1(1− rj%)−bj ≤∏n

j=1(1− %)−bj for any % ∈ [0, 1), we also have

r0�

0

(1− %)|a|−1

∏n
j=1(1− rj%)bj

d% ≤ K 1

(1− r0)|b|−|a|
≤ K 1∏n

j=1(1− rj)bj−aj
.

This proves (i).
(ii) This is obvious since the integral can be decomposed as the product

of integrals over I.

Applying the standard technique of Hardy–Littlewood [HL], we obtain
the following inequality in the case of small indices.

Lemma 3.3. Let 0 < p ≤ 1 and bj ≥ 0, cj > 0, ∀j = 1, . . . , n, and let
g : In → [0,∞) be increasing in each variable. Then there exists K = K(p, b)
such that

(3.1)

{ �

In

∏n
j=1(1− tj)cj−1

∏n
j=1(1− rjtj)bj

g(t) dt

}p
≤ K

�

In

∏n
j=1(1− tj)pcj−1

∏n
j=1(1− rjtj)pbj

gp(t) dt.

Proof. Let λkj = 1 − 2−kj and Ik =
∏n
j=1[λkj−1, λkj ). Then in Ik we

have

1− λkj ≤ 1− tj ≤ 2(1− λkj ), 1− %λkj ≤ 1− %tj ≤ 2(1− %λkj ),

g(t) ≤ g(λk), |Ik| =
n∏

j=1

(1− λkj ),

where λk = (λk1 , . . . , λkn), % ∈ I and t = (t1, . . . , tn) ∈ Ik.
We claim that

(3.2)

{ �

Ik

∏n
j=1(1− tj)cj−1

∏n
j=1(1− rjtj)bj

g(t) dt

}p
≤ K

�

Ik+1

∏n
j=1(1− tj)pcj−1

∏n
j=1(1− rjtj)pbj

gp(t) dt.

Indeed, the integrand on the left side of (3.2) is enlarged if we replace tj by
the constant λkj and g(t) by the constant g(λk), up to a constant indepen-
dent of k. Then we can calculate the resulting integral and its pth power.
The result is further enlarged if we replace λk by t ∈ Ik+1, so (3.2) holds.
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Now we write the integral over In as the sum of integrals over Ik, and
then apply the inequality (a + b)p ≤ ap + bp for 0 < p < 1. The desired
conclusion follows from (3.2) by summing over k.

Now we can prove the generalized Hardy inequality.

Proof of Proposition 3.1. (i) First assume that 1 < k <∞. Set

J =
�

In

∏n
j=1(1− rj)cj−1

∏n
j=1(1− rj%)bj

g(r) dr.

Rewrite the integrand of J as the product of
n∏

j=1

(1− rj)bj−aj−ε−1/k′
n∏

j=1

(1− %rj)aj−bj

and
n∏

j=1

(1− rj)cj−bj+aj+ε−1/k
n∏

j=1

(1− %rj)−ajg(r).

Here ε is a sufficiently small positive number and k′ is the conjugate index
of k. Applying Hölder’s inequality and Lemma 3.2(ii), we have

(3.3) Jk ≤ K∏n
j=1(1− %)kε

�

In

∏n
j=1(1− rj)k(cj−bj+aj+ε)−1

∏n
j=1(1− %rj)kaj

gk(r) dr.

Note that here we used the assumption bj > aj .
For 0 < k ≤ 1, Lemma 3.3 shows that

Jk ≤ K
�

In

∏n
j=1(1− rj)kcj−1

∏n
j=1(1− %rj)kbj

gk(r) dr.

Consequently, for any 0 < k < ∞, Jk can be estimated by the integral
over In, so that Fubini’s theorem and Lemma 3.2(i) yield the desired result.

(ii) Since the expression in brackets in (ii) is again J , and Jk can be
estimated by the integral over In, the desired result follows from Fubini’s
theorem.

(iii) Set

J̃ =
�

I

(1− %)δ−1

∏n
j=1(1− rj%)bj

g(%) d%.

For 1 < k < ∞, we take ε > 0 sufficiently small and rewrite the above
integrand as the product of

(1− %)|b|−|a|−nε−1/k′
n∏

j=1

(1− rj%)aj−bj
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and

(1− %)δ−|b|+|a|+nε−1/k
n∏

j=1

(1− rj%)−ajg(%).

Then from Hölder’s inequality and Lemma 3.2(i),

J̃k ≤ K 1∏n
j=1(1− rj)kε

�

I

(1− %)k(δ−|b|+|a|+nε)−1

∏n
j=1(1− rj%)kaj

gk(%) d%.

If 0 < k < 1, Lemma 3.3 shows that J̃k can be estimated by the integral
over I. The desired result now follows from Fubini’s theorem and Lemma
3.2(ii).

4. Weighted Bergman projections. In this section, we consider the
boundedness of weighted Bergman operators on Lp,q,α(Un). We refer to
[FR], [SW] for boundedness properties of weighted Bergman operators on
Lp spaces in the unit ball of Cn.

Theorem 4.1. Under Hypothesis 2.1,

(i) Tβ : Lp,q,α(Un) → Hp,q,α(Un) is bounded provided 1 ≤ p < ∞ and
1 ≤ q ≤ ∞;

(ii) Tβ : Hp,q,α(Un)→ Hp,q,α(Un) is always bounded.

Let δjk be the Kronecker delta, i.e., δjk = 1 if j = k, and 0 otherwise.

Lemma 4.2. Let u = (u1, . . . , un) ∈ Un and rj = |uj|, j = 1, . . . , n. If
αj > 1, then for any % ∈ I and t ∈ In,

�

T

dσ1(ζ)∏n
j=1 |1− %ζuj |αj

≤ K(α)
1∏n

j=1(1− %rj)αj−δj,1
;(i)

�

Tn

dσn(ζ)∏n
j=1 |1− tjζjuj |αj

≤ K(α)
1∏n

j=1(1− tjrj)αj−1 .(ii)

Proof. The case of n = 1 is well known (see [D]). Assertion (i) then
follows from the inequality

n∏

j=2

|1− %ζuj |−αj ≤
n∏

j=2

(1− %rj)−αj .

Assertion (ii) is obvious since it can be reduced to the case n = 1.

Proof of Theorem 4.1. For any function F in Un and

βj >
αj + 1

p
+

1

min{q, 1} − 2, αj > −1, ∀j = 1, . . . , n,
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let

(4.1) Gv(u) = F (u)
n∏

j=1

(1− vjuj)−(βj+2)

for any v, u ∈ Un. By (2.1) and the polar coordinates formula,

(4.2) |TβF (v)| ≤ K
�

In

n∏

j=1

(1− rj)βjM1(r,Gv) dr.

Assume that 1 ≤ q ≤ ∞. Minkowski’s inequality shows that

(4.3) Mq(t, TβF ) ≤ K
�

In

n∏

j=1

(1− rj)βjMq(t,M1(r,Gv)) dr.

Let v, u ∈ Un and tj = |vj|, rj = |uj|. We claim that

(4.4) Mq(t,M1(r,Gv)) ≤ KMq(r, F )
n∏

j=1

(1− tjrj)−(βj+1).

From this claim together with (4.3), we find

(4.5) Mq(t, TβF ) ≤ K
�

In

∏n
j=1(1− rj)βj∏n

j=1(1− tjrj)βj+1
Mq(r, F ) dr.

Therefore, applying Proposition 3.1(ii) with bj = cj = βj+1, aj = (αj+1)/p,
k = p and g(r) = Mq(r, F ) we get

�

In

n∏

j=1

(1− t2j )αjMp
q (t, TβF ) dt ≤ K

�

In

n∏

j=1

(1− r2
j )
αjMp

q (r, F ) dr.

Here we used Hypothesis (2.1)(iii), which assures bj > aj .
To prove the case 1 ≤ q ≤ ∞, it remains to prove claim (4.4). Rewrite

Gv(u) = G
(1)
v (u)G

(2)
v (u), where

G(1)
v (u) = F (u)

n∏

j=1

(1− vjuj)−(βj+2)/q,

G(2)
v (u) =

n∏

j=1

(1− vjuj)−(βj+2)/q′ .

From Hölder’s inequality we have

M1(r,Gv) ≤Mq(r,G
(1)
v )Mq′(r,G

(2)
v )(4.6)

≤ K(q, β)Mq(r,G
(1)
v )

n∏

j=1

(1− tjrj)−(βj+1)/q′ .
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If q = ∞, then G
(1)
v = F and q′ = 1, so that (4.4) follows from (4.6). If

1 ≤ q <∞, notice that by (1.1), the definition of G
(1)
v and Lemma 4.2(ii),

M q
q (t,Mq(r,G

(1)
v )) =

�

Tn

�

Tn

|G(1)
tη (rζ)|q dσn(ζ) dσn(η)

≤ KM q
q (r, F )

n∏

j=1

(1− tjrj)−(βj+1),

and the claim also follows from (4.6).
Assume now that 0 < q < 1 and that F is holomorphic in Un. Then Gv

is holomorphic in Un for any given v ∈ Un, so that M1(r,Gv) is increasing
in each rj , j = 1, . . . , n. Thus from (4.2) and Lemma 3.3, we obtain

|TβF (v)|q ≤ K
�

In

n∏

j=1

(1− rj)q(βj+1)−1M q
1 (r,Gv) dr.

Combining this with

M q
1 (r,Gv) ≤ K(q)

n∏

j=1

(1− rj)q−1M q
q (r,Gv),

which holds since Gv is holomorphic (see [Fr]), we deduce that

|TβF (v)|q ≤ K
�

Un

∏n
j=1(1− |uj |2)q(βj+2)−2

∏n
j=1 |1− vjuj |q(βj+2)

|F (u)|q dmn(u).

Now, integrating over T n and changing the order of integration, from Lemma
4.2(ii) we have

M q
q (t, TβF ) ≤ K

�

In

∏n
j=1(1− rj)q(βj+2)−2

∏n
j=1(1− tjrj)q(βj+2)−1

M q
q (r, F ) dr.

By applying Proposition 3.1(ii), we obtain

�

In

n∏

j=1

(1− t2j )αjMp
q (t, TβF ) dt ≤ K

�

In

n∏

j=1

(1− r2
j )
αjMp

q (r, F ) dr.

This completes the proof.

5. Proof of Theorem 2.2. This section is devoted to proving Theo-
rem 2.2.

Proof of Theorem 2.2(i). By applying the method of [Sh2 (I), Propo-
sition 2.3], every function in Lp,q,αa (Un) can be approximated by its slice
functions, so A(Un) is dense in Hp,q,α(Un). We claim that

Tβ|A(Un) = Id.



Diagonal mapping in mixed norm spaces 113

In fact the case n = 1 is well known (see [FR]) and the general case follows
from this special case by iteration. More precisely, let F ∈ A(Un) and rewrite
(2.1) as

TβF (v) =

n∏

k=2

(βk + 1)
�

Un−1

∏n
k=2(1− |uk|2)βk∏n
k=2(1− vkuk)βj+2

dm1(u2) · · · dm1(un)

·
�

U

(β1 + 1)
(1− |u1|2)β1

(1− v1u1)β1+2
F (u1, . . . , un) dm1(u1).

Note that the second integral is equal to F (v1, u2, . . . , un). By continuing
this procedure, we finally have

TβF (v1, . . . , vn) = F (v1, . . . , vn),

as desired. Thus the boundedness of Tβ ensured by Theorem 4.1(ii) implies
that

(5.1) Tβ|Hp,q,α(Un) = Id.

Proof of Theorem 2.2(ii). Let z ∈ U , u ∈ Un and % = |z|, rj = |uj |. Let

(5.2) Gz(u) = F (u)
n∏

j=1

(1− zuj)−(βj+2).

By (2.2) and the polar coordinates formula,

(5.3) |DβF (z)| ≤ K
�

In

n∏

j=1

(1− rj)βjM1(r,Gz) dr.

Assume that 0 < q < 1 and that F is holomorphic on Un. Then Gz is
holomorphic on Un for any given z ∈ U . By Lemma 3.3,

|DβF (z)|q ≤ K
�

In

n∏

j=1

(1− rj)q(βj+1)−1M q
1 (r,Gz) dr.

Since M q
1 (r,Gz) ≤ K(q)

∏n
j=1(1− rj)q−1M q

q (r,Gz) (see [Fr]), we have

|DβF (z)|q ≤ K
�

Un

∏n
j=1(1− |uj|2)q(βj+2)−2

∏n
j=1 |1− zuj |q(βj+2)

|F (u)|q dmn(u).

Consequently, Lemma 4.2(i) shows that

M q
q (%,DβF ) ≤ K

�

In

∏n
j=1(1− rj)q(βj+2)−2

∏n
j=1(1− %rj)q(βj+2)−δj1 M

q
q (r, F ) dr.

Applying Proposition 3.1(i), we obtain

�

I

(1− %)|α|+(p/q+1)(n−1)Mp
q (%,DβF ) d% ≤ K

�

In

n∏

j=1

(1− rj)αjMp
q (r, F ) dr.

This proves the case 0 < q < 1.
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Let 1 ≤ q ≤ ∞. By (5.3), Minkowski’s inequality shows that

Mq(%,DβF ) ≤ K
�

In

n∏

j=1

(1− rj)βjMq(%,M1(r,Gz)) dr.

We claim that

(5.4) Mq(%,M1(r,Gz)) ≤ KMq(r, F )
n∏

j=1

(1− rj%)−(βj+1+(1−δj1)/q).

From (5.4), we have

(5.5) Mq(%,DβF ) ≤ K
�

In

∏n
j=1(1− rj)βj∏n

j=1(1− %rj)βj+1+(1−δj1)/q
Mq(r, F ) dr,

and apply Proposition 3.1(i) to obtain the desired result.

It remains to prove (5.4). We rewrite Gz(u) = G
(1)
z (u)G

(2)
z (u), where

G(1)
z (u) = F (u)

n∏

j=1

(1− zuj)−(βj+2)/q,

G(2)
z (u) =

n∏

j=1

(1− zuj)−(βj+2)/q′.

From Hölder’s inequality and Lemma 4.2 we have

M1(r,Gz) ≤Mq(r,G
(1)
z )Mq′(r,G

(2)
z )(5.6)

≤ K(q, β)Mq(r,G
(1)
z )

n∏

j=1

(1− |z|rj)−(βj+1)/q′ .

If q = ∞, then G
(1)
z = F and q′ = 1, so that claim (5.4) follows from (5.6).

If 1 ≤ q <∞, notice that

M q
q (%,Mq(r,G

(1)
z )) =

�

T

�

Tn

|G(1)
%η (rζ)|q dσn(ζ) dσ1(η)

≤ KM q
q (r, F )

n∏

j=1

(1− rj%)−(βj+2−δj1).

Hence claim (5.4) also follows from (5.6). This ends the proof.

Proof of Theorem 2.2(iii). Let f be holomorphic on U and let

(5.7) Gu(z) = f(z)
n∏

j=1

(1− zuj)−(βj+2)

for any u ∈ Un and z ∈ U . From (2.3),

(5.8) |Eβf(u)| ≤ K
�

I

(1− %)|β|+2n−2M1(%,Gu) d%.
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First assume that 0 < q < 1. Since Gu is holomorphic on U for any given
u ∈ Un, it follows from Lemma 3.3 with n = 1 that

|Eβf(u)|q ≤ K
�

I

(1− %)q(|β|+2n−1)−1M q
1 (%,Gu) d%.

Notice that M q
1 (%,Gu) ≤ K(q)(1− %)q−1M q

q (%,Gu). Recalling the definition
of Gu in (5.7) we have

|Eβf(u)|q ≤ K
�

U

(1− |z|2)q(|β|+2n)−2

∏n
j=1 |1− zuj |q(βj+2)

|f(z)|q dm1(z),

so that Lemma 4.2(ii) gives

M q
q (r, Eβf) ≤ K

�

I

(1− %)q(|β|+2n)−2

∏n
j=1(1− %rj)q(βj+2)−1

M q
q (%, f) d%,

and Proposition 3.1(iii) implies

�

In

n∏

j=1

(1− rj)αjMp
q (r, Eβf)dr ≤ K

�

I

(1− %)|α|+(p/q+1)(n−1)Mp
q (%, f) d%.

Now we assume that 1 ≤ q ≤ ∞. Then, from (5.8), Minkowski’s inequal-
ity shows that

(5.9) Mq(r, Eβf) ≤ K
�

I

(1− %)|β|+2n−2Mq(r,M1(%,Gu)) d%.

We claim that, for r ∈ In defined by rj = |uj | and % = |z| ∈ I,

(5.10) Mq(r,M1(%,Gu)) ≤ KMq(%, f)
n∏

j=1

(1− rj%)−(βj+1+(1−δj1)/q′).

From this claim and (5.9), we find

(5.11) Mq(r, Eβf) ≤ K
�

I

(1− %)|β|+2n−2

∏n
j=1(1− %rj)βj+1+(1−δj1)/q′

Mq(%, f) d%.

Therefore, applying Proposition 3.1(iii) we get the desired result:

�

In

n∏

j=1

(1− rj)αjMp
q (r, Eβf) dr ≤ K

�

I

(1− %)|α|+(p/q+1)(n−1)Mp
q (%, f) d%.

It remains to prove the claim in (5.10). To this end, write Gu(z) =

G
(1)
u (z)G

(2)
u (z), where

G(1)
u (z) = f(z)

n∏

j=1

(1− zuj)−(βj+2)/q,

G(2)
u (z) =

n∏

j=1

(1− zuj)−(βj+2)/q′.
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From Hölder’s inequality and Lemma 4.2(i) we have, for any βj > −1,

M1(%,Gu) ≤Mq(%,G
(1)
u )Mq′(%,G

(2)
u )(5.12)

≤ K(q, β)Mq(%,G
(1)
u )

n∏

j=1

(1− |uj |%)−(βj+2−δj1)/q′ .

If q = ∞, then G
(1)
u = f and q′ = 1 so that (5.10) follows directly from

(5.12). If 1 ≤ q < ∞, notice that in virtue of (1.1), Fubini’s theorem and
Lemma 4.2,

M q
q (r,Mq(%,G

(1)
u )) =

�

Tn

�

T

|G(1)
rη (%ζ)|q dσ1(ζ) dσn(η)

≤ KM q
q (%, f)

n∏

j=1

(1− rj%)−(βj+1).

Then (5.10) follows from (5.12) and Lemma 3.2(i). This completes the
proof.
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