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Weighted weak type (1, 1) estimates for singular
integrals and Littlewood–Paley functions

by

Dashan Fan (Milwaukee) and Shuichi Sato (Kanazawa)

Abstract. We prove some weighted weak type (1, 1) inequalities for certain singular
integrals and Littlewood–Paley functions.

1. Introduction. Let K be a locally integrable function on Rn \ {0}
which satisfies

(1.1)
�

a<|x|<b
K(x) dx = 0 for all a, b such that 0 < a < b.

We assume that n ≥ 2. We consider a singular integral operator which can
be defined by

T (f)(x) = p.v.
�

Rn
K(x− y)f(y) dy = lim

ε→0

�

|x−y|>ε
K(x− y)f(y) dy,

where f ∈ C∞0 (Rn) (the space of infinitely differentiable functions with
compact support). Define

V (θ) = sup
R>0

VR(θ), where VR(θ) =
2R�

R

|K(rθ)|rn−1 dr.

Also put for t ∈ (0, 1], q > 0,

ωq(t) = sup
|s|<tR/2

(
R−n

�

Sn−1

2R�

R

|Rn[K((r − s)θ)−K(rθ)]|qrn−1 dr dσ(θ)
)1/q

,

where dσ denotes the Lebesgue surface measure on the unit sphere Sn−1 of
Rn and the supremum is taken over all s and R such that |s| < tR/2. When
q =∞, we can define ω∞(t) by the usual modification.
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Let L logL(Sn−1) denote the space of all those measurable functions Ω
on Sn−1 which satisfy

�

Sn−1

|Ω(θ)| log+ |Ω(θ)| dσ(θ) <∞,

where log+ x = max(log x, 0) (x > 0), log+ 0 = 0. The following is known:

Theorem A. Suppose V ∈ L logL(Sn−1) and � 1
0 ω1(t) dt/t < ∞. Sup-

pose T is bounded on L2(Rn). Then T is of weak type (1, 1).

This is due to Seeger [10] (see also Tao [13], Seeger–Tao [11] for further
developments). When n ≤ 5 and K(x) = Ω(x′)/|x|n (x′ = x/|x|), Ω ∈
L logL(Sn−1), the result was previously proved by Christ–Rubio de Francia
[2] (see also Christ [1]). Hofmann [6] proved the result when n = 2 and
K(x) = Ω(x′)/|x|n with Ω ∈ Lq(Sn−1) for some q > 1.

For a non-negative function Ω on Sn−1, we define a maximal function

MΩ(f)(x) = sup
r>0

r−n
�

|y|<r
|f(x− y)|Ω(y′) dy.

Put Ms(f) = [M(|f |s)]1/s, for s > 0, where M denotes the Hardy–Little-
wood maximal operator, and M s

Ω(f) = [MΩ(|f |s)]1/s. Note that M s
Ω(f) ≤

(‖Ω‖1/n)1/s−1/tM t
Ω(f) if s < t.

Let w be a measurable, almost everywhere positive function on Rn. We
call such w a weight function. We denote by Lp(w) (p > 0) the space of all
measurable functions f on Rn such that ‖f‖Lp(w) = ( � Rn |f(x)|pw(x) dx)1/p

<∞, and by L1,∞(w) the weak L1(w) space of all those functions f which
satisfy

‖f‖L1,∞(w) = sup
λ>0

λw({x ∈ Rn : |f(x)| > λ}) <∞,

where w(E) = �
E
w(x) dx. In [14], Vargas proved the following when n = 2

(see also [7]):

Theorem B. Let q, β > 1. Suppose Ω ∈ Lq(S1), �
S1 Ω(θ) dσ(θ) = 0 and

K(x) = Ω(x′)/|x|2. Put

W (x) = ‖Ω‖qMβ(w)(x) + ‖Ω‖1/β′q MβMβ

|Ω̃|M
β(w)(x),

where Ω̃(θ) = Ω(−θ) and 1/β + 1/β′ = 1. Then T is bounded from L1(W )
to L1,∞(w); more precisely , there exists a constant C = C(β, q) such that

sup
λ>0

λw({x ∈ R2 : |T (f)(x)| > λ}) ≤ C
�

R2

|f(x)|W (x) dx.

When K(x) = Ω(x′)/|x|n, Ω ∈ L∞(Sn−1) and w ∈ A1, it is noted in
Fan–Sato [5] that T is bounded from L1(w) to L1,∞(w), which follows from
Theorem B when n = 2. Here Ap denotes the weight class of Muckenhoupt.
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In this note we generalize Theorem B to the case of general convolution
kernels (not necessarily homogeneous) on Rn for all n ≥ 2.

Theorem 1. Suppose the following:

(1) V ∈ Lr(Sn−1) for some 1 < r ≤ ∞,
(2) cω := � 1

0 ωq(t) dt/t <∞ for some 1 < q ≤ ∞,
(3) w ∈ A2.

Let s, t, u > 1, ε ∈ (0, r− 1). Then there exists a constant C depending only
on n, r, q, s, t, u, ε and the A2 constant for w such that

sup
λ>0

λw({x ∈ Rn : |T (f)(x)| > λ}) ≤ C‖f‖L1(W ),

where

W = ‖V ‖1/s′r MsMs
Ṽ

(w)+cωM tMq′(w)+‖V ‖rMu(w)+‖V ‖−εr MMṼ 1+ε(w).

Recall that w ∈ Ap (1 < p <∞) satisfies

sup
Q

(
|Q|−1

�

Q

w(x) dx
)(
|Q|−1

�

Q

w(x)−1/(p−1)dx
)p−1

<∞ ,

where the supremum is taken over all cubes Q ⊂ Rn, and this supremum
is called the Ap constant for w. When q < ∞ in Theorem 1, we can re-
place M tMq′(w) by M q′(w). Since M s

Ω(f) ≤ c‖Ω‖1/sq Msq′(f) for q > 1, by
Theorem 1 we have the following:

Corollary 1. Suppose V ∈ Lq(Sn−1), � 1
0 ωq(t) dt/t <∞ and wq

′ ∈ A1

for some 1 < q ≤ ∞. Then T is bounded from L1(w) to L1,∞(w).

Put
V ∗(θ) = sup

r>0
rn|K(rθ)|.

Theorem 2. Suppose the following:

(1) V ∈ Lr(Sn−1) for some 1 < r ≤ ∞,
(2) N := V ∗[log+(V ∗/‖V ‖r)]1+ε ∈ L1(Sn−1) for some ε > 0,
(3) ω1(t) ≤ c0tα for some α ∈ (0, 1],
(4) w ∈ A2.

Let s, t, u > 1. Then there exists a constant C depending only on n, r, s, t,
u, ε and the A2 constant for w such that

sup
λ>0

λw({x ∈ Rn : |T (f)(x)| > λ}) ≤ C‖f‖L1(W ),

where
W = ‖V ‖1/s′r MsMs

Ṽ
(w) + α−1(‖V ‖r + c0)Mu(w)

+MM
Ñ

(w) + α−1M tMṼ ∗(w).
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We observe that a homogeneous kernel K(x) = Ω(x′)/|x|n with Ω ∈ L1

satisfies condition (3) of Theorem 2 with c0 = c‖Ω‖1 and α = 1.

Remark 1. For any q, β > 1, let p = [(β−1)q+1]/β. Then p > 1. Since
t(log+ t)1+ε ≤ ctp, by Hölder’s inequality we have, if V ∈ Lr and V ∗ ∈ Lq,

MṼ ∗[log+(Ṽ ∗/‖V ‖r)]1+ε(w) ≤ c‖V ‖(1−q)/β′r ‖V ∗‖q/β′q Mβ

Ṽ ∗
(w).

Therefore, if w(x) = |x|γ , −n + (n − 1)/q < γ ≤ 0, in Theorem 2 and if
we further assume V ∗ ∈ Lq, then by taking s, t, u and β sufficiently close
to 1 we see that W (x) ≤ c|x|γ (see Muckenhoupt–Wheeden [8]). Thus T :
L1(|x|γ)→ L1,∞(|x|γ).

Remark 2. If the kernel has the form K(x) = Ω(x′)/|x|n, with Ω ∈
Lq(Sn−1), q > 1, then by Theorem 2 and Remark 1 we have

‖T (f)‖L1,∞(w) ≤ C
�

Rn
|f |[‖Ω‖1/s′q MsMs

|Ω̃|(w) + ‖Ω‖qMu(w)] dx

for 1 < s, u < ∞ and w ∈ A2. For any weight function v, put w = Mβ(v)
for 1 < β < ∞. If Mβ(v) is finite a.e., then w ∈ A1 and so w ∈ A2. (We
shall also use this fact in what follows.) Moreover, we have v ≤ w a.e. Thus

‖T (f)‖L1,∞(v) ≤ C
�

Rn
|f |[‖Ω‖1/s′q MsMs

|Ω̃|M
β(v) + ‖Ω‖qMuMβ(v)] dx.

Since MuMβ(v) ≤ cMβ(v) if u < β, Theorem B follows from this when
n = 2.

To prove Theorems 1 and 2, we use the following L2-estimates:

Theorem 3. Suppose the following:

(1) V ∈ Lr(Sn−1) for some 1 < r ≤ ∞,
(2) cω := � 1

0 ωq(t) dt/t <∞ for some 1 < q ≤ ∞,
(3) w ∈ A2.

Let s, t > 1. Then there exists a constant C depending only on n, r, q, s, t
and the A2 constant for w such that

‖T (f)‖L2(w) ≤ C‖f‖L2(W ),

where
W = ‖V ‖2−1/s

r MsMs
Ṽ

(w) + c2ωM
tMq′(w).

Theorem 4. Suppose the following:

(1) V ∈ Lr(Sn−1) for some 1 < r ≤ ∞,
(2) V ∗ ∈ L1(Sn−1),
(3) dω := � 1

0[ω1(t)]1/2 dt/t <∞,
(4) w ∈ A2.
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Let s, t > 1. Then there exists a constant C depending only on n, r, s, t and
the A2 constant for w such that

‖T (f)‖L2(w) ≤ C‖f‖L2(W ),

where
W = ‖V ‖2−1/s

r MsMs
Ṽ

(w) + d2
ωM

tMṼ ∗(w).

We can also prove similar results for certain Littlewood–Paley functions.
Let ψ ∈ L1(Rn) satisfy � Rn ψ(x) dx = 0. We define the Littlewood–Paley
function by

g(f)(x) = gψ(f)(x) =
(∞�

0

|ψt ∗ f(x)|2 dt
t

)1/2

,

where ψt(x) = t−nψ(x/t). Suppose ψ is supported in {1 ≤ |x| ≤ 2}. For
t ∈ (0, 1], q > 0, put

ω̃q(t) = sup
|s|<t/2

( �

Sn−1

[∞�

0

|ψ((r − s)θ)− ψ(rθ)|2 dr/r
]q/2

dσ(θ)
)1/q

.

When q =∞, we can define ω̃∞(t) by the usual modification. Let

(1.2) V (θ) =
(∞�

0

|ψ(rθ)|2 dr/r
)1/2

(θ ∈ Sn−1).

Then we have the following:

Theorem 5. Suppose the following:

(1) V ∈ L1(Sn−1) and N := V [log+(V/‖V ‖1)]1+ε ∈ L1(Sn−1) for some
ε > 0,

(2) ψ ∈ Lr(Rn) for some 1 < r ≤ ∞,
(3) cω̃ := � 1

0 ω̃q(t) dt/t <∞ for some 1 < q ≤ ∞.

Let s, u > 1. Then there exists a constant C depending only on n, r, q, s, u
and ε such that

sup
λ>0

λw({x ∈ Rn : gψ(f)(x) > λ}) ≤ C‖f‖L1(W ),

where
W = ‖V ‖−1/s′

1 ‖ψ‖2/s′r MsMs
Ṽ

(w) + cω̃MMq′(w) +‖V ‖1Mu(w) +MM
Ñ

(w).

As Theorem 1 implies Corollary 1, we easily see that Theorem 5 implies
the following:

Corollary 2. Suppose V ∈ Lq(Sn−1), � 1
0 ω̃q(t) dt/t <∞ and wq

′ ∈ A1

for some 1 < q ≤ ∞. Then gψ is bounded from L1(w) to L1,∞(w).

Theorem 6. Suppose the following :

(1) V ∈ L1(Sn−1) and N := V [log+(V/‖V ‖1)]1+ε ∈ L1(Sn−1) for some
ε > 0,
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(2) ψ ∈ Lr(Rn) for some 1 < r ≤ ∞,
(3) ω̃1(t) ≤ c0tα for some α ∈ (0, 1].

Let s, u > 1. Then there exists a constant C depending only on n, r, s, u
and ε such that

sup
λ>0

λw({x ∈ Rn : gψ(f)(x) > λ}) ≤ C‖f‖L1(W ),

where

W = ‖V ‖−1/s′

1 ‖ψ‖2/s′r MsMs
Ṽ

(w) + α−1(‖V ‖1 + c0)Mu(w) +MM
Ñ

(w).

In Theorems 5 and 6, the assumption w ∈ A2 is not needed, unlike in
Theorems 1 and 2.

Remark 3. In Theorem 6, if we further assume that V ∈ Lp for some
p > 1, then as in Remark 1 we see that gψ : L1(|x|γ) → L1,∞(|x|γ) for
−n+ (n− 1)/p < γ ≤ 0.

Remark 4. From the proofs of Theorems 5 and 6 below, we can see
that if V ∈ L logL and � 1

0 ω̃1(t) dt/t <∞, then gψ is of weak type (1, 1) (the
case when w ≡ 1).

To prove Theorems 5 and 6, we use the following L2-estimates:

Theorem 7. Suppose the following :

(1) V ∈ L1(Sn−1),
(2) ψ ∈ Lr(Rn) for some 1 < r ≤ ∞.

Let s > 1. Then there exists a constant C depending only on n, s and r such
that

‖gψ(f)‖L2(w) ≤ C‖V ‖1/(2s)1 ‖ψ‖1−1/s
r ‖f‖L2(MsMs

Ṽ
(w)).

Suppose Ψ satisfies either the hypotheses of Theorem 5 or those of The-
orem 6 for ψ. Let

ψ(x) =
∑

k∈Z
ckΨ2k(x),

where Z denotes the set of integers and {ck} is a sequence of non-negative
numbers such that

∑
k ck <∞. Then we see that

gψ(f) ≤
∑

k

ckgΨ2k
(f) =

(∑

k

ck

)
gΨ (f).

This implies that gψ satisfies the estimates similar to those for gΨ .
Let

ψ(x) = |x|−n+%Ω(x′)χ(0,1](|x|) (% > 0),

where Ω ∈ L1(Sn−1) satisfies � Ω(θ) dσ(θ) = 0 and χE denotes the charac-
teristic function of a set E. Put µ%(f) = gψ(f). Then µ%(f) is known as the
Marcinkiewicz integral (see Stein [12]). Take Ψ(x) = |x|−n+%Ω(x′)χ(1,2](|x|),
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ck = 2k% for k < 0 and ck = 0 for k ≥ 0. Then ψ =
∑

k∈Z ckΨ2k . Therefore,
if Ω ∈ Lr(Sn−1), 1 < r ≤ ∞, it is easy to see that we can apply Theorem
6 to get results for µ%(f). We refer to Ding–Fan–Pan [3] and Fan–Sato [5]
for recent results on Marcinkiewicz integrals. In particular, in [5] the weak
(1, 1) boundedness of µ% is proved under the assumption Ω ∈ L logL.

We shall give the proofs of Theorems 3 and 4 in Section 2 by applying the
method of Duoandikoetxea–Rubio de Francia [4]. The proofs of Theorems 1
and 2 will be given in Sections 3 and 4, respectively. The principal part of
the proofs of Theorems 1 and 2 is based on the estimates obtained by Seeger
[10], which are crucial for the proof of Theorem A. Also we use a variant of
the interpolation method given by Vargas [14]. An interpolation with change
of measures between the Lp,1(vi dν)-Lp(wi dµ) estimates (i = 1, 2) was used
in [14]. To prove Theorems 1 and 2 by using Seeger’s results, we apply an
interpolation with change of measures between the Lpi,1(vi dν)-Lpi,∞(wi dµ)
estimates, where 1 < pi < ∞. This method has already been used in Fan–
Sato [5]; see [5] for more details. Theorem 7 will be proved in Section 5.
Finally, we shall prove Theorems 5 and 6 in Section 6 by using the results
given in Fan–Sato [5].

2. Proofs of Theorems 3 and 4. We consider a kernel of the form
K(x) = t−nh(t)Ω(t, θ) with x = tθ, t > 0, θ ∈ Sn−1. Put Kk(x) =
K(x)χ[2k,2k+1)(|x|). For a > 0 let

Ia(h) = sup
j∈Z

( 2j+1�

2j

|h(t)|a dt
t

)1/a

.

We fix θ and write Ω(t, θ) = Ωθ(t). We assume that Ωθ is of bounded
variation on each interval [2k, 2k+1] and put

Vk(Ω)(θ) = V (Ωθ, [2k, 2k+1]),

where V (H, I) denotes the total variation of a function H over an interval I.
Let

Ω∗k(θ) = sup
t∈[2k,2k+1]

|Ω(t, θ)|.

For q, s ≥ 1, put

E(Ω; q, s) = sup
k
‖Ω∗k‖q + sup

k
‖Ω∗k‖1/sq ‖Vk(Ω)‖1/s′q .

We denote by f̂ the Fourier transform of f .

Lemma 1. Suppose that E(Ω; q, s) < ∞ and Is(h) < ∞ for some q, s ∈
(1, 2]. Then

(2.1) |K̂k(ξ)| ≤ cE(Ω; q, s)Is(h)|2kξ|−(q−1)(s−1)/(2qs),

where c depends only on the dimension n.
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To prove this, we apply the method of [4]. We give the proof for the sake
of completeness.

Proof of Lemma 1. We may assume that E(Ω; q, s) = 1 and Is(h) = 1
by homogeneity. Define a measure τt concentrated on {|x| = t} by

〈τt, f〉 =
�

Sn−1

f(tθ)Ωt(θ) dσ(θ) for f ∈ C∞0 (Rn),

where we write Ωt(θ) = Ω(t, θ). Then we see that

|K̂k(ξ)| =
∣∣∣∣

2k+1�

2k

h(t)
( �

Sn−1

Ωt(θ) exp(−2πitξθ) dσ(θ)
)dt
t

∣∣∣∣(2.2)

=
∣∣∣∣

2k+1�

2k

h(t)τ̂t(ξ)
dt

t

∣∣∣∣

≤
( 2k+1�

2k

|h(t)|s dt
t

)1/s( 2k+1�

2k

|τ̂t(ξ)|s
′ dt

t

)1/s′

≤ ‖Ω∗k‖(s
′−2)/s′

1

( 2k+1�

2k

|τ̂t(ξ)|2
dt

t

)1/s′

,

where the first inequality follows from Hölder’s inequality.
Let A = 1/(2q′) and ξ′ = ξ/|ξ|. Put

Θk(θ, ω) = Ω∗k(θ)Ω∗k(ω) +Ω∗k(θ)Vk(Ω)(ω) +Ω∗k(ω)Vk(Ω)(θ).

Then, since

V (ΩθΩ̄ω, [2k, 2k+1]) ≤ Ω∗k(θ)Vk(Ω)(ω) +Ω∗k(ω)Vk(Ω)(θ),

applying integration by parts and Hölder’s inequality, we have

(2.3)
2k+1�

2k

|τ̂t(ξ)|2
dt

t

=
� � ( 2k+1�

2k

Ωθ(t)Ω̄ω(t) exp(−2πitξ(θ − ω))
dt

t

)
dσ(θ) dσ(ω)

≤ c
� �
Θk(θ, ω) min(1, |2kξ(θ − ω)|−1) dσ(θ) dσ(ω)

≤ c
� �
Θk(θ, ω)|2kξ|−A|ξ′(θ − ω)|−A dσ(θ) dσ(ω)

≤ c|2kξ|−A(‖Ω∗k‖2q + ‖Ω∗k‖q‖Vk(Ω)‖q)
( � �
|ξ′(θ − ω)|−1/2 dσ(θ) dσ(ω)

)1/q′

.

Combining (2.2) and (2.3), we get (2.1).
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Now we give the proof of Theorem 3. Let φ ∈ C∞(R) be such that
φ(x) ≥ 0, supp(φ) ⊂ {|x| < 2−10} and � φ(x) dx = 1. Let γ ∈ C∞(R) be
such that supp(γ) ⊂ {1/2 ≤ t ≤ 2} and

∞∑

j=−∞
γ(2jt) = 1 for all t 6= 0.

For k ∈ Z and δ > 0, put

Kk
j (tθ) = γ(2−jt)

�
K(%θ)2−j+δ|k|φ(2−j+δ|k|(t− %)) d%.

Then
|Kk

j (tθ)| ≤ c2δ|k|2−jnV (θ)χ[2j−1,2j+1](t).

Also we see that

|(∂/∂t)(tnKk
j (tθ))| ≤ |ntn−1Kk

j (tθ)|+ |tn(∂/∂t)Kk
j (tθ)|

≤ c2δ|k|2−jV (θ)χ[2j−1,2j+1](t)

+ c22δ|k|2−jV (θ)χ[2j−1,2j+1](t),

and hence V (H, [2j, 2j+1]) ≤ c22δ|k|V (θ), where H(t) = tnKk
j (tθ). Thus by

Lemma 1 we have

|K̂k
j (ξ)| ≤ c22δ|k|‖V ‖r|2jξ|−(r−1)/(4r).

Moreover, ‖Kk
j ‖1 ≤ c2δ|k|‖V ‖1, and so, by (1.1),

|K̂k
j (ξ)| ≤ c2δ|k|‖V ‖1 min(1, |2jξ|) ≤ c2δ|k|‖V ‖1|2jξ|(r−1)/(4r).

Combining these results, we obtain

(2.4) |K̂k
j (ξ)| ≤ c22δ|k|‖V ‖r min(|2jξ|, |2jξ|−1)(r−1)/(4r).

Define ∆k by the Fourier transform

∆̂k(f)(ξ) = γ(2k|ξ|)f̂(ξ).

Now decompose

Tf =
∑

k

∑

j

Kk
j ∗∆j+kf +

∑

k

∑

j

Skj ∗∆j+kf,

where Skj = Kj−Kk
j , Kj(x) = γ(2−j |x|)K(x). If w ∈ A2, by the Littlewood–

Paley inequality we have

(2.5)
∥∥∥
∑

j

Kk
j ∗∆j+kf

∥∥∥
2

L2(w)
≤ cw

∑

j

‖Kk
j ∗∆j+kf‖2L2(w).

By (2.4) we have

(2.6) ‖Kk
j ∗∆j+kf‖2 ≤ c‖V ‖r22δ|k|2−ε|k|‖f‖2 (ε = (r − 1)/(4r)).
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On the other hand, for a weight function w we have

(2.7) ‖Kk
j ∗∆j+kf‖L2(w) ≤ c‖V ‖1/21 2δ|k|‖f‖L2(MM

Ṽ
(w)).

Interpolating between (2.6) and (2.7), we obtain

(2.8) ‖Kk
j ∗∆j+kf‖L2(wθ) ≤ c‖V ‖1−θ/2r 22δ|k|2−(1−θ)ε|k|‖f‖L2(MM

Ṽ
(w)θ)

for all θ ∈ (0, 1). Thus

(2.9)
∑

j

‖Kk
j ∗∆j+kf‖2L2(wθ)

≤ c‖V ‖2−θr 24δ|k|2−2(1−θ)ε|k|∑

j

‖∆̃j+kf‖2L2(MM
Ṽ

(w)θ)

≤ c‖V ‖2−θr 24δ|k|2−2(1−θ)ε|k|‖f‖2L2(MM
Ṽ

(w)θ),

where ∆̃j is another decomposition operator such that

̂̃
∆jf(ξ) = γ̃(2jξ)f̂(ξ)

with γ̃ ∈ C∞(Rn) satisfying γ̃(ξ) = 1 for 1/2 ≤ |ξ| ≤ 2, supp(γ̃) ⊂ {1/4 ≤
|ξ| ≤ 4}. For any θ ∈ (0, 1), choose δ small enough to satisfy 2δ−(1−θ)ε < 0.
Then, for a weight function w such that wθ ∈ A2, by (2.5) and (2.9) we have

(2.10)
∥∥∥
∑

k

∑

j

Kk
j ∗∆j+kf

∥∥∥
L2(wθ)

≤
∑

k

∥∥∥
∑

j

Kk
j ∗∆j+kf

∥∥∥
L2(wθ)

≤ c‖V ‖1−θ/2r

∑

k

22δ|k|2−(1−θ)ε|k|‖f‖L2(MM
Ṽ

(w)θ)

≤ c‖V ‖1−θ/2r ‖f‖L2(MM
Ṽ

(w)θ).

For w ∈ A2, substituting w1/θ for w in (2.10), we see that, for all θ ∈ (0, 1),

(2.11)
∥∥∥
∑

k

∑

j

Kk
j ∗∆j+kf

∥∥∥
L2(w)

≤ c‖V ‖1−θ/2r ‖f‖L2(MM
Ṽ

(w1/θ)θ).

Similarly, if w ∈ A2, then
∥∥∥
∑

j

Skj ∗∆j+kf
∥∥∥

2

L2(w)
≤ cw

∑

j

‖Skj ∗∆j+kf‖2L2(w).

Using Hölder’s inequality, for 1 < t <∞ we see that
∑

j

‖Skj ∗∆j+kf‖2L2(w) ≤ cωq(2−δ|k|−1)2
∑

j

‖∆j+kf‖2L2(Mq′ (w))

≤ cωq(2−δ|k|−1)2‖f‖2
L2(MtMq′ (w)).
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Thus

(2.12)
∥∥∥
∑

k

∑

j

Skj ∗∆j+kf
∥∥∥
L2(w)

≤ c
[∑

k

ωq(2−δ|k|−1)
]
‖f‖L2(MtMq′ (w)).

Combining (2.11) and (2.12), we get the conclusion of Theorem 3.

We turn to the proof of Theorem 4. We note that

|Kk
j (tθ)| ≤ c2−jnV ∗(θ)χ[2j−1,2j+1](t).

Therefore,

‖Skj ∗∆j+kf‖2L2(w) ≤ cω1(2−δ|k|−1)‖∆j+kf‖2L2(M
Ṽ ∗ (w)),

and hence, for 1 < t <∞,
∑

j

‖Skj ∗∆j+kf‖2L2(w) ≤ cω1(2−δ|k|−1)‖f‖2L2(MtM
Ṽ ∗ (w)).

Thus, using the assumption w ∈ A2, we have∥∥∥
∑

k

∑

j

Skj ∗∆j+kf
∥∥∥
L2(w)

≤ c
[∑

k

ω1(2−δ|k|−1)1/2
]
‖f‖L2(MtM

Ṽ ∗ (w)).

We can handle
∑

k

∑
j K

k
j ∗ ∆j+kf as in the proof of Theorem 3. This

completes the proof of Theorem 4.

3. Proof of Theorem 1. By Calderón–Zygmund decomposition at
height µ = λ/A with A = ‖V ‖r + cω, we have a collection {Q} of non-
overlapping closed dyadic cubes and functions g, b such that

f = g + b, µ ≤ |Q|−1
�

Q

|f | ≤ cµ, v
(⋃

Q
)
≤ c‖f‖L1(M(v))/µ,

‖g‖∞ ≤ cµ, ‖g‖L1(v) ≤ c‖f‖L1(M(v)),

b =
∑

Q

bQ, supp(bQ) ⊂ Q,
�
bQ = 0, ‖bQ‖1 ≤ cµ|Q|,

where v is any weight function. Put Bj =
∑

`(Q)=2j bQ for j ∈ Z, where `(Q)
denotes the sidelength of Q.

Let the functions γ and φ be as in Section 2. Put Kj(x) = γ(2−j |x|)K(x)
as before. For a positive integer s and δ, η > 0, define

Hs
j (tθ) = χDηs (θ)γ(2−jt)

�
K(%θ)2−j+δsφ(2−j+δs(t− %)) d%,

where
Dη
s = {θ ∈ Sn−1 : V (θ) ≤ 2ηs‖V ‖r}.

Put Eηs = Sn−1 \Dη
s and

Rsj(tθ) = χEηs (θ)γ(2−jt)
�
K(%θ)2−j+δsφ(2−j+δs(t− %)) d%.



130 D. Fan and S. Sato

Decompose Kj(tθ) = Hs
j (tθ) +Rsj(tθ) + Ssj (tθ), where

Ssj (tθ) = γ(2−jt)
�
[K(tθ)−K((t− %)θ)]2−j+δsφ(2−j+δs%) d%.

By Seeger [10], for some ε0 > 0 we have

(3.1)
∣∣∣
{
x ∈ Rn :

∣∣∣
∑

j

Hs
j ∗Bj−s(x)

∣∣∣ > λ
}∣∣∣

≤ c‖V ‖r2c(δ+η)s2−ε0sλ−1
∑
‖bQ‖1.

On the other hand, |Hs
j (tθ)| ≤ c‖V ‖r2ηs2δs2−jnχ[2j−1,2j+1](t), so we have

(3.2)
∑

j

‖Hs
j ∗Bj−s‖L1(w) ≤ c‖V ‖r2ηs2δs

∑

Q

inf
Q
M(w)‖bQ‖1,

where infQM(w) = infx∈QM(w)(x).
For t > 0, put

F st =
{
x ∈ Rn :

∣∣∣
∑

j

Hs
j ∗Bj−s(x)

∣∣∣ > t
}
.

Taking η and δ small enough and interpolating between (3.1) and (3.2) by
a variant of the method of Vargas [14], for any θ ∈ (0, 1) we obtain

w(F scτ2−τsλ) ≤ c‖V ‖rλ−12−ζs‖f‖L1(M(w1/θ)θ),

where τ, ζ > 0 depend on θ and cτ satisfies cτ
∑
s 2−τs = 1. (See Fan–Sato

[5] for more details about the proof of this estimate.) Thus

(3.3) w
({
x ∈ Rn :

∣∣∣
∞∑

s=1

∞∑

j=−∞
Hs
j ∗Bj−s(x)

∣∣∣ > λ
})

≤ cθ‖V ‖rλ−1‖f‖L1(M(w1/θ)θ).

Next we note that

|Rsj(tθ)| ≤ c2δs2−jnVs(θ)χ[2j−1,2j+1](t),

where Vs(θ) = V (θ)χEηs (θ). Therefore

‖Rsj ∗Bj−s‖L1(w) ≤ c2δs‖Bj−s‖L1(M
Ṽs

(w)),

and hence, if ηε > δ,
∑

s≥1

∑

j

‖Rsj ∗Bj−s‖L1(w) ≤ c
∑

s

2δs‖f‖L1(MM
Ṽs

(w))(3.4)

≤ c
∑

s

2δs2−ηεs‖V ‖−εr ‖f‖L1(MM
Ṽ

1+ε
s

(w))

≤ c‖V ‖−εr ‖f‖L1(MM
Ṽ 1+ε (w)).
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Also by Hölder’s inequality we have
∥∥∥
∑

j

Ssj ∗Bj−s
∥∥∥
L1(w)

≤ cωq(2−δs)‖f‖L1(MMq′ (w)).

Thus

(3.5)
∥∥∥
∑

s

∑

j

Ssj ∗Bj−s
∥∥∥
L1(w)

≤ c
[∑

s

ωq(2−δs)
]
‖f‖L1(MMq′ (w)).

Combining (3.3), (3.4) and (3.5), we have

(3.6) w({x ∈ Rn \E : |T (b)(x)| > λ})
≤ cλ−1

�
|f |[‖V ‖rM(w1/θ)θ + ‖V ‖−εr MMṼ 1+ε(w) + cωMMq′(w)] dx,

where E =
⋃
Q∗ with Q∗ denoting a suitable concentric enlargement of Q

(see [1], [5], [10], e.g., for more details about this argument). We can handle
T (g) by Theorem 3 as follows:

(3.7) w({x ∈ Rn : |T (g)(x)| > λ}) ≤ λ−2‖Tg‖2L2(w)

≤ cλ−2‖V ‖2−1/s
r ‖g‖2L2(MsMs

Ṽ
(w)) + cλ−2c2ω‖g‖2L2(MtMq′ (w))

≤ cλ−1‖V ‖2−1/s
r A−1‖f‖L1(MsMs

Ṽ
(w)) + cλ−1c2ωA

−1‖f‖L1(MtMq′ (w))

≤ cλ−1‖V ‖1−1/s
r ‖f‖L1(MsMs

Ṽ
(w)) + cλ−1cω‖f‖L1(MtMq′ (w)).

Also we note that w(E) ≤ cAλ−1‖f‖L1(M(w)). Combining this estimate with
(3.6) and (3.7), we get the conclusion of Theorem 1.

4. Proof of Theorem 2. We use notation similar to that of Sec-
tion 3. We apply the Calderón–Zygmund decomposition with µ = λ/A,
A = c0α

−1 + ‖V ‖r. Let

Hs
j (tθ) = χDηs (θ)γ(2−jt)

�
K(%θ)2−j+δsφ(2−j+δs(t− %)) d%,

where Dη
s = {θ ∈ Sn−1 : V ∗(θ) ≤ 2ηs‖V ‖r}. Put Eηs = Sn−1 \Dη

s and

Rsj(tθ) = χEηs (θ)Kj(tθ).

Decompose Kj(tθ) = Hs
j (tθ) +Rsj(tθ) + Ssj (tθ), where

Ssj (tθ) = χDηs (θ)γ(2−jt)
�
[K(tθ)−K((t− %)θ)]2−j+δsφ(2−j+δs%) d%.

Since |Ssj (tθ)| ≤ c‖V ‖r2ηs2−jnχ[2j−1,2j+1](t), we have

(4.1)
∑

j

‖Ssj ∗Bj−s‖L1(w) ≤ c‖V ‖r2ηs
∑

Q

inf
Q
M(w)‖bQ‖1.
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On the other hand,

(4.2)
∑

j

‖Ssj ∗Bj−s‖1 ≤
∑

j

‖Ssj ‖1‖Bj−s‖1 ≤ cc02−αδs
∑

Q

‖bQ‖1.

Interpolating between (4.1) and (4.2) as in Section 3, by taking η small
enough, for any θ ∈ (0, 1) we obtain

(4.3)
∑

j

‖Ssj ∗Bj−s‖L1(w) ≤ c‖V ‖θrc1−θ0 2−τs‖f‖L1(M(w1/θ)θ)

with some τ > 0 depending on θ and α.
Now we note that

|Rsj(tθ)| ≤ c2−jnV ∗s (θ)χ[2j−1,2j+1](t),

where Vs(θ) = V ∗(θ)χEηs (θ). Therefore

‖Rsj ∗Bj−s‖L1(w) ≤ c‖Bj−s‖L1(M
Ṽ ∗s

(w)).

Thus for any ε > 0,

(4.4)
∑

s≥1

∑

j

‖Rsj ∗Bj−s‖L1(w) ≤ c
∑

s

‖f‖L1(MM
Ṽ ∗s

(w))

≤ cη−(1+ε)
∑

s

s−(1+ε)
�
|f |MMṼ ∗s [log+(Ṽ ∗s /‖V ‖r)]1+ε(w) dx

≤ c
�
|f |MMṼ ∗[log+(Ṽ ∗/‖V ‖r)]1+ε(w) dx.

We can handle
∑

s

∑
j H

s
j ∗ Bj−s just as in the proof of Theorem 1. So

we have

(4.5) w
({
x ∈ Rn :

∣∣∣
∑

s

∑

j

Hs
j ∗Bj−s(x)

∣∣∣ > λ
})

≤ cθ‖V ‖rλ−1‖f‖L1(M(w1/θ)θ).

By (4.3)–(4.5) we can treat T (b) as in the proof of Theorem 1 by choosing
a suitable exceptional set E. For the estimation of T (g) we use Theorem 4
in the same way as we used Theorem 3 in the proof of Theorem 1. This
completes the proof.

5. Proof of Theorem 7. Suppose ψ is supported in {1 ≤ |x| ≤ 2} and
let V be as in (1.2). We write

ψt(uθ) =
∞∑

j=−∞
t−nψ(t−1uθ)χ(1,2](2

−jt) =
∞∑

j=−∞
Lj(uθ, t)

for u ≥ 0, θ ∈ Sn−1. Note that

(5.1) |Lj(uθ, t)|H ≤ c2−jnV (θ)χ[1,4](2
−ju),
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where |Lj(uθ, t)|H = ( � ∞0 |Lj(uθ, t)|2 dt/t)1/2. Now, we decompose

f ∗ ψt(x) =
∞∑

j=−∞

∞∑

k=−∞
∆j+k(f ∗ ψt)(x)χ(2k,2k+1](t) =

∑

j

Fj(x, t),

say, where ∆j is as in Section 2. Set

Tj(f)(x) =
(∞�

0

|Fj(x, t)|2
dt

t

)1/2

=
(∑

k

|[Lk]t ∗∆j+k(f)(x)|2H
)1/2

,

where we write [Lk]t(x) = Lk(x, t).
Let

Uj,k(f)(x) = |[Lk]t ∗∆j+k(f)(x)|H.
Then by Hölder’s inequality and (5.1), we have

(5.2) ‖Uj,k(f)‖2L2(w) ≤ c‖V ‖1‖f‖2L2(MM
Ṽ

(w)).

On the other hand, by Plancherel’s theorem

‖Uj,k(f)‖22 =
�

Rn

( 2�

1

|ψ̂(2ktξ)|2 dt
t

)
|f̂(ξ)γ(2k+j |ξ|)|2 dξ.

It is known that
( 2�

1

|ψ̂(2ktξ)|2 dt
t

)
≤ c‖ψ‖2r min(|2kξ|, |2kξ|−1)ε for ε ∈ (0, 1/r′)

(see Sato [9]). Therefore

(5.3) ‖Uj,k(f)‖22 ≤ c‖ψ‖2r2−ε|j|
�
|f̂(ξ)γ(2k+j |ξ|)|2 dξ ≤ c‖ψ‖2r2−ε|j|‖f‖22.

Interpolating between (5.2) and (5.3), we get

‖Uj,k(f)‖2L2(wθ) ≤ c‖V ‖θ1‖ψ‖2(1−θ)
r 2−(1−θ)ε|j|‖f‖2L2(MM

Ṽ
(w)θ)

for all θ ∈ (0, 1). Substituting w1/θ for w and writing s = 1/θ, we have

‖Uj,k(f)‖2L2(w) ≤ c‖V ‖θ1‖ψ‖2(1−θ)
r 2−(1−θ)ε|j|‖f‖2L2(MsMs

Ṽ
(w)).

Let ∆̃j be as in Section 2. Then

‖Tj(f)‖2L2(w) =
∑

k

‖Uj,k(f)‖2L2(w) =
∑

k

‖Uj,k(∆̃j+kf)‖2L2(w)

≤ c‖V ‖θ1‖ψ‖2(1−θ)
r 2−(1−θ)ε|j|∑

k

‖∆̃j+kf‖2L2(MsMs
Ṽ

(w))

≤ c‖V ‖θ1‖ψ‖2(1−θ)
r 2−(1−θ)ε|j|‖f‖2L2(MsMs

Ṽ
(w)).

From this we get the conclusion of Theorem 7, since gψ(f) ≤∑j Tj(f).
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6. Proofs of Theorems 5 and 6. Let φ be as in Section 2. First we
prove Theorem 5. For β > 0, let

Ds = {θ ∈ Sn−1 : V (θ) > 2βs‖V ‖1},
where s is a positive integer. We write x = uθ, u ≥ 0, θ ∈ Sn−1 and
ψ(uθ) = Ω(u, θ). Put Ωs(u, θ) = Ω(u, θ)χDs(θ) and Ωs = Ω−Ωs. As in the
proof of Theorem 7, we decompose ψt(x) =

∑
j Lj(x, t). Split Lj as

Lj(x, t) = t−nΩ(t−1|x|, θ)χ(1,2](2
−jt) = Ks

j (x, t) +Rsj(x, t) + Ssj (x, t),

where
Ks
j (x, t) = t−nΩs(·, θ) ∗ φ2−βs(t

−1u)χ(1,2](2
−jt),

Rsj(x, t) = t−nΩs(·, θ) ∗ φ2−βs(t
−1u)χ(1,2](2

−jt),

Ssj (x, t) = t−nΩ(t−1u, θ)χ(1,2](2
−jt)

− t−nΩ(·, θ) ∗ φ2−βs(t
−1u)χ(1,2](2

−jt).

We use the Calderón–Zygmund decomposition with µ = λ/A, A = ‖V ‖1.
We note

sup
0≤m≤`

‖(∂/∂u)mΩs(·, θ) ∗ φ2−βs(u)‖L2(du) ≤ c2βs(`+1)‖V ‖1,

uniformly in θ ∈ Sn−1. Thus, taking β small enough, as in Fan–Sato [5] we
have

(6.1)
∣∣∣
{
x ∈ Rn :

∣∣∣
∑

j∈Z
[Ks

j ]t ∗Bj−s(x)
∣∣∣
H
> λ

}∣∣∣ ≤ c2−ε0s
∑

Q

|Q|

for some ε0 > 0, where | · |H is as in Section 5. On the other hand,

|Ks
j (uθ, t)|H ≤ c2βs‖V ‖1u−nχ[1/4,8](2

−ju),

so that
∥∥∥
∑

j

[Ks
j ]t ∗Bj−s

∥∥∥
L1
w(H)

=
∥∥∥
(∞�

0

∣∣∣
∑

j

[Ks
j ]t ∗Bj−s

∣∣∣
2
dt/t

)1/2∥∥∥
L1(w)

(6.2)

≤ c2βs‖V ‖1
∑

Q

inf
Q
M(w)‖bQ‖1.

Using the estimates obtained by interpolating between (6.1) and (6.2), tak-
ing β small enough, as in the proof of Theorem 1 we have, for any θ ∈ (0, 1),

(6.3) w
({
x ∈ Rn :

∣∣∣
∑

s

∑

j

[Ks
j ]t ∗Bj−s(x)

∣∣∣
H
> λ

})

≤ cAλ−1‖f‖L1(M(w1/θ)θ).

Next, note that

|Rsj(uθ, t)|H ≤ cVs(θ)u−nχ[1/4,8](2
−ju),

where Vs(θ) = V (θ)χDs(θ). Thus
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∥∥∥
∑

j

[Rsj ]t ∗Bj−s
∥∥∥
L1
w(H)

≤ c
∑

j

‖Bj−s‖L1(M
Ṽs

(w)) ≤ c‖f‖L1(MM
Ṽs

(w)).

Therefore, for any ε > 0,

(6.4)
∑

s≥1

∥∥∥
∑

j

[Rsj ]t ∗Bj−s
∥∥∥
L1
w(H)

≤ cβ−1−ε∑

s

s−1−ε �
|f |MMṼs[log+(Ṽs/‖V ‖1)]1+ε(w) dx

≤ c
�
|f |MMṼ [log+(Ṽ /‖V ‖1)]1+ε(w) dx.

By Hölder’s inequality, we see that

‖[Ssj ]t ∗Bj−s‖L1
w(H) ≤ cω̃q(2−δs)‖Bj−s‖L1(Mq′ (w)).

Thus

(6.5)
∑

s

∑

j

‖[Ssj ]t ∗Bj−s‖L1
w(H) ≤ c

[∑

s

ω̃q(2−δs)
]
‖f‖L1(MMq′ (w)).

By (6.3)–(6.5) we can treat gψ(b) as in the proof of Theorem 1 by choosing
a suitable exceptional set E. To estimate gψ(g) we apply Theorem 7:

w({x ∈ Rn : |gψ(g)(x)| > λ}) ≤ λ−2‖gψ(g)‖2L2(w)

≤ cλ−1‖V ‖1/s−1
1 ‖ψ‖2−2/s

r ‖f‖L1(MsMs
Ṽ

(w)).

This completes the proof of Theorem 5.

Next we turn to the proof of Theorem 6. Decompose

Lj(x, t) = t−nΩ(t−1|x|, θ)χ(1,2](2
−jt) = Ks

j (x, t) +Rsj(x, t) + Ssj (x, t),

where
Ks
j (x, t) = t−nΩs(·, θ) ∗ φ2−βs(t

−1u)χ(1,2](2
−jt),

Rsj(x, t) = t−nΩs(t−1u, θ)χ(1,2](2
−jt),

Ssj (x, t) = t−nΩs(t−1u, θ)χ(1,2](2
−jt)

− t−nΩs(·, θ) ∗ φ2−βs(t
−1u)χ(1,2](2

−jt).

Here Ωs, Ωs are as above. We use the Calderón–Zygmund decomposition
also with µ = λ/A, A = ‖V ‖1.

Since ω̃1(t) ≤ c0tα, we have

(6.6)
∑

j

‖[Ssj ]t ∗Bj−s‖L1(H) ≤ cc02−βαs
∑

j

‖Bj−s‖1.

On the other hand, |Ssj (uθ, t)|H ≤ c2βs‖V ‖1u−nχ[1/4,8](2−ju), and hence

(6.7)
∥∥∥
∑

j

[Ssj ]t ∗Bj−s
∥∥∥
L1
w(H)

≤ c2βs‖V ‖1
∑

Q

inf
Q
M(w)‖bQ‖1.
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Using the estimates obtained by interpolating between (6.6) and (6.7), tak-
ing β small enough, we have, for any θ ∈ (0, 1),

w
({
x ∈ Rn :

∣∣∣
∑

s

∑

j

[Ssj ]t ∗Bj−s(x)
∣∣∣
H
> λ

})

≤ cα−1(‖V ‖1 + c0)λ−1‖f‖L1(M(w1/θ)θ).

The rest of the proof is similar to the case of Theorem 5. This completes
the proof.
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