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Necessary and sufficient conditions for boundedness of
the maximal operator in local Morrey-type spaces

by

VIKTOR I. BURENKOV and HUSEYN V. GULIYEV (Cardiff)

Abstract. The problem of boundedness of the Hardy—Littewood maximal operator in
local and global Morrey-type spaces is reduced to the problem of boundedness of the Hardy
operator in weighted Lp-spaces on the cone of non-negative non-increasing functions.
This allows obtaining sufficient conditions for boundedness for all admissible values of
the parameters. Moreover, in case of local Morrey-type spaces, for some values of the
parameters, these sufficient conditions are also necessary.

For z € R™ and r > 0, let B(x,r) denote the open ball centred at z of
radius r.

DEFINITION 1. Let 0 < p, 0 < oo and let w be a non-negative measurable
function on (0,00). We denote by LMpg ., and G Mg, the local and global
Morrey-type spaces respectively, defined to be the spaces of all functions
f € Lp¢(R™) with finite quasinorms

1 fllnpe,0 = N Fl L0 () = Hw(r)HfHLp(B(O,r))HLH(Opo)v

| fllenye., = sup [1f(z+ ).,
TER™

respectively.

LEMMA 1. Let 0 < p,0 < oo and let w be a non-negative measurable
function on (0,00).

) If
(1) Hw(T)HLg(t,oo) =00 forallt >0,
then LMy, = GMyg ., = ©, where © is the set of all functions equivalent
to 0 on R™.

(i) If
(2) Hw(mrn/pHLg(O’t) =o00 forallt>0,
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then f(0) = 0 for all f € LMpp,, continuous at 0, and GMp,, = O for
0<p<oo.

Proof. (i) Let (1) be satisfied and f be not equivalent to zero. Then
A= fllL,(B(0,to)) > 0 for some to > 0. Hence
1 lentysw = 1F I at.0 2 1w N L8O 1 Lo(to,00) 2 Allw(T) ]y (t0,00)-

Therefore || fllGntg . = [1f]| 2015, = 00
(ii) Let (2) be satisfied. If f € LMpp,, and there exists

(3) lim [B(0, )| ?| |50, = B.

where |B(0, )| is the volume of B(0,r), then B = 0. Indeed, assume B > 0.
Then there exists ty > 0 such that

(4) 1B(0,7)[ 77| £, (Bo.r)) = B/2
for all 0 < r < tg. Consequently,

B n
171200 2 [0 000 | o) > T oI W™ 0.0

where vy, is the volume of the unit ball in R". Hence || f/Lum,
f & LMy, and we have arrived at a contradiction.

If f € LMpg,, and it is continuous at 0, then (3) holds with B = |f(0)]|.
Hence f(0) = 0.

Next let 0 < p < oo and let f € GMpg,,,- Then by the Lebesgue theorem
on differentiation of integrals, for almost all x € R",

712"%IB(&U,7")|_1/p|\fHLp(B(gg,r)) = |f(x)|.

By the above argument, f(z) = 0 for all those x. Hence f is equivalent to
Zero. m

= 00, SO

6, w

DEFINITION 2. Let 0 < p,0 < co. We denote by (2, the set of all non-
negative measurable functions w on (0,00) such that for some ¢1,t2 > 0,

(5) ()| tr,00) < 005 w(r)r™ P Ly(0.42) < 00-
In what follows, keeping in mind Lemma 1, we always assume that w €
2,0.

The spaces GMPOO,T%/;,, where 0 < A < n, are the classical Morrey
spaces introduced in [6] and applied to studying the local behaviour of solu-
tions of second order elliptic partial differential equations. The interpolation
properties of the spaces GMoo 1, Were investigated by S. Spanne in [11]. The
spaces G M, ,—» were used by G. Lu [4] for studying embedding theorems
for vector fields of Hormander type. T. Mizuhara [5] and E. Nakai [7] studied
the boundedness of various integral operators in the spaces GMpoo -

For a measurable set {2 C R™ and a non-negative measurable function v
on §2, let L, ,(f2) be the weighted L,-space of all measurable functions f
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on {2 for which
1 £l 2,002) = 0 fllL,2) < o0
If0<p <0< oo, then

(6) 1 Entpe . < NFIILyw @n)s
and if 0 < 0 < p < oo, then

(7) 112y @y < N FllLMpp s
where

W(x) = |wllLy(a),0c) for € R™.

These inequalities are particular cases of general inequalities for Lebesgue
spaces with mixed quasinorms (see, for example, [8, Section 3.37]). In par-
ticular, for 0 < p < oo,

HfHLMpp,w - ”f”Lp,Wp(Rn)

where W)(z) = HwHLp(\xLoo) for z € R™.

Let f € LY¢(R"). The Hardy-Littlewood mazximal operator M is defined

by

(Mf)(@) =sup|Blar)| ™t | [F(y)dy.
r>0 B(z,r)

F. Chiarenza and M. Frasca [2] have proved the boundedness of M in the
classical Morrey spaces. T. Mizuhara [5] and E. Nakai [7] have obtained
sufficient conditions on w for the boundedness of M in GMpx . In this
paper we improve, in particular, the results obtained in [5, 7]. Moreover, for
some values of parameters we obtain necessary and sufficient conditions for
the operator M to be bounded from LMpg, ,, to LMpg, 4, -

An application of the known necessary and sufficient conditions for the
boundedness of the maximal operator from one weighted Lebesgue space to
another [10] immediately implies the following result for local Morrey-type
spaces. Here and throughout, x g denotes the characteristic function of the
set E.

THEOREM 1. Let 1 < p; < p2 < 00, 0 < 01,02 < 00, w1 € (2, 9,,
Wy € Qp%g?.

o If p1 > 01 and py < 05, and for some c1 > 0 and all balls B C R™,
1— 1/(1—
(8) 1M OsW P TN, i < WL, (),

where

P27W2(B

Wi(z) = lwillzy (al00)s  Wal@) = llwellLy, (af,00)  © € R,

then the operator M is bounded from LMy g, w, to LMy, 4, and from
GMp,6y,un 10 GMpy6, -
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o If p1 <61 and py > 03, then condition (8) is necessary for the bound-
edness of M from LMy, ¢, w, to LMp,g, 4, -

e In particular, if 01 = p1 and 62 = pa, then condition (8) is necessary
and sufficient for the boundedness of M from LMy, p, w, to LMp,p, w,-

Proof. Let p1 > 61 and pa < 2. By applying (6), the sufficiency of (8)
for the boundedness of M and (7) we get
(9) 1M A2y ey < 1M F L,y

< eallfllz, ey < 2l inty o o,

where c2 > 0 is independent of f.

Conversely, if p1 < 01, pa > 02, and

M fll L0050, < 3120, 0, 0,

where c3 > 0 is independent of f, then by (6),

(10) 1M Flln,, iy < sl FlL,, o en):

which is known to imply (8).
Also (9) implies that

1M fllaayp0,0, < c2llfllan,

100wy ™
In order to obtain conditions on w; and wy ensuring the boundedness
of M for other values of the parameters and to obtain simpler conditions
for p = 01 = 65 we shall reduce the problem of boundedness of M in local
Morrey-type spaces to the problem of boundedness of Hardy operator in
weighted L,-spaces on the cone of non-negative non-increasing functions.
As in [2, 5, 7], we start with the inequality

(11) | (M) (@) de <es | 1£(2)P(Mxpon) (@) dr,
B(0,r) R"

where 1 < p < 0o and ¢4 > 0 is independent of f € L°°(R"™) and r. This is a
particular case of a more general inequality established by C. L. Fefferman
and E. Stein [3]:

V(M) (@ lp() de < e5 | | f(@)P(Mp)(2) da,

where 1 < p < oo and ¢5 > 0 is independent of f,p € LI°¢(R"™).
LEMMA 2. For all > 0 and x € R™,

(12) (o) = Otwem@ = (2-)"

This statement is known, at least with some constant on the right-hand
side. For the sake of completeness we give the proof.
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Proof. Ifn =1, then Mx(_,,y = 1for [z| < rand Mx_,, =r/(|z|+7)
if || > r, and (12) is trivial.
Assume that n > 2. If [z] < r, then Mxp(,) = 1 and (12) is trivial
again.
Assume that || > r. If o > |z|, then
1

- . dy —
Blal,) oW B =G
z,0)

n n
r r
() =)
0 |z|
If 0 < o < |x| — r, then G(z,7,0) = 0.

Assume that |z| —r < p < |z|. In order to estimate G(z,, ) from above
note that

G(z,r0) =

B(z,0) N B(0,r) C Bp—1(0,h) x (|Jz| — o,7),

where B,,_1(0, h) is the ball centered at the origin of radius h in R"~!, and h
is the height in the triangle with side lengths r, ¢ and |z|, perpendicular to
the side of length |z|. Since

h— \/Q2 — (|=| - 7’)2\/(|~T‘ + 1) — 0 < \/(02 — (=] - 7«>2)%’

2||

it follows that
vn-1 (&% = (Jz| = ))r/|z) D2 (e — (|2 — 7))

Un o

(- () )m) )
Uy, 0 |z 0
onet ((y_ (lel =\ O el
n || |z |z
< V1 gmons2( T \"
T Up |z .

Since vy,_1 /v, < n/2 < 22 for |z| > r and for all o > |x| — r we have

r n r n
< 2" — <4 — .
eno <2 () <o ()

MXB(O,T) (.’L’) = SFF G(.T, T, &Q)v
o>[a|—r

G(z,r, 0) <

IN

Since

the upper bound in (12) follows. The lower bound is much simpler:

r n
MXB(O,T‘)(:E) = G(:B,T’,‘.ﬂ +T) = <|l" +T> - .
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COROLLARY 1. Let 1 < p < co. Then there exists cg > 0 such that

D 1/p
M fllL,B0r) < C6< " S (’Lf|(+)7|4) dﬂﬂ) :

for all » > 0 and all f € LY°(R").

In order to estimate the right-hand side integral we first prove the fol-
lowing equality.

LEMMA 3. Let ¢ be a non-negative measurable function on R™. Then for
all r >0,

P Ly g O R PR

|z["
|z|>r T r<|z|<t
Proof. By applying spherical coordinates we get

T T o) 2 =T (5 (Toteoerae) i) 24

roor<la|<t rosnelor
= (V0] m)élen)edo) do
Sn=1 7 max{gr}
1 To 1 o(x)d
= S S (0)0" dda—g S (z) d

Sn—1r " |z|>r |:1:|n

LEMMA 4. Let ¢ be a non-negative measurable function on R™. Then for
all r >0,

ot dt r)dz T dt
w2 (] ptodr) i < | A < [ elo)de) i
r B(0,t) R T B(0,t)

Proof. Since

| 2 < | sars | B
I

|z|<r || >r

Xi(go(x)dazn 22"<r” S o(z) dr + S o(z) da;),

R™ |33| T T) || <r |z|>r

and

the statement follows by Lemma 3 because

(13) S Tzzgﬁl) dx :ns ( S o(z)dz — S () dw)%

ja|>r N jal<r

:ns< S ()dm)ti’il—r—” S o(x)dr. m

|z|<t |lz|<r
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COROLLARY 2. Let 1 < p < co. Then there exists c; > 0 such that
0 at \/?
1) o <er(i [ (] 1P )
T B(0,t)
for allr >0 and all f € LY°(R™).
Let H be the Hardy operator:

(Hg)(r) =\g(t)dt, 0<r<oo.
0

LEMMA 5. Let 1 < p < 00, 0 < 0 < oo, w € §2,9. Then there exists
cg > 0 such that

||Mf||LM 0w — C8HH9”L9/ +(0,00)
for all f € L°(R™), where

(15) gy= | 1f@Pdy,
B(0,t=1/n)

(16) v(r) = w(r~Y/mppmi=(F1/mp/6,
Proof. By Corollary 2, for § < oo we have
A7) 1M Flleatye = @ IM B0 1,000

wer (1§ irpar) tfil)l/p

T B(0t)

S C%/p

Lg(0,00)

—n

=t (1§ wpas)ar)”

0 B(0,-1/n) Lg(0,00)
— c;/Pn—l/p(oxo<w(r>rn/p)9<TX g(T) dT)G/P dr) 1/0
0 0
o] o
= c;/Pn—l/P—l/(’( S (w(g—l/n)g—l/Z’)GQ—l/n—l<Sg(T) dT)O/p d@)l/e
0 0

= CSHHQHLG/ 0(0,00)"
If & = oo, then by a similar argument

M F1 LMo o = €58 supw(r)| M f|,(50,))

0<r<oo

< g esssup w(g_l/”)g_l/pHgl/p(QL gy = C;l/pn—l/p. .
0<p<oo
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COROLLARY 3. Let 1 <p < o0, 0<6 <00, we 2,9. Then

1
1M G0, < €5 sup IH (e DI, 00y

forall f € L}DOC(]R”), where v is given by (16) and
(18) gz, )=\ f@lPdy= | [fz+yPdy.
B(z,t=1/m) B(0;t=1/m)

Proof. Since for all x € R,
(19) M) (@ + )z, B0

| (e, ) o) )

B(z+2z,r)
1 p 1/p
= sup ——— flz+u du) dz)
( ) (s B ) Ve
= [M(f(x+ )z, (BOr)

we have
(20) 1M fllamye., = sup [w(r)[(M ) (@ + ) L, B0 | Ls(0,00)

= sup |lw(r)|[M(f(@+ DL, B0 Le0,00)

ZER™
— sup [M(f(+ )l Lag,

TER™

1/p
< cg sup H( S f(m—l—y)]pdy)’
vern B(0,t=1/m) Lo /p,v(0,00)

= /e
=cg félﬂgl | H(g(, ))HLe/pﬂ,(o,oo)‘ .

THEOREM 2. Let0 < pz <p1 <oo,p1 >1,0< 0,02 < o0, ws €2 ,,
wap € {2y, 9,. Assume that, for some q > 1 satisfying p2 < q < p1, the opera-
tor H is bounded from Lg, /4., (0,00) to Lg, /4, (0,00) on the cone of all non-
negative functions ¢ non-increasing on (0,00) and satisfying lim_.oc ©(t)
= 0, where

(21) vi(r) = (wr (Tﬁl/n)7“1/‘1*1/101*(lJrl/n)/(?l)q7
(22) ’1)2(7“) = (w2(r,n_l/n)r—l/pz—(l-i-l/n)/Og)q'

Then the operator M is bounded from LMy, ¢, w, to LMy, ., and from
G My, 10 G M0, 05 -
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Proof. 1. By Holder’s inequality with exponent ¢/ps > 1,
(23) M FlLbyyo,m, = [[w2(MIMF Ly, (B0 |1y, 0,000

< HWQ(T)|B(07r)|1/p271/qHMfHLq(B(O,r))HLQQ(O’OO)

= 0/ P 7V us ()M £l 2,500 | 1, 0,00

= vp/ PV M F| Loy, o,y
where
() = wy ()"0,

Since ¢ > 1, by Lemma 5 applied to LM, ,, we have

1/q
1M 20400, < COllHGNL, | 000)
where
(24) gty=" | Ifwldy,
B(0,t=1/n)

and ¢y > 0 is independent of f, because ug(r—1/")4r=1=(1+1/m)a/02 — 4, (1),

Since g is non-negative, non-increasing on (0, c0) and lim; 1 g(t) = 0,
and H is bounded from Lg, /4., (0,00) to Lg, /4.4, (0,00) on the cone of func-
tions containing g, we have

1/q
1M 20ty0,0, < 10017

where c19 > 0 is independent of f.
Finally, by Hélder’s inequality with exponent p;/q > 1,

—1/ny|1—q/p1 q
g(t) < B, e

0,t=1/m))"

Hence

T o 1/61
(25) ||Mf||LMp292,w2 < Cll< X U]_(t)el/qt (1 q/pl)el/quHilpl(B(O,t—l/”)) dt)

0

01 (€ o gmeny0rfan(01 Ja—01 fp1)—n—1 | £101 1/01
= et/ (§ o (e T{Cap—y
0

o0 1/61
= e (@il o)™ dr) = enn a0, 0,
0

where c¢11; > 0 is independent of f.

2. To prove the boundedness of M from GM, g, v, to GMp,0, ., We
apply Corollary 3. Since for all x € R™ the function g(z,t) defined by (18)
is non-negative and non-increasing on (0, c0) and lim¢—. g(z,t) = 0, as in
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Step 1 it follows that

VIR
||Mf||GMp2921w2 S €10 mSGHREL ||g(l" )HL91/Q,111 (0,00)'
Since by Hélder’s inequality

90, 1) < BO M@ 4 )G ey

as in the second part of Step 1 we obtain

1/01 i~ 1/01
I3 600, < et sup (§wnIF e+, 50,7 )
TrER™ 0

= cun'/? sup || f(z +)llum
rER™

= cynt/? " llam,

In order to obtain explicit sufficient conditions on the weight functions
ensuring the boundedness of M, we first apply the following simple state-
ment.

p101,wy

. m
101,w1

LEMMA 6. Let 0 < 0 < oo, and let w and v be positive measurable
functions on (0,00). Then the inequality

(26) IHG Ly 0,00) < €120l9ll Los 0 (0,00)

is satisfied for all non-negative functions g with c1o > 0 independent of g
if, and only if,

(27) 5= ut

T

S dt
)3
Moreover, the minimal value of c12 is equal to B.

Proof. Necessity. Taking g = 1/v in (26) we obtain (27).
Sufficiency. It suffices to note that

Ly(0,00)

(28) HHglng,w(o,oo)ZHw(”)rg dt’

LgOOO

O ey

< B9l Lec.u(0,00)- ®

v(t) Lg(0,00) 02
Applying Lemma 6 to Theorem 2 we obtain the following sufficient con-

dition for the boundedness of the maximal operator in local and global

Morrey-type spaces.

- Hw(r)gﬂm) dt

THEOREM 3. Let 1 < p < 00, 0 < 0 < 00, wy € 2, w2 € (25, and
suppose that

o0

(29) ng(r)r"“”“)l’/@z S o dt

< oQ.
Wi (e >~

L92/p(0700)

T
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Then the operator M is bounded from LMo, to LMy, .., and from
GMpoo,w, to GMpg, 4, -

A similar result was obtained by E. Nakai [7] for wy = wy = w™/?(r)
and 0y = co with an extra condition: there exists c13 > 0 such that r <t <
2r = 1/c13 < w(t)/w(r) < cs.

Necessary and sufficient conditions for the validity of

(30) 1H@l Ly, /00 0.00) < C1all€llLy, g, 0,00):

where c14 > 0 is independent of ¢, for all non-negative non-increasing func-
tions ¢ are known for most of the cases. For detailed information see [12],
[13]. Application of any of those conditions gives sufficient conditions for
the boundedness of the maximal operator from LM, g, ., to LM,,g, w, and
from GM,,6, w, to GMp,g, v, However, since the reverse of inequality (11)
does not hold (take f = 1), there is no guarantee that an application of
necessary and sufficient conditions on v; and v ensuring the validity of (30)
will imply necessary and sufficient conditions for the boundedness of M from
LMP191,w1 to LMP292,w2'

Fortunately for certain values of the parameters this is indeed the case,
namely for 1 <p < o0, 0<0; <6y <00, 6 <p.

Note that in this case necessary conditions (which are also sufficient) for
the validity of (30) for non-negative non-increasing functions are obtained
by taking ¢ = x(o with an arbitrary ¢ > 0.

Since in the proof of Theorem 2 inequality (30) is applied to the func-
tion ¢ = g, where g is given by (24), it is natural to choose, as test func-
tions, functions f;, ¢t > 0, for which SB(O,u—l/”) | ft(y)|?dy is equal or close to
A(t)X(0,0)(u), u> 0, where A(t) is independent of u. The simplest choice is

(31) ft(y) = xBo200\BOH(Y), YyER" t>0.
LEMMA 7. Let r;t >0, and 0 < p < o0o. Then
I fell, By =0, 0<r<t, | fillL,(Bos) < cst™?, t<r < oo,
where c15 > 0 depends only on n and p.
Proof. The statement follows since for measurable G, {2 C R",
Ixcllz, ) = |G N 2MP.
Hence || fel|, (0. = I(B(0,26)\B(0,t)) N B(0,r)["/?.

LEMMA 8. For all t > 0 and x € R",
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Proof. By setting r = |x|42¢t and noting B(z, |x|+2t) D B(0,2t)\B(0,t)
we get
1

M fi)(x) = sup ———— z)dz
( ft)( ) T>IO) |B($,7")| B(§ ) XB(O,Qt)\B(O,t)( )

1
- B(x, x| + 2t) S XB(0,2)\B(0,t) 4%

B(a,Jal+2t)
1 1
NS T
Un AT t<|z|<2t
tm tm 1 tm
ey s > 1 |
(el + 207 Tel+ 07 = 2 (] + 07

Since | fi| < XB(0,2¢), by Lemma 2 we obtain
(M fi)(z) < (M )(ff)<4n<—2t >n<8”< ! )”
. n
¢ - XB(0.21) - || + 2¢ - |x| + ¢

For functions F, G defined on (0,00) x (0,00) we shall write F' < G if
there exist ¢, ¢ > 0 such that cF(r,t) < G < ' F(r,t) for all r;t € (0, 00).

LEMMA 9. For all r,t >0 and 0 < p < o0,

min{1, (t/r)"}, 0<p<l,
(33) 1M fillL,(Boay = 7§ min{l, (t/r)"In(e +r/1)}, p=1,
min{1, (¢t/r)"/?}, 1<p<oo.

Proof. By Lemma 8 we get

p
(&)
2
B

1
) v

(0,r)
1
< M fi)P(y) dy < 8"Pt"™ T dy.
) FNCEE
Furthermore
S 1 78" n—1
————dy = nvy \ ———— dr.
np np
FINCED D
If 0 <r <t, then
o) TPy r T n—1
(34) (2t)7"r™ = (2t)_npST”_l dr < 877- dr
n 5 o (T 1)

,
<t " S ™ ldr =
0

¢y

n
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Hence

gpntin < L \ (Mf)(y))Pdy < 877"

B(0,r)
If » > ¢ then we consider separately three cases.

1. If 0 < p < 1, then by applying (34) with r = ¢ we get

2-np 2 np 2-np T
P < (tn—np_‘_rn—np_tnr—np): tn—np+(2r)—nps7_n— dr
n n n p
r n—1 t n—1 T n—1
T T T
<) (T +t)m dr = | o T ey &
0 0 t
n—np r n—np n—mp _ yn—mp n—np
A P T Lo
no n n(l—p) n(l—p)
Hence
1 8P
2—p(n+l)rn—nptnp < = S ((Mft)(y))p dy < pRTIPID.
Un B(0,r) 1=

2. If p=1, then

1 r : cdr ¢ ot
_ . _ -1 _
0 t 0
t n—1 r n—1 t Td
| dr | ———dr <t | lar 4 [T = = Il
O(T—i-t)" t(T+t) 5 ;T oon
Hence
1
2<”+p)(1 +n1nf>t" <— | mpway<s™ (1 +nln f)t”.
t Un, t
B(0,r)
3. Finally, if 1 < p < oo, then
_ t _ _
MY : dr<§ L
n _0(7'~|—t)”p _0(7'+t)"p
t n—1 r n—1
T T
= d
§(7-+t)”7’ T+§ 0
< e 4 ()So,i_n—l—npd p e
~ n ; p—1 n
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Hence

2P < | (L) )P dy < 87 L

Un B(0,r)
These estimates imply the statement of the lemma.

COROLLARY 4. For 0 <p <oo, p#1,

PP,

" nmin{1,1/p}
IM fiell 2, (Bor)) = <r n t)

THEOREM 4. Let 1 < p < o0, 0< 01,00 < o0, wy € “Qpﬂu w2 € Qp792.
o I[f0, <0y, and 01 < p and for some c16 > 0 and all t > 0,
< c6l|wi| Ly, (1,00

(35) ‘ wa(r) (t i r> " L, (0,00)

then M is bounded from LMpg, , to LMy, , and from GDMyg, . to
G Mp6; 105 -

e For any 0 < 01,05 < 0o condition (35) is necessary for the boundedness
of M from LMpg, v, to LMpg, 4, -

e In particular, if 01 < 02, 01 < p, then condition (35) is necessary and
sufficient for the boundedness of M from LMyg, ., to LMy, v, -

Proof. Sufficiency. It is known [13] that a necessary and sufficient con-
dition for the validity of (30) with ¢ = p for all non-negative decreasing
functions ¢ on (0, 00) has the form: for some c¢17 > 0 and all ¢ > 0,

(36) [oa(r) mint, 7}, 0.00) < cr7llor(r)llz,, 0.0
Applying this condition to the functions v; and vy given by (21) and (22)
we obtain (35).

Indeed, taking into account (21) and (22) and replacing r—
t=Y" by 7, we get

/7 by o and

lwz(0)e™? min{r="/%, ™" /PY|| ;. 0.00) < c1sllwillLy, (r.00):

where ¢18 > 0 is independent of 7 > 0. Hence (35) follows since

/ /o -n/ o \""
n/p o inf~—n/p —n/P1
0P min{r ,0 } <Q n 7_) .

Necessity. Assume that, for some c1g9 > 0 and all f € LMy, 4, ,

(37) IMfllL0tyoy.0y < Cr0llfl L0t 0, -

Take f = f;, where f; is defined by (31). Then by Lemma 7 the right-hand
side of (37) does not exceed

crst™P|[wi| Ly, (t.00)
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where ¢15 > 0 is independent of ¢ > 0. Furthermore by Corollary 4 (case
p > 1) the left-hand side of (37) is equivalent to

L02 (0,00)
Hence (35) follows. =

REMARK 1. It is unclear whether for 1 < p < o0, 01 < 6o, 61 < p
condition (35) is necessary for the boundedness of M from GMpg, ., to

G My, w,- (If we take f = f; in (37), with LM replaced by GM, then (35)
does not follow.)

REMARK 2. If p =1, 0 < 61,02 < oo, then a similar argument shows
that the condition: there exists cog > 0 such that for all £ > 0,

wg(r)<t_:r>nln <e+;>

is necessary for the boundedness of M from LM, 4, to LMig, .-

< caollwillzy, (1,00

L92 (0,00)

REMARK 3. Under the assumptions of Theorem 4 the boundedness of
the maximal operator from LMpg, 4, to LMy, ., is equivalent to the bound-
edness of the Hardy operator from Lg, /p, ., (0,00) to Ly, /p.,(0,00) where
vy (r) = (wl(T—l/n)r—(lﬂ/n)l/@l)p’ vy (r) = (UJ2(r—l/n)r—l/p—(lﬂ/n)l/ez)p on
the cone of non-negative non-increasing functions. This is proved by find-
ing necessary and sufficient conditions on w; and wsy, namely (35), for the
boundedness of both operators. It may be of interest to find a direct proof
of this equivalence. (One of the implications is established in Theorem 2.)

Next we consider the local and global weak Morrey-type spaces and study
the boundedness of the maximal operator M in these spaces.

DEFINITION 3. Let 0 < p,0 < oo and let w be a non-negative measur-
able function on (0, 00). Denote by LWNM,g ., and GWM,g ,, the local and
global weak Morrey-type spaces respectively, defined to be the spaces of all
functions f € WL;QOC(R”) with finite quasinorms

[ fllewntye ., = 1l Zwatg &7y = Hw(T)HfHWLP(B(om))HLG(OW),
[ fllawatye,, = sup [ f(z 4+ )llLwie,.,»
zeR?
respectively, where for p < oo,
171w, b0, = sup tlmeas {a € B0, 1) : f(@)] > t})"/.
>

If p = o0, then WLy = Lo and LWMyp .y = LMoopy, GWMosgw =
G Moo -
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Note that for any 0 < p, 8 < oo,

I lzwatyo S N lLdtor N Flawntyg < 1FllGase..
for all f € LMpg,, and f € G My, respectively.
Asin [2], [5] and [7] the proof of the boundedness of the maximal operator
for p =1 is based on the inequality

(38)  meas{z € B(0,r): (Mf)(x) >t} < Cﬂ } 17 @)|(Mxpom) (@) de,

R™

where co; > 0 is independent of f € L°°(R"), t and r. This is a partic-
ular case of a more general inequality established by C. L. Fefferman and
E. Stein [3]:

| |p(2)| da <—S\f( )(Mep)(x) dz,
(2R : (M f)(z)>1} R™
where co2 > 0 is independent of f,p € L¢(R™).
Using inequality (38), the relation
1M fllwe,@y < M fllr,@), 0<p<oo,

and the properties of the maximal operator in local Morrey-type spaces
established in the first part of the paper, we get the following corresponding
properties of the maximal operator in local weak Morrey-type spaces:

LEMMA 10. Let 1 < p < co. Then there exists cag > 0 such that

00 dt 1/p
(39) M fllwe,Bom) < c23 <7’n J < | 1@ dx) tn+1>
T B(0,t)

for all v >0 and all f € LY°(R™).

LEMMA 11. Let 1 < p <00, 0 < 0 < o0o. Then there exists cog > 0 such
that

M Il 2wty < 024HH9||L9/ (0,00)

forall f € LLOC(]R”), where g and v are given by (15), (16) respectively.

COROLLARY 5. Let 1 <p< o0, 0 <0 <oo. Then

1
1M 6wy, < ea sup I1H (e, DI, 000

forall f € L}DOC(]R"), where g(x,-) is given by (18).
Proof. We consider two cases:

1. If 1 < p < 00, the assertion follows by the proof of Corollary 3.
2. If p =1, then for all x € R",



Mazimal operator in local Morrey-type spaces 173

(40) (M f)(@ +)llwri (o)

1
=supt {zeBO,r DSsup—— d >t}’
up e PRI
1
=supt|< z € B(0,r) : sup —— z+y)| dy >t
| { = < B(0.7) ity ) ol }

= [[M(f(z + )lwr.(B0Or)

hence we have

(41) 1M fllawatsg,., = sup, [P @+ w Ly o) | £y0.00

= félﬂgb Hw(T)HM(f(x + ‘))HWLl(B(o,r)) HLg(O,oo)

= sup [|M(f(x+))llzwar,,,,
SN

< ¢o4 Sup
rER™

aH(§ i@+ y)ldy)

B(0,t—1/n)

= C24 SUup HH(Q(fca‘))HLo,u(O,OO)‘ .
rER™

LG,'U (0,00)

THEOREM 5. Let 0 < po < p1 < o0, p1 > 1,0 < 01,00 < o0, w1 €
2,00, w2 € (2,0, Assume that, for some q > 1 satisfying p2 < q <
p1, the operator H is bounded from Lg, /., (0,00) to Lg,/q.,(0,00) on the
cone of all non-negative functions ¢ non-increasing on (0,00) and satisfying
lim .o (t) = 0, where vi,ve are defined by (21), (22) respectively. Then the
operator M is bounded from LMpg, ,, to LWMpg, v, and from GMpyg, 4, to
GWMpg, 5 -

THEOREM 6. Let 1 < p < 00, 0 < B2 < 00, w1 € 200, w2 € (24,.
Let also condition (29) be satisfied. Then the operator M is bounded from
LMpoow, to LWMpg, 1, and from GMpae v, to GWMpg, 4, -

LEMMA 12. Let r,t > 0, and 0 < p < o0. Then

Ifellwr, oy =0, 0<r<t, |fillwr, o < cst™?, r>t.

Proof. The statement follows from Lemma 7 since for all measurable
G, 2 C R,

Ixcllwr, @) =GN 2 =|IxallL, @),
hence || fillwr,Bo.r) = I ftllL,(B0r)- =
LEMMA 13. For all 0 < p < o0,

PP,

" >nmin{1/p,1}

(42) M fellwr,Bor) =< <r+t
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Proof. By Lemma 8 we have

1 n
M = n -
1M fllwz, 50 tH(\mw)

Furthermore,

()

W Lp(B(0,r))

1 1/p
= sup 7 meas {SL‘ € B(0,r): - > T}
WLy(B(Or) >0 ([ +1)

= sup7|B(0,7) N B(0, 7 /™ —t)|'/P
7>0

=v, sup 7(min{r,7 /" — ¢}

0<r<t™"
_ n/p —-1/n _ ;\n/p
=uv,max{ sup TP sup (T )P}
O<r<(t+r)~" (t+r) "<r<tT
= v, max{(t + ) """/, sup T(r~ Y —)n/r)

(t+r) "<r<t—n

= sup T(rYm — /e,
(t+r) " <rT<t—m
If 0 < p < 1, then the function ¢(r) = 7(r= /™ — t)"/P decreases on
[(t+7r)~"™ t~™), therefore

rn/p

—1/n _ pn/p _

sup T(7 )P = i
(t4r)—n<r<t—n (t+r)m

If p > 1, then for t > (p — 1)r, ¢ also decreases on [(t + )™, t~") and

for t < (p — 1)r the supremum is attained at 7 = (pp;;)n. Hence

""n/p
—1/n n/p _ T N
sup (T —1)"P =co5 ¢ (t+7)"
(t+r) " <r<t—m tn/p—n’ t < (p _ 1)7"

_ rt ”/pt_n
t+r ’

where ca5 > 0 depends only on p and n. Therefore the statement follows. =

THEOREM 7. Let 1 <p < oo, 0< 61,05 <00, w; € ‘Qpﬁlv wo € .Qp792.

o If 01 < 09, 01 < p and inequality (35) is satisfied, then M is bounded
from LMy, oy, to LWMpg, 4, and from GMyg, o, to GWMpg, 4, -

e For any 0 < 01,02 < oo condition (35) is necessary for the boundedness
of M from LMyg, ., to LWMpg, ..

e In particular, if 61 < 02, 01 < p, then condition (35) is necessary and
sufficient for the boundedness of M from LMy, v, to LWMpyg, -
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Proof. Sufficiency follows from Theorem 5 as in the proof of Theorem 4.
The proof of necessity is also essentially the same as in the proof of Theo-
rem 4, with Lemma 9 replaced by Lemma 13. =

REMARK 4. When defining global Morrey-type spaces, one might con-
sider a weight function w depending not only on r > 0, but also on z € R",
and consider the space of all functions f € L;)OC(R”) for which

HHw<1’,T)"f“Lp(B(:c,T))HLG(O,OO)HLOO(RR) < o0.

For § = oo such quasinorms were considered in [7]. Moreover, it is also
reasonable to replace Lo (R™) by L, (R™), where 0 < 1 < oo, thus assuming
that

1 fll6Mpon0 = HHw(%7’)||f||Lp(B(x,r))HLQ(DM)HLU(RH) < o0.

If in Theorem 2 formulas (21) and (22) are replaced by
vi(z,r) = (wi(x, r_l/”)»rl/q—l/l’l—(1+1/n)1/01)q7
vo(x, ) = (wo(x, r~1/m)r=t/p2=(1H1/m)1/02q

and

Su]RPn ||HHL91/q’U1(LT)(O,OO)QCHLQQ/%UQ(Z,T)(O,OO)QC < 00,
re

where C'is the cone of all non-negative functions ¢ non-increasing on (0, o)
and satisfying lim; o, ¢(t) = 0, then the maximal operator M is also
bounded from GM, 9,1 w, t0 GMy,0,p .. Similar remarks refer to all other
inequalities of the paper involving global Morrey-type spaces or global weak
Morrey-type spaces.

A brief exposition of the results of this paper, without proofs, is given
in [1].
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