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Necessary and sufficient conditions for boundedness of
the maximal operator in local Morrey-type spaces

by

Viktor I. Burenkov and Huseyn V. Guliyev (Cardiff)

Abstract. The problem of boundedness of the Hardy–Littewood maximal operator in
local and global Morrey-type spaces is reduced to the problem of boundedness of the Hardy
operator in weighted Lp-spaces on the cone of non-negative non-increasing functions.
This allows obtaining sufficient conditions for boundedness for all admissible values of
the parameters. Moreover, in case of local Morrey-type spaces, for some values of the
parameters, these sufficient conditions are also necessary.

For x ∈ Rn and r > 0, let B(x, r) denote the open ball centred at x of
radius r.

Definition 1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable
function on (0,∞). We denote by LMpθ,w and GMpθ,w the local and global
Morrey-type spaces respectively, defined to be the spaces of all functions
f ∈ Lloc

p (Rn) with finite quasinorms

‖f‖LMpθ,w
≡ ‖f‖LMpθ,w(Rn) =

∥∥w(r)‖f‖Lp(B(0,r))
∥∥
Lθ(0,∞),

‖f‖GMpθ,w
= sup

x∈Rn
‖f(x+ ·)‖LMpθ,w

respectively.

Lemma 1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable
function on (0,∞).

(i) If
‖w(r)‖Lθ(t,∞) =∞ for all t > 0,(1)

then LMpθ,w = GMpθ,w = Θ, where Θ is the set of all functions equivalent
to 0 on Rn.

(ii) If
‖w(r)rn/p‖Lθ(0,t) =∞ for all t > 0,(2)
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then f(0) = 0 for all f ∈ LMpθ,w continuous at 0, and GMpθ,w = Θ for
0 < p <∞.

Proof. (i) Let (1) be satisfied and f be not equivalent to zero. Then
A = ‖f‖Lp(B(0,t0)) > 0 for some t0 > 0. Hence

‖f‖GMpθ,w
≥ ‖f‖LMpθ,w

≥ ‖w(r)‖f‖Lp(B(0,r))‖Lθ(t0,∞) ≥ A‖w(r)‖Lθ(t0,∞).

Therefore ‖f‖GMpθ,w
= ‖f‖LMpθ,w

=∞.
(ii) Let (2) be satisfied. If f ∈ LMpθ,w and there exists

lim
r→0
|B(0, r)|−1/p‖f‖Lp(B(0,r)) = B,(3)

where |B(0, r)| is the volume of B(0, r), then B = 0. Indeed, assume B > 0.
Then there exists t0 > 0 such that

|B(0, r)|−1/p‖f‖Lp(B(0,r)) ≥ B/2(4)

for all 0 < r ≤ t0. Consequently,

‖f‖LMpθ,w
≥
∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(0,t0) ≥

B

2
v1/p
n ‖w(r)rn/p‖Lθ(0,t0),

where vn is the volume of the unit ball in Rn. Hence ‖f‖LMpθ,w
= ∞, so

f 6∈ LMpθ,w and we have arrived at a contradiction.
If f ∈ LMpθ,w and it is continuous at 0, then (3) holds with B = |f(0)|.

Hence f(0) = 0.
Next let 0 < p <∞ and let f ∈ GMpθ,w. Then by the Lebesgue theorem

on differentiation of integrals, for almost all x ∈ Rn,

lim
r→0
|B(x, r)|−1/p‖f‖Lp(B(x,r)) = |f(x)|.

By the above argument, f(x) = 0 for all those x. Hence f is equivalent to
zero.

Definition 2. Let 0 < p, θ ≤ ∞. We denote by Ωp,θ the set of all non-
negative measurable functions w on (0,∞) such that for some t1, t2 > 0,

‖w(r)‖Lθ(t1,∞) <∞, ‖w(r)rn/p‖Lθ(0,t2) <∞.(5)

In what follows, keeping in mind Lemma 1, we always assume that w ∈
Ωp,θ.

The spaces GMp∞,r−λ/p , where 0 < λ < n, are the classical Morrey
spaces introduced in [6] and applied to studying the local behaviour of solu-
tions of second order elliptic partial differential equations. The interpolation
properties of the spaces GMp∞,w were investigated by S. Spanne in [11]. The
spaces GMpθ,r−λ were used by G. Lu [4] for studying embedding theorems
for vector fields of Hörmander type. T. Mizuhara [5] and E. Nakai [7] studied
the boundedness of various integral operators in the spaces GMp∞,w.

For a measurable set Ω ⊂ Rn and a non-negative measurable function v
on Ω, let Lp,v(Ω) be the weighted Lp-space of all measurable functions f
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on Ω for which
‖f‖Lp,v(Ω) = ‖vf‖Lp(Ω) <∞.

If 0 < p ≤ θ ≤ ∞, then

‖f‖LMpθ,w
≤ ‖f‖Lp,W (Rn),(6)

and if 0 < θ ≤ p ≤ ∞, then

‖f‖Lp,W (Rn) ≤ ‖f‖LMpθ,w
,(7)

where
W (x) = ‖w‖Lθ(|x|,∞) for x ∈ Rn.

These inequalities are particular cases of general inequalities for Lebesgue
spaces with mixed quasinorms (see, for example, [8, Section 3.37]). In par-
ticular, for 0 < p ≤ ∞,

‖f‖LMpp,w = ‖f‖Lp,Wp(Rn).

where Wp(x) = ‖w‖Lp(|x|,∞) for x ∈ Rn.
Let f ∈ Lloc

1 (Rn). The Hardy–Littlewood maximal operator M is defined
by

(Mf)(x) = sup
r>0
|B(x, r)|−1

�

B(x,r)

|f(y)| dy.

F. Chiarenza and M. Frasca [2] have proved the boundedness of M in the
classical Morrey spaces. T. Mizuhara [5] and E. Nakai [7] have obtained
sufficient conditions on w for the boundedness of M in GMp∞,w. In this
paper we improve, in particular, the results obtained in [5, 7]. Moreover, for
some values of parameters we obtain necessary and sufficient conditions for
the operator M to be bounded from LMpθ1,w1 to LMpθ2,w2 .

An application of the known necessary and sufficient conditions for the
boundedness of the maximal operator from one weighted Lebesgue space to
another [10] immediately implies the following result for local Morrey-type
spaces. Here and throughout, χE denotes the characteristic function of the
set E.

Theorem 1. Let 1 < p1 ≤ p2 < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωp1,θ1 ,
w2 ∈ Ωp2,θ2 .

• If p1 ≥ θ1 and p2 ≤ θ2, and for some c1 > 0 and all balls B ⊂ Rn,

‖M(χBW
p1/(1−p1)
1 )‖Lp2,W2(B) ≤ c1‖W 1/(1−p1)

1 ‖Lp1 (B),(8)

where

W1(x) = ‖w1‖Lθ1(|x|,∞), W2(x) = ‖w2‖Lθ2(|x|,∞), x ∈ Rn,
then the operator M is bounded from LMp1θ1,w1 to LMp2θ2,w2 and from
GMp1θ1,w1 to GMp2θ2,w2 .
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• If p1 ≤ θ1 and p2 ≥ θ2, then condition (8) is necessary for the bound-
edness of M from LMp1θ1,w1 to LMp2θ2,w2 .
• In particular , if θ1 = p1 and θ2 = p2, then condition (8) is necessary

and sufficient for the boundedness of M from LMp1p1,w1 to LMp2p2,w2 .

Proof. Let p1 ≥ θ1 and p2 ≤ θ2. By applying (6), the sufficiency of (8)
for the boundedness of M and (7) we get

‖Mf‖LMp2θ2,w2
≤ ‖Mf‖Lp2,W2(Rn)(9)

≤ c2‖f‖Lp1,W1(Rn) ≤ c2‖f‖LMp1θ1,w1
,

where c2 > 0 is independent of f .
Conversely, if p1 ≤ θ1, p2 ≥ θ2, and

‖Mf‖LMp2θ2,w2
≤ c3‖f‖LMp1θ1,w1

,

where c3 > 0 is independent of f, then by (6),

‖Mf‖Lp2,W2(Rn) ≤ c3‖f‖Lp1,W1(Rn),(10)

which is known to imply (8).
Also (9) implies that

‖Mf‖GMp2θ2,w2
≤ c2‖f‖GMp1θ1,w1

.

In order to obtain conditions on w1 and w2 ensuring the boundedness
of M for other values of the parameters and to obtain simpler conditions
for p = θ1 = θ2 we shall reduce the problem of boundedness of M in local
Morrey-type spaces to the problem of boundedness of Hardy operator in
weighted Lp-spaces on the cone of non-negative non-increasing functions.

As in [2, 5, 7], we start with the inequality
�

B(0,r)

(Mf)(x)p dx ≤ c4

�

Rn
|f(x)|p(MχB(0,r))(x) dx,(11)

where 1 < p <∞ and c4 > 0 is independent of f ∈ Lloc
1 (Rn) and r. This is a

particular case of a more general inequality established by C. L. Fefferman
and E. Stein [3]:

�

Rn
(Mf)(x)p|ϕ(x)| dx ≤ c5

�

Rn
|f(x)|p(Mϕ)(x) dx,

where 1 < p <∞ and c5 > 0 is independent of f, ϕ ∈ Lloc
1 (Rn).

Lemma 2. For all r > 0 and x ∈ Rn,
(

r

|x|+ r

)n
≤ (MχB(0,r))(x) ≤ 4n

(
r

|x|+ r

)n
.(12)

This statement is known, at least with some constant on the right-hand
side. For the sake of completeness we give the proof.
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Proof. If n = 1, thenMχ(−r,r) = 1 for |x| < r andMχ(−r,r) = r/(|x|+ r)
if |x| ≥ r, and (12) is trivial.

Assume that n ≥ 2. If |x| < r, then MχB(0,r) = 1 and (12) is trivial
again.

Assume that |x| ≥ r. If % ≥ |x|, then

G(x, r, %) =
1

|B(x, %)|
�

B(x,%)

χB(0,r)(y) dy =
|B(x, %) ∩B(0, r)|

|B(x, %)|

≤
(
r

%

)n
≤
(
r

|x|

)n
.

If 0 < % ≤ |x| − r, then G(x, r, %) = 0.
Assume that |x|− r ≤ % ≤ |x|. In order to estimate G(x, r, %) from above

note that
B(x, %) ∩B(0, r) ⊂ Bn−1(0, h)× (|x| − %, r),

where Bn−1(0, h) is the ball centered at the origin of radius h in Rn−1, and h
is the height in the triangle with side lengths r, % and |x|, perpendicular to
the side of length |x|. Since

h =

√
%2 − (|x| − r)2

√
(|x|+ r)2 − %2

2|x| ≤
√

(%2 − (|x| − r)2)
r

|x| ,

it follows that

G(x, r, %) ≤ vn−1

vn

((%2 − (|x| − r)2)r/|x|)(n−1)/2(%− (|x| − r))
%n

=
vn−1

vn

((
1−

( |x| − r
%

)2) r

|x|

)(n−1)/2(
1− |x| − r

%

)

≤ vn−1

vn

((
1−

( |x| − r
|x|

)2) r

|x|

)(n−1)/2(
1− |x| − r|x|

)

≤ vn−1

vn
2(n−1)/2

(
r

|x|

)n
.

Since vn−1/vn ≤ n/2 ≤ 2n/2, for |x| ≥ r and for all % ≥ |x| − r we have

G(x, r, %) ≤ 2n
(
r

|x|

)n
≤ 4n

(
r

|x|+ r

)n
.

Since
MχB(0,r)(x) = sup

%≥|x|−r
G(x, r, %),

the upper bound in (12) follows. The lower bound is much simpler:

MχB(0,r)(x) ≥ G(x, r, |x|+ r) =
(

r

|x|+ r

)n
.
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Corollary 1. Let 1 < p <∞. Then there exists c6 > 0 such that

‖Mf‖Lp(B(0,r)) ≤ c6

(
rn

�

Rn

|f(x)|p
(|x|+ r)n

dx

)1/p

,

for all r > 0 and all f ∈ Lloc
1 (Rn).

In order to estimate the right-hand side integral we first prove the fol-
lowing equality.

Lemma 3. Let φ be a non-negative measurable function on Rn. Then for
all r ≥ 0,

�

|x|≥r

φ(x) dx
|x|n = n

∞�

r

( �

r≤|x|≤t
φ(x) dx

) dt

tn+1 .

Proof. By applying spherical coordinates we get
∞�

r

( �

r≤|x|≤t
φ(x) dx

) dt

tn+1 =
∞�

r

( �

Sn−1

( t�

r

φ(%σ)%n−1d%
)
dσ
) dt

tn+1

=
�

Sn−1

(∞�

r

( ∞�

max{%,r}

dt

tn+1

)
φ(%σ)%n−1d%

)
dσ

=
1
n

�

Sn−1

∞�

r

φ(%σ)%n−1

%n
d% dσ =

1
n

�

|x|≥r

φ(x) dx
|x|n .

Lemma 4. Let ϕ be a non-negative measurable function on Rn. Then for
all r ≥ 0,

n 2−n
∞�

r

( �

B(0,t)

ϕ(x) dx
) dt

tn+1 ≤
�

Rn

ϕ(x) dx
(|x|+ r)n

≤ n
∞�

r

( �

B(0,t)

ϕ(x) dx
) dt

tn+1 .

Proof. Since
�

Rn

ϕ(x) dx
(|x|+ r)n

≤ r−n
�

|x|≤r
ϕ(x) dx+

�

|x|>r

ϕ(x)
|x|n dx

and �

Rn

ϕ(x)dx
(|x|+ r)n

≥ 2−n
(
r−n

�

|x|≤r
ϕ(x) dx+

�

|x|>r

ϕ(x)
|x|n dx

)
,

the statement follows by Lemma 3 because
�

|x|≥r

ϕ(x)
|x|n dx = n

∞�

r

( �

|x|≤t
ϕ(x) dx−

�

|x|≤r
ϕ(x) dx

) dt

tn+1(13)

= n

∞�

r

( �

|x|≤t
ϕ(x) dx

) dt

tn+1 − r
−n �

|x|≤r
ϕ(x) dx.
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Corollary 2. Let 1 < p <∞. Then there exists c7 > 0 such that

‖Mf‖Lp(B(0,r)) ≤ c7

(
rn
∞�

r

( �

B(0,t)

|f(x)|p dx
) dt

tn+1

)1/p

(14)

for all r > 0 and all f ∈ Lloc
1 (Rn).

Let H be the Hardy operator :

(Hg)(r) =
r�

0

g(t) dt, 0 < r <∞.

Lemma 5. Let 1 < p < ∞, 0 < θ ≤ ∞, w ∈ Ωp,θ. Then there exists
c8 > 0 such that

‖Mf‖LMpθ,w
≤ c8‖Hg‖1/pLθ/p,v(0,∞)

for all f ∈ Lloc
p (Rn), where

g(t) =
�

B(0,t−1/n)

|f(y)|p dy,(15)

v(r) = w(r−1/n)pr−1−(1+1/n)p/θ.(16)

Proof. By Corollary 2, for θ <∞ we have

(17) ‖Mf‖LMpθ,w
=
∥∥w(r)‖Mf‖Lp(B(0,r))

∥∥
Lθ(0,∞)

≤ c1/p
7

∥∥∥∥w(r)rn/p
(∞�

r

( �

B(0,t)

|f(x)|p dx
) dt

tn+1

)1/p∥∥∥∥
Lθ(0,∞)

= c
1/p
7 n−1/p

∥∥∥w(r)rn/p
( r−n�

0

( �

B(0,τ−1/n)

|f(x)|p dx
)
dτ
)1/p∥∥∥

Lθ(0,∞)

= c
1/p
7 n−1/p

(∞�

0

(w(r)rn/p)θ
( r−n�

0

g(τ) dτ
)θ/p

dr
)1/θ

= c
1/p
7 n−1/p−1/θ

(∞�

0

(w(%−1/n)%−1/p)θ%−1/n−1
( %�

0

g(τ) dτ
)θ/p

d%
)1/θ

= c8‖Hg‖1/pLθ/p,v(0,∞).

If θ =∞, then by a similar argument

‖Mf‖LMp∞,w = ess sup
0<r<∞

w(r)‖Mf‖Lp(B(0,r))

≤ c′8 ess sup
0<%<∞

w(%−1/n)%−1/pHg1/p(%), c′8 = c
−1/p
7 n−1/p.
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Corollary 3. Let 1 < p <∞, 0 < θ ≤ ∞, w ∈ Ωp,θ. Then

‖Mf‖GMpθ,w
≤ c8 sup

x∈Rn
‖H(g(x, ·))‖1/p

Lθ/p,v(0,∞)

for all f ∈ Lloc
p (Rn), where v is given by (16) and

g(x, t) =
�

B(x,t−1/n)

|f(y)|p dy =
�

B(0,t−1/n)

|f(x+ y)|p dy.(18)

Proof. Since for all x ∈ Rn,

(19) ‖(Mf)(x+ ·)‖Lp(B(0,r))

=
( �

B(0,r)

(
sup
r>0

1
|B(x+ z, r)|

�

B(x+z,r)

|f(y)| dy
)p

dz

)1/p

=
( �

B(0,r)

(
sup
r>0

1
|B(z, r)|

�

B(z,r)

|f(x+ u)| du
)p

dz

)1/p

= ‖M(f(x+ ·))‖Lp(B(0,r)),

we have

‖Mf‖GMpθ,w
= sup

x∈Rn
‖w(r)‖(Mf)(x+ ·)‖Lp(B(0,r))‖Lθ(0,∞)(20)

= sup
x∈Rn

‖w(r)‖M(f(x+ ·))‖Lp(B(0,r))‖Lθ(0,∞)

= sup
x∈Rn

‖M(f(x+ ·))‖LMpθ,w

≤ c8 sup
x∈Rn

∥∥∥H
( �

B(0,t−1/n)

f(x+ y)|p dy
)∥∥∥

1/p

Lθ/p,v(0,∞)

= c8 sup
x∈Rn

‖H(g(x, ·))‖1/pLθ/p,v(0,∞).

Theorem 2. Let 0 < p2 ≤ p1 <∞, p1 > 1, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωp1,θ1 ,
w2 ∈ Ωp2,θ2 . Assume that , for some q > 1 satisfying p2 ≤ q ≤ p1, the opera-
tor H is bounded from Lθ1/q,v1(0,∞) to Lθ2/q,v2(0,∞) on the cone of all non-
negative functions ϕ non-increasing on (0,∞) and satisfying limt→∞ ϕ(t)
= 0, where

v1(r) = (w1(r−1/n)r1/q−1/p1−(1+1/n)/θ1)q,(21)

v2(r) = (w2(r−1/n)r−1/p2−(1+1/n)/θ2)q.(22)

Then the operator M is bounded from LMp1θ1,w1 to LMp2θ2,w2 and from
GMp1θ1,w1 to GMp2θ2,w2 .
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Proof. 1. By Hölder’s inequality with exponent q/p2 ≥ 1,

‖Mf‖LMp2θ2,w2
=
∥∥w2(r)‖Mf‖Lp2(B(0,r))

∥∥
Lθ2(0,∞)(23)

≤
∥∥w2(r)|B(0, r)|1/p2−1/q‖Mf‖Lq(B(0,r))

∥∥
Lθ2(0,∞)

= v1/p2−1/q
n

∥∥u2(r)‖Mf‖Lq(B(0,r))
∥∥
Lθ2(0,∞)

= v1/p2−1/q
n ‖Mf‖LMqθ2,u2

,

where
u2(r) = w2(r)rn(1/p2−1/q).

Since q > 1, by Lemma 5 applied to LMqθ2,u2 we have

‖Mf‖LMqθ2,u2
≤ c9‖Hg‖1/qLθ2/q,v2(0,∞),

where

g(t) =
�

B(0,t−1/n)

|f(y)|q dy,(24)

and c9 > 0 is independent of f , because u2(r−1/n)qr−1−(1+1/n)q/θ2 = v2(r).
Since g is non-negative, non-increasing on (0,∞) and limt→+∞ g(t) = 0,

and H is bounded from Lθ1/q,v1(0,∞) to Lθ2/q,v2(0,∞) on the cone of func-
tions containing g, we have

‖Mf‖LMpθ2,w2
≤ c10‖g‖1/qLθ1/q,v1(0,∞),

where c10 > 0 is independent of f.
Finally, by Hölder’s inequality with exponent p1/q ≥ 1,

g(t) ≤ |B(0, t−1/n)|1−q/p1‖f‖q
Lp1(B(0,t−1/n))

.

Hence

(25) ‖Mf‖LMp2θ2,w2
≤ c11

(∞�

0

v1(t)θ1/qt−(1−q/p1)θ1/q‖f‖θ1
Lp1(B(0,t−1/n))

dt
)1/θ1

= c11n
1/θ1
(∞�

0

v1(r−n)θ1/qrn(θ1/q−θ1/p1)−n−1‖f‖θ1Lp1(B(0,r)) dr
)1/θ1

= c11n
1/θ1
(∞�

0

(w1(r)‖f‖Lp1(B(0,r)))
θ1 dr

)1/θ1
= c11n

1/θ1‖f‖LMp1θ1,w1
,

where c11 > 0 is independent of f.
2. To prove the boundedness of M from GMp1θ1,w1 to GMp2θ2,w2 we

apply Corollary 3. Since for all x ∈ Rn the function g(x, t) defined by (18)
is non-negative and non-increasing on (0,∞) and limt→∞ g(x, t) = 0, as in
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Step 1 it follows that

‖Mf‖GMp2θ2,w2
≤ c10 sup

x∈Rn
‖g(x, ·)‖1/qLθ1/q,v1 (0,∞).

Since by Hölder’s inequality

g(x, t) ≤ |B(0, t−1/n)|1−q/p1‖f(x+ ·)‖q
Lp1(B(0,t−1/n))

,

as in the second part of Step 1 we obtain

‖Mf‖GMp2θ2,w2
≤ c11n

1/θ1 sup
x∈Rn

(∞�

0

w1(r)‖f(x+ ·)‖θ1
Lp1(B(0,r)) dr

)1/θ1

= c11n
1/θ1 sup

x∈Rn
‖f(x+ ·)‖LMp1θ1,w1

= c11n
1/θ1‖f‖GMp1θ1,w1

.

In order to obtain explicit sufficient conditions on the weight functions
ensuring the boundedness of M , we first apply the following simple state-
ment.

Lemma 6. Let 0 < θ ≤ ∞, and let w and v be positive measurable
functions on (0,∞). Then the inequality

‖Hg‖Lθ,w(0,∞) ≤ c12‖g‖L∞,v(0,∞)(26)

is satisfied for all non-negative functions g with c12 > 0 independent of g
if , and only if ,

B ≡
∥∥∥∥w(r)

r�

0

dt

v(t)

∥∥∥∥
Lθ(0,∞)

<∞.(27)

Moreover , the minimal value of c12 is equal to B.

Proof. Necessity. Taking g = 1/v in (26) we obtain (27).
Sufficiency. It suffices to note that

‖Hg‖Lθ,w(0,∞) =
∥∥∥w(r)

r�

0

g(t) dt
∥∥∥
Lθ(0,∞)

(28)

=

∥∥∥∥w(r)
r�

0

g(t)
v(t)

v(t) dt

∥∥∥∥
Lθ(0,∞)

≤ B‖g‖L∞,v(0,∞).

Applying Lemma 6 to Theorem 2 we obtain the following sufficient con-
dition for the boundedness of the maximal operator in local and global
Morrey-type spaces.

Theorem 3. Let 1 < p < ∞, 0 < θ2 ≤ ∞, w1 ∈ Ωp,∞, w2 ∈ Ωp,θ2 and
suppose that

∥∥∥∥w
p
2(r)rn+(n+1)p/θ2

∞�

r

1
wp1(t)tn+1 dt

∥∥∥∥
Lθ2/p(0,∞)

<∞.(29)
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Then the operator M is bounded from LMp∞,w1 to LMpθ2,w2 and from
GMp∞,w1 to GMpθ2,w2 .

A similar result was obtained by E. Nakai [7] for w1 = w2 = w−1/p(r)
and θ2 =∞ with an extra condition: there exists c13 > 0 such that r ≤ t ≤
2r ⇒ 1/c13 ≤ w(t)/w(r) ≤ c13.

Necessary and sufficient conditions for the validity of

‖Hϕ‖Lθ2/q,v2(0,∞) ≤ c14‖ϕ‖Lθ1/q,v1(0,∞),(30)

where c14 > 0 is independent of ϕ, for all non-negative non-increasing func-
tions ϕ are known for most of the cases. For detailed information see [12],
[13]. Application of any of those conditions gives sufficient conditions for
the boundedness of the maximal operator from LMp1θ1,w1 to LMp2θ2,w2 and
from GMp1θ1,w1 to GMp2θ2,w2 . However, since the reverse of inequality (11)
does not hold (take f ≡ 1), there is no guarantee that an application of
necessary and sufficient conditions on v1 and v2 ensuring the validity of (30)
will imply necessary and sufficient conditions for the boundedness of M from
LMp1θ1,w1 to LMp2θ2,w2 .

Fortunately for certain values of the parameters this is indeed the case,
namely for 1 < p <∞, 0 < θ1 ≤ θ2 <∞, θ1 ≤ p.

Note that in this case necessary conditions (which are also sufficient) for
the validity of (30) for non-negative non-increasing functions are obtained
by taking ϕ = χ(0,t) with an arbitrary t > 0.

Since in the proof of Theorem 2 inequality (30) is applied to the func-
tion ϕ = g, where g is given by (24), it is natural to choose, as test func-
tions, functions ft, t > 0, for which � B(0,u−1/n) |ft(y)|q dy is equal or close to
A(t)χ(0,t)(u), u > 0, where A(t) is independent of u. The simplest choice is

ft(y) = χB(0,2t)\B(0,t)(y), y ∈ Rn, t > 0.(31)

Lemma 7. Let r, t > 0, and 0 < p ≤ ∞. Then

‖ft‖Lp(B(0,r)) = 0, 0 < r ≤ t, ‖ft‖Lp(B(0,r)) ≤ c15t
n/p, t < r <∞,

where c15 > 0 depends only on n and p.

Proof. The statement follows since for measurable G,Ω ⊂ Rn,

‖χG‖Lp(Ω) = |G ∩Ω|1/p.

Hence ‖ft‖Lp(B(0,r)) = |(B(0, 2t)\B(0, t))∩B(0, r)|1/p.
Lemma 8. For all t > 0 and x ∈ Rn,

1
2

(
t

|x|+ t

)n
≤ (Mft)(x) ≤ 8n

(
t

|x|+ t

)n
.(32)
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Proof. By setting r = |x|+2t and noting B(x, |x|+2t) ⊃ B(0, 2t)\B(0, t)
we get

(Mft)(x) = sup
r>0

1
|B(x, r)|

�

B(x,r)

χB(0,2t)\B(0,t)(z) dz

≥ 1
B(x, |x|+ 2t)

�

B(x,|x|+2t)

χB(0,2t)\B(0,t) dz

=
1
vn

1
(|x|+ 2t)n

�

t<|z|<2t

dz

= (2n − 1)
tn

(|x|+ 2t)n
≥ (1− 2−n)

tn

(|x|+ t)n
≥ 1

2
tn

(|x|+ t)n
.

Since |ft| ≤ χB(0,2t), by Lemma 2 we obtain

(Mft)(x) ≤ (MχB(0,2t))(x) ≤ 4n
(

2t
|x|+ 2t

)n
≤ 8n

(
t

|x|+ t

)n
.

For functions F,G defined on (0,∞) × (0,∞) we shall write F � G if
there exist c, c′ > 0 such that cF (r, t) ≤ G ≤ c′F (r, t) for all r, t ∈ (0,∞).

Lemma 9. For all r, t > 0 and 0 < p ≤ ∞,

‖Mft‖Lp(B(0,r)) � rn/p




min{1, (t/r)n}, 0 < p < 1,

min{1, (t/r)n ln(e+ r/t)}, p = 1,

min{1, (t/r)n/p}, 1 < p ≤ ∞.
(33)

Proof. By Lemma 8 we get
(

1
2

)p
tnp

�

B(0,r)

1
(|y|+ t)np

dy

≤
�

B(0,r)

(Mft)p(y) dy ≤ 8nptnp
�

B(0,r)

1
(|y|+ t)np

dy.

Furthermore
�

B(0,r)

1
(|y|+ t)np

dy = nvn

r�

0

τn−1

(τ + t)np
dτ.

If 0 < r ≤ t, then

(2t)−nprn

n
= (2t)−np

r�

0

τn−1 dτ <

r�

0

τn−1

(τ + t)np
dτ(34)

≤ t−np
r�

0

τn−1 dτ =
t−nprn

n
.
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Hence

2−p(n+1)rn ≤ 1
vn

�

B(0,r)

((Mft)(y))p dy ≤ 8nprn.

If r > t then we consider separately three cases.

1. If 0 < p < 1, then by applying (34) with r = t we get

2−np

n
rn−np ≤ 2−np

n
(tn−np+rn−np−tnr−np)=

2−np

n
tn−np+(2r)−np

r�

t

τn−1 dτ

≤
r�

0

τn−1

(τ + t)np
dτ =

t�

0

τn−1

(τ + t)np
dτ +

r�

t

τn−1

(τ + t)np
dτ

≤ tn−np

n
+
r�

t

τn−1−np dτ =
tn−np

n
+
rn−np − tn−np
n(1− p) ≤ rn−np

n(1− p) .

Hence

2−p(n+1)rn−nptnp ≤ 1
vn

�

B(0,r)

((Mft)(y))p dy ≤ 8np

1− pr
n−nptnp.

2. If p = 1, then

2−n
(

1
n

+ ln
r

t

)
= (2t)−n

t�

0

τn−1 dτ + 2−n
r�

t

dτ

τ
≤

r�

0

τn−1

(τ + t)n
dτ

=
t�

0

τn−1

(τ + t)n
dτ +

r�

t

τn−1

(τ + t)n
dτ ≤ t−n

t�

0

τn−1dτ +
r�

t

dτ

τ
=

1
n

+ ln
r

t
.

Hence

2−(n+p)
(

1 + n ln
r

t

)
tn ≤ 1

vn

�

B(0,r)

(Mft)(y) dy ≤ 8np
(

1 + n ln
r

t

)
tn.

3. Finally, if 1 < p <∞, then

2−np
tn−np

n
≤

t�

0

τn−1

(τ + t)np
dτ ≤

r�

0

τn−1

(τ + t)np
dτ

=
t�

0

τn−1

(τ + t)np
dτ +

r�

t

τn−1

(τ + t)np
dτ

≤ tn−np

n
+
∞�

t

τn−1−np dτ =
p

p− 1
tn−np

n
.
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Hence

2−p(n+1)tn ≤ 1
vn

�

B(0,r)

((Mft)(y))p dy ≤ 8np
p

p− 1
tn.

These estimates imply the statement of the lemma.

Corollary 4. For 0 < p ≤ ∞, p 6= 1,

‖Mft‖Lp(B(0,r)) �
(

t

r + t

)nmin{1,1/p}
rn/p.

Theorem 4. Let 1 < p <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωp,θ1 , w2 ∈ Ωp,θ2 .
• If θ1 ≤ θ2, and θ1 ≤ p and for some c16 > 0 and all t > 0,

∥∥∥∥w2(r)
(

r

t+ r

)n/p∥∥∥∥
Lθ2 (0,∞)

≤ c16‖w1‖Lθ1(t,∞),(35)

then M is bounded from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to
GMpθ2,w2 .
• For any 0 < θ1, θ2 ≤ ∞ condition (35) is necessary for the boundedness

of M from LMpθ1,w1 to LMpθ2,w2 .
• In particular , if θ1 ≤ θ2, θ1 ≤ p, then condition (35) is necessary and

sufficient for the boundedness of M from LMpθ1,w1 to LMpθ2,w2 .

Proof. Sufficiency. It is known [13] that a necessary and sufficient con-
dition for the validity of (30) with q = p for all non-negative decreasing
functions ϕ on (0,∞) has the form: for some c17 > 0 and all t > 0,

‖v2(r) min{t, r}‖Lθ2/p(0,∞) ≤ c17‖v1(r)‖Lθ1/p(0,t).(36)

Applying this condition to the functions v1 and v2 given by (21) and (22)
we obtain (35).

Indeed, taking into account (21) and (22) and replacing r−1/n by % and
t−1/n by τ, we get

‖w2(%)%n/p min{τ−n/p, %−n/p}‖Lθ2(0,∞) ≤ c18‖w1‖Lθ1(τ,∞),

where c18 > 0 is independent of τ > 0. Hence (35) follows since

%n/p min{τ−n/p, %−n/p} �
(

%

%+ τ

)n/p
.

Necessity. Assume that, for some c19 > 0 and all f ∈ LMpθ1,w1 ,

‖Mf‖LMpθ2,w2
≤ c19‖f‖LMpθ1,w1

.(37)

Take f = ft, where ft is defined by (31). Then by Lemma 7 the right-hand
side of (37) does not exceed

c15t
n/p‖w1‖Lθ1(t,∞),
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where c15 > 0 is independent of t > 0. Furthermore by Corollary 4 (case
p > 1) the left-hand side of (37) is equivalent to

∥∥∥∥w2(r)
(

rt

t+ r

)n/p∥∥∥∥
Lθ2(0,∞)

.

Hence (35) follows.

Remark 1. It is unclear whether for 1 < p < ∞, θ1 ≤ θ2, θ1 ≤ p
condition (35) is necessary for the boundedness of M from GMpθ1,w1 to
GMpθ2,w2 . (If we take f = ft in (37), with LM replaced by GM , then (35)
does not follow.)

Remark 2. If p = 1, 0 < θ1, θ2 ≤ ∞, then a similar argument shows
that the condition: there exists c20 > 0 such that for all t > 0,

∥∥∥∥w2(r)
(

r

t+ r

)n
ln
(
e+

r

t

)∥∥∥∥
Lθ2(0,∞)

≤ c20‖w1‖Lθ1(t,∞),

is necessary for the boundedness of M from LM1θ1,w1 to LM1θ2,w2 .

Remark 3. Under the assumptions of Theorem 4 the boundedness of
the maximal operator from LMpθ1,w1 to LMpθ2,w2 is equivalent to the bound-
edness of the Hardy operator from Lθ1/p,v1(0,∞) to Lθ2/p,v2(0,∞) where
v1(r) = (w1(r−1/n)r−(1+1/n)1/θ1)p, v2(r) = (w2(r−1/n)r−1/p−(1+1/n)1/θ2)p on
the cone of non-negative non-increasing functions. This is proved by find-
ing necessary and sufficient conditions on w1 and w2, namely (35), for the
boundedness of both operators. It may be of interest to find a direct proof
of this equivalence. (One of the implications is established in Theorem 2.)

Next we consider the local and global weak Morrey-type spaces and study
the boundedness of the maximal operator M in these spaces.

Definition 3. Let 0 < p, θ ≤ ∞ and let w be a non-negative measur-
able function on (0,∞). Denote by LWMpθ,w and GWMpθ,w the local and
global weak Morrey-type spaces respectively, defined to be the spaces of all
functions f ∈WLloc

p (Rn) with finite quasinorms

‖f‖LWMpθ,w
≡ ‖f‖LWMpθ,w(Rn) =

∥∥w(r)‖f‖WLp(B(0,r))
∥∥
Lθ(0,∞),

‖f‖GWMpθ,w
= sup

x∈Rn
‖f(x+ ·)‖LWMpθ,w

,

respectively, where for p <∞,

‖f‖WLp(B(0,r)) = sup
t>0

t(meas {x ∈ B(0, r) : |f(x)| > t})1/p.

If p = ∞, then WL∞ ≡ L∞ and LWM∞θ,w ≡ LM∞θ,w, GWM∞θ,w ≡
GM∞θ,w.
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Note that for any 0 < p, θ ≤ ∞,

‖f‖LWMpθ,w
≤ ‖f‖LMpθ,w

, ‖f‖GWMpθ,w
≤ ‖f‖GMpθ,w

for all f ∈ LMpθ,w and f ∈ GMpθ,w respectively.
As in [2], [5] and [7] the proof of the boundedness of the maximal operator

for p = 1 is based on the inequality

meas {x ∈ B(0, r) : (Mf)(x) > t} ≤ c21

t

�

Rn
|f(x)|(MχB(0,r))(x) dx,(38)

where c21 > 0 is independent of f ∈ Lloc
1 (Rn), t and r. This is a partic-

ular case of a more general inequality established by C. L. Fefferman and
E. Stein [3]:

�

{x∈Rn : (Mf)(x)>t}
|ϕ(x)| dx ≤ c22

t

�

Rn
|f(x)|(Mϕ)(x) dx,

where c22 > 0 is independent of f, ϕ ∈ Lloc
1 (Rn).

Using inequality (38), the relation

‖Mf‖WLp(Rn) ≤ ‖Mf‖Lp(Rn), 0 < p ≤ ∞,
and the properties of the maximal operator in local Morrey-type spaces
established in the first part of the paper, we get the following corresponding
properties of the maximal operator in local weak Morrey-type spaces:

Lemma 10. Let 1 ≤ p <∞. Then there exists c23 > 0 such that

‖Mf‖WLp(B(0,r)) ≤ c23

(
rn
∞�

r

( �

B(0,t)

|f(x)|p dx
) dt

tn+1

)1/p

(39)

for all r > 0 and all f ∈ Lloc
1 (Rn).

Lemma 11. Let 1 ≤ p <∞, 0 < θ ≤ ∞. Then there exists c24 > 0 such
that

‖Mf‖LWMpθ,w
≤ c24‖Hg‖1/pLθ/p,v(0,∞)

for all f ∈ Lloc
p (Rn), where g and v are given by (15), (16) respectively.

Corollary 5. Let 1 ≤ p <∞, 0 < θ ≤ ∞. Then

‖Mf‖GWMpθ,w
≤ c24 sup

x∈Rn
‖H(g(x, ·))‖1/pLθ/p,v(0,∞)

for all f ∈ Lloc
p (Rn), where g(x, ·) is given by (18).

Proof. We consider two cases:

1. If 1 < p <∞, the assertion follows by the proof of Corollary 3.
2. If p = 1, then for all x ∈ Rn,
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(40) ‖(Mf)(x+ ·)‖WL1(B(0,r))

= sup
t>0

t

∣∣∣∣
{
z ∈ B(0, r) : sup

r>0

1
|B(x+ z, r)|

�

B(x+z,r)

|f(y)| dy > t

}∣∣∣∣

= sup
t>0

t

∣∣∣∣
{
z ∈ B(0, r) : sup

r>0

1
|B(z, r)|

�

B(z,r)

|f(x+ y)| dy > t

}∣∣∣∣

= ‖M(f(x+ ·))‖WL1(B(0,r)),

hence we have

‖Mf‖GWM1θ,w = sup
x∈Rn

∥∥w(r)‖(Mf)(x+ ·)‖WL1(B(0,r))
∥∥
Lθ(0,∞)(41)

= sup
x∈Rn

∥∥w(r)‖M(f(x+ ·))‖WL1(B(0,r))
∥∥
Lθ(0,∞)

= sup
x∈Rn

‖M(f(x+ ·))‖LWM1θ,w

≤ c24 sup
x∈Rn

∥∥∥H
( �

B(0,t−1/n)

|f(x+ y)| dy
)∥∥∥

Lθ,v(0,∞)

= c24 sup
x∈Rn

‖H(g(x, ·))‖Lθ,v(0,∞).

Theorem 5. Let 0 < p2 ≤ p1 < ∞, p1 > 1, 0 < θ1, θ2 ≤ ∞, w1 ∈
Ωp1,θ1 , w2 ∈ Ωp2,θ2 . Assume that , for some q > 1 satisfying p2 ≤ q ≤
p1, the operator H is bounded from Lθ1/q,v1(0,∞) to Lθ2/q,v2(0,∞) on the
cone of all non-negative functions ϕ non-increasing on (0,∞) and satisfying
limt→∞ ϕ(t) = 0, where v1, v2 are defined by (21), (22) respectively. Then the
operator M is bounded from LMpθ1,w1 to LWMpθ2,w2 and from GMpθ1,w1 to
GWMpθ2,w2 .

Theorem 6. Let 1 ≤ p < ∞, 0 < θ2 ≤ ∞, w1 ∈ Ωp,∞, w2 ∈ Ωp,θ2 .
Let also condition (29) be satisfied. Then the operator M is bounded from
LMp∞,w1 to LWMpθ2,w2 and from GMp∞,w1 to GWMpθ2,w2 .

Lemma 12. Let r, t > 0, and 0 < p ≤ ∞. Then

‖ft‖WLp(B(0,r)) = 0, 0 < r < t, ‖ft‖WLp(B(0,r)) ≤ c15t
n/p, r ≥ t.

Proof. The statement follows from Lemma 7 since for all measurable
G,Ω ⊂ Rn,

‖χG‖WLp(Ω) = |G ∩Ω|1/p = ‖χG‖Lp(Ω),

hence ‖ft‖WLp(B(0,r)) = ‖ft‖Lp(B(0,r)).

Lemma 13. For all 0 < p ≤ ∞,

‖Mft‖WLp(B(0,r)) �
(

t

r + t

)nmin{1/p,1}
rn/p.(42)
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Proof. By Lemma 8 we have

‖Mft‖WLp(B(0,r)) � tn
∥∥∥∥
(

1
|x|+ t

)n∥∥∥∥
WLp(B(0,r))

.

Furthermore,
∥∥∥∥
(

1
|x|+ t

)n∥∥∥∥
WLp(B(0,r))

= sup
τ>0

τ meas
{
x ∈ B(0, r) :

1
(|x|+ t)n

> τ

}1/p

= sup
τ>0

τ |B(0, r) ∩B(0, τ−1/n − t)|1/p

= vn sup
0<τ<t−n

τ(min{r, τ−1/n − t})n/p

= vn max{ sup
0<τ≤(t+r)−n

τrn/p, sup
(t+r)−n<τ<t−n

τ(τ−1/n − t)n/p}

= vn max{(t+ r)−nrn/p, sup
(t+r)−n<τ<t−n

τ(τ−1/n − t)n/p}

= sup
(t+r)−n≤τ<t−n

τ(τ−1/n − t)n/p.

If 0 < p ≤ 1, then the function φ(τ) = τ(τ−1/n − t)n/p decreases on
[(t+ r)−n, t−n), therefore

sup
(t+r)−n≤τ<t−n

τ(τ−1/n − t)n/p =
rn/p

(t+ r)n
.

If p > 1, then for t ≥ (p − 1)r, ϕ also decreases on [(t + r)−n, t−n) and
for t < (p− 1)r the supremum is attained at τ =

(p−1
pt

)n
. Hence

sup
(t+r)−n≤τ<t−n

τ(τ−1/n − t)n/p = c25





rn/p

(t+ r)n
, t ≥ (p− 1)r,

tn/p−n, t < (p− 1)r,

�
(

rt

t+ r

)n/p
t−n,

where c25 > 0 depends only on p and n. Therefore the statement follows.

Theorem 7. Let 1 < p <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωp,θ1 , w2 ∈ Ωp,θ2 .
• If θ1 ≤ θ2, θ1 ≤ p and inequality (35) is satisfied , then M is bounded

from LMpθ1,w1 to LWMpθ2,w2 and from GMpθ1,w1 to GWMpθ2,w2 .
• For any 0 < θ1, θ2 ≤ ∞ condition (35) is necessary for the boundedness

of M from LMpθ1,w1 to LWMpθ2,w2 .
• In particular , if θ1 ≤ θ2, θ1 ≤ p, then condition (35) is necessary and

sufficient for the boundedness of M from LMpθ1,w1 to LWMpθ2,w2.
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Proof. Sufficiency follows from Theorem 5 as in the proof of Theorem 4.
The proof of necessity is also essentially the same as in the proof of Theo-
rem 4, with Lemma 9 replaced by Lemma 13.

Remark 4. When defining global Morrey-type spaces, one might con-
sider a weight function w depending not only on r > 0, but also on x ∈ Rn,
and consider the space of all functions f ∈ Lloc

p (Rn) for which
∥∥∥
∥∥w(x, r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

∥∥∥
L∞(Rn)

<∞.

For θ = ∞ such quasinorms were considered in [7]. Moreover, it is also
reasonable to replace L∞(Rn) by Lη(Rn), where 0 < η ≤ ∞, thus assuming
that

‖f‖GMpθη,w
=
∥∥∥
∥∥w(x, r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

∥∥∥
Lη(Rn)

<∞.

If in Theorem 2 formulas (21) and (22) are replaced by

v1(x, r) = (w1(x, r−1/n)r1/q−1/p1−(1+1/n)1/θ1)q,

v2(x, r) = (w2(x, r−1/n)r−1/p2−(1+1/n)1/θ2)q

and
sup
x∈Rn

‖H‖Lθ1/q,v1(x,r)(0,∞)∩C→Lθ2/q,v2(x,r)(0,∞)∩C <∞,

where C is the cone of all non-negative functions ϕ non-increasing on (0,∞)
and satisfying limt→∞ ϕ(t) = 0, then the maximal operator M is also
bounded from GMp1θ1η,w1 to GMp2θ2η,w2 . Similar remarks refer to all other
inequalities of the paper involving global Morrey-type spaces or global weak
Morrey-type spaces.

A brief exposition of the results of this paper, without proofs, is given
in [1].
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