Weyl type theorems for p-hyponormal and M-hyponormal operators

by

XIAOHONG CAO (Xi'an), MAOZHENG GUO (Beijing) and BIN MENG (Beijing)

Abstract. "Generalized Weyl's theorem holds" for an operator when the complement in the spectrum of the B-Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues; and "generalized a-Weyl's theorem holds" for an operator when the complement in the approximate point spectrum of the semi-B-essential approximate point spectrum coincides with the isolated points of the approximate point spectrum which are eigenvalues. If T or T^* is p-hyponormal or M-hyponormal then for every $f \in H(\sigma(T))$, generalized Weyl's theorem holds for f(T), so Weyl's theorem holds for f(T), where $H(\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T)$. Moreover, if T^* is p-hyponormal or M-hyponormal then for every $f \in H(\sigma(T))$, generalized a-Weyl's theorem holds for f(T) and hence a-Weyl's theorem holds for f(T).

1. Introduction. Throughout this paper, B(H) and K(H) denote respectively the algebra of bounded linear operators and the ideal of compact operators acting on an infinite-dimensional separable Hilbert space H. If $T \in B(H)$, we write N(T) and R(T) for the null space and range of T, with $n(T) = \dim N(T)$ and $d(T) = \dim H/R(T)$; $\sigma(T)$ for the spectrum of T; $\sigma_{\mathbf{a}}(T)$ for the approximate point spectrum of T; $E_0(T)$ for the isolated points of $\sigma(T)$ which are eigenvalues of finite multiplicity; and $E_0^{\mathbf{a}}(T)$ for the isolated points of $\sigma_{\mathbf{a}}(T)$ which are eigenvalues of finite multiplicity. Let $\varrho_{\mathbf{a}}(T) = \mathbb{C} \setminus \sigma_{\mathbf{a}}(T)$.

An operator $T \in B(H)$ is called *Fredholm* if it has closed finite-codimensional range and finite-dimensional null space. The *index* of a Fredholm operator $T \in B(H)$ is given by $\operatorname{ind}(T) = n(T) - d(T)$.

An operator $T \in B(H)$ is called Weyl if it is Fredholm of index zero, and Browder if it is Fredholm of finite ascent and descent, or equivalently, if T is Fredholm and $T - \lambda I$ is invertible for all sufficiently small $\lambda \neq 0$ in \mathbb{C} . For $T \in B(H)$, we write $\alpha(T)$ for the ascent of T and $\beta(T)$ for the descent of T.

²⁰⁰⁰ Mathematics Subject Classification: 47A10, 47A53, 47A55.

Key words and phrases: Weyl's theorem, generalized Weyl's theorem, a-Weyl's theorem, generalized a-Weyl's theorem, p-hyponormal operator, M-hyponormal operator.

The essential spectrum $\sigma_{\rm e}(T)$, Weyl spectrum $\sigma_{\rm w}(T)$, and Browder spectrum $\sigma_{\rm b}(T)$ of $T \in B(H)$ are defined by

$$\sigma_{\mathbf{e}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm} \},$$

$$\sigma_{\mathbf{w}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \},$$

$$\sigma_{\mathbf{b}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder} \}.$$

We say that Weyl's theorem holds for $T \in B(H)$ if

$$\sigma(T) \setminus \sigma_{\mathbf{w}}(T) = E_0(T),$$

and that Browder's theorem holds for $T \in B(H)$ if

$$\sigma_{\rm w}(T) = \sigma_{\rm b}(T).$$

Let

$$SF_{+}(H) = \{T \in B(H) : R(T) \text{ is closed and } n(T) < \infty\},$$

$$SF_{+}^{-}(H) = \{T \in B(H) : T \in SF_{+}(H) \text{ and ind}(T) \le 0\},$$

$$\sigma_{SF_{+}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not in } SF_{+}(H)\}.$$

For $T \in B(H)$, the essential approximate point spectrum and the Browder essential approximate point spectrum are defined by

$$\begin{split} &\sigma_{\mathrm{SF}_{+}^{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not in } \mathrm{SF}_{+}^{-}(H)\}, \\ &\sigma_{\mathrm{ab}}(T) = \bigcap \{\sigma_{\mathrm{a}}(T+K) : TK = KT \text{ and } K \in K(H)\}. \end{split}$$

Recall that by [12, Theorem 2.1] a complex number λ is not in $\sigma_{ab}(T)$ if and only if $T - \lambda I \in SF_+(H)$ and $\alpha(T - \lambda I) < \infty$.

We say that a-Weyl's theorem holds for $T \in B(H)$ if

$$\sigma_{\mathbf{a}}(T) \setminus \sigma_{\mathbf{SF}_{-}}(T) = E_0^{\mathbf{a}}(T),$$

and that a-Browder's theorem holds for $T \in B(H)$ if $\sigma_{SF}(T) = \sigma_{ab}(T)$.

It is known [7] that for any $T \in B(H)$ we have the implications:

a-Weyl's theorem \Rightarrow Weyl's theorem \Rightarrow Browder's theorem, a-Weyl's theorem \Rightarrow a-Browder's theorem \Rightarrow Browder's theorem.

For a bounded linear operator T and a nonnegative integer n, define $T_{[n]}$ to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ to $R(T^n)$ (in particular $T_{[0]} = T$). If for some integer n, the range space $R(T^n)$ is closed and $T_{[n]}$ is upper (resp. lower) semi-Fredholm, then T is called an up-per (resp. lower) semi-B-Fredholm operator. Moreover if $T_{[n]}$ is a Fredholm (resp. Weyl, Browder) operator, then T is called a B-Fredholm (resp. B-Weyl, B-Browder) operator. Similarly, we can define the B-Fredholm spectrum $\sigma_{\rm BF}(T)$, B-Weyl spectrum $\sigma_{\rm BW}(T)$ and B-Browder spectrum $\sigma_{\rm BB}(T)$. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator.

Let $T \in B(H)$ and let

$$\triangle(T) = \{ n \in \mathbb{N} : R(T^n) \cap N(T) \subseteq R(T^m) \cap N(T) \text{ for all } m \ge n \}.$$

Then the degree of stable iteration $\operatorname{dis}(T)$ of T is defined as $\operatorname{dis}(T) = \inf \triangle(T)$. Let T be a semi-B-Fredholm operator and let $d = \operatorname{dis}(T)$. It follows from [5, Proposition 2.1] that $T_{[m]}$ is a semi-Fredholm operator and $\operatorname{ind}(T_{[m]}) = \operatorname{ind}(T_{[d]})$ for each $m \geq d$. This enables us to define the index of a semi-B-Fredholm operator T as the index of $T_{[d]}$.

In the case of a normal operator T acting on a Hilbert space, Berkani [2, Theorem 4.5] showed that $\sigma_{\text{BW}}(T) = \sigma(T) \setminus E(T)$, where E(T) is the set of all eigenvalues of T which are isolated in the spectrum of T. This generalizes the classical Weyl's theorem. So we say that T obeys generalized Weyl's theorem ([4, Definition 2.13]) if

$$\sigma_{\rm BW}(T) = \sigma(T) \setminus E(T).$$

Similarly, let $\mathrm{SBF}_+(H)$ be the class of all upper semi-B-Fredholm operators, and $\mathrm{SBF}_+^-(H)$ the class of all $T \in \mathrm{SBF}_+(H)$ such that $\mathrm{ind}(T) \leq 0$. Also let

$$\sigma_{\mathrm{SBF}_{+}^{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not in } \mathrm{SBF}_{+}^{-}(H)\},\$$

called the semi-B-essential approximate point spectrum. We say that T obeys generalized a-Weyl's theorem if

$$\sigma_{\mathrm{SBF}_{\perp}^{-}}(T) = \sigma_{\mathrm{a}}(T) \setminus E^{\mathrm{a}}(T),$$

where $E^{\rm a}(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_{\rm a}(T)$ ([4, Definition 2.13]). From [4, Theorem 3.11], we know that each T satisfying generalized a-Weyl's theorem satisfies a-Weyl's theorem and hence Weyl's theorem, but the converse is not true (see [4, Example 3.12]).

An operator $T \in B(H)$ is said to be *p-hyponormal* if $(T^*T)^p \geq (TT^*)^p$, and *M-hyponormal* if there exists a positive number M such that

$$M\|(T-\lambda I)x\| \geq \|(T-\lambda I)^*x\| \quad \text{ for all } \lambda \in \mathbb{C} \text{ and all } x \in H.$$

In this paper we show that if T^* is p-hyponormal or M-hypomormal, then generalized a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$, hence a-Weyl's theorem holds for $f \in H(\sigma(T))$, where $H(\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T)$.

2. Preliminary results. Let

$$A_1(H) = \{ S \in B(H) : \operatorname{ind}(S - \lambda I) \operatorname{ind}(S - \mu I) \ge 0$$
 for all $\lambda, \mu \in \mathbb{C} \setminus \sigma_{e}(S) \},$

$$A_2(H) = \{ S \in B(H) : \operatorname{ind}(S - \lambda I) \operatorname{ind}(S - \mu I) \ge 0$$
 for all $\lambda, \mu \in \mathbb{C} \setminus \sigma_{\operatorname{SF}_+}(S) \}.$

An operator $T \in B(H)$ is called approximate-isoloid (abbr. a-isoloid) if every isolated point of $\sigma_{\mathbf{a}}(T)$ is an eigenvalue of T, and isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. Clearly, if T is a-isoloid then it is isoloid. However, the converse is not true.

THEOREM 2.1. If $T \in B(H)$ obeys generalized Weyl's theorem and it is isoloid, then the following statements are equivalent:

- (1) $T \in A_1(H)$;
- (2) $\sigma_{\mathbf{w}}(f(T)) = f(\sigma_{\mathbf{w}}(T))$ for every $f \in H(\sigma(T))$;
- (3) $\sigma_{\rm BW}(f(T)) = f(\sigma_{\rm BW}(T))$ for every $f \in H(\sigma(T))$;
- (4) Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$;
- (5) generalized Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. (1) \Leftrightarrow (3). By [3, Remark iii], $\operatorname{ind}(T - \lambda I) \operatorname{ind}(T - \mu I) \geq 0$ for each pair $\lambda, \mu \in \mathbb{C} \setminus \sigma_{\operatorname{e}}(T)$ if and only if $\operatorname{ind}(T - \lambda I) \operatorname{ind}(T - \mu I) \geq 0$ for each pair $\lambda, \mu \in \mathbb{C} \setminus \sigma_{\operatorname{BF}}(T)$. From [3, Corollary 3.3] and [2, Theorem 3.2], the spectral mapping theorem for the B-Weyl spectrum may be rewritten as the implication, for arbitrary $n \in \mathbb{N}$ and $\lambda_i \in \mathbb{C}$,

$$f(T) = (T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I)g(T) \text{ B-Weyl}$$

$$\Rightarrow T - \lambda_j I \text{ B-Weyl for each } j = 1, \dots, n,$$

where g(T) is invertible. Now if $\operatorname{ind}(T - \lambda I) \geq 0$ on $\mathbb{C} \setminus \sigma_{BF}(T)$, then

$$\sum_{j=1}^{n} \operatorname{ind}(T - \lambda_{j}I) = \operatorname{ind} \prod_{j=1}^{n} (T - \lambda_{j}I) = 0$$

$$\Rightarrow \operatorname{ind}(T - \lambda_{j}I) = 0 \ (j = 1, \dots, n)$$

and similarly if $\operatorname{ind}(T - \lambda I) \leq 0$ off $\sigma_{BF}(T)$. If conversely there exist $\lambda, \mu \in \mathbb{C} \setminus \sigma_{e}(T)$ for which $\operatorname{ind}(T - \lambda I) = -m < 0 < k = \operatorname{ind}(T - \mu I)$, then $f(T) = (T - \lambda I)^{k} (T - \mu I)^{m}$ is a Weyl operator whose factors are not B-Weyl. This is a contradiction.

- $(1)\Leftrightarrow(2)$. See [9, Theorem 5].
- $(2)\Leftrightarrow (4)$. Generalized Weyl's theorem implies Weyl's theorem for T. Moreover, [11, Lemma] tells us that if T is isoloid, then

$$f(\sigma(T) \setminus E_0(T)) = \sigma(f(T)) \setminus E_0(f(T))$$
 for every $f \in H(\sigma(T))$,

thus Weyl's theorem holds for f(T) if and only if $\sigma_{\mathbf{w}}(f(T)) = f(\sigma_{\mathbf{w}}(T))$.

 $(3)\Rightarrow(5)$. For every $f\in H(\sigma(T))$, we need to prove $\sigma(f(T))\setminus\sigma_{\mathrm{BW}}(f(T))=E(f(T))$. Let $\mu\in\sigma(f(T))\setminus\sigma_{\mathrm{BW}}(f(T))$, that is, $f(T)-\mu I$ is B-Weyl and μ is not in $f(\sigma_{\mathrm{BW}}(T))$. Let

(a)
$$f(T) - \mu I = (T - \lambda_1 I) \cdots (T - \lambda_m I) g(T),$$

where g(T) is invertible. Then $T - \lambda_i I$ is B-Weyl, and, in particular, an operator of topological uniform descent. Since generalized Weyl's theorem holds for T, it follows that $T - \lambda_i I$ has finite ascent and descent for every

 $i \in \{1, ..., m\}$ ([8, Corollary 4.9]). Then $f(T) - \mu I$ has finite ascent and descent. Suppose $\alpha(f(T) - \mu I) = \beta(f(T) - \mu I) = p$. Then μ is a pole of f(T) and hence $\mu \in E(f(T))$.

Conversely, let $\mu \in E(f(T))$. Using (a), without loss of generality, we suppose $\lambda_i \in \sigma(T)$. Thus $\lambda_i \in \text{iso}\,\sigma(T)$. Since T is isoloid, we see that $\lambda_i \in E(T)$. Since generalized Weyl's theorem holds for T, it follows that $T - \lambda_i I$ is B-Weyl and hence $f(T) - \mu I$ is B-Weyl ([3, Corollary 3.3] and [2, Theorem 3.2]). Thus $\mu \in \sigma(f(T)) \setminus \sigma_{\text{BW}}(f(T))$. So we have proved that generalized Weyl's theorem holds for f(T).

$$(5) \Rightarrow (4)$$
. See [4, Theorem 3.9].

Recall that if T is an upper semi-Fredholm operator, then $T-\lambda I$ is upper semi-Fredholm and $N(T-\lambda I)\subseteq \bigcap_{n=1}^\infty R[(T-\lambda I)^n]$ if $|\lambda|$ is sufficiently small. The same holds if T is upper semi-B-Fredholm. In fact, [5, Corollary 3.2] tells us that if $|\lambda|$ is sufficiently small, then $T-\lambda I$ is upper semi-Fredholm. Let $\mathrm{dis}(T)=d$. Then $T_{[d]}$ is upper semi-Fredholm. Hence if $|\lambda|$ is sufficiently small, then

$$N(T_{[d]} - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T_{[d]} - \lambda I)^n] \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n].$$

Since $N(T - \lambda I) \subseteq R(T^d)$, it follows that

$$N(T - \lambda I) = N(T - \lambda I) \cap R(T^d) = N(T_{[d]} - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n].$$

THEOREM 2.2. If $T \in B(H)$ obeys generalized a-Weyl's theorem and it is a-isoloid, then the following statements are equivalent:

- (1) $T \in A_2(H)$;
- (2) $\sigma_{SF_{+}^{-}}(f(T)) = f(\sigma_{SF_{+}^{-}}(T))$ for every $f \in H(\sigma(T))$;
- (3) $\sigma_{\mathrm{SBF}_{+}^{-}}(f(T)) = f(\sigma_{\mathrm{SBF}_{+}^{-}}(T))$ for every $f \in H(\sigma(T))$;
- (4) a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$;
- (5) generalized a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. (1) \Leftrightarrow (3). By [5, Corollary 3.2], $\operatorname{ind}(T - \lambda I) \operatorname{ind}(T - \mu I) \geq 0$ for each pair $\lambda, \mu \in \mathbb{C} \setminus \sigma_{\operatorname{SF}_+}(T)$ if and only if $\operatorname{ind}(T - \lambda I) \operatorname{ind}(T - \mu I) \geq 0$ for each pair $\lambda, \mu \in \mathbb{C} \setminus \sigma_{\operatorname{SBF}_+}(T)$.

 \Rightarrow For every $f \in H(\sigma(T))$, let $\mu_0 \in \sigma_{\mathrm{SBF}^-_+}(f(T))$ and suppose μ_0 is not in $f(\sigma_{\mathrm{SBF}^-_+}(T))$. We also suppose that

(b)
$$f(T) - \mu_0 I = (T - \lambda_1 I)^{n_1} \cdots (T - \lambda_m I)^{n_m} g(T),$$

where g(T) is invertible, λ_i is not in $\sigma_{\mathrm{SBF}_+}^-(T)$ and $\lambda_i \neq \lambda_j$ if $i, j = 1, \ldots, m$. Then $f(T) - \mu_0 I$ is upper semi-B-Fredholm ([5, Proposition 4.3])

and $\operatorname{ind}(f(T) - \mu_0 I) = \sum_{i=1}^m \operatorname{ind}(T - \lambda_i I)^{n_i} \leq 0$. That is, μ_0 is not in $\sigma_{\operatorname{SBF}^-_+}(f(T))$. This is a contradiction. Thus $\sigma_{\operatorname{SBF}^-_+}(f(T)) \subseteq f(\sigma_{\operatorname{SBF}^-_+}(T))$.

Conversely, suppose $\mu_0 \in f(\sigma_{\mathrm{SBF}_+^-}(T))$ but μ_0 is not in $\sigma_{\mathrm{SBF}_+^-}(f(T))$, that is, $f(T) - \mu_0 I$ is upper semi-B-Fredholm and $\inf[f(T) - \mu_0 I] \leq 0$. Then $T - \lambda_i I$ is upper semi-B-Fredholm ([5, Corollary 4.4]). Since $\inf(f(T) - \mu_0 I) = \sum_{i=1}^m \inf(T - \lambda_i I)^{n_i} \leq 0$, we know that $\inf(T - \lambda_i I) \leq 0$. Thus $T - \lambda_i I \in \mathrm{SBF}_+^-(X)$ and therefore μ_0 is not in $f(\sigma_{\mathrm{SBF}_+^-}(T))$. This is a contradiction.

 \Leftarrow Assume the contrary; then there exist λ_0, μ_0 such that $T - \lambda_0 I$, $T - \mu_0 I \in \mathrm{SF}_+(X)$ and $\mathrm{ind}(T - \lambda_0 I) < 0$, $\mathrm{ind}(T - \mu_0 I) > 0$. Let $m = -\mathrm{ind}(T - \lambda_0 I)$ and $n = \mathrm{ind}(T - \mu_0 I)$. Thus n is finite. If m is finite, let $f(T) = (T - \lambda_0 I)^n (T - \mu_0 I)^m$ or else let $f(T) = (T - \lambda_0 I)(T - \mu_0 I)$. Then $f(T) \in \mathrm{SF}_+^-(X)$. So 0 is not in $\sigma_{\mathrm{SBF}_+}^-(f(T))$. But $\mu_0 \in \sigma_{\mathrm{SBF}_+}^-(T)$, hence $0 = f(\mu_0) \in f(\sigma_{\mathrm{SBF}_+}^-(T)) = \sigma_{\mathrm{SBF}_+}^-(f(T))$. This is a contradiction. Hence the result is true.

- $(1)\Leftrightarrow(2)$. Argue as for $(1)\Leftrightarrow(3)$.
- $(2)\Leftrightarrow (4)$. Suppose that $\sigma_{\mathrm{SF}^-_+}(f(T))=f(\sigma_{\mathrm{SF}^-_+}(T))$ for every $f\in H(\sigma(T))$. Since a-Weyl's theorem holds for T, it follows that $\sigma_{\mathrm{SF}^-_+}(T)=\sigma_{\mathrm{ab}}(T)$. We know that Browder essential approximate point spectrum satisfies the spectral mapping theorem, so $\sigma_{\mathrm{SF}^-_+}(f(T))=f(\sigma_{\mathrm{SF}^-_+}(T))=f(\sigma_{\mathrm{ab}}(T))=\sigma_{\mathrm{ab}}(f(T))$. Therefore a-Browder's theorem holds for f(T). Now let $\mu\in E^{\mathrm{a}}_0(f(T))$. Using (b), without loss of generality, we suppose that $\lambda_i\in\sigma_{\mathrm{a}}(T)$; then $\lambda_i\in\mathrm{iso}\,\sigma_{\mathrm{a}}(T)$. Since T is a-isoloid, we infer that $\lambda_i\in E^{\mathrm{a}}_0(T)$. Generalized a-Weyl's theorem implies a-Weyl's theorem, so $T-\lambda_i I\in\mathrm{SF}^-_+(H)$ and hence $f(T)-\mu I\in\mathrm{SF}^-_+(H)$. Thus a-Weyl's theorem holds for f(T). Conversely, suppose a-Weyl's theorem holds for f(T) for every $f\in H(\sigma(T))$. Then $\sigma_{\mathrm{SF}^-_+}(f(T))=\sigma_{\mathrm{ab}}(f(T))=f(\sigma_{\mathrm{ab}}(T))=f(\sigma_{\mathrm{SF}^-_+}(T))$.
 - $(3)\Rightarrow(5)$. For every $f\in H(\sigma(T))$, we need to prove that

$$\sigma_{\mathbf{a}}(f(T)) \setminus \sigma_{\mathrm{SBF}^{-}_{\perp}}(f(T)) = E^{\mathbf{a}}(f(T)).$$

Let $\mu \in \sigma_{\rm a}(f(T)) \setminus \sigma_{{\rm SBF}^-_+}(f(T))$, that is, $f(T) - \mu I \in {\rm SBF}^-_+(H)$ and μ is not in $f(\sigma_{{\rm SBF}^-_+}(T))$. By (b), then $T - \lambda_i I \in {\rm SBF}^-_+(H)$. We can suppose that $\lambda_i \in \sigma_{\rm a}(T)$. Since generalized a-Weyl's theorem holds for T and T is a-isoloid, it follows that $T - \lambda_i I$ has finite ascent for every $i \in \{1, \ldots, m\}$ ([4, Theorem 2.8]). Thus $f(T) - \mu I$ has finite ascent. Let ${\rm dis}(f(T)) = d$. Then $R[(f(T) - \mu I)^d]$ is closed. Now [10, Lemma 2.5] and the perturbation theory of upper semi-B-Fredholm operators imply that $\mu \in {\rm iso}\,\sigma_{\rm a}(f(T))$, so $\mu \in E^{\rm a}(f(T))$.

Conversely, suppose $\mu \in E^{a}(f(T))$. Then $\lambda_i \in \text{iso } \sigma_{a}(T)$. Since T is a-isoloid, we find that $T - \lambda_i I \in E^{a}(T)$. Generalized a-Weyl's theorem holds

for T, so $T - \lambda_i I \in SBF_+^-(H)$ and hence $f(T) - \mu I \in SBF_+^-(H)$. Thus we have proved that generalized a-Weyl's theorem holds for f(T).

$$(5)$$
 ⇒ (4) . See [4, Theorem 3.11]. ■

3. p-hyponormal and M-hyponormal operators. We start with some elementary results about p-hyponormal and M-hyponormal operators. We call $T \in B(H)$ paranormal if for any $x \in H$, $||Tx||^2 \le ||T^2x|| \, ||x||$. If T is paranormal, then $||T|| = \sup\{|\lambda| : \lambda \in \sigma(T)\}$.

Lemma 3.1 ([14], [16]). If T is p-hyponormal for some p such that 0 or <math>T is M-hyponormal, then the restriction $T|_F$ to any invariant subspace F is also p-hyponormal or M-hyponormal.

LEMMA 3.2 ([15]). (1) If T is p-hyponormal, then T is paranormal.

- (2) If T is invertible and p-hyponormal, then T^{-1} is also p-hyponormal.
- (3) If T is M-hyponormal and $\sigma(T) = \{\lambda\}$, then $T = \lambda I$.

THEOREM 3.3. If T^* is p-hyponormal or M-hyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$. Hence a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. Suppose T^* is p-hyponormal. By Theorem 2.2, we need to prove that T is a-isoloid, $T \in A_2(H)$ and generalized a-Weyl's theorem holds for T. First we prove that T is a-isoloid. Since T^* is p-hyponormal, a-Weyl's theorem holds for T ([6]) and $\sigma(T) = \sigma_{\rm a}(T)$. Let $\lambda \in \text{iso } \sigma_{\rm a}(T) = \text{iso } \sigma(T)$; then $\overline{\lambda} \in \text{iso } \sigma(T^*)$. Since T^* is p-hyponormal, T^* is isoloid ([15, Theorem 1]), so $N(T^* - \overline{\lambda}I) \neq \{0\}$. As $N(T^* - \overline{\lambda}I) \subseteq N(T - \lambda I)$ ([15, Corollary 3]), we have $N(T - \lambda I) \neq \{0\}$, which means that T is a-isoloid.

Since $N(T^* - \overline{\lambda}I) \subseteq N(T - \lambda I)$, it follows that if $\lambda \in \mathbb{C} \setminus \sigma_{SF_+}(T)$, then $\operatorname{ind}(T - \lambda I) \geq 0$. Therefore $T \in A_2(H)$.

Next we prove that generalized a-Weyl's theorem holds for T, that is, $\sigma_{\rm a}(T) \setminus \sigma_{\rm SBF_+^-}(T) = E^{\rm a}(T)$. Let $\lambda_0 \in \sigma_{\rm a}(T) \setminus \sigma_{\rm SBF_+^-}(T)$. Then there exists $\varepsilon > 0$ such that $T - \lambda I \in {\rm SF}_+^-(H)$ and

$$N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]$$
 if $0 < |\lambda - \lambda_0| < \varepsilon$.

Since a-Weyl's theorem holds for T, it follows that $\alpha(T-\lambda I)<\infty$ and hence

$$N(T - \lambda I) = N(T - \lambda I) \cap \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n] = \{0\} \quad \text{if } 0 < |\lambda - \lambda_0| < \varepsilon$$

([13, Lemma 3.4]). Thus $T - \lambda I$ is bounded from below, which means that $\lambda_0 \in \text{iso } \sigma_{\mathbf{a}}(T)$. Thus $\lambda_0 \in E^{\mathbf{a}}(T)$.

Conversely, if $\lambda_0 \in E^{\mathrm{a}}(T)$, then λ_0 is an isolated point of $\sigma_{\mathrm{a}}(T) = \sigma(T)$, so $\overline{\lambda_0} \in \mathrm{iso}\,\sigma(T^*)$. Now using the spectral projection

$$P = \frac{1}{2\pi i} \int_{\partial B_0} (T^* - \lambda I)^{-1} d\lambda,$$

where B_0 is an open disk of center $\overline{\lambda}_0$ which contains no other points of $\sigma(T^*)$, we can represent T^* as the direct sum

$$T^* = T_1 \oplus T_2$$
, where $\sigma(T_1) = {\overline{\lambda_0}}$ and $\sigma(T_2) = \sigma(T^*) \setminus {\overline{\lambda_0}}$.
Then $T_2 - {\overline{\lambda_0}}I$ is invertible.

CASE 1: $\lambda_0 = 0$. Then $\sigma(T_1) = \{0\}$. Since T_1 is p-hyponormal, it follows that $T_1 = 0$ ([15, Corollary 2]). Thus $T^* - \overline{\lambda}_0 I = 0 \oplus T_2 - \overline{\lambda}_0 I$.

CASE 2: $\lambda_0 \neq 0$. Since T_1 is invertible and paranormal, it follows that T_1^{-1} is paranormal. Then $||T_1|| = |\lambda_0|$ and $||T_1^{-1}|| = 1/|\lambda_0|$. For any $x \in R(P)$,

$$||x|| \le ||T_1^{-1}|| \, ||T_1 x|| = \frac{1}{|\lambda_0|} \, ||T_1 x|| \le \frac{1}{|\lambda_0|} \, |\lambda_0| \, ||x|| = ||x||,$$

which implies that $(1/\overline{\lambda}_0)T_1$ is unitary. Thus T_1 is normal and hence so is $T_1 - \overline{\lambda}_0 I$. Since $T_1 - \overline{\lambda}_0 I$ is quasinilpotent and the only normal quasinilpotent operator is zero, it follows that $T^* - \overline{\lambda}_0 I = 0 \oplus T_2 - \overline{\lambda}_0 I$.

Since $T_2 - \overline{\lambda}_0 I$ is invertible, we know that $T^* - \overline{\lambda}_0 I$ has finite ascent and descent. Then $T - \lambda_0 I$ has finite ascent and descent, and therefore $\lambda_0 \in \sigma_{\rm a}(T) \setminus \sigma_{\rm SBF}^-(T)$.

From the above proof, we see that generalized a-Weyl's theorem holds for T. Using Theorem 2.2, we conclude that generalized a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

If T^* is M-hyponormal, then since M-hyponormality is translation-invariant, it suffices to show that $0 \in \sigma_{\rm a}(T) \setminus \sigma_{\rm SBF_+}(T) \Leftrightarrow 0 \in E^{\rm a}(T)$. If $0 \in \sigma_{\rm a}(T) \setminus \sigma_{\rm SBF_+}(T)$, then $T - \lambda I \in {\rm SF_+}(H)$ and $N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]$ if $|\lambda|$ is sufficiently small. Since T^* is M-hyponormal, it follows that $\alpha(T^* - \overline{\lambda}I) = \beta(T - \lambda I) < \infty$, hence $T - \lambda I$ is Browder. Then $N(T - \lambda I) = N(T - \lambda I) \cap \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n] = \{0\}$ and therefore 0 is an isolated point in $\sigma_{\rm a}(T) = \sigma(T)$. We have thus proved that $\sigma_{\rm a}(T) \setminus \sigma_{\rm SBF_+}(T) \subseteq E^{\rm a}(T)$. Conversely, suppose $0 \in E^{\rm a}(T)$. Then 0 is an isolated point of $\sigma_{\rm a}(T) = \sigma(T)$. Applying the projection P defined above, we have a direct sum $T^* = T_1 \oplus T_2$, where $\sigma(T_1) = \{0\}$ and $\sigma(T_2) = \sigma(T^*) \setminus \{0\}$. Then $T_1 = 0$ and T_2 is invertible. Thus T^* has finite ascent and descent and so T has finite ascent and descent. This implies that T is B-Weyl and $0 \in \sigma_{\rm a}(T) \setminus \sigma_{\rm SBF_+}(T)$. Thus T obeys generalized a-Weyl's theorem. Theorem 2.2 tells us now that generalized a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

COROLLARY 3.4. If T or T^* is p-hyponormal or M-hyponormal, then generalized Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$. Hence Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. If T^* is p-hyponormal or M-hyponormal, then the result is true by Theorem 3.3. If T is p-hyponormal or M-hyponormal, then Weyl's theorem holds for T, $T \in A_1(T)$ and T is isoloid. By Theorem 2.1, we need to prove that generalized Weyl's theorem holds for T, so we need to prove $\sigma(T) \setminus \sigma_{\rm BW}(T) = E(T)$.

Suppose $\lambda_0 \in E(T)$. Using the same method as for Theorem 3.3, we can prove that $T - \lambda_0 I$ has finite ascent and descent. Suppose $\alpha(T - \lambda_0 I) = \beta(T - \lambda_0 I) = p$. Then $H = N[(T - \lambda_0 I)^p] \oplus R[(T - \lambda_0 I)^p]$, therefore $(T - \lambda_0 I)_{[p]}$ is Weyl and so $\lambda_0 \in \sigma(T) \setminus \sigma_{\text{BW}}(T)$.

Conversely, if $\lambda_0 \in \sigma(T) \setminus \sigma_{\mathrm{BW}}(T)$, then $T - \lambda I$ is Weyl and $N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]$ if $|\lambda - \lambda_0|$ is sufficiently small. The fact that Weyl's theorem holds for T implies that $T - \lambda I$ is Browder and hence $N(T - \lambda I) = N(T - \lambda I) \cap \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n] = \{0\}$, so $T - \lambda I$ is invertible if $|\lambda - \lambda_0|$ is sufficiently small. Therefore $\lambda_0 \in \operatorname{iso} \sigma(T)$. If $N(T - \lambda_0 I) = \{0\}$, suppose $\operatorname{dis}(T - \lambda_0 I) = d$. Then $\alpha(T - \lambda_0 I) = 0$. Since $T - \lambda_0 I$ is B-Weyl, we know that $(T - \lambda_0 I)_{[d]}$ is invertible and hence $R[(T - \lambda_0 I)^{d+1}] = R[(T - \lambda_0 I)^d]$. Thus $\beta(T - \lambda_0 I) = \alpha(T - \lambda_0 I) = 0$, that is, $T - \lambda_0 I$ is invertible. This contradicts the fact that $\lambda_0 \in \sigma(T)$. Thus $\lambda_0 \in E(T)$. Therefore generalized Weyl's theorem holds for T.

COROLLARY 3.5. If T is p-hyponormal or M-hyponormal and if $\sigma_{BW}(T) = \{0\}$, then T is normal.

Proof. Since generalized Weyl's theorem holds for T, by assumption, every nonzero point of $\sigma(T)$ is an isolated point of $\sigma(T)$ and an eigenvalue. Hence $\sigma(T) \setminus \sigma_{\rm BW}(T)$ is a finite set or a countably infinite set whose only cluster point is 0. Let $\sigma(T) \setminus \sigma_{\rm BW}(T) = \{\lambda_n\}$, with $|\lambda_1| \geq |\lambda_2| \geq \cdots > 0$, and let E_n be the orthogonal projection onto $N(T - \lambda_n I)$. Then $TE_n = E_n T = \lambda_n E_n$ and $E_n E_m = 0$ if $n \neq m$. Put $E = \bigoplus_n E_n$. Then $T = \bigoplus_n \lambda_n E_n \oplus T_{(I-E)H}$ with $\sigma(T_{(I-E)H}) = \{0\}$. Since $T_{(I-E)H}$ is also p-hyponormal or M-hyponormal, it follows that $T_{(I-E)H} = 0$. Hence $T = \bigoplus_n \lambda_n E_n$ is normal.

- **4. Berberian spectra.** Suppose that $T \in B(H)$ is reduced by each of its eigenspaces. We write $\pi_0(T)$ for the set of eigenvalues of T; $\pi_{0f}(T)$ for the eigenvalues of finite multiplicity; $\pi_{0i}(T)$ for the eigenvalues of infinite multiplicity. If M is the closed linear span of the eigenspaces $N(T \lambda I)$ ($\lambda \in \pi_0(T)$), then M reduces T. Let $T_1 = T|_M$ and $T_2 = T|_{M^{\perp}}$. Then ([1, Proposition 4.1]):
 - (1) T_1 is a normal operator with pure point spectrum;
 - (2) $\pi_0(T_1) = \pi_0(T)$;

- (3) $\sigma(T_1) = \operatorname{cl} \pi_0(T_1);$
- (4) $\pi_0(T_2) = \emptyset$.

In this case, Berberian [1, Definition] defined

$$\tau(T) = \sigma(T_2) \cup \operatorname{acc} \pi_0(T) \cup \pi_{0i}(T).$$

We shall call $\tau(T)$ the Berberian spectrum of T. Berberian has shown that $\tau(T)$ is a nonempty compact subset of $\sigma(T)$.

Let

$$LD(H) = \{T \in B(H) : \alpha(T) < \infty \text{ and } R(T^{\alpha(T)+1}) \text{ is closed}\},\$$

 $\sigma_{LD}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not in } LD(H)\}.$

The following theorem shows the relation of $\sigma_{\mathrm{SBF}_{+}^{-}}(T)$, $\sigma_{\mathrm{LD}}(T)$, and Berberian spectra. We also give a relation of $\sigma_{\mathrm{BW}}(T)$, $\sigma_{\mathrm{BB}}(T)$ and Berberian spectra.

Theorem 4.1. If $T \in B(H)$ is reduced by each of its eigenspaces, then

- (1) $\sigma_{\mathrm{SBF}_{+}}^{-}(T) = \sigma_{\mathrm{LD}}(T) \subseteq \tau(T);$
- (2) $\sigma_{BW}(T) = \sigma_{BB}(T) \subseteq \tau(T)$.

Proof. Let M be the closed linear span of the eigenspaces $N(T - \lambda I)$ $(\lambda \in \pi_0(T))$ and write $T_1 = T|_M$ and $T_2 = T|_{M^{\perp}}$. From the preceding arguments it follows that T_1 is normal, $\pi_0(T_1) = \pi_0(T)$ and $\pi_{0f}(T_2) = \emptyset$.

(1) First we will prove that $\sigma_{\mathrm{SBF}_{\perp}}(T) \subseteq \tau(T)$ and $\sigma_{\mathrm{BW}}(T) \subseteq \tau(T)$.

Suppose $\lambda \in \sigma(T) \setminus \tau(T)$. Then $T_2 - \lambda I$ is invertible and λ is an isolated point of $\pi_0(T_1)$. Since also $\pi_{0i}(T) \subseteq \tau(T)$, we have $\lambda \in \pi_{00}(T_1)$. But T_1 is normal, hence Weyl's theorem holds for T_1 . Therefore $T_1 - \lambda I$ is Weyl. Thus $T - \lambda I$ is Weyl. Now we conclude that λ is not in $\sigma_{\mathrm{SBF}^-_+}(T) \cup \sigma_{\mathrm{BW}}(T)$.

(2) Second we will prove that $\sigma_{LD}(T) = \sigma_{SBF_{+}^{-}}(T)$ and $\sigma_{BB}(T) = \sigma_{BW}(T)$.

By definition, $\sigma_{\mathrm{SBF}_+^-}(T) \subseteq \sigma_{\mathrm{LD}}(T)$. Let $\lambda_0 \in \sigma(T) \setminus \sigma_{\mathrm{SBF}_+^-}(T)$. Then $T - \lambda I \in \mathrm{SF}_+^-(H)$ and $N(T - \lambda I) \subseteq \bigcap_{n=1}^\infty R[(T - \lambda I)^n]$ if $|\lambda - \lambda_0|$ is sufficiently small. Suppose that there exists λ such that $|\lambda - \lambda_0|$ is sufficiently small and $\lambda \in \sigma_{\mathrm{a}}(T)$. Since $\pi_0(T_2) = \emptyset$, it follows that $T_1 - \lambda I \in \mathrm{SF}_+^-(M)$ and $T_2 - \lambda I$ is bounded from below. The fact that T_1 is normal implies that $\alpha(T_1 - \lambda I) < \infty$, and hence $\alpha(T - \lambda I) < \infty$. Thus $N(T - \lambda I) = N(T - \lambda I) \cap \bigcap_{n=1}^\infty R[(T - \lambda I)^n] = \{0\}$, so $T - \lambda I$ is bounded from below. This is a contradiction. Thus $\lambda_0 \in \mathrm{iso}\,\sigma_{\mathrm{a}}(T)$ or $\lambda_0 \in \varrho_{\mathrm{a}}(T)$. Now [4, Theorem 2.8] shows that λ_0 is not in $\sigma_{\mathrm{LD}}(T)$. Similarly, we can prove that $\sigma_{\mathrm{BW}}(T) = \sigma_{\mathrm{BB}}(T)$.

Corollary 4.2. If $T \in B(H)$ is reduced by each of its eigenspaces, then

$$\sigma_{\mathrm{a}}(T) \setminus \sigma_{\mathrm{SBF}_{+}^{-}}(T) \subseteq E^{\mathrm{a}}(T), \quad \sigma(T) \setminus \sigma_{\mathrm{BW}}(T) \subseteq E(T).$$

An operator T is called reduction-isoloid (resp. $reduction\ a$ -isoloid) if the restriction of T to any reducing subspace is isoloid (resp. a-isoloid). It is well known that every hyponormal operator is reduction-isoloid.

Theorem 4.3. If $T \in B(H)$ is reduced by each of its eigenspaces and is reduction a-isoloid (resp. reduction-isoloid), then f(T) obeys generalized a-Weyl's theorem (resp. generalized Weyl's theorem) for every $f \in H(\sigma(T))$. Hence in this case, f(T) obeys a-Weyl's theorem (resp. Weyl's theorem) for every $f \in H(\sigma(T))$.

Proof. By Theorem 2.2 and Corollary 4.2, we only need to prove $E^{a}(T) \subseteq \sigma_{a}(T) \setminus \sigma_{SBF_{+}^{-}}(T)$. Let $\lambda \in E^{a}(T)$. Since $H = N(T - \lambda I) \oplus N(T - \lambda I)^{\perp}$, we have $T - \lambda I = 0 \oplus S$, where $S = (T - \lambda I)|_{N(T - \lambda I)^{\perp}}$. If $0 \in \sigma_{a}(S)$, then 0 is an isolated point of $\sigma_{a}(S)$. But T is reduction a-isoloid, hence $0 \in \pi_{0}(S)$. This is a contradiction. Therefore 0 is not in $\sigma_{a}(S)$, which means that S is bounded from below. Then $R[(T - \lambda I)^{k}] = 0 \oplus R(S^{k})$ is closed for every $k \in \mathbb{N}$ and $\alpha(T - \lambda I) < \infty$. Suppose $\alpha(T - \lambda I) = p$. Then $N(T - \lambda I) \cap R[(T - \lambda I)^{p}] = \{0\}$, and hence $(T - \lambda I)_{[p]}$ is upper semi-B-Fredholm. Thus $\lambda \in \sigma_{a}(T) \setminus \sigma_{SBF_{+}^{-}}(T)$. Now we conclude that generalized a-Weyl's theorem holds for T. ■

COROLLARY 4.4. If T is p-hyponormal or M-hyponormal and T is reduction a-isoloid (resp. reduction-isoloid), then f(T) obeys generalized a-Weyl's theorem (resp. generalized Weyl's theorem) for every $f \in H(\sigma(T))$.

Acknowledgements. We are grateful to the referees for their helpful comments concerning this paper.

References

- [1] S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529–544.
- [2] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2001), 1717–1723.
- [3] —, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), 244–249.
- [4] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 379–391.
- [5] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465.
- [6] S. V. Djordjević and B. P. Duggal, Weyl's theorems and continuity of spectra in the class of p-hyponormal operators, Studia Math. 143 (2000), 23–32.
- [7] S. V. Djordjević and Y. M. Han, Browder's theorems and spectral continuity, Glasgow Math. J. 42 (2000), 479–486.
- [8] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317–337.
- [9] R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115–2124.

- [10] D. C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197–214.
- [11] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61–64.
- [12] V. Rakočević, Approximate point spectrum and commuting compact perturbations, ibid. 28 (1986), 193–198.
- [13] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18–49.
- [14] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations Operator Theory 33 (1999), 221–230.
- [15] A. Uchiyama and T. Yoshino, Weyl's theorem for p-hyponormal or M-hyponormal operators, Glasgow Math. J. 43 (2001), 375–381.
- [16] T. Yoshino, Remark on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 95 (1985), 571–572.

College of Mathematics and Information Science Shaanxi Normal University Xi'an, 710062, P.R. China E-mail: xiaohongcao@pku.edu.cn LMAM, School of Mathematical Sciences Peking University Beijing, 100871, P.R. China

Received April 1, 2003 Revised version December 8, 2003 (5175)