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Weyl type theorems for p-hyponormal and
M-hyponormal operators

by
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and Bin Meng (Beijing)

Abstract. “Generalized Weyl’s theorem holds” for an operator when the complement
in the spectrum of the B-Weyl spectrum coincides with the isolated points of the spectrum
which are eigenvalues; and “generalized a-Weyl’s theorem holds” for an operator when
the complement in the approximate point spectrum of the semi-B-essential approximate
point spectrum coincides with the isolated points of the approximate point spectrum
which are eigenvalues. If T or T ∗ is p-hyponormal or M -hyponormal then for every f ∈
H(σ(T )), generalized Weyl’s theorem holds for f(T ), so Weyl’s theorem holds for f(T ),
where H(σ(T )) denotes the set of all analytic functions on an open neighborhood of
σ(T ). Moreover, if T ∗ is p-hyponormal or M -hyponormal then for every f ∈ H(σ(T )),
generalized a-Weyl’s theorem holds for f(T ) and hence a-Weyl’s theorem holds for f(T ).

1. Introduction. Throughout this paper, B(H) and K(H) denote re-
spectively the algebra of bounded linear operators and the ideal of compact
operators acting on an infinite-dimensional separable Hilbert space H. If
T ∈ B(H), we write N(T ) and R(T ) for the null space and range of T ,
with n(T ) = dimN(T ) and d(T ) = dimH/R(T ); σ(T ) for the spectrum
of T ; σa(T ) for the approximate point spectrum of T ; E0(T ) for the isolated
points of σ(T ) which are eigenvalues of finite multiplicity; and Ea

0(T ) for
the isolated points of σa(T ) which are eigenvalues of finite multiplicity. Let
%a(T ) = C \ σa(T ).

An operator T ∈ B(H) is called Fredholm if it has closed finite-codi-
mensional range and finite-dimensional null space. The index of a Fredholm
operator T ∈ B(H) is given by ind(T ) = n(T )− d(T ).

An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero, and
Browder if it is Fredholm of finite ascent and descent, or equivalently, if T
is Fredholm and T −λI is invertible for all sufficiently small λ 6= 0 in C. For
T ∈ B(H), we write α(T ) for the ascent of T and β(T ) for the descent of T .
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The essential spectrum σe(T ), Weyl spectrum σw(T ), and Browder spectrum
σb(T ) of T ∈ B(H) are defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm},
σw(T ) = {λ ∈ C : T − λI is not Weyl},
σb(T ) = {λ ∈ C : T − λI is not Browder}.

We say that Weyl’s theorem holds for T ∈ B(H) if

σ(T ) \ σw(T ) = E0(T ),

and that Browder’s theorem holds for T ∈ B(H) if

σw(T ) = σb(T ).

Let
SF+(H) = {T ∈ B(H) : R(T ) is closed and n(T ) <∞},
SF−+(H) = {T ∈ B(H) : T ∈ SF+(H) and ind(T ) ≤ 0},
σSF+(T ) = {λ ∈ C : T − λI is not in SF+(H)}.

For T ∈ B(H), the essential approximate point spectrum and the Browder
essential approximate point spectrum are defined by

σSF−+
(T ) = {λ ∈ C : T − λI is not in SF−+(H)},

σab(T ) =
⋂
{σa(T +K) : TK = KT and K ∈ K(H)}.

Recall that by [12, Theorem 2.1] a complex number λ is not in σab(T ) if and
only if T − λI ∈ SF+(H) and α(T − λI) <∞.

We say that a-Weyl’s theorem holds for T ∈ B(H) if

σa(T ) \ σSF−+
(T ) = Ea

0(T ),

and that a-Browder’s theorem holds for T ∈ B(H) if σSF−+
(T ) = σab(T ).

It is known [7] that for any T ∈ B(H) we have the implications:

a-Weyl’s theorem ⇒ Weyl’s theorem ⇒ Browder’s theorem,

a-Weyl’s theorem ⇒ a-Browder’s theorem ⇒ Browder’s theorem.

For a bounded linear operator T and a nonnegative integer n, define T[n]

to be the restriction of T to R(T n) viewed as a map from R(T n) to R(Tn)
(in particular T[0] = T ). If for some integer n, the range space R(T n) is
closed and T[n] is upper (resp. lower) semi-Fredholm, then T is called an up-
per (resp. lower) semi-B-Fredholm operator. Moreover if T[n] is a Fredholm
(resp. Weyl, Browder) operator, then T is called a B-Fredholm (resp. B-
Weyl , B-Browder) operator. Similarly, we can define the B-Fredholm spec-
trum σBF(T ), B-Weyl spectrum σBW(T ) and B-Browder spectrum σBB(T ).
A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm oper-
ator.
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Let T ∈ B(H) and let

4(T ) = {n ∈ N : R(T n) ∩N(T ) ⊆ R(Tm) ∩N(T ) for all m ≥ n}.
Then the degree of stable iteration dis(T ) of T is defined as dis(T ) =
inf4(T ). Let T be a semi-B-Fredholm operator and let d = dis(T ). It fol-
lows from [5, Proposition 2.1] that T[m] is a semi-Fredholm operator and
ind(T[m]) = ind(T[d]) for each m ≥ d. This enables us to define the index of
a semi-B-Fredholm operator T as the index of T[d].

In the case of a normal operator T acting on a Hilbert space, Berkani
[2, Theorem 4.5] showed that σBW(T ) = σ(T ) \ E(T ), where E(T ) is the
set of all eigenvalues of T which are isolated in the spectrum of T . This
generalizes the classical Weyl’s theorem. So we say that T obeys generalized
Weyl’s theorem ([4, Definition 2.13]) if

σBW(T ) = σ(T ) \ E(T ).

Similarly, let SBF+(H) be the class of all upper semi-B-Fredholm oper-
ators, and SBF−+(H) the class of all T ∈ SBF+(H) such that ind(T ) ≤ 0.
Also let

σSBF−+
(T ) = {λ ∈ C : T − λI is not in SBF−+(H)},

called the semi-B-essential approximate point spectrum. We say that T obeys
generalized a-Weyl’s theorem if

σSBF−+
(T ) = σa(T ) \Ea(T ),

where Ea(T ) is the set of all eigenvalues of T which are isolated in σa(T )
([4, Definition 2.13]). From [4, Theorem 3.11], we know that each T satisfying
generalized a-Weyl’s theorem satisfies a-Weyl’s theorem and hence Weyl’s
theorem, but the converse is not true (see [4, Example 3.12]).

An operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p ≥ (TT ∗)p,
and M -hyponormal if there exists a positive number M such that

M‖(T − λI)x‖ ≥ ‖(T − λI)∗x‖ for all λ ∈ C and all x ∈ H.
In this paper we show that if T ∗ is p-hyponormal or M -hypomormal, then
generalized a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )), hence
a-Weyl’s theorem holds for f ∈ H(σ(T )), where H(σ(T )) denotes the set of
all analytic functions on an open neighborhood of σ(T ).

2. Preliminary results. Let

A1(H) = {S ∈ B(H) : ind(S − λI) ind(S − µI) ≥ 0

for all λ, µ ∈ C \ σe(S)},
A2(H) = {S ∈ B(H) : ind(S − λI) ind(S − µI) ≥ 0

for all λ, µ ∈ C \ σSF+(S)}.
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An operator T ∈ B(H) is called approximate-isoloid (abbr. a-isoloid) if
every isolated point of σa(T ) is an eigenvalue of T , and isoloid if every
isolated point of σ(T ) is an eigenvalue of T . Clearly, if T is a-isoloid then it
is isoloid. However, the converse is not true.

Theorem 2.1. If T ∈ B(H) obeys generalized Weyl’s theorem and it is
isoloid , then the following statements are equivalent :

(1) T ∈ A1(H);
(2) σw(f(T )) = f(σw(T )) for every f ∈ H(σ(T ));
(3) σBW(f(T )) = f(σBW(T )) for every f ∈ H(σ(T ));
(4) Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T ));
(5) generalized Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. (1)⇔(3). By [3, Remark iii], ind(T−λI) ind(T−µI) ≥ 0 for each
pair λ, µ ∈ C \ σe(T ) if and only if ind(T − λI) ind(T − µI) ≥ 0 for each
pair λ, µ ∈ C \ σBF(T ). From [3, Corollary 3.3] and [2, Theorem 3.2], the
spectral mapping theorem for the B-Weyl spectrum may be rewritten as the
implication, for arbitrary n ∈ N and λi ∈ C,

f(T ) = (T − λ1I)(T − λ2I) · · · (T − λnI)g(T ) B-Weyl

⇒ T − λjI B-Weyl for each j = 1, . . . , n,

where g(T ) is invertible. Now if ind(T − λI) ≥ 0 on C \ σBF(T ), then
n∑

j=1

ind(T − λjI) = ind
n∏

j=1

(T − λjI) = 0

⇒ ind(T − λjI) = 0 (j = 1, . . . , n)

and similarly if ind(T − λI) ≤ 0 off σBF(T ). If conversely there exist λ, µ ∈
C \ σe(T ) for which ind(T − λI) = −m < 0 < k = ind(T − µI), then
f(T ) = (T−λI)k(T−µI)m is a Weyl operator whose factors are not B-Weyl.
This is a contradiction.

(1)⇔(2). See [9, Theorem 5].
(2)⇔(4). Generalized Weyl’s theorem implies Weyl’s theorem for T .

Moreover, [11, Lemma] tells us that if T is isoloid, then

f(σ(T ) \E0(T )) = σ(f(T )) \ E0(f(T )) for every f ∈ H(σ(T )),

thus Weyl’s theorem holds for f(T ) if and only if σw(f(T )) = f(σw(T )).
(3)⇒(5). For every f ∈ H(σ(T )), we need to prove σ(f(T ))\σBW(f(T ))

= E(f(T )). Let µ ∈ σ(f(T )) \σBW(f(T )), that is, f(T )−µI is B-Weyl and
µ is not in f(σBW(T )). Let

(a) f(T )− µI = (T − λ1I) · · · (T − λmI)g(T ),

where g(T ) is invertible. Then T − λiI is B-Weyl, and, in particular, an
operator of topological uniform descent. Since generalized Weyl’s theorem
holds for T , it follows that T − λiI has finite ascent and descent for every
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i ∈ {1, . . . ,m} ([8, Corollary 4.9]). Then f(T ) − µI has finite ascent and
descent. Suppose α(f(T ) − µI) = β(f(T ) − µI) = p. Then µ is a pole of
f(T ) and hence µ ∈ E(f(T )).

Conversely, let µ ∈ E(f(T )). Using (a), without loss of generality, we
suppose λi ∈ σ(T ). Thus λi ∈ isoσ(T ). Since T is isoloid, we see that
λi ∈ E(T ). Since generalized Weyl’s theorem holds for T , it follows that
T − λiI is B-Weyl and hence f(T ) − µI is B-Weyl ([3, Corollary 3.3] and
[2, Theorem 3.2]). Thus µ ∈ σ(f(T )) \ σBW(f(T )). So we have proved that
generalized Weyl’s theorem holds for f(T ).

(5)⇒(4). See [4, Theorem 3.9].

Recall that if T is an upper semi-Fredholm operator, then T−λI is upper
semi-Fredholm and N(T−λI) ⊆ ⋂∞n=1R[(T−λI)n] if |λ| is sufficiently small.
The same holds if T is upper semi-B-Fredholm. In fact, [5, Corollary 3.2]
tells us that if |λ| is sufficiently small, then T − λI is upper semi-Fredholm.
Let dis(T ) = d. Then T[d] is upper semi-Fredholm. Hence if |λ| is sufficiently
small, then

N(T[d] − λI) ⊆
∞⋂

n=1

R[(T[d] − λI)n] ⊆
∞⋂

n=1

R[(T − λI)n].

Since N(T − λI) ⊆ R(T d), it follows that

N(T − λI) = N(T − λI) ∩R(T d) = N(T[d] − λI) ⊆
∞⋂

n=1

R[(T − λI)n].

Theorem 2.2. If T ∈ B(H) obeys generalized a-Weyl’s theorem and it
is a-isoloid , then the following statements are equivalent :

(1) T ∈ A2(H);
(2) σSF−+

(f(T )) = f(σSF−+
(T )) for every f ∈ H(σ(T ));

(3) σSBF−+
(f(T )) = f(σSBF−+

(T )) for every f ∈ H(σ(T ));

(4) a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T ));
(5) generalized a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. (1)⇔(3). By [5, Corollary 3.2], ind(T − λI) ind(T − µI) ≥ 0 for
each pair λ, µ ∈ C \ σSF+(T ) if and only if ind(T − λI) ind(T − µI) ≥ 0 for
each pair λ, µ ∈ C \ σSBF+(T ).
⇒ For every f ∈ H(σ(T )), let µ0 ∈ σSBF−+

(f(T )) and suppose µ0 is not

in f(σSBF−+
(T )). We also suppose that

(b) f(T )− µ0I = (T − λ1I)n1 · · · (T − λmI)nmg(T ),

where g(T ) is invertible, λi is not in σSBF−+
(T ) and λi 6= λj if i, j =

1, . . . ,m. Then f(T )− µ0I is upper semi-B-Fredholm ([5, Proposition 4.3])
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and ind(f(T ) − µ0I) =
∑m

i=1 ind(T − λiI)ni ≤ 0. That is, µ0 is not in
σSBF−+

(f(T )). This is a contradiction. Thus σSBF−+
(f(T )) ⊆ f(σSBF−+

(T )).

Conversely, suppose µ0 ∈ f(σSBF−+
(T )) but µ0 is not in σSBF−+

(f(T )), that

is, f(T )−µ0I is upper semi-B-Fredholm and ind[f(T )−µ0I] ≤ 0. Then T −
λiI is upper semi-B-Fredholm ([5, Corollary 4.4]). Since ind(f(T )− µ0I) =∑m

i=1 ind(T − λiI)ni ≤ 0, we know that ind(T − λiI) ≤ 0. Thus T − λiI ∈
SBF−+(X) and therefore µ0 is not in f(σSBF−+

(T )). This is a contradiction.

⇐ Assume the contrary; then there exist λ0, µ0 such that T − λ0I,
T − µ0I ∈ SF+(X) and ind(T − λ0I) < 0, ind(T − µ0I) > 0. Let m =
− ind(T − λ0I) and n = ind(T − µ0I). Thus n is finite. If m is finite, let
f(T ) = (T − λ0I)n(T − µ0I)m or else let f(T ) = (T − λ0I)(T − µ0I). Then
f(T ) ∈ SF−+(X). So 0 is not in σSBF−+

(f(T )). But µ0 ∈ σSBF−+
(T ), hence

0 = f(µ0) ∈ f(σSBF−+
(T )) = σSBF−+

(f(T )). This is a contradiction. Hence
the result is true.

(1)⇔(2). Argue as for (1)⇔(3).
(2)⇔(4). Suppose that σSF−+

(f(T )) = f(σSF−+
(T )) for every f ∈H(σ(T )).

Since a-Weyl’s theorem holds for T , it follows that σSF−+
(T ) = σab(T ).

We know that Browder essential approximate point spectrum satisfies the
spectral mapping theorem, so σSF−+

(f(T )) = f(σSF−+
(T )) = f(σab(T )) =

σab(f(T )). Therefore a-Browder’s theorem holds for f(T ). Now let µ ∈
Ea

0(f(T )). Using (b), without loss of generality, we suppose that λi ∈ σa(T );
then λi ∈ isoσa(T ). Since T is a-isoloid, we infer that λi ∈ Ea

0(T ). General-
ized a-Weyl’s theorem implies a-Weyl’s theorem, so T − λiI ∈ SF−+(H) and
hence f(T ) − µI ∈ SF−+(H). Thus a-Weyl’s theorem holds for f(T ). Con-
versely, suppose a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).
Then σSF−+

(f(T )) = σab(f(T )) = f(σab(T )) = f(σSF−+
(T )).

(3)⇒(5). For every f ∈ H(σ(T )), we need to prove that

σa(f(T )) \ σSBF−+
(f(T )) = Ea(f(T )).

Let µ ∈ σa(f(T )) \ σSBF−+
(f(T )), that is, f(T ) − µI ∈ SBF−+(H) and µ is

not in f(σSBF−+
(T )). By (b), then T − λiI ∈ SBF−+(H). We can suppose

that λi ∈ σa(T ). Since generalized a-Weyl’s theorem holds for T and T is
a-isoloid, it follows that T − λiI has finite ascent for every i ∈ {1, . . . ,m}
([4, Theorem 2.8]). Thus f(T ) − µI has finite ascent. Let dis(f(T )) = d.
Then R[(f(T )− µI)d] is closed. Now [10, Lemma 2.5] and the perturbation
theory of upper semi-B-Fredholm operators imply that µ ∈ isoσa(f(T )), so
µ ∈ Ea(f(T )).

Conversely, suppose µ ∈ Ea(f(T )). Then λi ∈ isoσa(T ). Since T is a-
isoloid, we find that T − λiI ∈ Ea(T ). Generalized a-Weyl’s theorem holds
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for T , so T − λiI ∈ SBF−+(H) and hence f(T ) − µI ∈ SBF−+(H). Thus we
have proved that generalized a-Weyl’s theorem holds for f(T ).

(5)⇒(4). See [4, Theorem 3.11].

3. p-hyponormal and M-hyponormal operators. We start with
some elementary results about p-hyponormal and M -hyponormal operators.
We call T ∈ B(H) paranormal if for any x ∈ H, ‖Tx‖2 ≤ ‖T 2x‖ ‖x‖. If T
is paranormal, then ‖T‖ = sup{|λ| : λ ∈ σ(T )}.

Lemma 3.1 ([14], [16]). If T is p-hyponormal for some p such that 0 <
p ≤ 1 or T is M -hyponormal , then the restriction T |F to any invariant
subspace F is also p-hyponormal or M -hyponormal.

Lemma 3.2 ([15]). (1) If T is p-hyponormal , then T is paranormal.
(2) If T is invertible and p-hyponormal , then T−1 is also p-hyponormal.
(3) If T is M -hyponormal and σ(T ) = {λ}, then T = λI.

Theorem 3.3. If T ∗ is p-hyponormal or M -hyponormal , then gener-
alized a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )). Hence a-
Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. Suppose T ∗ is p-hyponormal. By Theorem 2.2, we need to prove
that T is a-isoloid, T ∈ A2(H) and generalized a-Weyl’s theorem holds
for T . First we prove that T is a-isoloid. Since T ∗ is p-hyponormal, a-Weyl’s
theorem holds for T ([6]) and σ(T ) = σa(T ). Let λ ∈ isoσa(T ) = isoσ(T );
then λ ∈ isoσ(T ∗). Since T ∗ is p-hyponormal, T ∗ is isoloid ([15, Theorem 1]),
so N(T ∗ − λI) 6= {0}. As N(T ∗ − λI) ⊆ N(T − λI) ([15, Corollary 3]), we
have N(T − λI) 6= {0}, which means that T is a-isoloid.

Since N(T ∗ − λI) ⊆ N(T − λI), it follows that if λ ∈ C \ σSF+(T ), then
ind(T − λI) ≥ 0. Therefore T ∈ A2(H).

Next we prove that generalized a-Weyl’s theorem holds for T , that is,
σa(T ) \ σSBF−+

(T ) = Ea(T ). Let λ0 ∈ σa(T ) \ σSBF−+
(T ). Then there exists

ε > 0 such that T − λI ∈ SF−+(H) and

N(T − λI) ⊆
∞⋂

n=1

R[(T − λI)n] if 0 < |λ− λ0| < ε.

Since a-Weyl’s theorem holds for T , it follows that α(T − λI) < ∞ and
hence

N(T − λI) = N(T − λI) ∩
∞⋂

n=1

R[(T − λI)n] = {0} if 0 < |λ− λ0| < ε

([13, Lemma 3.4]). Thus T − λI is bounded from below, which means that
λ0 ∈ isoσa(T ). Thus λ0 ∈ Ea(T ).
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Conversely, if λ0 ∈ Ea(T ), then λ0 is an isolated point of σa(T ) = σ(T ),
so λ0 ∈ isoσ(T ∗). Now using the spectral projection

P =
1

2πi

�

∂B0

(T ∗ − λI)−1dλ,

where B0 is an open disk of center λ0 which contains no other points of
σ(T ∗), we can represent T ∗ as the direct sum

T ∗ = T1 ⊕ T2, where σ(T1) = {λ0} and σ(T2) = σ(T ∗) \ {λ0}.
Then T2 − λ0I is invertible.

Case 1: λ0 = 0. Then σ(T1) = {0}. Since T1 is p-hyponormal, it follows
that T1 = 0 ([15, Corollary 2]). Thus T ∗ − λ0I = 0⊕ T2 − λ0I.

Case 2: λ0 6= 0. Since T1 is invertible and paranormal, it follows that
T−1

1 is paranormal. Then ‖T1‖= |λ0| and ‖T−1
1 ‖= 1/|λ0|. For any x∈R(P ),

‖x‖ ≤ ‖T−1
1 ‖ ‖T1x‖ =

1
|λ0|
‖T1x‖ ≤

1
|λ0|
|λ0| ‖x‖ = ‖x‖,

which implies that (1/λ0)T1 is unitary. Thus T1 is normal and hence so is
T1−λ0I. Since T1−λ0I is quasinilpotent and the only normal quasinilpotent
operator is zero, it follows that T ∗ − λ0I = 0⊕ T2 − λ0I.

Since T2 − λ0I is invertible, we know that T ∗ − λ0I has finite ascent
and descent. Then T − λ0I has finite ascent and descent, and therefore
λ0 ∈ σa(T ) \ σSBF−+

(T ).
From the above proof, we see that generalized a-Weyl’s theorem holds

for T . Using Theorem 2.2, we conclude that generalized a-Weyl’s theorem
holds for f(T ) for every f ∈ H(σ(T )).

If T ∗ is M -hyponormal, then since M -hyponormality is translation-in-
variant, it suffices to show that 0 ∈ σa(T ) \ σSBF−+

(T ) ⇔ 0 ∈ Ea(T ). If 0 ∈
σa(T )\σSBF−+

(T ), then T−λI ∈ SF−+(H) and N(T−λI)⊆⋂∞n=1R[(T−λI)n]

if |λ| is sufficiently small. Since T ∗ is M -hyponormal, it follows that
α(T ∗−λI) = β(T −λI) <∞, hence T −λI is Browder. Then N(T −λI) =
N(T −λI)∩⋂∞n=1R[(T −λI)n] = {0} and therefore 0 is an isolated point in
σa(T ) = σ(T ). We have thus proved that σa(T ) \ σSBF−+

(T ) ⊆ Ea(T ). Con-

versely, suppose 0 ∈ Ea(T ). Then 0 is an isolated point of σa(T ) = σ(T ).
Applying the projection P defined above, we have a direct sum T ∗ = T1⊕T2,
where σ(T1) = {0} and σ(T2) = σ(T ∗) \ {0}. Then T1 = 0 and T2 is invert-
ible. Thus T ∗ has finite ascent and descent and so T has finite ascent and
descent. This implies that T is B-Weyl and 0 ∈ σa(T ) \ σSBF−+

(T ). Thus T
obeys generalized a-Weyl’s theorem. Theorem 2.2 tells us now that general-
ized a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).
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Corollary 3.4. If T or T ∗ is p-hyponormal or M -hyponormal , then
generalized Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )). Hence
Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. If T ∗ is p-hyponormal or M -hyponormal, then the result is true
by Theorem 3.3. If T is p-hyponormal or M -hyponormal, then Weyl’s the-
orem holds for T , T ∈ A1(T ) and T is isoloid. By Theorem 2.1, we need
to prove that generalized Weyl’s theorem holds for T , so we need to prove
σ(T ) \ σBW(T ) = E(T ).

Suppose λ0 ∈ E(T ). Using the same method as for Theorem 3.3, we can
prove that T − λ0I has finite ascent and descent. Suppose α(T − λ0I) =
β(T − λ0I) = p. Then H = N [(T − λ0I)p] ⊕ R[(T − λ0I)p], therefore
(T − λ0I)[p] is Weyl and so λ0 ∈ σ(T ) \ σBW(T ).

Conversely, if λ0 ∈ σ(T )\σBW(T ), then T −λI is Weyl and N(T −λI) ⊆⋂∞
n=1R[(T − λI)n] if |λ − λ0| is sufficiently small. The fact that Weyl’s

theorem holds for T implies that T −λI is Browder and hence N(T −λI) =
N(T − λI) ∩ ⋂∞n=1R[(T − λI)n] = {0}, so T − λI is invertible if |λ − λ0|
is sufficiently small. Therefore λ0 ∈ isoσ(T ). If N(T − λ0I) = {0}, suppose
dis(T − λ0I) = d. Then α(T − λ0I) = 0. Since T − λ0I is B-Weyl, we know
that (T − λ0I)[d] is invertible and hence R[(T − λ0I)d+1] = R[(T − λ0I)d].
Thus β(T − λ0I) = α(T − λ0I) = 0, that is, T − λ0I is invertible. This
contradicts the fact that λ0 ∈ σ(T ). Thus λ0 ∈ E(T ). Therefore generalized
Weyl’s theorem holds for T .

Corollary 3.5. If T is p-hyponormal or M -hyponormal and if σBW(T )
= {0}, then T is normal.

Proof. Since generalized Weyl’s theorem holds for T , by assumption,
every nonzero point of σ(T ) is an isolated point of σ(T ) and an eigenvalue.
Hence σ(T ) \ σBW(T ) is a finite set or a countably infinite set whose only
cluster point is 0. Let σ(T )\σBW(T ) = {λn}, with |λ1| ≥ |λ2| ≥ · · · > 0, and
let En be the orthogonal projection onto N(T − λnI). Then TEn = EnT =
λnEn and EnEm = 0 if n 6= m. Put E =

⊕
nEn. Then T =

⊕
n λnEn ⊕

T(I−E)H with σ(T(I−E)H) = {0}. Since T(I−E)H is also p-hyponormal or M -
hyponormal, it follows that T(I−E)H = 0. Hence T =

⊕
n λnEn is normal.

4. Berberian spectra. Suppose that T ∈ B(H) is reduced by each of
its eigenspaces. We write π0(T ) for the set of eigenvalues of T ; π0f(T ) for
the eigenvalues of finite multiplicity; π0i(T ) for the eigenvalues of infinite
multiplicity. If M is the closed linear span of the eigenspaces N(T − λI)
(λ ∈ π0(T )), then M reduces T . Let T1 = T |M and T2 = T |M⊥ . Then
([1, Proposition 4.1]):

(1) T1 is a normal operator with pure point spectrum;
(2) π0(T1) = π0(T );
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(3) σ(T1) = clπ0(T1);
(4) π0(T2) = ∅.

In this case, Berberian [1, Definition] defined

τ(T ) = σ(T2) ∪ accπ0(T ) ∪ π0i(T ).

We shall call τ(T ) the Berberian spectrum of T . Berberian has shown that
τ(T ) is a nonempty compact subset of σ(T ).

Let

LD(H) = {T ∈ B(H) : α(T ) <∞ and R(Tα(T )+1) is closed},
σLD(T ) = {λ ∈ C : T − λI is not in LD(H)}.

The following theorem shows the relation of σSBF−+
(T ), σLD(T ), and

Berberian spectra. We also give a relation of σBW(T ), σBB(T ) and Berberian
spectra.

Theorem 4.1. If T ∈ B(H) is reduced by each of its eigenspaces, then

(1) σSBF−+
(T ) = σLD(T ) ⊆ τ(T );

(2) σBW(T ) = σBB(T ) ⊆ τ(T ).

Proof. Let M be the closed linear span of the eigenspaces N(T − λI)
(λ ∈ π0(T )) and write T1 = T |M and T2 = T |M⊥ . From the preceding
arguments it follows that T1 is normal, π0(T1) = π0(T ) and π0f(T2) = ∅.

(1) First we will prove that σSBF−+
(T ) ⊆ τ(T ) and σBW(T ) ⊆ τ(T ).

Suppose λ ∈ σ(T ) \ τ(T ). Then T2− λI is invertible and λ is an isolated
point of π0(T1). Since also π0i(T ) ⊆ τ(T ), we have λ ∈ π00(T1). But T1 is
normal, hence Weyl’s theorem holds for T1. Therefore T1−λI is Weyl. Thus
T − λI is Weyl. Now we conclude that λ is not in σSBF−+

(T ) ∪ σBW(T ).

(2) Second we will prove that σLD(T ) = σSBF−+
(T ) and σBB(T ) = σBW(T ).

By definition, σSBF−+
(T ) ⊆ σLD(T ). Let λ0 ∈ σ(T ) \ σSBF−+

(T ). Then

T−λI ∈ SF−+(H) and N(T−λI) ⊆ ⋂∞n=1R[(T−λI)n] if |λ−λ0| is sufficiently
small. Suppose that there exists λ such that |λ − λ0| is sufficiently small
and λ ∈ σa(T ). Since π0(T2) = ∅, it follows that T1 − λI ∈ SF−+(M) and
T2 − λI is bounded from below. The fact that T1 is normal implies that
α(T1−λI) <∞, and hence α(T −λI) <∞. Thus N(T −λI) = N(T −λI)∩⋂∞
n=1R[(T − λI)n] = {0}, so T − λI is bounded from below. This is a

contradiction. Thus λ0 ∈ isoσa(T ) or λ0 ∈ %a(T ). Now [4, Theorem 2.8]
shows that λ0 is not in σLD(T ). Similarly, we can prove that σBW(T ) =
σBB(T ).

Corollary 4.2. If T ∈ B(H) is reduced by each of its eigenspaces,
then

σa(T ) \ σSBF−+
(T ) ⊆ Ea(T ), σ(T ) \ σBW(T ) ⊆ E(T ).
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An operator T is called reduction-isoloid (resp. reduction a-isoloid) if
the restriction of T to any reducing subspace is isoloid (resp. a-isoloid). It
is well known that every hyponormal operator is reduction-isoloid.

Theorem 4.3. If T ∈ B(H) is reduced by each of its eigenspaces and
is reduction a-isoloid (resp. reduction-isoloid), then f(T ) obeys generalized
a-Weyl’s theorem (resp. generalized Weyl’s theorem) for every f ∈ H(σ(T )).
Hence in this case, f(T ) obeys a-Weyl’s theorem (resp. Weyl’s theorem) for
every f ∈ H(σ(T )).

Proof. By Theorem 2.2 and Corollary 4.2, we only need to prove Ea(T ) ⊆
σa(T ) \ σSBF−+

(T ). Let λ ∈ Ea(T ). Since H = N(T − λI)⊕N(T − λI)⊥, we

have T−λI = 0⊕S, where S = (T−λI)|N(T−λI)⊥ . If 0 ∈ σa(S), then 0 is an
isolated point of σa(S). But T is reduction a-isoloid, hence 0 ∈ π0(S). This is
a contradiction. Therefore 0 is not in σa(S), which means that S is bounded
from below. Then R[(T − λI)k] = 0 ⊕ R(Sk) is closed for every k ∈ N and
α(T−λI) <∞. Suppose α(T−λI) = p. ThenN(T−λI)∩R[(T−λI)p] = {0},
and hence (T−λI)[p] is upper semi-B-Fredholm. Thus λ ∈ σa(T )\σSBF−+

(T ).
Now we conclude that generalized a-Weyl’s theorem holds for T .

Corollary 4.4. If T is p-hyponormal or M -hyponormal and T is re-
duction a-isoloid (resp. reduction-isoloid), then f(T ) obeys generalized a-
Weyl’s theorem (resp. generalized Weyl’s theorem) for every f ∈ H(σ(T )).
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