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Hausdorff and packing measure for thick solenoids

by

Michał Rams (Warszawa and Dijon)

Abstract. For a linear solenoid with two different contraction coefficients and box
dimension greater than 2, we give precise formulas for the Hausdorff and packing di-
mensions. We prove that the packing measure is infinite and give a condition necessary
and sufficient for the Hausdorff measure to be positive, finite and equivalent to the SBR
measure. We also give analogous results, generalizing [P], for affine IFS in R2.

1. Introduction. We continue our research ([RS]) of relations between
the SBR measure and the geometric (Hausdorff and packing) measures
for hyperbolic diffeomorphisms with two different negative Lyapunov ex-
ponents. Our method is similar to one used in [P]. In [RS] we dealed with
linear Smale–Williams solenoids with box dimension smaller than 2. Here
we will consider the case when the box dimension is greater than 2, i.e. the
map is

φ : (t, x, z) 7→ (kt mod 1, λ1x+ f(t), λ2z + g(t)),(1.1)

where λ2 < λ1 < 1/2, kλ1 > 1 and kλ1λ2 < 1. The map is defined on the
torus T = S1 × D, D being the unit disk. The functions f, g are smooth
(C2) and chosen in such a way that φ is an injection.

Let Λ be the attractor of φ. Define

s = 2 +
ln k + lnλ1

− lnλ2
.(1.2)

The SBR measure of φ will be denoted by µ. The projection of µ onto
the (t, x) plane will be denoted by ν. As proved lately by Tsuji in [T], for
generic choice of f and g, ν is absolutely continuous with respect to Lebesgue
measure and its density is in L2. It is an open problem whether the density
of ν is bounded.

The main results of this paper are as follows:

Theorem 1.1. The packing dimension of Λ is s. For generic f, g the
s-dimensional packing measure of Λ is infinite.
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Theorem 1.2. For generic f, g the Hausdorff dimension of Λ is s. For
generic f, g if the density of ν is unbounded then the s-dimensional Hausdorff
measure of Λ is zero, otherwise it is positive, finite and equivalent to µ.

For the definitions and properties of the Hausdorff and packing dimen-
sions and measures we refer the reader to [M].

The paper is divided as follows. In the second section we explain the
notation and give the basic properties of the solenoid map we are going to
use. The third section contains the proofs of Theorems 1.1 and 1.2. In the
last section we apply the same method to investigate affine IFS in R2.

A word about notation: the symbol c stands for any constant and need
not denote the same constant in another formula.

The author wishes to thank Maciej Wojtkowski for his help with language
problems.

2. Solenoid map. The image of the torus T under φ is topologically a
torus again. The plane {t = 0} cuts φ(T ) into k sets that will be called first
level cylinders. One of them is the image of all points in T with t coordinate
between 0 and 1/k, another one is the image of points with t coordinate
between 1/k and 2/k and so on. Similarly, this plane cuts φn(T ) into kn

nth level cylinders. Note that the image of an nth level cylinder under φ
is the union of k (n + 1)st level cylinders, lying one in each of the first
level cylinders. The nth level cylinders are geometrically (roughly) elliptic
cylinders of height 1 and diameters λn1 and λn2 .

As φ(T ) ⊂ T , the attractor Λ is contained in φn(T ) for all n. It is
locally a Cantor bouquet of (disjoint) curves. Each of those curves is the
infinite intersection of a decreasing family of cylinders of increasing levels.
The curves are graphs of smooth functions (x(t), z(t)) so the angle between
them and the planes {t = const} is bounded away from zero. The set π(Λ)
is a Cantor bouquet of (intersecting) curves as well. For a generic solenoid
map all these intersections are transversal ([B], [S]) so if the intersecting
curves come from different nth level cylinders, the angle between them at
the intersection point is bounded away from 0 by a constant depending only
on n.

As the projection π and the solenoid map φ commute, one can define
φ̂ = π ◦ φ ◦ π−1. Locally this mapping is contracting λ1 times in the x
direction and expanding k times in the t direction. The set π(Λ) is invariant
under φ̂.

We may write the measure µ as

µ =
�
µt dt,

where µt is the (1/k, . . . , 1/k)-Bernoulli measure on the Cantor set in the
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stable section of the solenoid. Similarly,

ν =
�
νt dt.

The measures µt, νt count basically how many curves intersect a given set.
As the curves are graphs, we may write

νt±ε([a+Kε, b−Kε]) ≤ νt([a, b]) ≤ νt±ε([a−Kε, b+Kε]),(2.1)

where K is a constant not depending on ε.
Two easy geometric lemmas follow immediately:

Lemma 2.1. Let R be a rectangle

R = {(t, x); t0 − b < t < t0 + b, x0 − a < x < x0 + a}
and let 2bK < a. Choose d1, d2 < a/K − b and let A,B be two hexagons
given by

A = {(t, x); t0 − d1 < t < t0 + d2,

x0 − a+K(|t− t0|+ b) < x < x0 + a−K(|t− t0|+ b)},
B = {(t, x); t0 − d1 < t < t0 + d2,

x0 − a−K(|t− t0|+ b) < x < x0 + a+K(|t− t0|+ b)}.
Then

2b
d1 + d2

ν(A) ≤ ν(R) ≤ 2b
d1 + d2

ν(B).

Lemma 2.2. At almost all points (t, x),

dν

dLeb2 (t, x) =
dνt

dLeb1 (x),

where Leb2, Leb1 stand for the Lebesgue measures in R2 and R1, respec-
tively.

3. Proofs of Theorems 1.1 and 1.2. Let us start from an easy propo-
sition. Note that it is true for every, and not almost every, solenoid map.

Proposition 3.1. The box dimension of Λ equals s. The s-dimensional
Hausdorff measure of Λ is finite.

Proof. We use the ellipsoid cutting partition, that is, we divide every
nth level cylinder into λn1λ

−2n
2 approximate balls of size λn2 .

We proceed with the proofs of Theorems 1.1 and 1.2. We are working
with a generic solenoid map in the rest of this section. We may assume that
Λ is strictly contained in T—this is a generic property.

We are going to use the Frostman Lemma. We will compute the upper
and lower s-density of the measure µ at almost every point of Λ. We are not
interested in the precise value, we only care whether the density is positive
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and whether it is finite. Hence we may freely replace in the definition of s-
density the ball Br(x) by an arbitrary set containing Bcr(x) and contained
in Br/c(x). We may choose the same set for a different point y lying at a
distance not greater than cr/2 from x—so such two points will be equivalent
for us while computing the r-approximation of the s-density. We will call
these the freedom of choice (FOC) properties.

Let (t, x, z) ∈ Λ and denote by C(t, x, z;n) the nth level cylinder con-
taining (t, x, z). Let Kr(t, x, z) be a cube of side r centered at (t, x, z). As Λ
is at some distance d from ∂T , it is at distance at least λn2d from ∂(φn(T )).
Hence

Kcλn2
(t, x, z) ∩ Λ ⊂ Kλn2

(t, x, z) ∩ C(t, x, z;n) ∩ Λ(3.1)
⊂ Kλn2

(t, x, z) ∩ Λ
for some c not depending on (t, x, z) nor on n.

We set Zn(t, x, z) = Kλn2
(t, x, z) ∩ C(t, x, z;n) ∩ Λ. The SRB measure is

preserved under φ, so the measure of Zn(t, x, z) is equal to the measure of
its nth preimage. The set φ−n(Zn(t, x, z)) is the intersection of Λ and an
approximate orthogonal parallelepiped of sides λn2k

−n×λ−n1 λn2 ×1, centered
at φ−n(t, x, z). The measure µ of this set is thus equal to the measure ν of
its projection onto the (t, x) plane, i.e. π(Λ) intersected with the rectangle
Rn(t, x, z) of sides λn2k

−n × λ−n1 λn2 , centered at π(φ−n(t, x, z)).
Note that the area of Rn(t, x, z) is equal to λns2 . By FOC we may write

Ds(µ)(t, x, z) ≈ lim sup
n→∞

1
λns2

µ(Zn(t, x, z)) = lim sup
n→∞

ν(Rn(t, x, z))
Leb(Rn(t, x, z))

,(3.2)

Ds(µ)(t, x, z) ≈ lim inf
n→∞

1
λns2

µ(Zn(t, x, z)) = lim inf
n→∞

ν(Rn(t, x, z))
Leb(Rn(t, x, z))

.(3.3)

By Lemma 2.1,

λn1k
−nν(Bc1λ−n1 λn2

(π ◦ φ−n(t, x, z)))

≤ ν(Rn(t, x, z)) ≤ λn1k−nν(Bc2λ−n1 λn2
(π ◦ φ−n(t, x, z))),

where c1 and c2 depend only on K and do not depend on t, x, z, n.
Hence (by FOC) we may replace (3.2) and (3.3) by

Ds(µ)(t, x, z) ≈ lim sup
n→∞

ν(Sn(t, x, z))
Leb(Sn(t, x, z))

,(3.4)

Ds(µ)(t, x, z) ≈ lim inf
n→∞

ν(Sn(t, x, z))
Leb(Sn(t, x, z))

,(3.5)

where Sn(t, x, z) = Bλ−n1 λn2
(π ◦ φ−n(t, x, z)).

The following two observations are crucial to proving Theorems 1.1 and
1.2. First, the function ν(Br(t, x, z))/Leb(Br(t, x, z)) for small enough r will
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approximate the density dν/dLeb(t, x, z) for ν-a.e. (t, x, z). Second, the in-
verse trajectory of µ-almost every point in Λ is dense in Λ.

If the density of ν is unbounded, one can find a positive ν measure
set X ⊂ π(Λ) on which the density is greater than some constant M .
By the Egorov Theorem one can find a constant r0 and a positive ν mea-
sure subset Y ⊂ X such that if (t, x) ∈ Y and r < r0 then ν(Br(t, x)) ≥
M/2 Leb(Br(t, x)). The inverse trajectory of µ-almost every point (t, x, z)
will meet π−1(Y ) infinitely many times and for almost all of them λ−n1 λn2
< r0. So, by (3.4) the upper s-density of µ is infinite almost everywhere,
hence the s-dimensional Hausdorff measure is zero.

If the density of ν is bounded, then so is ν(Br(t, x, z))/Leb(Br(t, x, z)),
which implies the boundedness of the upper s-density of µ at every point
in Λ. This together with Proposition 3.1 implies that the s-dimensional
Hausdorff measure of Λ is positive and finite.

The following standard argument (see [P]) then shows that the Hausdorff
measure must be equivalent to the SRB measure. Every nth level cylinder
is bi-Lipschitz equivalent to any other nth level cylinder, and the Lipschitz
constant is uniformly bounded, so any two cylinders must have comparable
Hausdorff measure. The same holds for any section of an nth level cylinder
(cut off by planes {t = t0} and {t = t1}). So, the s-dimensional Hausdorff
measure of such a section must be approximately equal to (t1−t0)k−nHs(Λ)
while its µ measure equals (t1 − t0)k−n.

Note the role of the linearity assumptions in this argument. Both the
Hausdorff and SBR measures are equivalent to the maximal entropy mea-
sure (one giving equal values to all the cylinders) only because the con-
traction (for the Hausdorff measure) and expansion (for the SBR measure)
coefficients are constant all over the solenoid. For the general solenoid one
does not even have an invariant measure of dimension equal to the Hausdorff
dimension of the attractor.

Lemma 3.2. For a generic solenoid map for every ε > 0 the upper (s−ε)-
density of µ is zero µ-almost everywhere.

Proof. Let X be a subset of Λ such that if (t, x, z) ∈ X then
Ds−ε(µ)(t, x, z) > M > 0.

Similarly to (3.4) we have

Ds−ε(µ)(t, x, z) ≈ lim sup
n→∞

λnε2
ν(Sn(t, x, z))

Leb(Sn(t, x, z))
.

Let Xn be the set of points (t, x, z) ∈ Λ for which

ν(Sn(t, x, z))
Leb(Sn(t, x, z))

≥ λ−nε/22 ,

and define µ(Xn) = dn. It is easy to see that X ⊂ lim supXn.
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Divide π(T ) = [0, 1]× S1 into squares Ei of side λ−n1 λn2 each. Whenever
a point from π ◦ φ−n(Xn) belongs to some Ei, the measure of the square
with the same center as Ei but three times its size (which we will denote
by Fi) is not smaller than λ−2n

1 λ
n(2−ε/2)
2 , and the union of all Fi (which we

will denote by Yn) has ν measure at least dn.
By the Schwarz Lemma,

�

Fi

(
dν

dLeb
(t, x)

)2

dt dx ≥ (ν(Fi))2

Leb(Fi)
.

As any point can belong to at most 9 Fi’s, we get

�

Yn

(
dν

dLeb
(t, x)

)2

dt dx ≥ 1
9

∑

i

�

Fi

(
dν

dLeb
(t, x)

)2

dt dx ≥ 1
81
dnλ

−nε/2
2 ,

where the last inequality becomes an equality if all the Fi’s have mini-
mal possible measure, equally distributed on them (by the Schwarz Lemma
again).

Hence,

dn ≤ 81Nλnε/22 ,

where

N =
�

π(T )

(
dν

dLeb
(t, x)

)2

dt dx

(it is finite for a generic solenoid map by [T]). So, the sequence dn is
summable and by the Borel–Cantelli Lemma the set lim supXn (and X)
must have µ-measure 0.

From this lemma we see that the Hausdorff dimension of Λ is s, which
ends the proof of Theorem 1.2.

To prove the packing measure part (Theorem 1.1), note that the lower
s-density of µ must be finite µ-almost everywhere. Hence, the s-dimensional
packing measure of Λ is always positive. By Proposition 3.1 the packing
dimension of Λ cannot be greater than s, so it must be s.

To complete the proof of Theorem 1.1 we need the following lemma:

Lemma 3.3. For a generic solenoid map, for every ε there exists a subset
Xε ⊂ π(Λ) of positive ν measure such that the density of ν is smaller than
ε on Xε.

Proof. Suppose the oposite, i.e. that the density of ν with respect to
Lebesgue measure is either 0 or greater than some ε. The points of positive
density of ν form a positive measure invariant subset of π(Λ), hence are of
full measure and dense in π(Λ).
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For every t let a(t) = max{x; (t, x) ∈ π(Λ)}. Let Q = {(t, a(t))}; one
can easily check that this curve is contained in its image under φ̂. Let b(t) =
max{x; (t, x) ∈ π(Λ), (t, x) and (t, a(t)) are projections of points from Λ,
belonging to different first level cylinders}.

Let S = {(t, x) ∈ π(Λ); x > b(t)}. By transversality, there are only
finitely many values (say, N) of t for which a(t) = b(t). Moreover, again by
transversality, if t0 is one of these values, then

a(t)− b(t) ≥ a|t− t0|(3.6)

for some a and for t close to t0.
Every point in S has only one preimage under φ̂. The standard Jacobi

formula gives

dν

dLeb
(t, x) =

∑

(t′,x′)∈φ̂−1(t,x)

(kλ1)−1 dν

dLeb
(t′, x′).(3.7)

Hence, if (t, x) ∈ S, then the density of ν at (t, x) is smaller than at its only
preimage.

We will now construct a set of points of Lebesgue measure bounded
from below and of arbitrarily high density of ν measure, which will give a
contradiction. Choose t0 such that Leb1({(t, x)∈π(Λ); t= t0, x≥a(t)− d})
≥ dl for some l and all sufficiently small d (almost any t0 will do the job).
Let I = {(t, x) ∈ π(Λ); t = t0, x ≥ a(t) − d} for some small d. This is the
intersection of π(Λ) and an interval of length d with right endpoint in Q.
At ν-almost all points of I (and at Lebesgue almost all points as well) the
density of ν is greater than ε.

If I ⊂ S, the preimage φ̂−1(I) is the intersection of π(Λ) and an interval
of length λ−1

1 d with right endpoint in Q. The density of ν at almost all points
of this set is (by (3.7)) greater than kλ1ε. In particular, the same is true if
we shorten this interval to have length d, keeping its right endpoint in Q.
We repeat this procedure, taking the preimage of the new (shortened) set.
We will get a family of sets of the same size and with greater and greater
density of ν.

From time to time we will encounter problems, namely when the t co-
ordinate of our set gets too close to one of the N points in Q \ S. In this
case part of our interval may lie outside S; we will then take the preimage
only of the part of our interval contained in S. The length of this part is not
shorter than adist(t,Q \ S) (see (3.6)). As our interval will get shortened
in this way, we will not shorten it for some iterations until it grows to the
size of d. Note that if d was chosen sufficiently small, by (3.6) such close
approaches will happen very rarely. Hence we will always return with our
interval to the initial size if we iterate long enough, for almost all choices
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of the initial t0. We also assume t0 was chosen in such a way that we will
never hit Q \ S directly.

After sufficiently many steps, the set I ′ = {(t, x) ∈ π(Λ); t = t0, x ≥
a(t)− d} has (one-dimensional) Lebesgue measure not less than cd and the
ν density greater than some M . By Lemma 2.2 the νt density and ν density
are the same. Hence,

νt(a(t)− d, a(t)) ≥ dlM
and (by Lemma 2.1)

ν(Bcd(t, a(t))) ≥ d2lM.

For M large enough, d2lM > 1 and hence the measure of this ball would be
greater than the measure of all π(Λ), which is impossible.

We note again that the projection of the inverse trajectory of almost
every point in Λ must visit the set of points where the density of ν is
smaller than some ε infinitely often. Hence, the lower s-density of µ is smaller
than ε almost everywhere and, as ε was arbitrary, it must be zero. The s-
dimensional packing measure of Λ is thus infinite. This completes the proof
of Theorem 1.1.

4. Iterated function systems. In this section we will be working with
different systems. Let f1, . . . , fk be affine contractions in R2 given by

fi(x, y) = (λ1x+ xi, λ2y + yi),

where λ2 < λ1 < 1, kλ1 > 1 and kλ1λ2 < 1. We assume that fi((0, 1) ×
(0, 1)) ∩ fj((0, 1)× (0, 1)) = ∅ for i 6= j. These sets will be called first level
cylinders, their images under different fi’s are second level cylinders and so
on. We denote by Λ the unique non-empty compact set satisfying

Λ =
⋃

i

fi(Λ).

Denote f−1
i (x, y) by f(x, y). As fi(Λ) and fj(Λ) are disjoint for i 6= j, f is

a well defined map from Λ into Λ.
Let

s =
log λ2 − log λ1 − log k

log λ2
.

Let Σ = {1, . . . , k}N. We define a projection π̂ from Σ onto Λ by

π̂(ω) = lim
n→∞

fωn ◦ · · · ◦ fω1(0, 0),

where ω = (ω1ω2 · · ·). Let µ̂ be the (1/k, . . . , 1/k)-Bernoulli measure on Σ.
The natural measure of the iterated function system (IFS) is defined as

µ = π∗(µ̂).
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The projection of µ in the y direction will be denoted by ν; for generic IFS
this measure is absolutely continuous with respect to Lebesgue measure and
has L2 density (see for example [R]). Denote this projection by π. Let

f̂i(x) = π ◦ fi ◦ π−1(x) = λ1(x) + xi.

Our results are as follows:

Theorem 4.1. For generic IFS satisfying the assumptions above, the
box , Hausdorff and packing dimensions of Λ are all equal to s. Again for
generic IFS , the packing measure of Λ is infinite while the Hausdorff measure
is positive, finite and equivalent to µ if and only if the density of ν with
respect to Lebesgue measure is bounded ; otherwise the Hausdorff measure of
Λ is 0.

Proof. The steps of the proof are very similar to the proofs of Theorems
1.1 and 1.2 (and simpler). Hence we will only sketch it.

Note first that Λ may be covered with kn rectangles (nth level cylinders)
of sides λn1 and λn2 . As any such rectangle may be covered with (λ1/λ2)n balls
of radius λn2 , we immediately prove (similarly to Proposition 3.1) that the
box dimension of Λ equals s and that the s-dimensional Hausdorff measure of
Λ is finite. This was the part of the result that is always true; in what follows
we are working with a generic IFS (under the changes of xi’s and yi’s).

We proceed by using the Frostman Lemma. By FOC, as in the previous
section, we can use as a neighborhood of (x, y) ∈ Λ a square of side λn2 ,
contained in some nth level cylinder. The nth image under f of such a
square is a rectangle of sides (λ2/λ1)n and 1. The µ measure of this rectangle
(equal to kn times the µ measure of the original square) is thus equal to the
ν measure of its projection in the y direction (being an interval of length
(λ2/λ1)n). Hence,

Ds(ν)(x, y) ≈ lim inf
n→∞

ν(Bλn2λ−n1 /2(π ◦ fn(x, y)))

Leb(Bλn2λ−n1 /2(π ◦ fn(x, y)))
,

and a similar expression holds for Ds.
Similarly to the solenoid case, we thus have to check the properties of

the density of ν with respect to Lebesgue measure. The generic property is
that this density exists. The Hausdorff measure part is essentially the same
as the proof of Theorem 1.2. The only thing left is the following lemma
(analogous to Lemma 3.3).

Lemma 4.2. For every ε there exists a subset Xε ⊂ π(Λ) of positive ν
measure such that the density of ν is smaller than ε on Xε.

Proof. As xi are generically chosen, one may assume that x1 > xi for
all i. Hence there is a set [a, b] ∩ π(Λ) that intersects the projection of only
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one first level cylinder. We may assume that

b = max{x; x ∈ π(Λ)} = f̂1(x).
Similarly to (3.7), we have

dν

dLeb
(x) =

∑

i

(kλ1)−1 dν

dLeb
(f̂−1
i (x)).

If x ∈ [a, b], then f̂−1
i (x) 6∈ π(Λ) for i 6= 1. Hence, for such x the only

preimage that can lead to positive density is the one under f̂−1
1 . If the

assertion of the lemma is false, the density of ν is greater than ε almost
everywhere in [a, b]∩π(Λ). Hence, it is greater than kλ1ε almost everywhere
in f̂−1

1 ([a, b] ∩ π(Λ)) ⊃ [a, b] ∩ π(Λ). This implies that it is greater than
(kλ1)2ε and so on. We conclude that the density of ν is infinite almost
everywhere in [a, b] ∩ π(Λ), which is not possible since this set has positive
Lebesgue measure. This contradiction ends the proof.

We finish the proof of Theorem 4.1 like the proof of Theorem 1.1 in the
previous section.
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