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Invertibility of the commutator of an element
in a C*-algebra and its Moore—Penrose inverse

by

Jurio BENITEZ (Valencia) and VLADIMIR RAKOCEVIC (Nis)

Abstract. We study the subset in a unital C*-algebra composed of elements a such
that aa! — aa' is invertible, where a! denotes the Moore—Penrose inverse of a. A distin-
guished subset of this set is also investigated. Furthermore we study sequences of elements
belonging to the aforementioned subsets.

1. Introduction. Throughout this paper, A will be a C*-algebra with
unit 1 and we will denote by .A~! the subset of invertible elements in A. An
element a € A is said to be idempotent when a? = a. The term projection
will be reserved for an element p of A which is self-adjoint and idempotent,
that is, p* = p = p.

An element a € A is said to have a Moore—Penrose inverse if there exists
x € A such that

(1.1) ara=a, zar==z, (ax)*=ax, (za)*= za.

It can be proved that if a € A has a Moore—Penrose inverse, then the
element z satisfying is unique (see, for example, [Pen]), and we write
x = al. The set of all elements of A that have a MoorePenrose inverse
will be denoted by AT. An element a € A such that there exists = € A with
axa = a will be named regular. A basic result of the theory of Moore—Penrose
inverses in C*-algebras is that if a € A then a € AT if and only if a is regular
(see [H-M, Kol2]).

Several characterizations of elements a € A’ such that aa! = afa can
be found in the literature (see [Benl [Kol3]). In this paper we shall study
the class of elements in a C*-algebra that, in some sense, is complementary
to the subset of A" composed of elements that commute with their Moore—
Penrose inverses. When the C*-algebra is the set of n x n complex matrices,
it is customary to say that a matrix A is FP when A commutes with its
Moore—Penrose inverse, which justifies the following definition.
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DEFINITION 1.1. Let A be a unital C*-algebra. An element a € A is
said to be co-EP when a € A" and aa' — a'a is invertible. The subset of A
composed of co-EP elements will be denoted by Ach.

Let a € A. Since, as is easy to see, aa’ and a'a are projections, the study
of the invertibility of aa’ — a'a is related to the study of the invertibility of
differences of two projections in a C*-algebra. In [Bucll [Buc2], Buckholtz
characterized when P — (@) is invertible when P and () are orthogonal projec-
tions of a Hilbert space. Koliha and Rakocevié¢ gave in [K-R2, Theorem 4.1]
several characterizations of the invertibility of p — ¢ when p, ¢ are nontrivial
projections in a C*-algebra. One of these characterizations uses the con-
cept of the range projection. For the convenience of the reader we recall its
definition, introduced by Koliha in [Kol4].

DEFINITION 1.2. Let f € A be an idempotent. We say that p € A is a
range projection of f if p is a projection satisfying pf = f and fp = p.

Let us recall ([Kol4, Theorem 1.3] and [K-R3| Theorem 1.3]) that for
every idempotent f € A there exists a unique range projection of f, denoted
by f*, given explicitly by the Kerzman-Stein formula (see [K-9])

(1.2) fr=rr -yt
If f is a projection, then obviously f+ = f.

The following concept was introduced by Koliha and Rakocevi¢ in [K-R2].
It allowed them (among other things) to characterize the invertibility of p — ¢
when p and ¢ are nontrivial projections in a C*-algebra.

DEFINITION 1.3. Let e, f € A be idempotents. We denote by m(e, f) an
idempotent h € A (if it exists) satisfying the conditions

ht=et, (1-h)t=f"t
If, in addition, e and f are self-adjoint, the above reduces to h' = e

and (1 — k)t = f. In other words, if e, f € A are projections such that
h = m(e, f) exists, then

he=e, eh=h, ((1—-h)f=f f1—h)=1-h.

An element a € A is quasipolar if 0 is an isolated singularity of the
resolvent of a. Koliha proved in [Kolll Theorem 4.2] that a € A is quasipo-
lar if and only if there exists an idempotent p € A such that ap = pa is
quasinilpotent and a+p € A~!. Such an idempotent is unique, and is called
the spectral idempotent of a corresponding to 0, written a™. In [Kol4l The-
orem 3.6] it is proved that if 2 € A then 2 € A" implies that 2*z and z2*
are quasipolar and z! = (z*z + (z*2)™) " 'a* = o*(za* + (x2*)™) "', Indeed,
the only fact we shall use is the following;:

(1.3) z e AT = there exist y,z € A7 such that 2l = yz* = 2*2.
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2. Characterizations of co-EP elements in a C*-algebra. The
main result of this section characterizes when aa! — a'a is invertible if a is
an element of a unital C*-algebra that has a Moore—Penrose inverse. Before
presenting this characterization, let us prove the following lemma:

LEMMA 2.1. Let A be a C*-algebra with unity 1 and a € At Ifh € A is
an idempotent satisfying h* = a'a and (1 — h)* = aal, then a + a* € A"
and
(2.1) ah*=a, ha=0, (a+a*)"t=h%"(1-h)+(1—hr")(a)h
Proof. From h'* = a'a and (1 — h)* = aa’ we have
(2.2) a'ah=h, ha'a=a'a, ad'(1—h)=1—h, (1—h)aa' =aal.
Recall that aa’ and aa are self-adjoint. Taking * in the second equality of
(2.2) and premultiplying by a we have ah* = a. Postmultiplying the last
equality of (2.2) by a yields ha = 0. Now, we will prove that a + a* is
invertible with inverse h*a'(1 — h) + (1 — h*)(al)*h. Indeed,
(a+a")[h*al(1 — h) + (1 — h*)(a’)*B]
=ah*a'(1 — h) + a*h*a’(1 = h) + a(1 — k) (a")*h + a* (1 — *)(a’)*h
=aa'(1—h)+a*(a)*h=1—-h+ (aTa)*h =1.

Set u = a+a* and v = h*a'(1 —h)+ (1 —h*)(a")*h. Since uv = 1 and u and

v are self-adjoint, we get 1 = 1* = (uv)* = v*u* = vu. Therefore, v = u~!. u

THEOREM 2.2. Let A be a unital C*-algebra and a € A. Then the fol-
lowing conditions are equivalent:
(i) a € AS.
(i) a+a* € A~! and there exists an idempotent p € A such that ap = a

and p*a = 0.
(iii) a—a* € A7 and there exists an idempotent p € A such that ap = a
and p*a = 0.

iv) aa* +a*a € A7! and aANa* A= {0}.
(v) a+a* € A7, ala+a*)"ta=a, and a*(a + a*)"1a = 0.
Ya—a* €A™, ala—a*)"ta=a, and a*(a — a*)"ta = 0.

(vil) aA®a* A= A.

Proof. Let 1 be the unity of A.

(i)=(ii): We shall use the implication (viii)=-(ii) of [K-R2, Theorem 4.1].
Checking the proof of that implication, we can observe that the two projec-
tions involved need not be nontrivial. Since aa’, ata are projections and aaf—
ata is invertible, by using the aforementioned implication, h = 7T(CLTCL, aaT)
exists. By definition of 7(a'a, aa’) we get h* = a'a and (1 — h)* = aa’. By
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Lemma we see that a +a* € A~! and by setting p = h*, another appeal
to Lemma [2.1| finishes the proof of (i)=-(ii).

(ii)<(iii): Assume that p is an idempotent such that ap = a and p*a = 0.
Since (a+a*)(2p—1) = 2ap—a+2a*p—a* = a—a* and 2p — 1 is invertible
(because (2p — 1)2=1) we have a +a* € A~ @ a—a* € A7L.

(iii)=(iv): First, note that 1 — p — p* € A~! because (1 — p — p*)? =
1+ (p—p")(p—p")". Now,

(a+a”)(1—p—p)(a—a’)=la(l —p)+a*(1—p)—ap” —a"p](a—a’)
— 0" - ap" — a"p)(a - @)
—_ a*a—ap*a—a*p*a— (a*)Q +ap*a* +a*p*a*
=a*a + aa”.

Since the hypothesis also implies that a +a* € A~! (because (i)« (iii)), the

previous computations show that aa* 4+ a*a € A1,

To prove aANa*A = {0}, pick z € a.ANa*A. There exist u,v € A with
x = au = a*v, hence p*au = p*a*v, and therefore 0 = a*v, because p*a =0
and p*a* = a*. Thus, z = a*v = 0.

(iv)=-(v): Since aa* + a*a is invertible, there exists € A such that

(2.3) 1= (aa* +a*a)z.

Thus, a = aa*zxa + a*axa. Since a*axa = a(l — a*za) we have a*axa €
aA N a*A = {0}. Therefore, @ = aa*za, which means that a is regular.
Property (1.3) leads to a'aA C a*A. Having in mind that aa’A C a.A and
aANa*A = {0} we obtain aa’ ANa'aA = {0}. To prove aal A +afaA = A,
it is sufficient to show that 1 € aa’A+a'aA. By (1.3)), there exist u,v € A~
such that a* = afu and a* = val. Since a*a = (a*a)* = (vala)* = afav*,
from (|2.3) we have
1 =aa*z + a*ax = aa'u + a'av* € aa’ A + aTaA.
Note that the equivalence (i)<(ii) of [K-R2, Theorem 4.1] does not use
the nontriviality of the projections involved. Thus, by that equivalence, the
idempotent h = m(aa', a'a) exists, and so h*t = aa’ and (1 — h)* = ala. By
Lemma we have a + a* € A~L. From (2.1) we get
ala+a*)"ta=alh*a’ (1 —h)+ (1 —h*)(a")*hla = aa’a = a
and
a*(a+a*)"ra = a*[h*a’(1 =) + (1 — h*)(a")*hla = 0.

(v)=(vi): Set ¢ = (a+a*)"'a. From the hypothesis, it is trivial to check
that ¢ = q, aq = a, and a*q = 0. The equalities (a +a*)(2¢ — 1) = a — a*
and (2¢—1)2=1leadtoa—a* € A~ and (a —a*)™' = (2¢—1)(a+a*)" L.
Now we have

ala—a") ta=a2¢—1)(a+a) la=ala+a) la=a
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and
a*(a—a" ) ta=a*(2¢—1)(a+a*)la=—a*(a+a*)ta=0.

(vi)=-(vii): To prove aA+a*A = Ait is sufficient to prove 1 € aA+a*A:
in fact, since a — a* is invertible, there exists x € A such that 1 = (a — a*)x,
and thus 1 = az + a*(—2) € aA + a*A. Now, let us prove a AN a*A = {0}:
if y € aANa*A, there exist u,v € A with y = au = a*v; hence

y* =v*a=v*a(a—a*) ta=u"a*(a —a*) ta =0,
and therefore y = 0.

(vii)=(i): Since A = aA+a*A, we have 1 = ax + a*y for some z,y € A.
Thus, a = aza + a*ya. Hence a*ya = a(l — za) € aANa* A = {0}. There-
fore, a = aza, which means that a is regular. By the equivalence (i)<(ii)
of [K-R2, Theorem 4.1], the idempotent h = 7(a'a,aa’) exists, and thus
ht = a'a and (1 — h)* = aa’. By the Kerzman-Stein formula we
get

aa’ —ala=(1—h)t —nt
=1-h[Q-h)+A-h)*=1]" ' —hh+r -1 =0 —-h-n"""
This implies that aa’ — afa is invertible. =

COROLLARY 2.3. Let A be a unital C*-algebra and a € Ach. The idem-
potent p in conditions (ii) and (iii) of the preceding theorem is unique and
satisfies

(2.4) p = [r(a'a, aa")]".

Proof. From (a + a*)p = ap + a*p = a + 0 = a and the invertibility of
a+ a* we get p = (a + a*)"'a, proving the uniqueness. Now, (2.4) follows
from the proof of the preceding theorem. =

The following corollary collects some useful formulse.

COROLLARY 2.4. Let A be a unital C*-algebra with unity 1. If a € A
and p = [r(ata, aa®)]*, then:

)

)
(iii) (aa' —ata)™ =1—-p—p
(iv) (aa’ —afa)™! = (a + a*) "' (aa* + a*a)(a — a*) ™!
(v) (aa' —a'a)™! = (a + a*)"H(aa* — a*a)(a + a*)~!

Proof. Ttems (i), (iii), and (iv) are distilled from the proof of Theo-
rem Item (ii) follows from the proof of Corollary Item (v) follows
by mimicking the proof of (iii)=-(iv) of Theorem . .
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In the setting of Hilbert spaces, Buckholtz proved that if R and K are
closed subspaces of a Hilbert space H, and Pr and P denote the orthogonal
projections onto these subspaces, then Pr — Px is invertible if and only
if there exists an idempotent M with range R and kernel K (see [Bucll
Buc2]). Moreover, (Pg — Pg)~' = M + M* — I. Observe that the formula
in Corollary [2.4[(iii) is a version of this in the C*-algebra setting when the
projections are aa' and a'a.

EXAMPLE 2.5. Let (H,(:,-)) be a Hilbert space and B(H) the set of
bounded operators in ‘H. Let 7' € B(H) be invertible and «, 5 € R be such
that o? + 82 = 1 and 8 # 0. We consider the Hilbert space H x H en-
dowed with the inner product ((x,y),(u,v)) = (x,u) + (y, v). Define the
operator R in H x H by R(x,y) = (aTx + 3Ty,0). By checking (L.1)),
it is a textbook exercise to prove that R is Moore—Penrose invertible and
Ri(x,y) = (aT'x,8T7'x). Thus we can compute RTR — RR' obtain-
ing

(R'R— RR)(x,y) = B(—Px + ay, ax + By).
We can easily check that the operator S € B(H x H) given by S(x,y) =
(—x + af~ly,af 'x +y) is the inverse of RTR — RR'. Hence R is co-EP.
Furthermore, if we define P € B(H x ‘H) by P(x,y) = (0,a87 'x +y), we
get P2 = P and RP = R. The computation

(P(x,y), (u,v)) = (0,08 x +y), (u,v))
= (x,af7v) + (y,v) = ((x,¥). (a7 v, v))

shows that P*(x,y) = (a3~ 'y,y), which implies P*R = 0. Therefore, P is
the idempotent given by Theorem

3. A distinguished subset of co-EP elements in a C'*-algebra. If
a € AD, then the idempotent 7(a'a, aa’) exists. In this section we charac-
terize the elements a € Agh such that 7(a'a,aa’) is a projection.

DEFINITION 3.1. Let A be a unital C*-algebra. We denote by A" the
subset of Agh consisting of the elements a such that W(GTG, aaT) is self-adjoint.

We shall use the following notation: If X, Y C A, then
X1Y & 2'y=0V(z,y) € X xXY.
It is evident (by the C*-identity) that X L Y implies that X NY C {0}.

THEOREM 3.2. Let A be a C*-algebra with unity 1 and a € A. Then the
following conditions are equivalent:

(i) a € A%*.
(ii) a € A" and aa’ + afa = 1.
(iii) a € A" and aA = {x € A: ax = 0}.
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(iv) aA L a*A and a A+ a* A= A.
(v) a € At and (aa’ — ala)? = 1.

Proof. (i)=(ii): Let p be the idempotent given in Theorem We shall
prove aa! =1 —p and afa = p. By Corollary we have 7(a'a, aa’) = p*.
Applying the definition of 7(-,-) we have (p*)* = a'a and (1 — p*)* = aa'.
Since p = p* we obtain p = afa and 1 — p = aal.

(ii)=(iii): Postmultiplying aa’ + afa = 1 by a leads to afa? = 0, which
by premultiplying by a yields a®> = 0, and this implies that a.A C {z € A :
ax = 0}. To prove the opposite inclusion, pick z € A with az = 0; then
from 1 = aa’ + a'a we get © = (aa’ + a'a)z = aa’x € aA.

(iii)=(iv): Since a € a A = {x € A : ax = 0}, we obtain a® = 0. Since
for any x,y € A we have (ax)*(a*y) = 2*(a?)*y = 0, we get aA L a*A. To
prove aA + a* A = A, it is sufficient to prove 1 € aA + a*A: in fact, from
afa—1¢€{x € A:ax =0} = aA, there exists u € A such that afa—1 = au.
Thus, 1 = a'a — au = (a'a)* — au = a(—u) + a*(a’)* € aA + a* A.

(iv)=(v): Since aA L a*A we have a®> = 0. By using we get the
existence of y,z € A~! such that o' = ya* and a' = a*z, and therefore
(a")? = ya*a*z = 0. Since aA®a* A = A, by Theoremand Corollary
there exists a unique idempotent p such that ap = a and p*a = 0. Observe
that afa is an idempotent and

a(ala) =a, (a'a)*a=a'a® =0,
thus, the uniqueness of p yields p = afa. Furthermore, 1 — aal is another
idempotent and
a(l—aa)=a—d%* =a, (1-ad)a=(1-ad)a=0.

Again, the uniqueness of p leads to p = 1 — aal. Thus,

za—aTa2aT+aTaaTa = aaT—}—aTa =1l-p+p=1.

(v)=>(i): The hypothesis (aa' — a'a)? = 1 entails that aa’ — afa is in-
vertible, and by Corollary we get (aa’ —a'a)™ = 1 — p — p*, where
p is the idempotent obtained in Theorem Therefore, (1 —p — p*)? =
(aa’ —aTa)™2 = 1. Now we have

(aa'—a'a)? = aa’aa’ —a(al)

l=01-p—p)P=1-p—p" +pp"+pp.
Thus, p + p* = pp* + p*p, which easily leads to (p — p*)(p — p*)* = 0. The
C*-identity yields p = p*. =
COROLLARY 3.3. Ifa € Ach*, then the projector p given in Theorem

is ata.

In case a € Acp*, the following corollary gives some formulz that relate
a’ to (a+a*)"! and (@ — a*)7L.



170 J. Benitez and V. Rakocevié

COROLLARY 3.4. Ifa € AL, then:

() af = (a+a*)a(a+a%) .
(ii) af = (a +a*)"ta(a —a*)7!.
(iii) af = (a — a*)"la (a+a:§ 1

(iv) a' = (a — a*)la(a —a

Proof. Observe that by ([1.3) there exists y € A~! such that o' = ya*.
From the proof of Theorem one finds that a? = 0. Hence a'a* = ya*a* =
y(a?)* = 0. Furthermore, a*a’a = a*(a'a)* = (afaa)* = 0. Therefore,

(a+a*)a'(a+a*) =a+aa'a* +a*a’a+a*a'a* = a.
The remaining assertions are proved in a similar way. =

EXAMPLE 3.5. This is a continuation of Example If we set « = 0
and 3 =1 we get R(x,y) = (T'y,0) and Rf(x,y) = (0,7~'x). Obviously,

(RR' + R'R)(x,y) = R(0,T"'x) + R'(Ty, 0)
= (x,0) + (0,y) = (x,y).

Thus, the operator R satisfies item (ii) of Theorem Another way of seeing
this is by setting a = 0 and 6 = 1 in the expression for the idempotent
P obtained in Example we get P(x,y) = (0,y), which is obviously
self-adjoint.

4. Limits of sequences of co-EP elements in a C*-algebra. In this
section we shall research the following problem. Let (a,,)5°_; be a convergent
sequence in a C*-algebra and a = lim,, ., a,,. We ask:

(a) if a, € A for all n € N, when a € Ah?
(b) if a, € Ayt for all n € N, when a € Agp*?

We shall introduce some notation before answering these questions. To
motivate the following definition, let us recall that the minimal angle be-
tween two nonzero subspaces M, N C R" is the number 6 € [0,7/2] for
which cos@ = [Py Py||, where Pyg and Py are the orthogonal projectors
onto M and N, respectively (see [Mey, Chapter 5]).

DEFINITION 4.1. Let p and g be two projections in a C*-algebra. The
angle between p and q is defined to be the number 6, , € [0, 7/2] such that

cos Opq = [Ipgl|-
By observing that ||pg|| = ||(pq)*||, one sees that 6, , = 6, ,.

THEOREM 4.2. Let A be a unital C*-algebra and (a,)5>; a sequence
of elements in Agh that converges to a. Then the following conditions are
equivalent:



Invertibility of commutators 171

(i) a € A" and lim,_o a}, = al and there exist 6y > 0 and ng € N such
that @+ + > 6y for all n > ng.

anQn,an

(i) a € A

an

Proof. (i)=-(ii): Since lim;, oo a, = a and lim,_, ail = af, we have

(4.1) lim (anal — alay) = aa’ — ala.

n—oo

Since a, € Aco, there exist 1demp0tents pn, obtained in Theorem . 2.2l By
Corollary 2.4, we have (anaIL ailan) = 1—p, — p;,. Observe that p,, is
not a tr1v1a1 idempotent (if p, = 0, then a, = a,p, = 0; if p, = 1, then
a, = pia, = 0; in both cases, a, = 0 ¢ Agh, contrary to the hypothesis).
By [K-R2, Lemma 2.3] we have ||1 —p, —p} | = |lpnll = ||lp}|l, and by [K-R2]

Theorem 3.1] we have [p5 | = (1= |(p3)* (1= i) -]|) /2. Moreover, we use

item (i) of Corollary [2.4] to obtain ”(pn) (1—po)t| = ||(anan)(anan)H
coS eal ananal’ . Thus by Corollary |2 111 we get
1
-1
I(anaf, — afian) || = S0
AnQn ,0nan

By assumption, the sequence (||(ana;r1 - a,Tlan) Y)ee; is bounded. Hence

(4.1) implies that aa’ —afa € A7, ie., a € AS.
(ii)=(i): To prove this, we only have to prove that
(4.2) lim af =al.

n—o0o

In fact: if (4.2) is true, then lim, oo (anal, — ahan) = aat — afa. Thus (recall

that a € A by hypothesis), 111rnn_,oo(ana;rZ ahan )b = (aa® — ata)!

Therefore, the sequence (||(anal, — ahan)~ 1)2e; is bounded, and as in the

proof of (i)=(ii), there exist 6y > 0 and ny € N such that § + + > 6

anQn,anan
for all n > ng.

Let us prove (4.2): Let p, and p be the idempotents obtained in Theo-

rem [2.2] i.e.,

(4.3) pn=(an+a)a, YneN, p=(a+a*)la
Hence
(4.4) lim p, = p.

n—oo

Let us remark that the invertibility of ana;ﬂ — aLan implies the invertibility
of anal + a}ay, and that (see [K-R1, Theorem 3.5])
(anaf, + aban) ™ = 1= pn — p} + 2pup},

(4.5)
(aa' 4+ a’a)™t =1 —p—p* + 2pp*.
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Also, from Corollary [2.4{(iii) we have
(4.6)  (anal —ala,) ' =1—p,—p, (aa'—ala)'=1—-p—p"

Clearly, (4.4)—(4.6) imply

1

lim (anal, — ala,) ™t = (aa’ — ala)™,

n—oo

t o y—1

n
lim (anal, + ala,) ™t = (aal + afa)~t.
n—oo
Hence,

(4.7) lim (anal —alay) = aa® —a'a,  lim (anal +ala,) = aal + ala.
n—oo n—oo

Therefore, lim,_, anaIL =aal, e, limy_ oo a;rz =a' (see, e.g., [Kol4, Theo-
rem 3.7] or [Rakl, Theorem 2.2]). =
EXAMPLE 4.3. This is a continuation of Example[2.5] Define R, (x,y) =
(anTx + 3,Ty,0), where oy, = cos(1/n) and 3, = sin(1/n) for n € N and
L(x,y) = (Tx,0). The following elementary facts can be easily checked:
(a) limy o0 Ry = L.
(b) L is Moore-Penrose invertible and Lf(x,y) = (T~ 'x, 0).
(¢) LL' — LTL = 0, which implies that the subset of co-EP elements in
a C"-algebra is not always closed.
(d) limp—oo RS, = LT
(e) Let Uy = Rp(RH)2Ry. If 6, € [0,7/2] is the angle between R, R),
and R} R, then by using cos?6,, = ||(R.RL)(RLR,)|> = ||Un|? =
lUU*|| we get 6, =1/n.
This example shows that the condition “there exist #y > 0 and ng € N such
that 9@ fata > 0 for all n > ng” in Theorem cannot be removed.

nQn,Anan

EXAMPLE 4.4. This is a continuation of Example Let R,(x,y) =
(y/n,0) for n € N. It is evident that lim,_,~, R, = 0 and R, (x,y) = (0, nx),
which shows that (R;rl);io:o does not converge. This proves that the condition
lim,, 0 aL — a! in Theorem cannot be removed.

THEOREM 4.5. Let A be a unital C*-algebra and (a,)22, a sequence of
elements in Ach*™ that converges to a € A. Then the following conditions are
equivalent:

(i) a € A" and lim,,_ al = al.

(ii) a € A",

Proof. (i)=-(ii): Since lim,, o a, = a and lim,_, al, = at, and more-
over limn_,oo(ana;rl + aILan) = 1 (this last relation is guaranteed by Theo-

rem , we obtain aa! + afa = 1. The conclusion follows again by Theo-
rem
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(ii)=(i): By Corollary [3.4] we have, for every n € N,
(4.8) al, = (am + a’) tamlam +a)7t,  af = (a+a*)rala +a*)7h

Since lim, .o @y, = a, we have lim, . a;, = a*. Recall that the function
¢: A1 — A~ given by ¢(x) = 2~ is continuous. By Theorem for each
n € N we have a, + a}, € A~ and a +a* € A™!. Hence lim, .o (an +a}) !
= (a + a*)7!. From we have lim,, .. a, = at, which finishes the
proof. =
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