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Monotone convolution semigroups

by

Takahiro Hasebe (Kyoto)

Abstract. We study how a property of a monotone convolution semigroup changes
with respect to the time parameter. Especially we focus on “time-independent proper-
ties”: in the classical case, there are many properties of convolution semigroups (or Lévy
processes) which are determined at an instant, and moreover, such properties are often
characterized by the drift term and Lévy measure. In this paper we exhibit such properties
of monotone convolution semigroups; an example is the concentration of the support of a
probability measure on the positive real line. Most of them are characterized by the same
conditions on drift terms and Lévy measures as known in probability theory. These kinds
of properties are mapped bijectively by a monotone analogue of the Bercovici–Pata bi-
jection. Finally we compare such properties with classical, free, and Boolean cases, which
will be important in an approach to unify these notions of independence.

1. Introduction. Muraki defined a monotone convolution as the proba-
bility distribution of the sum of two monotone independent random variables
[15, 16]. Let Gµ(z) (z ∈ C \ R) be the Cauchy transform of a probability
measure µ and Hµ(z) be the reciprocal of Gµ(z). Then Hµ is analytic and
maps the upper half plane into itself. Moreover, infIm z>0 ImHµ(z)/Im z = 1.
Consequently, Hµ(z) can be expressed uniquely in the form

(1.1) Hµ(z) = z + b+
�

R

1 + xz

x− z
η(dx),

where b ∈ R and η is a positive finite measure (see [1]). The monotone
convolution µB ν of probability measures µ and ν is characterized by

(1.2) HµBν(z) = Hµ(Hν(z)).

Using this characterization, Muraki classified monotone (or B- for short)
infinitely divisible distributions with compact supports. The complete clas-
sification including probability measures with unbounded supports was given
by Belinschi [4], as follows.
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Theorem 1.1. There is a one-to-one correspondence among the follow-
ing four objects:

(1) a B-infinitely divisible distribution µ;
(2) a weakly continuous monotone convolution semigroup {µt} with

µ0 = δ0, µ1 = µ;
(3) a composition semigroup of reciprocal Cauchy transforms {Ht}t≥0

(Ht ◦Hs = Ht+s) with H0 = id, H1 = Hµ, where Ht(z) is a contin-
uous function of t ≥ 0 for any z ∈ C \ R;

(4) a vector field A(z) = limt↘0 (Ht(z)− z)/t on the upper half plane
which has the form

A(z) = −γ +
�

R

1 + xz

x− z
dτ(x),

where γ ∈ R and τ is a positive finite measure.

The integral representation in (4) is the Lévy–Khinchin formula in mono-
tone probability. The correspondence of (3) and (4) is obtained through the
following ordinary differential equation (ODE):

(1.3)
d

dt
Ht(z) = A(Ht(z)), H0(z) = z,

for z ∈ C \R. The fact that the solution does not explode in finite time is a
consequence of [9]. We call A(z) the associated vector field. When τ has all
moments, then the coefficients of the Laurent expansion of A coincide with
cumulants [14].

In this paper, we analyze monotone convolution semigroups, especially
supports and moments, comparing the results with the classical, free and
Boolean cases. We hope that our results will be of use in clarifying sim-
ilarity and dissimilarity between monotone independence and other kinds
of independence. This work is also expected to have connections with an
operator-theoretic approach [12] and a categorical approach [11].

The contents of sections are as follows. In Section 2, we give a condition
for a probability measure to be supported on the positive real line, and show
how moments change under monotone convolution. In Section 3, we derive
a differential equation for the minimum of the support of a monotone con-
volution semigroup. In Section 4, we study how a property of a monotone
convolution semigroup changes with respect to the time parameter. A time-
independent property of a convolution semigroup is one that is determined
at an instant. We show that the following properties are time-independent:
symmetry around 0; the concentration of the support on the positive real
line; the lower boundedness of the support; the finiteness of a moment of
even order. All these properties are also time-independent in classical convo-
lution semigroups. In Section 5, a monotone analogue of the Bercovici–Pata
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bijection is defined. Many time-independent properties of the previous sec-
tion can be formulated in terms of that bijection. In Section 6, we study
convolution semigroups in free probability and Boolean probability. A re-
markable point is that the concentration of the support on the positive real
line is a time-independent property in the monotone, Boolean and classical
cases, but not in free probability.

2. Behavior of supports and moments under monotone convolu-
tion. We consider properties of probability measures which are conserved
under monotone convolution. Let µ be a probability measure. Define the
minimum and the maximum of the support:

a(µ) := inf{x ∈ suppµ}, b(µ) := sup{x ∈ suppµ}.
Here −∞ ≤ a(µ) <∞ and −∞ < b(µ) ≤ ∞. We say that µ has an isolated
atom at c ∈ R if µ({c}) > 0 and c /∈ (suppµ) \ {c}. In this paper we
occasionally consider analytic continuations of functions such as Gµ or Hµ

from C \R to an open subset U of C which intersects R. If no confusion can
arise, for simplicity, we only say that a function is analytic in U , instead of
saying that a function has an analytic continuation.

Lemma 2.1. Let µ be a probability measure. We use the notation (1.1).

(1) (suppµ)c∪(C\R) is the maximal domain in which Gµ(z) is analytic.
Similarly, (supp η)c∪ (C\R) is the maximal domain in which Hµ(z)
is analytic.

(2) {x ∈ (suppµ)c; Gµ(x) 6= 0} ⊂ (supp η)c. Similarly, {x ∈ (supp η)c;
Hµ(x) 6= 0} ⊂ (suppµ)c. In particular, a(η) ≥ a(µ) since Gµ(x) 6= 0
for x ∈ (−∞, a(µ)).

Proof. These statements easily follow from the Perron–Stieltjes inversion
formula.

A classical infinitely divisible distribution necessarily has a non-compact
support, except for a delta measure. The situation in the monotone, free
and Boolean cases is different. For instance, a centered arcsine law is B-
infinitely divisible. For this reason the study of the maximum or minimum
of a support becomes important. It is known that if λ = ν B µ and λ has a
compact support, then the support of µ is also compact [16]. We generalize
this and prove a basic estimate on supports.

Proposition 2.2. For any probability measures ν and µ the following
inequalities hold.

(1) If supp ν∩(−∞, 0] 6= ∅ and supp ν∩ [0,∞) 6= ∅, then a(µ) ≥ a(νBµ)
and b(µ) ≤ b(ν B µ).

(2) If supp ν ⊂ (−∞, 0], then a(µ) ≥ a(νBµ) and b(ν)+b(µ) ≤ b(νBµ).
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(3) If supp ν ⊂ [0,∞), then a(ν) + a(µ) ≥ a(νBµ) and b(µ) ≤ b(νBµ).

Proof. For a probability measure ρ, we denote by ρx the probability
measure δx B ρ. This is useful since ν B µ can be expressed as

(2.1) ν B µ(B) =
�

R
µx(B) ν(dx)

for Borel sets B [16].
Let λ := ν B µ. We first prove the following inequalities for an arbitrary

probability measure ρ:{
a(ρx) ≥ a(ρ), b(ρx) ≤ b(ρ) + x for all x > 0,
a(ρx) ≥ a(ρ)− |x|, b(ρx) ≤ b(ρ) for all x < 0.

It is easy to prove that ρx can be characterized by Gρx = Gρ/(1− xGρ). If
x > 0, then 1 − xGρ(z) 6= 0 for z ∈ C \ [a(ρ), b(ρ) + x] and Gρ is analytic
in this domain. Therefore, the first inequality holds. The second is proved
similarly.

Let J := suppλ. In view of the relation λ(A) =
	
R µ

x(A) dν(x), we have
λ(Jc) =

	
R µ

x(Jc) dν(x) = 0. Hence µx(Jc) = 0, ν-a.e. x ∈ R. Take any x0

such that µx0(Jc) = 0. Then a(µx0) ≥ a(λ) and b(µx0) ≤ b(λ). If x0 > 0,
combining the inequalities a(ρx) ≥ a(ρ) − |x| and b(ρx) ≤ b(ρ) for ρ = µx0

and x = −x0 < 0, we obtain

a(µ) = a(µx0−x0) ≥ a(λ)− |x0|, b(µ) = b(µx0−x0) ≤ b(λ).

Similarly if x0 < 0,

a(µ) ≥ a(λ), b(µ) ≤ b(λ) + |x0|.
Assume that supp ν ⊂ (−∞, 0]. Then a(µ) ≥ a(λ) and b(µ) ≤ b(λ) + |b(ν)|
since there is a sequence of such x0’s converging to b(ν). Hence we have
proved (2). The statements (1) and (3) are proved in a similar way.

Corollary 2.3. Let ν be a probability measure and let n ≥ 1 be a
natural number.

(1) If supp(νBn) ⊂ (−∞, 0], then supp ν ⊂ (−∞, 0] and |b(ν)| ≥
n−1|b(νBn)|.

(2) If supp(νBn) ⊂ [0,∞), then supp ν ⊂ [0,∞) and a(ν) ≥ n−1a(νBn).

This corollary puts a restriction on the support of a B-infinitely divisible
distribution. The continuous time version of (2) will be proved in Section 4.

Proof. Let λ := νBn.
(1) Assume that both b(ν) > 0 and b(λ) = b(νBn) ≤ 0. Then two

cases are possible: (a) supp ν ∩ [0,∞) 6= ∅ and supp ν ∩ (−∞, 0] 6= ∅;
(b) supp ν ⊂ [0,∞). We apply Proposition 2.2 replacing λ and µ with νBn

and νBn−1, respectively. In both cases (a) and (b), we have b(νBn−1) ≤
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b(λ) ≤ 0. This argument can be repeated and finally we have b(ν) ≤ 0, a con-
tradiction. Therefore, b(ν) ≤ 0. By the iterative use of Proposition 2.2(2)
we obtain b(νBn) ≥ nb(ν), from which the conclusion follows. A similar
argument applies to (2).

The following statement is well known. We will need almost the same
argument in Proposition 2.5.

Lemma 2.4. For a finite measure µ, limy↘0 iyGµ(a + iy) = µ({a}) for
all a ∈ R.

Proof. This follows from the dominated convergence theorem.

Now we prove a condition for a support to be included in the positive
real line. A similar result was obtained in [6].

Proposition 2.5. We use the notation (1.1). Then suppµ ⊂ [0,∞) if
and only if supp η ⊂ [0,∞) and Hµ(−0) ≤ 0. Moreover, if supp η ⊂ [0,∞),
the condition Hµ(−0) ≤ 0 is equivalent to

(∗) η({0}) = 0,
∞�

0

1
x
dη(x) <∞, b+

∞�

0

1
x
dη(x) ≤ 0.

Proof. If supp η⊂ [0,∞) and Hµ(−0)≤0, we have Hµ(u)<0 for all u<0
since Hµ is strictly increasing. Then Gµ = 1/Hµ is analytic in C \ [0,∞),
which implies suppµ ⊂ [0,∞). Conversely, assume suppµ ⊂ [0,∞). By
Lemma 2.1, we have supp η ⊂ [0,∞). If Hµ(−0) were greater than 0, there
would exist u0 < 0 such that Hµ(u0) = 0. Then µ has an atom at u0 < 0,
which contradicts the assumption. Therefore, Hµ(−0) ≤ 0.

We show the equivalence in the last claim. It is not difficult to prove that
(∗) implies Hµ(−0) ≤ 0. For the converse, assume that λ := η({0}) > 0. By
a similar argument to Lemma 2.4, we can prove that limu↗0 uHµ(u) = −λ.
Therefore, for u < 0 sufficiently close to 0, we have Hµ(u) > −λ/2u >
0, which contradicts the condition Hµ(−0) ≤ 0. Consequently, we have
η({0}) = 0. Since fu(x) := (1 + xu)/(x− u) is increasing with respect to
u, we can apply the monotone convergence theorem and obtain the two
inequalities of (∗).

Corollary 2.6. Monotone convolution preserves the set {µ; suppµ ⊂
[0,∞)} of probability measures.

Proof. If suppµ, supp ν ⊂ [0,∞), then HµBν = Hµ ◦ Hν is analytic
in C \ [0,∞). Since HµBν is increasing in (−∞, 0), we have HµBν(−0) =
Hµ ◦Hν(−0) ≤ Hµ(−0) ≤ 0. By Proposition 2.5, we obtain supp(µ B ν) ⊂
[0,∞).

Remark 2.7. The above property is also true for Boolean convolution.
The proof is similar. We note that the corollary follows immediately if we
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use the operator-theoretic realization of monotone independent random vari-
ables in [12].

Next we consider moments. Let mn(µ) :=
	
R x

n µ(dx) be the nth moment
of a probablility measure µ.

Proposition 2.8. Let µ be a probability measure and let n ≥ 1 be a
natural number. Then the following conditions are equivalent:

(1) m2n(µ) <∞;
(2) Hµ has the expression Hµ(z) = z + a+

	
R
ρ(dx)
x−z , where a ∈ R and ρ

is a positive finite measure satisfying m2n−2(ρ) <∞;
(3) there exist a1, . . . , a2n ∈ R such that

(2.2) Hµ(z) = z + a1 +
a2

z
+ · · ·+ a2n

z2n−1
+ o(|z|−(2n−1))

for z = iy (y →∞).

If (3) holds, for any δ > 0 the expansion (2.2) holds for z → ∞ satisfying
Im z > δ|Re z|. Moreover, ak+2 = −mk(ρ) (0 ≤ k ≤ 2n− 2).

Proof. The equivalence (1)⇔(3) follows from Theorem 3.2.1 in [1] by
calculating the reciprocals. The implication (2)⇒(3) is not difficult. The
proof of (3)⇒(2) uses the same technique as in Theorem 3.2.1 of [1].

Proposition 2.9. Let µ and ν be probability measures and let n ≥ 1 be
a natural number. If m2n(µ) <∞ and m2n(ν) <∞, then m2n(µB ν) <∞.
Moreover,

(2.3) ml(µB ν)

= ml(µ) +ml(ν) +
l−1∑
k=1

∑
j0+j1+···+jk=l−k

0≤jp, 0≤p≤k

mk(µ)mj0(ν) · · ·mjk(ν)

for 1 ≤ l ≤ 2n.

Proof. We note that ImHν(z) ≥ Im z. For any δ > 0, there exists M =
M(δ) > 0 such that

(2.4) ImHν(iy) ≥ y > δ|ReHν(iy)| for y > M.

By (2.2), we obtain

(2.5) Hµ(Hν(iy))

= Hν(iy) + a1 + a2Gν(iy) + · · ·+ a2nGν(iy)2n−1 +R(Hν(iy)),

where z2n−1R(z) =
	
R
x2n−1

x−z ρ(dx) → 0 as z → ∞ with Im z > δ|Re z| for a
fixed δ > 0. We have

y2n−1|R(Hν(iy))| ≤ |Hν(iy)|2n−1|R(Hν(iy))| → 0
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as y →∞ by (2.4). Thus R(Hν(iy)) = o(y−(2n−1)). Expanding Hν(z) in the
form (2.2), we can see that there exist c1, . . . , c2n ∈ R such that

Hµ(Hν(z)) = z+ c1 +
c2
z

+ · · ·+ c2n
z2n−1

+o(|z|−(2n−1)) for z = iy (y →∞).

Then the 2nth moment of µ B ν is finite by Proposition 2.8. The equality
(2.3) is obtained by the expansion of GµBν(z) = Gµ(1/Gν(z)).

3. Differential equations arising from monotone convolution
semigroups. Let {µt}t≥0 be a weakly continuous B-convolution semigroup
with µ0 = δ0. We denote Hµt by Ht for simplicity. We sometimes write
H(t, z) to express explicitly that Ht(z) is a function of two variables. By
(1.1), Ht can be expressed as

(3.1) Ht(z) = bt + z +
�

R

1 + xz

x− z
dηt(x),

where, for each t > 0, at is a real number and ηt is a finite positive measure.
Throughout this paper we denote by A(z) the associated vector field.

In this section, we prove the following properties of the minimum of the
support of a convolution semigroup.

Theorem 3.1. Let {µt}t≥0 be a weakly continuous B-convolution semi-
group with µ0 = δ0. Assume that for every t > 0, µt is not a delta measure
and µt = λ(t)δθ(t) + νt with θ(t) /∈ supp νt, θ(t) = a(µt) and λ(t) ≥ 0.

(1) Assume a(τ) > 0. Then four cases are possible:

(A) If A(u0) = 0 for some u0 ∈ [−∞, 0) and A(u) < 0 on (−∞, u0) and
A(u) > 0 on (u0, 0) (when u0 = −∞, we understand the condition
as A > 0), then λ(t) > 0. Moreover, u0 < θ(t) < 0 for all t > 0.

(B) If A(u) < 0 on (−∞, 0) and A(0) = 0, then θ(t) = 0 and λ(t) > 0
for all t > 0.

(C) If there exists u0 ∈ (0, a(τ)) such that A(u) < 0 on (−∞, u0) and
A(u) > 0 on (u0, a(τ)), then θ(t) ∈ (0, u0) and λ(t) > 0 for 0 < t
<∞.

(D) If A(u) < 0 on (−∞, a(τ)), then there exists t0 ∈ (0,∞] such that
λ(t) > 0 for 0 < t < t0 and λ(t) = 0 for t0 ≤ t <∞.

If A(0) 6= 0 and λ(t) > 0, then λ(t) = A(θ(t))/A(0). If A(0) = 0 (case (B)),
then λ(t) = e−A

′(0)t. For the position of the delta measure, the following
ODE holds:

(3.2)


d

dt
θ(t) = −A(θ(t)),

θ(0) = 0.
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(2) Assume a(τ) > −∞. Then three cases can occur in terms of the signs
of the associated vector field:

(a) A(u) > 0 on (−∞, a(τ));
(b) A(u0) = 0 for some u0 ∈ (−∞, a(τ)) and A(u) < 0 on (−∞, u0) and

A(u) > 0 on (u0, a(τ));
(c) A(u) < 0 on (−∞, a(τ)).

In cases (a) and (b), we have the following ODE for a(νt):

(3.3)

{
d

dt
a(νt) = −A(a(νt)),

a(ν0) = a(τ).
In case (c), the equality a(νt) = a(τ) holds for a.e. t and a(νt) ≥ a(τ) for
all t ∈ [0,∞). Moreover, if limu↗a(τ)A(u) < 0, then a(νt) = a(τ) for all t.

Example 3.2. We can confirm the validity of the ODEs for θ(t) and
a(νt), and the validity of the formula for the weight for a delta measure, in
each of the following examples.

• Arcsine law:

µt =
1

π
√

2t− x2
1(−
√

2t,
√

2t)(x) dx, A(z) = −1
z
,

a(τ) = 0, a(µt) = −
√

2t.
• A deformation of α-strictly stable distributions (0 < α < 2) with

parameter c ∈ C, Im c = 0,Re c ≥ 0 (see [13]):

µt = µt,ac, suppµt,ac = (−∞, c+ t1/α], A(z) = − 1
α

(z − c)1−α.

We can check that the solution of the ODE (3.3) is c+ t1/α (the same
ODE (3.3) holds for b(µt)).
• The monotone Poisson distribution with parameter λ > 0:

µt(dx) = µt,ac + µt,sing, A(z) =
λz

1− z
,

where µt,sing is a delta measure at 0, and hence A(0) = 0 andA′(0) = λ.
This is case (B). Therefore, µt,sing = e−λtδ0.

3.1. Differential equation of the delta measure. We summarize
three equalities, some of which were used by Muraki in [16].

Lemma 3.3. Let {µt}t≥0 be a weakly continuous B-convolution semi-
group with µ0 = δ0. Then we have three equalities on C \ R:

(1) A(Ht(z)) = A(z)∂Ht
∂z (z);

(2) ∂
∂tGt(z) = A(z) ∂∂zGt(z);

(3) ∂
∂tHt(z) = A(z) ∂∂zHt(z).



Monotone convolution semigroups 183

Proof. Since Ht(z) is a flow in C \ R, Ht ◦Hs = Ht+s for t, s ≥ 0. Now,
(1) follows by taking the derivative ∂

∂s |s=0; (3) follows from (1) and (1.3);
and (2) follows from (3) immediately.

First we treat a distribution which contains a delta measure at the
minimum of the support. Suppose that {µt}t≥0 is a weakly continuous B-
convolution semigroup with µ0 = δ0. Then µ can be written as µ = λδθ + ν
with θ ∈ (supp ν)c and 0 < λ < 1. We use the integral representation in The-
orem 1.1(4) for the associated vector field A(z). Throughout this subsection,
we assume that τ 6= 0 and a(τ) > 0. We shall show that there exists a delta
measure at the minimum point of the support for some (finite or infinite)
time interval. Moreover, the weight of the delta measure is calculated.

The derivative of A satisfies A′(u) > 0 for all u ∈ (−∞, 0). This implies
that five cases are possible:

(A) A(u) > 0 on (−∞, 0);
(A′) A(u0) = 0 for some u0 ∈ (−∞, 0) and A(u) < 0 on (−∞, u0) and

A(u) > 0 on (u0, 0);
(B) A(u) < 0 on (−∞, 0) and A(0) = 0;
(C) there exists u0 ∈ (0, a(τ)) such that A(u) < 0 on (−∞, u0) and

A(u) > 0 on (u0, a(τ));
(D) A(u) < 0 on (−∞, a(τ)).

We consider the solution of the ODE (1.3) on the real line as well as on
C \ R.

Cases (A) and (A′). Case (A) reduces to (A′) if we define u0 := −∞.
Since H(t, u) is an increasing function of u ∈ (supp ηt)c, there is a unique
point θ(t) satisfying u0 < θ(t) < 0 and

(3.4) H(t, θ(t)) = 0.

θ(t) is a zero point of Ht of degree 1 since ∂uH(t, u) ≥ 1. Therefore, by
Lemma 2.4, there is a delta measure λ(t)δθ(t) in µt with u0 < θ(t) < 0.
By the implicit function theorem, θ(t) is of class Cω. Differentiating the
equation H(t, θ(t)) = 0 and using Lemma 3.3, we obtain

(3.5) θ′(t) = −
∂H
∂t (t, θ(t))
∂H
∂z (t, θ(t))

= −A(θ(t)).

The initial condition is θ(0) = 0.

Case (B). In this case, the same differential equation (3.5) holds. Since
A(0) = 0, we have θ(t) = 0 for all t. This is true for a monotone Poisson
distribution.
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Cases (C) and (D). These cases can be treated at the same time. We
define

u1 :=
{
u0 in case (C),
a(τ) in case (D).

In both cases, Ht is analytic in C \ [u1,∞) (see Subsection 3.2 for details).
Then there exists t0 ∈ (0,∞] such that µt includes a delta measure in (0, u1)
for 0 < t < t0. We can prove that t0 = ∞ in case (C). In case (D), there
is an example where t0 < ∞ holds (see the “Examples” section in [13]).
Moreover, t0 =∞ may occur if limu↗a(τ)A(u) = 0. The measure µt has the
form

µt =
{
λ(t)δθ(t) + νt, 0 ≤ t < t0,

νt, t0 ≤ t <∞,
where 0 < λ(t) ≤ 1 and 0 ≤ θ(t) < a(τ) for 0 ≤ t < t0, and a(νt) ≥ a(τ) for
all 0 < t <∞. The differential equation (3.5) holds also in this case.

Weight λ(t) in cases (A), (A′), (C) and (D). It is possible to calculate
the weight λ(t). For the moment we skip case (B). Then we have A(0) 6= 0.
We expand Ht(z) in a Taylor series around θ(t) as Ht(z) =

∑∞
n=1 an(t)(z −

θ(t))n with a1(t) = 1/λ(t). Also we expand A(z) as
∑∞

n=0 bnz
n with bn ∈ R.

If we compare the coefficients of the constant term in the ODE (1.3), we
obtain −θ′(t)a1(t) = b0 = A(0). Hence

λ(t) =
A(θ(t))
A(0)

.

Weight λ(t) in case (B). In case (B), we express the Taylor expansions
of Ht and A(z) at 0 respectively by Ht(z) =

∑∞
n=1 an(t)zn and A(z) =∑∞

n=1 bnz
n with a1(t) = 1/λ(t) and b1 = A′(0) > 0. Comparing the coeffi-

cients of zn in the ODE (1.3), we obtain the equation a′1(t) = A′(0)a1(t).
Therefore, a1(t) = eA

′(0)t by the initial condition a1(0) = 1. Thus we obtain

λ(t) = e−A
′(0)t.

3.2. Differential equation of the non-atomic part. In the previous
subsection we considered the case a(τ) > 0. Now we consider a more general
case. We investigate a(µt) including the case where there is no isolated delta
measure at a(µt). Assume that the lower bound a(τ) of the Lévy measure τ
is finite: −∞ < a(τ). Three cases can occur:

(a) A(u) > 0 on (−∞, a(τ));
(b) A(u0) = 0 for some u0 ∈ (−∞, a(τ)) and A(u) < 0 on (−∞, u0) and

A(u) > 0 on (u0, a(τ));
(c) A(u) < 0 on (−∞, a(τ)).

µt may contain an isolated delta measure at a(µt). If so, we write µt =
λ(t)δθ(t) +νt. We understand that λ(t) = 0 if µt does not contain an atom at
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a(µt), or if it does but the atom is not isolated. The motion of the position
θ(t) of a delta measure was clarified in the previous subsection. To investigate
a(νt), we define E: [0,∞)→ (−∞, a(τ)] by

E(t) :=
{

sup{u ≤ a(τ);Ht(u) = a(τ)} in cases (a) and (b),
a(τ) in case (c)

for t ∈ [0,∞). The definition in cases (a) and (b) may seem unclear since
Ht(z) was only defined in C \ R. The precise definition is as follows. Since
cases (a) and (b) can be treated in the same way, we explain only case (b).
If u ∈ (u0, a(τ)), let R(u) be defined so that Ht(u) exists for all t ∈ (0, R(u))
and limt↗R(u)Ht(u) = a(τ). We observe that 0 < R(u) < ∞ for u ∈
(u0, a(τ)). Moreover, R is a bijection from (u0, a(τ)) to (0,∞). Therefore,
we can define a bijection E(t) := R−1(t), which we have denoted simply as
sup{u ≤ a(τ); Ht(u) = a(τ)}.

a(νt) is characterized by the following result.

Lemma 3.4. Let µ be a B-infinitely divisible distribution. Then µ can be
expressed in the form µ = λδθ + ν, where θ = a(µ) is an isolated atom. We
understand that µ = ν or λ = 0 if µ does not contain an atom at a(µ), or
if it does but the atom is not isolated. Then

a(ν) = a(η) = sup{x ∈ R; Hµ has an analytic continuation to C \ [x,∞)}
under the notation (1.1).

Proof. The latter equality follows from Lemma 2.1(1) immediately and
we only need to prove that a(ν) = a(η). First, if λ = 0 we can easily prove
a(µ) = a(η) by Lemma 2.1(2). Second, we assume that λ > 0. We show
that a(ν) 6= a(η) causes a contradiction. We notice first that the difference
a(ν) 6= a(η) comes from the zero points of Hµ(x) or Gµ(x) by Lemma 2.1(2).
If a(ν) < a(η), then Hν(a(ν)) = 0. This, however, implies that Gµ contains
two atoms at a(ν) and θ, which contradicts infinite divisibility (see Theo-
rem 3.5 in [13]). If a(ν) > a(η), then Gν(a(η)) = 0. Since d

dxHµ(x) ≥ 1
in (suppµ)c ⊂ R, Hµ(x) is increasing. Therefore limx↗a(η)Hµ(x) = ∞ and
limx↘a(η)Hµ(x) = −∞. Also, limx→−∞Hµ(x) = −∞. These imply that
there exist x1 < a(η) and x2 > a(η) such that Hµ(x1) = Hµ(x2). By
Rouché’s theorem, there exist distinct z1, z2 ∈ C with positive imaginary
parts such that Hµ(z1) = Hµ(z2) (this argument is similar to the proof of
Theorem 3.5 in [13]); this contradicts the infinite divisibility again since the
solution of (1.3) defines a flow of injective mappings.

Remark 3.5. If µ is not B-infinitely divisible, the above property does
not hold. For instance, if µ = 1

2(δ−1 + δ1), then a(ν) = 1 but a(η) = 0.

We define a(ν0) := a(τ) so that a(νt) becomes a continuous function
at 0.
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Theorem 3.6. In cases (a) and (b), the equality E(t) = a(νt) holds for
all t ∈ [0,∞). In case (c), the equality holds under the further assumption
limu↗a(τ)A(u) < 0.

Proof. We can prove this equality by considering the region in which
Ht(z) is analytic. We first consider cases (a) and (b). We prove that

(3.6) E(t) = sup{x ∈ R; Ht has an analytic continuation to C \ [x,∞)}.

By reductio ad absurdum we show that Ht never has an analytic continua-
tion beyond E(t). If Ht(z) had an analytic continuation to C \ [E(t) + δ,∞)
for some t > 0 and δ > 0, the following three facts would follow: the im-
age of Ht(u) includes a(τ) since ∂H/∂u ≥ 1 and H(t, E(t)) = a(τ); Ht

is injective in C \ [E(t) + δ,∞); we can take δ > 0 small enough so that
A(z) is analytic in C \ [E(t) + δ,∞) since E(t) < a(τ). Then by the equality
A(Ht(z)) = A(z)∂Ht

∂z (z) in C\R, we conclude that A(z) has an analytic con-
tinuation to the image of Ht. In particular, A is analytic around the point
a(τ), a contradiction. Therefore, Ht cannot have an analytic continuation
beyond E(t).

Conversely, for any u < E(t), Ht(z) has an analytic continuation to the
region C \ [u+ δ,∞) for some δ > 0 by the solution of the ODE (1.3). Thus
the equality (3.6) holds.

The proof of the equality E(t) = a(νt) in case (c) under the assumption
limu↗a(τ)A(u) < 0 is similar. For all t > 0, we have limu↗a(τ)Ht(u) < a(τ).
Assume that Ht(z) has an analytic continuation to C \ [E(t) + δ,∞) for
some t > 0 and δ > 0. We can take δ small enough such that Ht(u) ∈
(−∞, a(τ)) for all u ∈ (−∞, a(τ)+δ). This contradicts the equality A(Ht(z))
= A(z)∂Ht

∂z (z).

In case (c), if limu↗a(τ)A(u) = 0, the question whether E(t) = a(νt)
holds for all t > 0 or not has not been clarified yet. A partial answer is given
in the following proposition.

Proposition 3.7. In case (c) we have a(νt) = a(τ) a.e. with respect to
the Lebesgue measure on [0,∞) and a(νt) ≥ a(τ) for all t > 0.

Proof. Step 1. First, we prove that if lim supt→t0 a(νt) ≥ a(νt0), then
A(z) is analytic in the region (−∞, a(νt0)) and a(νt0) = a(τ) (= E(t0)). Fix
ε ∈ (0, 1). Take a sequence {tn}∞n=1 such that a(νtn) ≥ a(νt0) − ε/2 for all
n ≥ 1 and define a sequence of analytic functions in (−∞, a(νt0)− ε) by

Aεn(z) :=
Htn(z)−Ht0(z)

tn − t0
for n ≥ 1. For any compact set K ⊂ C \ [a(τ)− ε,∞), we can prove that the
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sequence {Aεn} is uniformly bounded on K for sufficiently large n. Hence
we obtain the analyticity of ∂tH(t0, z) in (−∞, a(νt0)− ε). Since 1 > ε > 0
is arbitrary, we conclude that ∂tH(t0, z) is analytic in (−∞, a(νt0)). The
function A(z) has an analytic continuation from C \R to C \ [a(νt0),∞) by
the equality A(z) = ∂tH(t0, z)/∂zH(t0, z).

Now we show a(τ) = a(νt0). As explained before, the solution Ht(z) of
the ODE exists for all time and for any initial position z ∈ C \ [a(τ),∞).
Therefore, a(νt) ≥ a(τ) for all t ∈ [0,∞). Moreover, a(τ) ≥ a(νt0) by the
analyticity of A(z) in (−∞, a(νt0)).

Step 2. We note that a(νt) is Borel measurable. This is easy since the
coefficients of the Taylor expansion of Ht are measurable (by the Cauchy
integral formula), and a(νt) can be expressed as their upper limit. We define
a Borel set B by

B := {t ∈ [0,∞); there exist ε = ε(t) > 0 and η = η(t) > 0 such that
|a(νt)− a(νs)| > ε for all s satisfying 0 < |s− t| < η}.

If t ∈ Bc, then a(νt) = E(t) by Step 1. It is known that a Borel measurable
function on an interval is continuous except on an open set with arbitrar-
ily small Lebesgue measure, by Lusin’s theorem (see [10]). Therefore, the
Lebesgue measure of B is 0. The inequality a(νt) ≥ a(τ) was already men-
tioned in the proof of Step 1.

So far we have proved that E(t) = a(νt) in generic cases. Next we find
an ODE for the function E(t). For ε > 0 define an approximate family by

Eε(t) := sup{u ≤ a(τ); Ht(u) = a(τ)− ε}.

This approximation is needed to use the implicit function theorem in the
proof of Theorem 3.9.

Lemma 3.8. In cases (a) and (b), Eε and E enjoy the following proper-
ties:

(1) Eε < E for all ε ∈ (0, 1). In addition, Eε converges to E pointwise
as ε→ 0.

(2) supε>0, t∈I |Eε(t)| <∞ for any compact set I ⊂ [0,∞).

The proof is easy and we omit it.

Theorem 3.9. In cases (a) and (b), E(t) satisfies the ODE
d

dt
E(t) = −A(E(t)) for 0 < t <∞,

E(0) = a(τ).

In particular, E is in Cω(0,∞) ∩ C[0,∞).
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Proof. We note that ∂H/∂u ≥ 1. Thus the implicit function theorem is
applicable to the equation H = a(τ) − ε because H is defined in the open
set {(t, u); 0 < t < ∞, −∞ < u < E(t)} which contains (t, Eε(t)) for all t.
Therefore, Eε is in Cω(0,∞) and its derivative is

dEε
dt

(t) = − ∂tH(t, Eε(t))
∂uH(t, Eε(t))

= −A(Eε(t))

by Lemma 3.3. After integrating the above, we take the limit ε → 0 using
Lemma 3.8, to obtain

E(t) =
t1�

t

A(E(s)) ds+ E(t1).

This implies that E is in Cω(0,∞) and the ODE holds. The right continuity
of E at 0 follows from the fact that limt↘0Ht(z) = z.

4. Time-dependent and time-independent properties of a mono-
tone convolution semigroup. In classical probability theory, it is often
true that a property of a convolution semigroup µt is completely determined
at an instant. Such a property is called time-independent. In this section, we
exhibit such properties for monotone convolution semigroups.

Lemma 4.1. Let {µt}t≥0 be a weakly continuous B-convolution semi-
group with µ0 = δ0, and A(z) be the associated vector field. If there exists
t0 > 0 such that suppµt0 ⊂ [0,∞), then A(z) is analytic in C \ [0,∞).

Proof. We have suppµt0/n ⊂ [0,∞) by Corollary 2.3(1). Let An(z)
be defined by An(z) := (Ht0/n(z) − z)/(t0/n). Then An is analytic in
C \ [0,∞) since supp ηt0/n ⊂ [0,∞) from Lemma 2.1. By definition A(z) =
limn→∞An(z) for z ∈ C \ R. By Montel’s theorem, it suffices to show that
the RHS is uniformly bounded on each compact subset K of C\[0,∞). Since
Ht(i) = bt + i(1 + ηt(R)) is differentiable, there exist M,M ′ > 0 such that
ηt(R)/t ≤M and |bt/t| ≤M ′ for all t ∈ [0, t0]. Then

|An(z)| ≤
∣∣∣∣ nt0 bt0/n

∣∣∣∣+
∣∣∣∣∞�

0

1 + xz

x− z
n

t0
ηt0/n(x)

∣∣∣∣ ≤M ′ + L′

for all n and z ∈ K, where L′ > 0 is a constant depending only on K.

Using Proposition 2.5 and Lemma 4.1, one can prove the monotone ana-
logue of the subordinator theorem. For the classical version, the reader is
referred to Theorem 24.11 of [17].

Theorem 4.2. Let {µt}t≥0 be a weakly continuous B-convolution semi-
group with µ0 = δ0. Then the following statements are equivalent:

(1) there exists t0 > 0 such that suppµt0 ⊂ [0,∞);
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(2) suppµt ⊂ [0,∞) for all 0 ≤ t <∞;
(3) supp τ⊂ [0,∞), τ({0})=0,

	∞
0 x−1 dτ(x)<∞ and γ≥

	∞
0 x−1 dτ(x).

Remark 4.3. (i) The equality τ({0}) = 0 in condition (3) means that
there is no component of a Brownian motion in the Lévy–Khinchin formula.

(ii) The equivalence also holds in the classical and Boolean Lévy–Khin-
chin formulae. In the free case, however, (1) and (2) are not equivalent (see
Section 6).

Proof of Theorem 4.2. We note that (3) is equivalent to (3′): A is analytic
in C \ [0,∞) and A < 0 on (−∞, 0), by an argument in Proposition 2.5.

(1)⇒(2), (3′): If {µt} is a delta measure, then the statement follows
immediately. Assume that µt is not a delta measure for some t > 0. This is
equivalent to assuming that µt is not a delta measure for all t > 0. Then
τ is a non-zero positive finite measure. A(z) is analytic in C \ [0,∞) by
Lemma 4.1, and hence supp τ ⊂ [0,∞). Three cases are possible: (a) A(u)
> 0 on (−∞, 0); (b) A(u0) = 0 for some u0 ∈ (−∞, 0) and A(u) < 0 on
(−∞, u0) and A(u) > 0 on (u0, 0); (c) A(u) < 0 on (−∞, 0).

In cases (a) and (b), we have a(µt) < 0 for all t > 0 by Theorem 3.1(2).
In case (c), we have a(µt) ≥ a(τ) ≥ 0 again by Theorem 3.1(2). Hence only
case (c) does not contradict the assumption.

(3′)⇒(1): This was actually proved at the end of the proof of (1)⇒(2).

We can prove that the lower boundedness of the support is determined
at one instant.

Theorem 4.4. Let {µt}t≥0 be a weakly continuous B-convolution semi-
group with µ0 = δ0. Then the following statements are equivalent:

(1) there exists t0 > 0 such that suppµt0 is bounded below;
(2) suppµt is bounded below for all 0 ≤ t <∞;
(3) supp τ is bounded below.

Remark 4.5. The same kind of theorem also holds in the free and
Boolean cases. The classical case is exceptional since condition (3) has to
be replaced by supp τ ⊂ [0,∞), τ({0}) = 0 and

	1
−1 |x|

−1 dτ(x) < ∞ [17].
Therefore, the boundedness below is not mapped bijectively by the mono-
tone analogue of the Bercovici–Pata bijection defined in Section 5.

Proof of Theorem 4.4. (1)⇒(3): When a(µt0) ≥ 0, the claim follows
from Theorem 4.2. We consider the case a(µt0) < 0. By Proposition 2.2,
we have a(µt) ≥ a(µt0) > −∞ for all t ≤ t0. By the same argument as in
Lemma 4.1, one can show that A is analytic in (−∞, a(µt0)).

(3)⇒(2): The lower boundedness of the support of µt for all t ≥ 0 comes
from Theorem 3.1.



190 T. Hasebe

Next we consider the symmetry around the origin. We say that a measure
µ on the real line is symmetric if µ(dx) = µ(−dx). The proof depends on
the assumption of compact support. We have not been able to prove the
result for all probability measures.

Theorem 4.6. Let {µt}t≥0 be a weakly continuous B-convolution semi-
group with µ0 = δ0. Assume that the support of each µt is compact (this is
a time-independent property). Then the following statements are equivalent:

(1) there exists t0 > 0 such that µt0 is symmetric;
(2) µt is symmetric for all t > 0;
(3) γ = 0 and τ is symmetric.

Proof. We prove this theorem in terms of moments. We use the repre-
sentation of the vector field A(z) = −γ+

	
1

x−zdσ(x), dσ(x) = (1+x2)dτ(x),
where σ has a compact support. We write mn(t) = mn(µt) for simplicity.
We notice that the symmetry is equivalent to the vanishing of odd moments
for a compactly supported measure. Define a sequence {rn}∞n=1 by r1 := γ,
rn := mn−2(σ) for n ≥ 2. Then A(z) = −

∑∞
n=1 rn/z

n−1. By Lemma 3.3(2),
we get the differential equations dm0(t)/dt = 0 and

(4.1)
dmn(t)
dt

=
n∑
k=1

krn−k+1mk−1(t) for n ≥ 1

with initial conditions m0(0) = 1 and mn(0) = 0 for n ≥ 1.
Now we prove the implications (1)⇒(2) and (1)⇒(3). We can easily show

that m2n+1(t0) = 0 and r2n+1 = 0 for n ≥ 0, and so m2n+1(t) = 0 for all
t > 0 and n ≥ 0. Then σ and µt are both symmetric for all t > 0. The proof
of (3)⇒(2) is similar.

We now exhibit some time-dependent properties.

Proposition 4.7.

(1) Absolute continuity is a time-dependent property.
(2) Existence of an atom is a time-dependent property.

Proof. Consider the following example [13]. Let {µt}t≥0 be the monotone
convolution semigroup defined by

(4.2) H
(α,1,c)
t (z) = c+ {(z − c)α + t}1/α for 0 < α < 1.

Then µt contains an atom for 0 ≤ t < |c|α and µt is absolutely continuous
for t ≥ |c|α.

The propertym2n(µ) =
	
R x

2n µ(dx) <∞ is also time-independent. That
is, we prove the following theorem which is also true for the classical and
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free probabilities [5, 18]. In addition, it also extends Theorem 4.9 in [16] to
higher order moments.

Theorem 4.8. Let {µt}t≥0 be a weakly continuous B-convolution semi-
group with µ0 = δ0 and let n ≥ 1 be a natural number. Then the following
statements are equivalent:

(1) there exists t0 > 0 such that m2n(t0) <∞;
(2) m2n(t) <∞ for all 0 < t <∞;
(3) m2n(τ) <∞.

Proof. (1)⇒(2): We use the notation µyt := δy B µt introduced in (2.1).
For 0 ≤ t ≤ t0, we set λ = µt0−t and ν = µt. Then

		
x2n µyt (dx)µt0−t(dy) =	

R x
2n µt0(dx) <∞, which implies m2n(µyt ) <∞ for some y ∈ R. By Propo-

sition 2.8, we obtain m2n(t) < ∞ for 0 ≤ t ≤ t0. For arbitrary 0 < s < ∞,
we can write s = kt0 + t with k ∈ N and 0 ≤ t < t0. Then m2n(s) < ∞ by
Proposition 2.9.

(2)⇒(3): We first note that mk(t) is a Borel measurable function of
t ≥ 0 since µt is weakly continuous. Moreover, we show that there exist
r1, . . . , r2n ∈ R such that

(4.3) ml(t) =
l∑

k=1

∑
1=i0<i1<···<ik−1<ik=l+1

tk

k!

k∏
p=1

ip−1rip−ip−1

for 1 ≤ l ≤ 2n. For the proof we use the equality

(4.4) ml(t+ s)

= ml(t) +ml(s) +
l−1∑
k=1

∑
j0+j1+···+jk=l−k

0≤jp, 0≤p≤k

mk(t)mj0(s) · · ·mjk(s)

for 1 ≤ l ≤ 2n. For l = 1, (4.4) becomes m1(t+ s) = m1(t) +m1(s). This is
Cauchy’s functional equation and there exists r1 ∈ R such that m1(t) = r1t
by measurability (for a simple proof of this fact, see [2]). We assume that
there exist r1, . . . , rq ∈ R such that (4.3) holds for 1 ≤ l ≤ q. For an arbitrary
r′q+1 ∈ R, we define

(4.5) m̃q+1(t) := r′q+1t+
q+1∑
k=2

∑
1=i0<i1<···<ik−1<ik=q+2

tk

k!

k∏
p=1

ip−1rip−ip−1 .

Then

m̃q+1(t+ s) = m̃q+1(t) + m̃q+1(s)(4.6)

+
q∑

k=1

∑
j0+j1+···+jk=q+1−k

0≤jl, 0≤l≤k

mk(t)mj0(s) · · ·mjk(s);
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this will be proved in Proposition 4.10. Therefore, (4.4) and (4.6) imply that
mq+1(t+ s)− m̃q+1(t+ s) = mq+1(t)− m̃q+1(t) +mq+1(s)− m̃q+1(s). This
is again Cauchy’s functional equation, and hence there exists r′′q+1 ∈ R such
that mq+1(t) = m̃q+1(t) + r′′q+1t. The above argument runs until q = 2n− 1,
and thus we conclude that there exist r1, . . . , r2n ∈ R such that (4.3) holds
for 1 ≤ l ≤ 2n.

From the equality ∂G
∂t (t, z) = A(z)∂G∂z (t, z) we obtain

A(z) =
G(1, z)− 1

z	1
0
∂G
∂z (s, z) ds

,

which implies

(4.7) A(z) = −
m1(1)
z2

+ · · ·+ m2n(1)
z2n+1 + o(|z|−(2n+1))

1
z2

+ 2
	1
0m1(s) ds

z3
+ · · ·+ (2n+1)

	1
0m2n(s) ds

z2n+2 +
	1
0Rs(z) ds

,

where

Rs(z) =
2n+ 1
z2n+2

�

R

x2n+1

z − x
µs(dx) +

1
z2n+1

�

R

x2n+1

(z − x)2
µs(dx).

Since m2n(s) is a polynomial, x2n is integrable with respect to the measure
µs(dx)ds on R× [0, t]. We can easily show that

	1
0Rs(iy) ds = o(y−(2n+2)) by

the dominated convergence theorem. Therefore, there exist u1, . . . , u2n ∈ R
such that

A(iy) = u1 +
u2

iy
+ · · ·+ u2n

(iy)2n−1
+ o(y−(2n−1)).

By Proposition 2.8, we have m2n(τ) <∞ (the equivalence between (2) and
(3) in Proposition 2.8 is true for A(z): the proof needs no changes).

(3)⇒(2): Since m2n(τ) <∞, we have the expansion

A(z) = u1 +
u2

z
+ · · ·+ u2n

z2n−1
+Q(z),

where

Q(z) :=
1

z2n−1

�

R

x2n−1

x− z
(1 + x2) τ(dx).

We obtain

(4.8) Ht(z) = z + u1t+
t�

0

u2

Hs(z)
ds+ · · ·+

t�

0

u2n

Hs(z)2n−1
ds+

t�

0

Q(Hs(z)) ds

from the equality d
dtHt(z) = A(Ht(z)). We can prove that

2n−1∑
k=p

t�

0

uk+1

Hs(iy)k
ds+

t�

0

Q(Hs(iy)) ds = o(y−(p−1))
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since |
	t
0Hs(iy)−k ds| ≤ t/yk. In addition,

	t
0Q(Hs(iy)) ds = o(y−(2n−1)) for

any t > 0 by the dominated convergence theorem.
Now we show by induction that there exist polynomials ck(t) of t (1 ≤

k ≤ 2n) such that

(4.9) Ht(z) = z+c1(t)+
c2(t)
z

+ · · ·+ c2n(t)
z2n−1

+o(|z|−(2n−1)) (z = iy, y →∞)

for any t > 0. First Ht(iy) = iy+u1t+ u2t
iy + o

(
1
y

)
by (4.8). Next we assume

that there exist polynomials ck(t) (1 ≤ k ≤ 2q) such that

(4.10) Ht(z) = z + c1(t) +
c2(t)
z

+ · · ·+ c2q(t)
z2q−1

+ Pt(z),

where Pt(iy) = o(y−(2q−1)) for any t > 0. We can write

Pt(z) =
1

z2q−1

�

R

x2q−1

x− z
ρt(dx),

where ρt is the positive finite measure of Proposition 2.8(2). Then we obtain
the asymptotic behavior

	t
0 Ps(iy) ds = o(y−(2q−1)). Substituting (4.10) into

the right hand side of (4.8), we obtain the expansion

(4.11) Ht(z) = z + b1(t) +
b2(t)
z

+ · · ·+ b2q+2(t)
z2q+1

+ o(|z|−(2q+1)),

where bk(t) is a polynomial of t (we note that bk(t) = ck(t) for 1 ≤ k ≤ 2q
by the uniqueness of the expansion). This induction goes until q = n − 1
and we obtain (4.9). The conclusion follows from Proposition 2.8.

Remark 4.9. In the proof of (2)⇒(3) we have proved that mk(t) is a
polynomial of t. This property might seem to be too strong: what we needed
was the integrability of mk(t) in a finite interval. The author however could
not find an alternative proof of the integrability.

The following result completes the above theorem.

Proposition 4.10. For any complex numbers rn, n ≥ 1, the functions
mn(t) defined by

(4.12) mn(t) =
n∑
k=1

∑
1=i0<i1<···<ik−1<ik=n+1

tk

k!

k∏
p=1

ip−1rip−ip−1

satisfy the equality

(4.13) mn(t+ s)

= mn(t) +mn(s) +
n−1∑
k=1

∑
j0+j1+···+jk=n−k

0≤jp, 0≤p≤k

mk(t)mj0(s) · · ·mjk(s)

for any n ≥ 1.
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Proof. Every series in this proof is a formal power series. We define
A(z) = −

∑∞
z=1 rn/z

n−1. We solve the differential equation (1.3) in the
sense of formal power series. There exists a unique solution of the form
Ht(z) =

∑∞
n=−1 an(t)/zn. It is easy to prove that Ht+s(z) =Ht(Hs(z)) in

the sense of formal power series with respect to t, s, z. If we define Gt(z)
to be 1/Ht(z), then Lemma 3.3 holds with the same proof. We can eas-
ily prove that mn(t) are given by Gt(z) =

∑∞
n=0mn(t)/zn+1 using Lem-

ma 3.3(2). Finally, (4.13) follows from the power series expansion of Gt+s(z)
= Gt(1/Gs(z)).

5. Connection to infinite divisibility in classical probability.
Now we consider the correspondence between classical and monotone prob-
ability. The usual Lévy–Khinchin formula is given by

(5.1) µ̂(u) = exp
(
iγu+

�

R

(
eixu − 1− ixu

1 + x2

)
1 + x2

x2
τ(dx)

)
,

where γ ∈ R and τ is a positive finite measure. We show that the identifi-
cation of (γ, τ) in Theorem 1.1 and in (5.1) is important. For instance, the
support of a classical infinitely divisible distribution is concentrated on the
positive real line if and only if (see Theorem 24.11 in [17])

(5.2) supp τ ⊂ [0,∞), τ({0}) = 0,
1�

0

1
x
τ(dx) <∞, γ ≥

∞�

0

1
x
τ(dx).

These conditions are exactly the same as in Theorem 4.2. Then it is natural
to define the monotone analogue of the Bercovici–Pata bijection (for the
details on the Bercovici–Pata bijection in free probability, the reader is re-
ferred to [7]). Let ID(B) be the set of all B-infinitely divisible distributions;
let ID(∗) be the set of all classical infinitely divisible distributions. We define
a map ΛM : ID(∗) → ID(B) by sending the pair (γ, τ) in (5.1) to the pair
(γ, τ) in Theorem 1.1(4). This map enjoys nice properties. Let Dλ be the
dilation operator defined by�

R
f(x)Dλµ(dx) =

�

R
f(λx)µ(dx)

for all probability measures µ and all bounded continuous functions f .

Theorem 5.1. ΛM has the following properties:

(1) ΛM is continuous.
(2) ΛM (δa) = δa for all a ∈ R.
(3) Dλ ◦ ΛM = ΛM ◦Dλ for all λ > 0.
(4) ΛM maps the Gaussian with mean 0 and variance σ2 to the arcsine

law with mean 0 and variance σ2.
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(5) ΛM maps the Poisson distribution with parameter λ to the monotone
Poisson distribution with parameter λ;

(6) ΛM gives a one-to-one correspondence between the set {µ ∈ ID(∗);
suppµ ⊂ [0,∞)} and the set {ν ∈ ID(B); supp ν ⊂ [0,∞)}.

(7) For all α ∈ (0, 2), ΛM gives a one-to-one correspondence between
strictly α-stable distributions and monotone strictly α-stable distri-
butions.

(8) If supp τ is compact, the symmetry of µ ∈ ID(∗) is equivalent to the
symmetry of ΛM (µ).

(9) For each n ≥ 1, ΛM gives a one-to-one correspondence between
the set {µ ∈ ID(∗);

	
R x

2n µ(dx) < ∞} and the set {ν ∈ ID(B);	
R x

2n ν(dx) <∞}.

Remark 5.2. Since monotone convolution is non-commutative, ΛM does
not preserve the convolution structure: ΛM (µ ∗ λ) 6= ΛM (µ) B ΛM (λ) for
some µ, λ.

Proof of Theorem 5.1. It is known that the convergence of a sequence
{µn} ⊂ ID(∗) to some µ implies the convergence of the corresponding pair
(γn, τn) to some (γ, τ). Now we have the family of ODEs driven by

An(z) = −γn +
�

R

1 + xz

x− z
dτn(x);

we denote the flow by {Hn,t}. Since (γn, τn) converges to (γ, τ), An converges
locally uniformly to A. By the basic result of the theory of ODE, it follows
that Hn,1(z) → H1(z) locally uniformly, which implies that µn converges
weakly to µ.

(2), (4) and (5) are proved easily by using the Lévy–Khinchin formulae
[16, 17].

(3) and (7) follow from direct computations of the Lévy–Khinchin for-
mula. See [13] and [17].

Property (6) follows from Theorem 4.2.
(8) and (9) are direct consequences of Theorems 4.6 and 4.8.

6. Time-independent properties of free and Boolean convolu-
tion semigroups. We prepare tools to study convolution semigroups in
free and Boolean probabilities. The notation is chosen in order that the
correspondence becomes clear among the Bercovici–Pata bijections in free,
monotone and Boolean probability theories. We define

(6.1) Kµ(z) := z −Hµ(z) = γ −
� 1 + xz

x− z
dτ(x).
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As proved in [19], the Boolean convolution µ] ν of probability distributions
µ and ν is characterized by

(6.2) Kµ]ν = Kµ +Kν .

Every probability measure is Boolean infinitely divisible.
We summarize results on infinitely divisible distributions in free proba-

bility (see [3, 8] for instance). For a probability measure µ, there exist η > 0
and M > 0 such that Hµ has an analytic right inverse H−1

µ defined on the
region

Γη,M := {z ∈ C; |Re z| < η|Im z|, |Im z| > M}.
The Voiculescu transform φµ is defined by φµ(z) := H−1

µ (z)−z in the region
where H−1

µ is defined. For probability measures µ and ν, the free convolution
of µ and ν is characterized by the relation

(6.3) φµ�ν = φµ + φν .

Theorem 6.1. Let µ be a probability measure on R. Then µ is �-infi-
nitely divisible if and only if there exist a finite measure τ and a real number
γ such that

(6.4) φµ(z) = γ +
�

R

1 + xz

z − x
dτ(x) for z ∈ C \ R.

In this section we prove time-independent properties of free and Boolean
convolution semigroups to clarify similarity and dissimilarity of the Berco-
vici–Pata bijections for free, Boolean and monotone convolutions. First we
show that the subordinator theorem is valid in the Boolean case but not in
the free case.

Theorem 6.2. Let {µt}t≥0 be a weakly continuous Boolean convolution
semigroup with µ0 = δ0. Then the following statements are equivalent:

(1) there exists t0 > 0 such that suppµt0 ⊂ [0,∞);
(2) suppµt ⊂ [0,∞) for all 0 ≤ t <∞;
(3) supp τ⊂ [0,∞), τ({0})=0,

	∞
0 x−1 dτ(x)<∞ and γ≥

	∞
0 x−1 dτ(x).

This type of theorem does not hold in free probability: condition (1) is not
equivalent to (2).

Proof. In the Boolean case, the proof is easy by Proposition 2.5. In
free probability, we give an example of a convolution semigroup for which
(1) does not imply (2). Since the problem is symmetric around the origin,
we show a counterexample concerning the condition suppµt ⊂ (−∞, 0].
We define φµ(z) := a − (z − c)1/2 with a, c ∈ R. Then the corresponding
convolution semigroup {µt}t≥0 with µ1 = µ, µ0 = δ0 is characterized by

(6.5) Ht(z) = z − at+ t2/2 + t
√
z − (at− t2/4 + c).
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It is easy to show that suppµt ⊂ (−∞, 0] for sufficiently large t, but
suppµt * (−∞, 0] for small t.

Symmetry around the origin is a time-independent property also in the
cases of Boolean and free independence. The proof is easy.

Proposition 6.3. Let {µt}t≥0 be a weakly continuous Boolean (free)
convolution semigroup with µ0 = δ0. Then the following statements are
equivalent.

(1) there exists t0 > 0 such that µt0 is symmetric;
(2) µt is symmetric for all t > 0;
(3) γ = 0 and τ is symmetric.

We can also show that the property
	
R x

2n dµt(x) <∞ is time-indepen-
dent in the Boolean case. In free probability, this result has recently been
obtained in [5].

Proposition 6.4. Let n ≥ 1 be a natural number. For a weakly contin-
uous Boolean convolution semigroup {µt}t≥0, the following statements are
equivalent:

(1)
	
R x

2n dµt(x) <∞ for some t > 0;
(2)

	
R x

2n dµt(x) <∞ for all t > 0;
(3)

	
R x

2n dτ(x) <∞.

Proof. This follows from Proposition 2.8.

Now we can compare the properties of the Bercovici–Pata bijections in
free, monotone and Boolean probability theories. Boolean (strictly) stable
distributions have been classified in [19], and they have the same character-
ization as in the monotone case. Considering the material of this section,
we obtain the Boolean analogue of properties (1)–(9) in Theorem 5.1. It
might be fruitful to consider the validity of property (6) in the Boolean and
monotone cases in terms of the embeddings into tensor independence [11].
In free probability, most of the results of Theorem 5.1 are already known
(see [3, 7]) except for the failure of the free analog of property (6).

Another similarity between free and monotone independences is that the
number of atoms in a �-infinitely divisible distribution is restricted in a sim-
ilar way to the case of a B-infinitely divisible distribution (see Theorem 3.5
in [13] and Proposition 2.8 in [4]).
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