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A Gowers tree like space and the space of its
bounded linear operators

by

Giorgos Petsoulas and Theocharis Raikoftsalis (Athens)

Abstract. The famous Gowers tree space is the first example of a space not contain-
ing c0, `1 or a reflexive subspace. We present a space with a similar construction and prove
that it is hereditarily indecomposable (HI) and has `2 as a quotient space. Furthermore,
we show that every bounded linear operator on it is of the form λI + W where W is a
weakly compact (hence strictly singular) operator.

1. Introduction. As is well known, B. S. Tsirelson [T] constructed the
first Banach space not containing c0 or `p for 1 ≤ p <∞. After Tsirelson’s
fundamental example, the original question of whether every Banach space
contains an isomorphic copy c0 or `p was replaced by the following: Does
every Banach space contain c0, `1 or a reflexive subspace?

A classical result of R. C. James [J1] asserting that a space with an
unconditional basis is either reflexive or has a subspace isomorphic to ei-
ther c0 or `1 provides an affirmative answer to the above question within
the class of Banach spaces containing an unconditional basic sequence. In
1994 W. T. Gowers, based on the fundamental construction of HI spaces by
Gowers and B. Maurey [GM], settled the above problem in the negative by
providing a Banach space not containing c0, `1 or a reflexive subspace. This
example became known as the Gowers tree space and we hereafter denote
it by GT . Gowers’ famous dichotomy [G2] implies that any space sharing
this property should be HI saturated, i.e. every infinite-dimensional closed
subspace of it contains a hereditarily indecomposable one.

The main idea behind the GT construction is to endow each subspace
of the predual with a structure that resembles the tree structure of the
biorthogonal functionals of the basis of the James tree space (denoted by
JT ), a space not containing `1 and with nonseparable dual [J2]. In order
to achieve this, Gowers combines, to some extent, the Gowers and Maurey

2000 Mathematics Subject Classification: 46B20, 46B26.
Key words and phrases: hereditarily indecomposable Banach space, strictly singular op-
erators.

DOI: 10.4064/sm190-3-2 [233] c© Instytut Matematyczny PAN, 2009



234 G. Petsoulas and T. Raikoftsalis

norm [GM] with that of JT . The key point is the way the special functionals
are produced. Let us recall that the tree structure in JT occurs on the basis
of the space which, through a suitable partial ordering, can be indexed as
(et)t∈2<ω with 2<ω denoting the dyadic tree. Then the special functionals
are defined as s∗ =

∑
t∈s e

∗
t for all segments s ⊂ 2<ω. In the case of GT

Gowers has defined, through a coding similar to the one used in [GM],
an infinitely branching tree structure of functionals which penetrates every
block subspace of 〈e∗n : n ∈ N〉. The special functionals are defined again
as sums over all segments of this tree structure. Thus, the GT construction
imposes a hereditary James tree type structure in every block subspace of
the predual of GT . Furthermore, there is a natural notion of disjointness
that characterizes special functionals as in the case of segments in JT ∗.
This is used in order to include `2-sums of “disjoint” special functionals
in the norming set of GT similar to the `2-convex combinations of disjoint
segments in JT ∗.

These so-called special combinations are on one hand essential as they
do not allow `1 to embed into GT , and on the other hand they make some
crucial estimations very hard. This is because the special functionals used
to form an `2-special combination do not necessarily have disjoint supports.
Gowers overcomes this problem by using elaborate finite combinatorics and
advanced probabilistic arguments associated to the Hamming distance to
provide estimates for certain averages of rapidly increasing sequences (RIS)
(see Lemma 4 in [G1]). Namely, he shows that if one considers such a se-
quence (xi)Mi=1 then there would necessarily exist a choice of signs (εi)Mi=1 such
that the norm ‖M−1

∑M
i=1 εixi‖ is approximately 1/

√
log2(M + 1). As such

averages exist in every block subspace, GT cannot contain `1. In addition, it
allows Gowers to show that every block sequence (yn)n in GT has a further
block subsequence (zn)n which is not weakly null. By a classical result of
W. B. Johnson and H. P. Rosenthal [JR] this implies that every infinite-
dimensional subspace of GT has nonseparable dual, as GT has a boundedly
complete basis, which also implies that c0 does not embed into the space.

Gowers’ deep approach, however, is in its base existential and thus cannot
provide more precise estimates for the action of other types of functionals
on these averages which are necessary for proving additional properties of
the space (for example, that it is HI) and studying its operators. In this
paper we present a slight variant of GT which we denote by Xgt and use
different techniques to investigate its properties. We fix two sequences of
natural numbers (mj)j and (nj)j and define the norming set Ggt for Xgt to
be the minimal subset of c00(N) satisfying:

• Ggt is symmetric, closed under projections on intervals and contains
the set {±e∗n : n ∈ N}.
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• It is closed under the (Anj , 1/2mj) operations for all j.
• It is rationally convex.
• It contains the set S of all (finite) special functionals.
• It contains the set {

∑d
i=1 aix

∗
i : ai ∈ Q,

∑d
i=1 a

2
i ≤ 1, (x∗i )

d
i=1 ⊂ S,

indx∗i ∩ indx∗j = ∅, i 6= j}.

Recall that a set F ⊂ c00(N) is closed under the (An, 1/m) operation if
for every block sequence f1 < · · · < fd in F with d ≤ n the functional
f = 1

m

∑d
i=1 fi lies in F . For such a functional f we write w(f) = m. The

set S of special functionals contains elements of the form x∗ = E
∑

i fi
where E is a finite interval of N and (fi)i is a special sequence. The latter
are defined through a standard coding function σ. Namely, a block sequence
(fi)i is called special if w(f1) = 2mj1 and w(fi+1) = 2mσ(f1,...,fi) for i ≥ 1.
For such a sequence we set (ind fi)i = {ji : w(fi) = 2mji} = {j1 < σ(f1) <
σ(f1, f2) < · · · } and for a special functional x∗ = E

∑
i fi, indx∗ = {ind fi :

ran fi ∩ E 6= ∅}.
The norming set of GT is defined in a similar way. The only differences

are that the latter is closed under the (An, 1/
√

log2(n+ 1)) operations, for
all n ∈ N, and that the coding function σ in GT selects weights from a
lacunary subset J of the natural numbers (see [G1]).

As mentioned above, our methods differ significantly from those used by
Gowers. More precisely, we start with an arbitrary infinite RIS (yn)n and
refine it through repeated application of classical Ramsey theory to produce
a new RIS (wn)n with strong stability properties with respect to the action
of all types of functionals on its elements. In particular, starting with j0 ∈ N
and a RIS sequence (yn)n it is shown that there exists a subsequence (wn)n
of (y2n− y2n−1)n such that for every `2-special combination y∗ =

∑d
i=1 aix

∗
i

with indx∗i ≥ j0 for all i ≤ d, we have

(1) |{k ∈ N : |y∗(wk)| ≥ 5/mj0}| ≤ 1025m2
j0 .

We call a sequence satisfying (1) a j0-separated RIS. This permits us to use
a Basic Inequality to derive precise estimates for the actions of function-
als on averages of a j-separated RIS. This is done by reducing evaluations
to the basis of an appropriately defined auxiliary space. The main diffi-
culty at this point is that given an `2-special combination y∗ =

∑d
i=1 aix

∗
i ,

the special functionals (x∗i )
d
i=1 may have overlapping supports. After prov-

ing the Basic Inequality one can use standard arguments to establish the
existence of exact pairs and dependent sequences in every block subspace
of Xgt (see, for example, [ATO]). This, in turn, implies that the space
is HI and enables us to study the structure of bounded linear operators
on the space as well as the properties of its predual, dual and second
dual.
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We believe that it is possible to apply an analogous procedure to rapidly
increasing sequences in the original Gowers tree space to prove that GT
shares similar properties. We also note that the proof of (1) above extends
techniques which have been developed by S. A. Argyros, A. Arvanitakis and
A. Tolias in [AAT], where a new class of spaces not containing c0, `1 or a
reflexive subspace is presented. Their constructions involve the method of
attractors and are different from that of GT and the present one.

Our main results are the following.

Theorem I. The space Xgt is HI and every bounded linear operator
T : Xgt → Xgt is of the form λI + W where W is a strictly singular and
weakly compact operator.

Theorem II. The predual (Xgt)∗ is HI and every bounded linear opera-
tor T : (Xgt)∗ → (Xgt)∗ is of the form λI+W where W is a strictly singular
and weakly compact operator.

We also show the following.

Theorem III. For every infinite-dimensional closed subspace Y of Xgt

the dual space Y ∗ is nonseparable and contains an isomorphic copy of `2.
Therefore, Y has `2 as a quotient space.

The above result shows that no closed infinite subspace of Xgt is quo-
tient HI, where a Banach space is said to be quotient HI if all of its infinite-
dimensional quotient spaces, over closed subspaces, are hereditarily indecom-
posable. A problem posed by S. A. Argyros mentioned in [F2] asks whether
there exists a reflexive HI space X such that the dual of no infinite-dimen-
sional subspace is HI. In the case of Xgt we see, by Theorem III above, that
for every such subspace Y of Xgt, Y ∗ is not HI. However, Xgt is not reflexive
and thus the above problem remains open. Moreover, using techniques devel-
oped in [AAT], it can be shown that every quotient of Xgt with a w∗-closed
kernel is HI. Hence, if we consider a quotient of Xgt by a block subspace Y
we find that it is HI. For more details on properties of quotient HI spaces
we refer the interested reader to the work of V. Ferenczi [F1], [F2].

In addition we show the following.

Theorem IV. For every infinite-dimensional closed subspace Y of Xgt

its second dual space Y ∗∗ contains an isomorphic copy of `2(c), where c is
the Cantor set , and thus Y ∗ has `2(c) as a quotient space.

Theorems III and IV above illustrate the analogies between the triples
Xgt,X

∗
gt,X

∗∗
gt and JT, JT ∗, JT ∗∗. It seems peculiar, at first, that an HI space

containing no reflexive subspace is in a sense “surrounded” by Hilbert spaces
and that its dual and second dual share similar properties with the corre-
sponding ones of JT , which is hereditarily `2. However striking, this phe-
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nomenon is supported by deep results of S. A. Argyros, P. Dodos and
V. Kanellopoulos [ADK1], [ADK2] asserting that for every separable Ba-
nach space X not containing `1 with X∗ nonseparable there is a James tree
type structure in X. In particular, it is shown that for such X there exist
two families A = (xt)t∈2<ω ⊂ BX and B = (x∗∗b )b∈2ω ⊂ BX∗∗ (2ω denotes
the Cantor set) such that B is w∗-discrete, 1-unconditional accumulating to
zero and for every b ∈ 2ω, xb|n

w∗→ x∗∗b .
This paper is organized as follows. Section 2 is devoted to preliminaries.

In Section 3 we give the definition of the norming set of the space. In Sec-
tion 4 we recall the definition of (C, ε) rapidly increasing sequences (RIS)
and then show that in every block subspace of Xgt one can find a (3, ε) RIS
for every ε > 0.

In Section 5 we investigate the combinatorial properties of RIS in Xgt.
We introduce the notion of j0-separated RIS for a given j0 ∈ N, mentioned
above, and show that for every j0 ∈ N, every block subspace Y of Xgt

and ε < 5/mj0 there exists a j0-separated (6, ε) RIS in Y . Once this is
achieved, in the next section we verify that n2j0-averages of vectors in a
j0-separated RIS satisfy precise estimates. This process goes through the
general technique called the Basic Inequality. The whole of Section 6 is
devoted to the proof of the Basic Inequality. In Section 7 we use the Basic
Inequality to establish the existence of dependent sequences in every block
subspace of Xgt. Subsequently, we pass in Sections 8 and 9 to study the
fundamental properties of the space and the space of its bounded linear
operators. In these two sections we prove Theorem I stated above.

In Section 10 we study the structure of the triple Xgt,X
∗
gt,X

∗∗
gt . In par-

ticular we prove Theorems III and IV. These two results go through the
following proposition.

Proposition. For each i∈N consider a 6-dependent sequence (win, f
i
n)n.

Assume that ind f in ∩ ind f i
′
n = ∅ for all i 6= i′ ∈ N, and set b∗i =

∑
n f

i
n for

all i ∈ N. Then (b∗i )i∈N with the X∗gt norm is equivalent to the standard `2
basis.

In the proof we use a second Basic Inequality to provide the lower `2
estimates. Finally, in the last section we study the structure of the predual
space (Xgt)∗ and prove Theorem II.

2. Notation. Throughout, we make use of the following standard no-
tation.

We denote by c00(N) the set {f : N → R : f(n) 6= 0 for finitely many
n ∈ N} and by cQ00(N) the set of all elements of c00(N) with rational coordi-
nates. For every x ∈ c00(N) we denote by suppx the set {i ∈ N : x(i) 6= 0}
and by ranx the minimal interval of N that contains suppx.
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We denote by (en)n the standard Hamel basis of c00(N).
Let E1, E2 be two nonempty finite subsets of N. We write E1 < E2 if

maxE1 < minE2. If x1, x2 ∈ c00(N) we write x1 < x2 whenever ranx1 <
ranx2. A sequence (xk)k in c00(N) is called a block sequence if xi < xj for all
i, j with i < j. For a function f : N→ R and E an interval of N we denote
by Ef the restriction of f to E.

We say that a subset G of c00(N) is closed under the (An, θ)-operation,
for 0 < θ < 1, if θ

∑d
i=1 fi ∈ G for every block sequence (fi)di=1 in G with

d ≤ n.
We fix two sequences of natural numbers (mj)j and (nj)j defined recur-

sively as follows for j ≥ 1:

m1 = 24, mj+1 = m5
j ,

n1 = 27, nj+1 = (2nj)sj+1 , sj+1 = log2(m3
j+1).

For a set A we denote by |A| the cardinality of A and by [A] the set of
its infinite subsets. We also denote by 2<ω the dyadic tree and by 2ω the set
of its infinite branches.

3. The norming set Ggt

Definition 3.1. We say that f ∈ c00(N) has weight mj , and we write
w(f) = mj , if there exists a block sequence (fi)di=1 with ‖fi‖∞ ≤ 1 and
d ≤ nj such that f = 1

2mj

∑d
i=1 fi.

Definition 3.2. We fix two disjoint infinite subsets Ω1, Ω2 of N and set

Qs = {(fi)di=1 : d ∈ N, fi ∈ cQ00(N), fi 6= 0, (fi)di=1 is a block sequence}.
As Qs is countable we fix an injective coding function σ : Qs → Ω2 satisfying

mσ(f1,...,fd) > max{1/|fi(el)| : i = 1, . . . , d and l ∈ supp fi} ·max supp fd.

Definition 3.3. A block sequence (fi)i such that (fi)ni=1 ∈ Qs for all
n is called σ-special or simply special if w(f1) = mj for some j ∈ Ω1, and
w(fi+1) = mσ(f1,...,fi) for all i ≥ 1.

For a given special sequence (fi)i we will denote by (ind fi)i the sequence

{ji ∈ N : w(fi) = mji} = {j1 < j2 < · · · }
where j1 ∈ Ω1 and ji+1 = σ(f1, . . . , fi) for i ∈ N.

Definition 3.4. An infinite special functional is of the form x∗=E
∑

i fi
where (fi)i is an infinite special sequence, E is an infinite interval of N and
the sum is convergent in the pointwise topology.

A finite special functional is of the form x∗ = E
∑

i fi where (fi)i is an
infinite special sequence and E is a finite interval of N. The set of all finite
special functionals will be denoted by S.
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For every special functional x∗ = E
∑

i fi we set

indx∗ = {ind fi : ran fi ∩ E 6= ∅}.

We call two special functionals x∗1, x
∗
2 incomparable if indx∗1∩ indx∗2 = ∅.

Remark 3.1 (Tree like property). If (fi)i, (gi)i are two distinct special
sequences then there exists an i0 ∈ N such that fi = gi for i < i0, w(fi0) =
w(gi0), fi0 6= gi0 and w(fi) 6= w(gi) for i > i0.

We now define the norming set :

Definition 3.5. Let Ggt be the minimal subset of c00(N) satisfying the
following:

• ±en ∈ Ggt for all n ∈ N.
• Ggt is closed under the (Anj , 1/2mj)-operation for every j ∈ N.
• Ggt is rationally convex.
• S ⊆ Ggt.
• Ggt contains {

∑d
i=1 aix

∗
i : ai ∈ Q,

∑d
i=1 a

2
i ≤ 1, (x∗i )

d
i=1 ⊆ S and

indx∗i ∩ indx∗j = ∅ for i 6= j}.

It is clear that Ggt induces a norm on c00(N): we set

‖x‖gt = sup{f(x) : f ∈ Ggt} for all x ∈ c00(N),

and we denote by Xgt the completion of c00(N) under the norm ‖ · ‖gt.
We also make use of the following terminology:

Definition 3.6. Let f ∈ Ggt and f 6= 0. We say that f is of

• type 0 if f ∈ {±en : n ∈ N},
• type I if f ∈ { 1

2mj
(f1 + · · · + fd) : j ∈ N, d ≤ nj , (fi)di=1 ⊂ Ggt and

(fi)i is a block sequence},
• type II if f ∈ {

∑d
i=1 aix

∗
i : ai ∈ Q,

∑d
i=1 a

2
i ≤ 1, (x∗i )

d
i=1 ⊆ S and

indx∗i ∩ indx∗j = ∅ for i 6= j},
• type III if f ∈ {

∑d
i=1 rifi: d ∈ N, ri ∈ Q+, fi ∈ Ggt,

∑d
i=1 ri = 1}.

Notation 3.1. For a special functional f = E
∑

i fi ∈ Ggt and k ∈ N
we write

f<k = E
∑

w(fi)<mk

fi and f≥k = E
∑

w(fi)≥mk

fi.

Similarly, for a type II functional y∗=
∑d

i=1 aix
∗
i we write ind y∗=

⋃d
i=1 indx∗i

and

y∗<k =
d∑
i=1

aix
∗
i,<k and y∗≥k =

d∑
i=1

aix
∗
i,≥k.



240 G. Petsoulas and T. Raikoftsalis

Definition 3.7. Let f ∈ Ggt with finite support and j0 ∈ N. A family
(fa)a∈A is called a j0-tree analysis of f if:

(1) A is a finite tree, equipped with a partial ordering @, with a least
element denoted by 0, fa ∈ Ggt for all a ∈ A and f0 = f .

(2) For a ∈ A maximal, fa ∈ {±en : n ∈ N}.
(3) For a, b ∈ A with a @ b we have ran fb ⊂ ran fa.
(4) For a ∈ A not maximal we denote by Sa the set of immediate suc-

cessors of a in A. If (fb)b∈Sa can be written as a block sequence we
assume Sa to be totally ordered as {b1 < · · · < b|Sa|} so that bi < bj
iff ran fbi < ran fbj for bi 6= bj ∈ Sa.

(5) For a ∈ A not maximal fa has one of the following forms:

• If fa is of type I then fa = 1
2mja

∑
s∈Sa

fs, where |Sa| ≤ nja and
(fs)s∈Sa is a block sequence.
• If fa is special then fa = Ea

∑
i fi, where Ea is a finite interval of N

and (fi)i is a special sequence. Set Fa = {i ∈ N : ranfi∩Ea 6= ∅}=
{ia1, . . . , iada

} and Sa = {s1, . . . ,sda} where fsj = Eafij and w(fsj ) =
w(fij ) for all j ∈ {1, . . . ,da}. Finally, we write fa =

∑
s∈Sa

fs.
• If fa is of type II and fa,<j0 6= 0 and fa,≥j0 6= 0 then Sa = {s1, s2}

and fa = fs1 + fs2 , where fs1 = fa,<j0 and fs2 = fa,≥j0 . If
either fa,<j0 = 0 or fa,≥j0 = 0 then fa =

∑
s∈Sa

asfs, where
(as)s∈Sa ⊂ Q, (fs)s∈Sa are special functionals with disjoint sets of
indices and

∑
s∈Sa

a2
s ≤ 1.

• If fa is of type III then fa =
∑

s∈Sa
rsfs, where rs ∈ Q+ and∑

s∈ Sa
rs = 1.

Remark 3.2. The following can be readily established:

(1) For f ∈ Ggt we have ‖f‖∞ ≤ 1.
(2) Ggt is symmetric and closed under projections on intervals of N. The

Hamel basis (en)n is a bimonotone and normalized Schauder basis
for Xgt. Moreover, (en)n is boundedly complete.

(3) Every f ∈ Ggt is of type 0, I, II or III. However, the type is not
uniquely defined.

(4) For every j0 ∈ N, every f ∈ Ggt admits a j0-tree analysis, which in
general is not unique as functionals may have various types. This,
however, does not play any role as the proofs work for any j0-tree
analysis that one considers.

(5) For every block sequence (xi)di=1 in Xgt and j ∈ N such that d ≤ n2j

it follows that ‖
∑d

i=1 xi‖gt ≥
1

2m2j

∑d
i=1 ‖xi‖gt.

4. Rapidly increasing sequences in Xgt. We begin by recalling the
definitions of a rapidly increasing sequence (RIS) and M -`k1 averages.
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Definition 4.1. Let (xn)n be a block sequence in Xgt and C, ε positive
numbers. The sequence (xn)n will be called a (C, ε) RIS if:

• ‖xn‖gt ≤ C for all n ∈ N.
• There exists a strictly increasing sequence (jn)n of natural numbers

such that |suppxn|/mjn+1 < ε for all n ∈ N.
• For n ∈ N and f ∈ Ggt with w(f) = mi < mjn we have |f(xn)| ≤
C/2mi.

Definition 4.2. Let k ∈ N and M > 0. We call a vector x ∈ Xgt an
M -`k1 average if

• ‖x‖gt > 1.
• There exists a block sequence (xi)ki=1 with ‖xi‖gt ≤ M for all i =

1, . . . , k such that x = 1
k

∑k
i=1 xi.

Here we need three lemmas that establish the existence of a (3, ε) RIS
in every block subspace of Xgt. We start with the following.

Lemma 4.1. Let Z be a block subspace of Xgt and k ∈ N. Then there
exists an x ∈ Z which is a 2-`k1 average.

This lemma is an immediate consequence of Remark 3.2(5); for a detailed
proof we refer the interested reader to [ATO, Lemma II.22].

The following lemma is necessary to describe the behavior of functionals
with small weight acting on large `1 averages; its proof follows a standard
technique which can be found in most of the articles in the relevant litera-
ture. For more details we refer to [ATO, Lemma II.23].

Lemma 4.2. Let x ∈ Xgt be an M -`k1 average for k ∈ N and M > 0, and
let f ∈ Ggt with w(f) = mi. Then

|f(x)| ≤ M

2mi

(
1 +

2ni
k

)
.

Finally, combining Lemmas 4.1, 4.2 and a simple inductive argument we
obtain the following.

Lemma 4.3. For every ε > 0 and any block subspace Z of Xgt there
exists a block sequence (xn)n in Z which is a (3, ε) RIS and ‖xn‖gt > 1
for all n ∈ N. In addition, each xn is a 2-`njn

1 average with (jn)n as in
Definition 4.1.

The proof is identical to that of Proposition II.25 in [ATO] so we omit it.

5. Combinatorial properties of rapidly increasing sequences in
Xgt. In this section we establish the existence of rapidly increasing sequences
that satisfy some strong combinatorial properties in every block subspace
of Xgt. Before proceeding it is necessary to give a brief description of the
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pointwise closure of S, the set of all finite special functionals. Namely, we
can readily establish

Fact 5.1. Every f ∈ Sw
∗

has one of the following forms:

(1) f is a finite special functional.
(2) f is an infinite special functional.
(3) f can be written as f =

∑k
i=1 fi and

• (fi)k−1
i=1 is a finite special sequence,

• fk can be represented as fk = 1
2w(fk)

∑∞
n=1 f

k
n where (fkn)n is

a block sequence and w(fk) = mσ(f1,...fk−1). In this case we set
ind f = ind((fi)k−1

i=1 ) ∪ w(fk).

Remark 5.1. It can be seen that for any two finite sequences (ai)di=1

and (fi)di=1 such that

•
∑d

i=1 a
2
i ≤ 1,

• fi ∈ S
w∗ for all i ≤ d and (fi)di=1 have disjoint sets of indices,

the functional
∑d

i=1 aifi is an element of Gw
∗

gt .

The following definition sums up all the desired combinatorial properties
of an RIS mentioned at the beginning of this section:

Definition 5.1. Let j0 ∈ N and (xn)n be a (C, ε) RIS with 0 < ε <
5/mj0 and (jn)n its associated sequence of natural numbers. We will call
(xn)n j0-separated if:

• j1 > j0.
• For every functional f ∈ Ggt of type I with w(f) ≥ mj0 , we have
|{k ∈ N : |f(xk)| ≥ 5/mj0}| ≤ 1.
• For every special functional x∗ with indx∗ ≥ j0, we have |{k ∈ N :
|x∗(xk)| ≥ 10/mj0}| ≤ 2.
• If y∗ ∈ Ggt is of type II with ind y∗ ≥ j0, then |{k ∈ N : |y∗(xk)| ≥

5/mj0}| ≤ 1025m2
j0

.

By Lemma 4.3, in every block subspace of Xgt one can find a seminor-
malized (3, ε) RIS. The rest of this section is devoted to showing that for
every block subspace Z of Xgt and every j0 ∈ N one can find a seminormal-
ized (6, ε) RIS in Z which is additionally j0-separated. We begin with the
following general lemma.

Lemma 5.1. Let (xn)n be a bounded block sequence in Xgt. Then there
exists an L ∈ [N] such that the sequence (x∗(xn))n∈L is convergent for every
special functional x∗.

Proof. Since (xn)n is a block sequence we only need to consider the case
of infinite special functionals. We need the following.
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Claim. For every ε > 0 and M ∈ [N] there exists L ∈ [M ] and a finite
collection A = {x∗1, . . . , x∗l } of infinite special functionals such that for every
infinite special functional x∗ /∈ A we have lim supn∈L |x∗(xn)| ≤ ε.

Proof of Claim. Suppose not. Then there exist ε > 0 and M ∈ [N] for
which we can construct a decreasing sequence (Mi)i of infinite subsets of M
and a sequence (x∗i )i of pairwise different infinite special functionals such
that |x∗i (xn)| > ε for every n ∈Mj with j ≥ i. Set C = sup{‖xn‖gt : n ∈ N}
and choose r > C/ε. Since the functionals x∗1, . . . , x

∗
r2 are mutually different,

by Remark 3.1 we can choose an arbitrarily large finite interval E of N such
that the functionals x̂∗1 = Ex∗1, . . . , x̂

∗
r2 = Ex∗r2 have mutually disjoint sets

of indices (ind x̂∗i )
r2
i=1. As (xn)n is a block sequence and E is arbitrarily large

we can pick n ∈ Mr2 such that suppxn ⊂ E. Let also ai = (sgnx∗i (xn))/r
for i = 1, . . . , r2. Set f =

∑r2

i=1 aix̂
∗
i . Then f ∈ Ggt and f(xn) > C. This

contradiction yields the claim.

Using the claim we can inductively construct a strictly decreasing se-
quence (Ln)n of infinite subsets of M and a sequence (An)n of finite col-
lections of infinite special functionals such that for every infinite functional
x∗ /∈ Ak we have lim supn∈Lk

|x∗(xn)| ≤ 1/k. Thus, we can choose a diagonal
set L∞ satisfying lim supn∈L∞ |x

∗(xn)| = 0 for every infinite special func-
tional x∗ with x∗ /∈

⋃
nAn. Now since

⋃
nAn is countable, using a further

diagonal procedure we arrive at an infinite L ⊂ L∞ such that (x∗(xn))n∈L
is convergent for every special functional x∗.

Remark 5.2. It can be readily seen that if (xn)n is (3, ε) RIS and wn =
x2n−1 − x2n for n ∈ N, then we can choose L ∈ [N] such that (wn)n∈L is a
(6, ε) RIS. Using this fact in conjunction with the previous lemma we can
assume that every (xn)n which is a (6, ε) RIS has the additional property
that

lim
n
x∗(xn) = 0 for every special functional x∗.

We will always assume this property, unless stated otherwise.

Lemma 5.2. Let j0 ∈ N and (xn)n be a (6, ε) RIS with 0 < ε < 5/mj0.
Assume that the associated sequence (jn)n satisfies j1 > j0. Then for every
f ∈ Ggt of type I with w(f) ≥ mj0 we have |{k ∈ N : |f(xk)| ≥ 5/mj0}| ≤ 1.
Moreover , if the above set is nonempty then the element it contains depends
only on the weight of f .

Proof. Let f ∈ Ggt with w(f) = mi and i ≥ j0. Let E1 = {n ∈ N :
jn ≤ i} and E2 = {n ∈ N : jn > i}. Set m = maxE1 and M = minE2.
Then |f(xn)| < ε for every n < m by the definition of RIS. Simultaneously,
|f(xn)| ≤ 6/2mi ≤ 3/mj0 for every n ≥ M . Thus, {k ∈ N : |f(xk)| ≥
5/mj0} ⊆ {m}. It is also clear that m depends only on w(f).
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Lemma 5.3. Let j0 ∈ N and (wn)n be a (6, ε) RIS with 0 < ε < 5/mj0.
Assume that the associated sequence (jn)n satisfies j1 > j0. Then there exists
an L ∈ [N] such that for every infinite special functional x∗ with indx∗ ≥ j0,
we have |{n ∈ L : |x∗(wn)| ≥ 10/mj0}| ≤ 1.

Proof. Suppose not. Then for every L ∈ [N] there exist (l1, l2) ∈ [L]2

and an infinite special functional x∗(l1,l2) such that indx∗(li,l2) ≥ j0 and
|x∗(l1,l2)(wli)| ≥ 10/mj0 for i = 1, 2. By Ramsey’s theorem there exists
L ∈ [N] such that for every (l1, l2) ∈ [L]2 there exists an infinite special
functional x∗l1,l2 with indx∗(li,l2) ≥ j0 such that |x∗l1,l2(wli)| ≥ 10/mj0 for
i = 1, 2. Hence by passing to a subsequence we may assume that for any
n < k ∈ N there exists an infinite special functional x∗n,k with indx∗n,k ≥ j0
such that |x∗n,k(wi)| ≥ 10/mj0 , i = n, k. Let

x∗n,k = En,k

∞∑
i=1

f in,k

where (f in,k)i is a special sequence. For every n < k we set

on,k = min{i : max supp(En,kf in,k) ≥ min suppwk}.

Now if (En,kf
on,k

n,k )(wn) > 5/mj0 we set s∗n,k =
∑on,k

i=1 f
i
n,k, and otherwise we

set s∗n,k =
∑on,k−1

i=1 f in,k. We need the following

Claim. There exists d ∈ N such that |Dk| = |{s∗n,k : n < k}| ≤ d for
every k ≥ 2.

Proof of Claim. Let k ∈ N. Let s∗nj ,k
, j = 1, . . . , d, be the distinct ele-

ments of Dk. We consider the following special functionals:

z∗nj
= x∗nj ,k

− Enj ,ks
∗
nj ,k

, j = 1, . . . , d.

We can observe that ind z∗nj
≥ j0 for all j = 1, . . . , d, and as {s∗nj ,k

}dj=1 are
pairwise different, {z∗nj

}dj=1 are incomparable.
Now for each j = 1, . . . , d we have |z∗nj

(wk)| ≥ 5/mj0 . Indeed, if s∗nj ,k
=∑onj,k

i=1 f inj ,k
then by Lemma 5.2,

|z∗nj
(wk)| ≥ |x∗nj ,k

(wk)| − |Enj ,kf
onj,k

nj ,k
(wk)| ≥

10
mj0

− 5
mj0

=
5
mj0

.

If s∗nj ,k
=
∑onj,k−1

i=1 f inj ,k
we have

|z∗nj
(wk)| = |x∗nj ,k

(wk)| ≥
10
mj0

.
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Thus, if we set

y∗ =
1√
d

d∑
j=1

sgn(z∗nj
(wk)) · z∗nj

we obtain y∗(wk) ≥
√
d · 5/mj0 and thus d ≤ (6/5)2m2

j0
, which completes

the proof of the claim.

Now we can see that for every k ≥ 2 and n < k we have |s∗n,k(wn)| ≥
5/mj0 . Thus, for every k ≥ 2 there exists a family {s∗r,k : r = 1, . . . , d} of
special functionals such that for all n = 1, . . . , k−1 there exists r ∈ {1, . . . , d}
such that |s∗r,k(wn)| ≥ 5/mj0 . By passing to subsequences we may assume

that s∗r,k
w∗→ x∗r ∈ S

w∗ for all r = 1, . . . , d. Now for n ∈ N and r ∈ {1, . . . , d}
we say that k is r-large for n if k > n and |s∗r,k(wn)| ≥ 5/mj0 . We know that
for every n ∈ N there exists r ∈ {1, . . . , d} such that the set

LRrn = {k : k is r-large for n}
is infinite. Hence, there exist r0 ∈ {1, . . . , d} and M ∈ [N] with LRr0m infinite
for all m ∈M . Thus, since s∗r0,k → x∗r0 and |s∗r0,k(wm)| ≥ 5/mj0 for infinitely
many k and m ∈ M , it follows that |x∗r0(wm)| ≥ 5/mj0 for every m ∈ M .
To complete the proof we need only show that x∗r0 cannot be of the form
x∗r0 =

∑d−1
i=1 fi + f∞ where f∞ is an infinite functional with weight. Indeed,

suppose that x∗r0 is of that from. If we set s∗r0,k =
∑dk

i=1 f
k
i we can assume

that there exists l ∈ N such that:

• ml ∈ ind s∗r0,k for all k.
• If, for every k, fk is the unique element of {fki : i = 1, . . . , dk} with
w(fk) = ml, then fk → f∞.

Then since (wm)m∈M is a RIS there exists m0 ∈ M such that |fk(wm)| ≤
6/2ml ≤ 3/mj0 < 5/mj0 for all m ≥ m0. Thus limk |fk(wm)| = |f∞(wm)| <
5/mj0 for all m ≥ m0, a contradiction.

Now, by Fact 5.1, x∗ is necessarily an infinite special functional such that
|x∗(wm)| ≥ 5/mj0 , which contradicts the assumption that x∗(wk) → 0 (see
Remark 5.2), and the proof is complete.

Remark 5.3. Let (wn)n be a block sequence such that for every infinite
special functional x∗ we have |{n ∈ N : |x∗(wn)| ≥ 10/mj0} ≤ 1. Then for
every finite special functional f we have |{n ∈ N : |f(wn)| ≥ 10/mj0}| ≤ 2.

Remark 5.4. We point out that for every j0 ∈ N and (xk)k a (6, ε) RIS
with 0 < ε < 5/mj0 we can have, by passing to a subsequence, the additional
property that:

• For every f ∈ Ggt of type I with w(f) > mj0 the set {k ∈ N : |f(xk)| ≥
5/m2

j0
} contains at most one element.
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• For every special functional x∗ with indx∗ > j0 the set {k ∈ N :
|x∗(xk)| ≥ 10/m2

j0
} contains at most two elements.

This can be shown by applying the same techniques as in Lemmas 5.2
and 5.3.

In order to control the action of type II functionals on the elements of a
(6, ε) RIS as above, we need the following auxiliary lemma:

Lemma 5.4. Let x ∈ c00(N) and ε > 0. There exists n ∈ N such that
|y∗(x)| < ε for every y∗ =

∑d
k=1 αky

∗
k ∈ Ggt of type II with max{|αk| : k =

1, . . . , d} < 1/n.

Proof. Let δ = ε/‖x‖1, where ‖x‖1 =
∑

n∈suppx |x(n)|. Clearly one can
choose m0 ∈ N such that

∑∞
j=m0+1 1/mj < δ. We pick n ∈ N such that

1/n < ε/(2m0‖x‖gt). Let y∗ =
∑d

k=1 αky
∗
k ∈ Ggt of type II with max{|αk| :

k = 1, . . . , d} < 1/n. For every k = 1, . . . , d we can decompose each y∗k as
y∗k = y∗k,1 + y∗k,2 where ind y∗k,1 ⊂ {1, . . . ,m0} and ind y∗k,2 ⊂ {m0 + 1, . . .}.
Thus y∗ =

∑d
k=1 αky

∗
k,1 +

∑d
k=1 αky

∗
k,2. Observe that

(2)
∣∣∣ d∑
k=1

αky
∗
k,2(x)

∣∣∣ ≤ ‖x‖1 ∞∑
j=m0+1

1
2mj

1
2
≤ ‖x‖1δ ≤

ε

2

and

(3)
∣∣∣ d∑
k=1

αky
∗
k,1(x)

∣∣∣ ≤ ‖x‖gtm0
1
n
<
ε

2
.

Combining (2) and (3) we obtain |y∗(x)| < ε.

Remark 5.5. Let j0 ∈ N and (wn)n be a (6, ε) RIS and suppose that
j1 > j0. Let also k ∈ N. If y∗ =

∑d
i=1 aiy

∗
i is a type II functional with

ind y∗ ≥ j0 and we set y∗<k = y∗<jk , then

|y∗<k(wk)| ≤
d∑
i=1

|αi| |y∗i,<k(wk)| ≤
d∑
i=1

|y∗i,<k(wk)| ≤
∑

j0≤i<jk

6
2mi

≤ 3
mj0

+
1
mj0

=
4
mj0

.

Proposition 5.1. Let j0 ∈ N and (wn)n be a block sequence of averages
with increasing lengths. Then there exists an L ∈ [N] such that for every
y∗ ∈ Ggt of type II with ind y∗ ≥ j0 we have

|{n ∈ L : |y∗(wn)| ≥ 5/mj0}| ≤ 1025m2
j0 .

Proof. We assume that limn x
∗(wn) = 0 for every special functional x∗.

For δ1 = 1/4mj0 there exists j1 ∈ N with j1 > j0 such that 14/mj1 < δ1. For
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0 < ε1 < 5/mj1 by Lemma 4.2 there exists M1 ∈ [N] such that (wn)n∈M1 is
a (6, ε1) RIS. By Lemma 5.3 and Remark 5.3 there is also an L1 ∈ [M1] such
that for every special x∗ with indx∗ ≥ j1 we have |{n ∈ L1 : |x∗(wn)| ≥
10/mj1}| ≤ 2. Let l1 = minL1. For δ1 and wl1 , by Lemma 5.4 we can
find r1 ∈ N such that for every y∗ =

∑c
i=1 αiy

∗
i ∈ Ggt of type II with

max{|αi| : i = 1, . . . , c} < 1/r1 we have |y∗(yl1)| < δ1. We can inductively
construct a strictly decreasing sequence (Ln)n∈N of infinite subsets of N
such that if we set ln = minLn we have Ln+1 ⊂ Ln\{ln}, and sequences of
natural numbers (jn)n∈N with jn > j0, n ∈ N for (rn)n∈N and (δn)n∈N such
that (jn)n∈N, (rn)n∈N are strictly increasing and δn+1 = 1/(4mj02nr2n) for
n ∈ N and the following hold:

• For n ∈ N and y∗ =
∑c

i=1 αiy
∗
i ∈ Ggt of type II with max{|αi| : i =

1, . . . , c} < 1/rn we have |y∗(wli)| < δn for i = 1, . . . , n.
• For n ∈ N and x∗ special with indx∗ ≥ jn we obtain |{k ∈ Ln :
|x∗(wk)| ≥ 10/mjn}| ≤ 2.

Observe that (wli)i∈N for li ≥ j0 is a (6, ε) RIS for 5/mj1 < ε < 5/mj0 . It
can also be seen that for n ∈ N and x∗ special with indx∗ ≥ jn we have
|{k ∈ Ln : |x∗>k(wlk)| ≥ 14/mjn}| ≤ 2. Indeed, let k ∈ N and |y∗>k(wlk)| ≥
14/mjn . Then

|y∗(wlk)| = |y∗>k(wlk) + y∗≤k(wlk)| ≥ |y∗>k(wlk)| − |y∗≤k(wlk)|

≥ 14
mjn

−
∑
i≥jn

6
mi
≥ 10
mjn

.

Therefore, for all n ∈ N and x∗ ∈ S with ind y∗ ≥ jn,

|{k ∈ Ln : |y∗>k(wlk)| ≥ δn}| ≤ 2.

Let L = {l1 < l2 < · · · } and n ∈ N. Then for every y∗ special with ind y∗ ≥
jn we have the additional property that |{k ≥ n : |y∗>k(wlk)| ≥ δn}| ≤ 2.
Let d = 1025m2

j0
. It suffices to show that if we choose lp1 < · · · < lpd

,
where p1 < · · · < pd are in N, and a type II functional y∗ =

∑c
i=1 αiy

∗
i

with index greater than j0 − 1, then there exists k ∈ {1, . . . , d} such that
|y∗(wlpk

)| < 5/mj0 . We consider the following sets:

A1 = {i ∈ {1, . . . , c} : |αi| ≥ 1/rp1},
Ak = {i ∈ {1, . . . , c} : 1/rpk

≤ |αi| < 1/rpk−1
} for 1 < k < d,

Ad = {i ∈ {1, . . . , c} : 1/rpd
> |αi|}.

We observe that |Ak| ≤ r2pk
for 1 ≤ k < d. For k0 ∈ {1, . . . , d} we have∣∣∣ ∑

i∈
S

j>k0
Aj

αiy
∗
i (wlpk0

)
∣∣∣ ≤ δpk0

≤ δ1 <
1

4mj0
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and ∣∣∣ ∑
i∈

S
j≤k0

Aj

αiy
∗
i (wlpk0

)
∣∣∣ ≤ ∣∣∣ ∑

i∈
S

j≤k0
Aj

αiy
∗
i,≤pk0

(wlpk0
)
∣∣∣

+
∣∣∣ ∑
i∈

S
j≤k0

Aj

αiy
∗
i,>pk0

(wlpk0
)
∣∣∣

≤ 4
mj0

+
∣∣∣ ∑
i∈

S
j≤k0

Aj

αiy
∗
i,>pk0

(wlpk0
)
∣∣∣.

For 1 ≤ j < k0 ≤ d we set Bj,k0 = {i ∈ Aj : |y∗i,>pk0
(wlpk0

)| ≥ δpj+1} and
Bk0 =

⋃
j<k0

Bj,k0 . If k0 > j then pk0 ≥ pj+1, and therefore for i ∈ Aj there
exists at most one Bj,k that contains i. Consequently, each i ∈ {1, . . . , c} is
contained in at most one Bk. Moreover,∑

i∈
S

j<k0
Aj\Bk0

|αiy∗i,>pk0
(wlpk0

)| =
k0−1∑
j=1

∑
i∈Aj\Bj,k0

|αiy∗i,>pk0
(wlpk0

)|

≤
k0−1∑
j=1

|Aj |δpj+1

≤
k0−1∑
j=1

r2pj

1
4mj02pjr2pj

<
1

4mj0

.

At this point we need the following

Claim. There exists A ⊂ {1, . . . , d} with |A| ≥ d/2 + 1 such that∣∣∣ ∑
i∈Ak

αiy
∗
i,>pk

(wlpk
)
∣∣∣ < 1

4mj0

for all k ∈ A.

Proof of Claim. Suppose not. Then there exists B ⊂ {1, . . . , d} with
|B| ≥ d/2 such that |

∑
i∈Ak

αiy
∗
i,>pk

(wlpk
)| ≥ 1/4mj0 for every k ∈ B.

Thus,
∑

i∈Ak
α2
i ≥ 1/256m2

j0
for all k ∈ B and

c∑
i=1

α2
i =

d∑
k=1

∑
i∈Ak

α2
i ≥

d

2
· 1

256m2
j0

=
d

512m2
j0

> 1,

a contradiction.

Furthermore, there must exist an E ⊂ {1, . . . , d} with |E| ≥ d/2+1 such
that |

∑
i∈Bk

αiy
∗
i,>pk

(wlpk
)| < 1/4mj0 for all k ∈ E. Indeed, if this were not

the case then there would exist an F ⊂ {1, . . . , d} with |F | ≥ d/2 such
that |

∑
i∈Bk

αiy
∗
i,>pk

(wlpk
)| ≥ 1/4mj0 for all k ∈ F . Therefore,

∑
i∈Bk

α2
i ≥
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1/256m2
j0

for every k ∈ F . But this means that

2 ≥ 2
c∑
i=1

α2
i ≥

d∑
k=1

∑
i∈Bk

α2
i ≥

d

2
· 1

256m2
j0

=
d

512m2
j0

,

a contradiction. Thus for an appropriate k0 ∈ A ∩ E we have∣∣∣ c∑
i=1

αiy
∗
i (wlpk0

)
∣∣∣ ≤ ∣∣∣ ∑

i∈
S

j>k0
Aj

αiy
∗
i (wlpk0

)
∣∣∣+

4
mj0

+
∣∣∣ ∑
i∈

S
j<k0

Aj\Bk0

αiy
∗
i,>pk0

(wlpk0
)
∣∣∣

+
∣∣∣ ∑
i∈Bk0

αiy
∗
i,>pk0

(wlpk0
)
∣∣∣

+
∣∣∣ ∑
i∈Ak0

αiy
∗
i,>pk0

(wlpk0
)
∣∣∣ < 5

mj0

.

All the above yields the following

Proposition 5.2. Let j0 ∈ N and 0 < ε < 5/mj0. In every block sub-
space Z of Xgt there exists a (6, ε) RIS which is j0-separated.

Applying similar arguments to those in Lemma 5.3 and Proposition 5.1
the following can be readily established:

Remark 5.6. Let j0 ∈ N and consider a (6, ε) RIS (wn)n with ε < 5/mj0

and j1 > j0 and min suppx1 > mj0 with the following property: There
exists a finite set B = {x∗1, . . . , x∗r} of infinite special functionals such that
x∗(wn)→ 0 for every special x∗ /∈ B. Then there exists an L ∈ [N] such that

• For every special functional x∗ /∈ B with indx∗ ≥ j0 the set {k ∈ L :
|x∗(wk)| > 10/mj0} contains at most two elements.
• For every y∗ =

∑d
i=1 aix

∗
i ∈ Ggt of type II with ind y∗ ≥ j0 and x∗i /∈ B

for all i = 1, . . . , d we have |{k ∈ L : |y∗(wn)| ≥ 5/mj0}| ≤ 1025m2
j0

.

In the following section we make use of the following crucial observation.

Remark 5.7. Let j0 ∈ N and (xk)k be a block sequence. We can assume
that min suppx1 > mj0 . In this case, for every special functional x∗ such
that x∗ = x∗<j0 + x∗≥j0 , if we write x∗<j0 =

∑d
i=1 fi then the set

{i ∈ {1, . . . , d} : ∃k ∈ N such that ran fi ∩ ranxk 6= ∅}
contains at most one element. Indeed, suppose that there exists at least one
such i and set i0 = min{i : ∃k with ran fi ∩ ranxk 6= ∅}. Then max supp fi0
> mj0 and by the definition of the coding σ we have σ(f1, . . . , fi0) > j0 and
hence i0 = d.
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6. The Basic Inequality. At this point we need to provide precise
estimates for the norms of nj0-averages of the vectors in a j0-separated
(6, ε) RIS. As is common in the relevant literature, we do this after reducing
estimates to the norms of corresponding averages of the basis of an auxiliary
space Tj0

gt. This is done mainly in two steps. First, we make use of a Basic
Inequality (Proposition 6.1), and then we enlarge the norming set of Tj0

gt and
provide exact estimates for the norms of nj0-averages of the basis of Tj0

gt.
This along with the results in the previous section, which imply that for
every j0 ∈ N and every block subspace Z of Xgt one can find (xk)k in Z
that is a j0-separated (6, ε) RIS with ε < 5/mj0 and min suppx1 > mj0 ,
leads to the existence of exact pairs and dependent sequences in every block
subspace. We start with the definition of the norming set of Tj0

gt.

6.1. The auxiliary space. We note that in what follows we make use of
the terminology developed above considering weights and types of function-
als, as in all the following cases their meaning is quite analogous to the ones
considered so far.

Definition 6.1. Let j0 ∈ N. We define W j0
gt to be the minimal subset

of c00(N) with the following properties:

• {±e∗n : n ∈ N} ⊂W j0
gt .

• W j0
gt is closed under the (A2nj , 1/mj)-operation for all j ∈ N.

• W j0
gt is closed under the (Am3

j0
, 1/2) operation.

• For d < j0 and f1, . . . , fd in W j0
gt such that each fi is of type I and

w(fi) < mj0 for all i, w(fi) 6= w(fj) for i 6= j, and for α1, . . . , αd ∈ Q
with

∑d
i=1 α

2
i ≤ 1, we have

∑d
i=1 αifi ∈ W

j0
gt . We call this last sum a

result of the (j0, `2) operation.
• W j0

gt is rationally convex.

The set W j0
gt induces the following norm on c00(N):

‖x‖
W

j0
gt

= sup{|f(x)| : f ∈W j0
gt } for x ∈ c00(N).

The completion of (c00(N), ‖ · ‖
W

j0
gt

) is denoted by Tj0
gt. The next step is to

estimate the norms of nj0-averages of the basis of Tj0
gt. However, in this case

the presence of `2 convex combinations in the tree analysis of a functional
f ∈ W j0

gt impedes the direct use of standard techniques developed in the
past (see for example [AT, Remark 3.18]). In order to achieve the desired
estimates we need to enlarge W j0

gt to a set Gj0 defined below that contains
only type I functionals and their convex combinations. This enlargement,
however, results in slightly worse estimates compared to the ones obtained
in [AT, Remark 3.18].
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We start with the definition of the larger norming set:

Definition 6.2. We define Gj0 to be the minimal subset of c00(N) with
the following properties:

(1) {±ek : k ∈ N} ⊂ Gj0 .
(2) Gj0 is closed under the (A2nj , 1/

√
mj) operations for j < j0 and

under the (A2nj , 1/mj) operations for j ≥ j0.
(3) Gj0 is closed under the (Am3

j0
, 1/2) operation.

(4) Gj0 is rationally convex.

There is an alternative way to define the sets W j0
gt and Gj0 using a

recursive construction. Namely, we set A0 = B0 = {±ek : k ∈ N} and
W0 = G0 = convQ(A0). Let n ∈ N and suppose that An,Wn, Bn, Gn have
been defined for k ≤ n. We then define An+1 to be the union of An and the
set of f ∈ c00(N) of one of the following forms:

f =
1
mj

d∑
i=1

fi, d ≤ 2nj , (fi)i is a block sequence, fi ∈Wn,

f =
1
2

d∑
i=1

fi, d ≤ m3
j0 , (supp fi)i are mutually disjoint,

f =
d∑
i=1

αifi, αi ∈ Q,
d∑
i=1

α2
i ≤ 1, d ≤ j0, (fi)i are type I with

w(fi) ≤ mj0 and fi ∈Wn,

and we set Wn+1 = convQ(An+1). Analogously we define Bn+1 to be the
union of Bn and the set of f ∈ c00(N) of one of the following forms:

f =
1
√
mj

d∑
i=1

fi, d ≤ 2nj , (fi)i is a block sequence fi ∈Wn, j < j0.

f =
1
mj

d∑
i=1

fi, d ≤ 2nj , (fi)i is a block sequence fi ∈Wn, j ≥ j0.

f =
1
2

d∑
i=1

fi, d ≤ m3
j0 , (supp fi)i are mutually disjoint,

and we set Gn+1 = convQ(Bn+1). We can see that W j0
gt =

⋃
nWn and

Gj0 =
⋃
nGn. The following lemma establishes the connection between the

sets W j0
gt and Gj0 .

Lemma 6.1. The set W j0
gt is a subset of Gj0.
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Proof. We use induction to prove that Wn ⊆ Gn for every n ∈ N. For
n = 0 this is obvious. Let n ∈ N and suppose that Wn ⊆ Gn. To prove
that Wn+1 ⊆ Gn+1 it is enough to show that An+1 ⊆ Gn+1. Let f ∈ An+1.
If f ∈ An then clearly f ∈ Gn+1 by the inductive hypothesis. If not, we
distinguish the following cases:

• f = 1
mj

∑d
i=1 fi, (fi)di=1 is a block sequence, fi ∈ Wn and d ≤ 2nj .

If mj ≥ mj0 then since fi ∈ Wn we have f ∈ Bn+1 ⊆ Gn+1. If
mj < mj0 then f can be written as f = 1√

mj

(
1√
mj

∑d
i=1 fi

)
. Now

since
(

1√
mj

∑d
i=1 fi

)
∈ Bn+1 we have f ∈ Gn+1.

• f = 1
2

∑d
i=1 fi, fi ∈Wn, (supp fi)i are mutually disjoint and d ≤ m3

j0
.

Then since fi ∈ Wn ⊆ Gn for all i = 1, . . . , d, we have f ∈ Bn+1 ⊆
Gn+1.
• f =

∑d
i=1 aifi, d ≤ j0,

∑d
i=1 a

2
i ≤ 1, w(fi) < mj0 , w(fi) 6= w(fj) for

i 6= j and fi ∈Wn for all i. Then we can rewrite f as f =
∑d

i=1
|ai|√
mi
f ′i

where f ′i = 1√
mi

∑2ni
j=1 sgn(ai)f

j
i for all i and f ji ∈Wn for all i, j. Thus

f ′i ∈ Bn+1 for all i as all the sets we consider are symmetric. Now
since the functionals (fi)i have pairwise different weights we obtain∑d

i=1 |ai|/
√
mi ≤ 1 and thus f ∈ Gn.

The induction is complete.

We define the tree analysis for a functional f ∈ Gj0 as follows:

Definition 6.3. Let f ∈ Gj0 , f 6= 0. A family (fa)a∈A with fa ∈ Gj0 for
all a ∈ A is called a tree analysis of f if:

• A is a finite tree with a least element denoted by 0 and f0 = f .
• For a, b ∈ A with a @ b we have ran fb ⊂ ran fa.
• For a ∈ A maximal we have fa ∈ {±en : n ∈ N}.
• For a ∈ A not maximal, if we denote by Sa the immediate successors

of a in A then fa has one of the following forms:

fa =
1
√
mja

∑
s∈Sa

fs, |Sa| ≤ 2nja , (fs)s∈Sa block, mja < mj0 ,

fa =
1
mja

∑
s∈Sa

fs, |Sa| ≤ 2nja , (fs)s∈Sa block, mja ≥ mj0 ,

fa =
1
2

∑
s∈Sa

fs |Sa| ≤ m3
j0 , (supp fs)s∈Sa mutually disjoint,

fa =
∑
s∈Sa

qsfs,
∑
s∈Sa

qs = 1, qs ∈ Q+ .
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Before providing estimates for averages of the basis of Tj0
gt we need the

following fact that will allow us to consider only functionals in Gj0 such that
convex combinations do not appear in their tree analysis.

Fact 6.1. Let Gj01 be the minimal subset of c00(N) that satisfies (1)–(3)
of Definition 6.2. Then every f ∈ Gj0 with weight w(f) can be written as∑d

i=1 λifi with (fi)di=1 ⊂ Gj01 , w(fi) = w(f) for all i and
∑d

i=1 λi = 1 with
λi ∈ Q+ for all i.

The proof of this fact uses standard arguments similar to the ones in
Lemma 3.15 in [AT] and so we omit it.

Lemma 6.2. Let j0 ∈ N with j0 ≥ 2. Let also g ∈ Gj01 and k1 < · · · < knj0

be a sequence of natural numbers. Then∣∣∣∣g( 1
nj0

nj0∑
r=1

ekr

)∣∣∣∣ ≤ { 2/
√
mimj0 if w(g) = mi, i < j0,

1/mi if w(g) = mi, i ≥ j0.

Here we make the convention w(g) = 1/2 if g is of the form f = 1
2

∑d
i=1 gi

where (gi)i have disjoint supports and d ≤ m3
j0

.

For the proof we refer to Lemma 3.16 and Proposition 3.19 in [AT]. We
can readily see that by Fact 6.1 we obtain exactly the same estimates for
functionals in Gj0 .

We use the following piece of notation:

Definition 6.4. Let (xk)k be a block sequence in Xgt, j0 ∈ N and
f ∈ Ggt with a j0-tree analysis (fa)a∈A. For each k ∈ N we denote by Ak
the set of all a ∈ A such that:

• ran fa ∩ ranxk 6= ∅.
• For every b v a with b ∈ Su such that fu ∈ S or fu is of type I we

have ran fu ∩ ranxk = ran fb ∩ ranxk.
• There exists no b @ a such that b ∈ Su, fu is of type II and fb = fu,≥j0 .
• Either fa is of type 0, type I or special and ran fb ∩ ranxk 6= ran fa ∩

ranxk for every b ∈ Sa, or fa = fu,≥j0 and a ∈ Su and fu is of type II.

Definition 6.5. Let (xk)k∈N be a block sequence in Xgt, j0 ∈ N, f ∈ Ggt
and (fa)a∈A a j0-tree analysis of f . Let a ∈ A. We setDa =

⋃
bwa{k : b ∈ Ak}

and Ea = {k : a ∈ Ak}.
Remark 6.1. Let f ∈ Ggt and (fa)a∈A be a j0-tree analysis of f . Let

also (xk)k∈N be a block sequence and k ∈ N. Then we can establish the
following properties of Ak:

• If a1, a2 ∈ Ak then the nodes a1, a2 are incomparable.
• For a ∈ A not maximal, if (fs)s∈Sa is a block sequence then so is

(Ds)s∈Sa .
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• Let a ∈ A be such that fa is of type II and fa = fs1 + fs2 , where
fs1 = fa,<j0 and fs2 = fa,≥j0 . Then for i, j = 1, 2, if there is k ∈ Dsi

such that ranxk ∩ ran fsj 6= ∅ then k ∈ Dsj .
• For every k such that ranxk ∩ supp f 6= ∅ there exists a ∈ A such that
k ∈ Da. In particular, D0 = {k ∈ N : supp f ∩ ranxk 6= ∅}.

For the proof we refer to Lemma 4.6 in [AT].

Proposition 6.1 (Basic Inequality). Let j0 ∈ N, j0 ≥ 3 and (xk)k a
j0-separated (C, ε) RIS with min suppx1 > mj0 , 0 < ε < 5/mj0 and C ≥ 1.
Let also (λk)k be an arbitrary finite sequence of scalars. Then for every
f ∈ Ggt of type I such that w(f) < mj0 there exist g1, g2, g3 ∈ c00(N) with
nonnegative coordinates satisfying

• gj ∈ Gj0 and w(gj) = w(f) for j = 1, 2,
• ‖g3‖∞ ≤ 1

w(f) ·
10
mj0

,

such that ∣∣∣f(∑
k

λkxk

)∣∣∣ ≤ 4C
(

1
2
g1 +

1
2
g2 + g3

)(∑
k

|λk|ek
)
.

Proof. Let f ∈ Ggt be of type I with w(f) < mj0 and (fa)a∈A a j0-
tree analysis of f . We will recursively construct for each a ∈ A functionals
ga1 , g

a
2 , g

a
3 ∈ c00(N) such that

• supp gai ⊆ Da for i = 1, 2, 3 and gai ∈ Gj0 .
• ‖ga3‖∞ ≤ 10/mj0 and if fa is of type I with w(fa) = mja < mj0 then
‖ga3‖∞ ≤ 1

mja
· 5
mj0

and w(fa) = w(ga1) = w(ga2).

•
∣∣∣fa( ∑

k∈Da

λkxk

)∣∣∣ ≤ 4C(ga1 + ga2 + ga3)
( ∑
k∈Da

|λk|ek
)

.

The proof is by induction. Let a ∈ A be maximal. Then if Da = ∅ we
set ga1 = ga2 = ga3 = 0. If Da 6= ∅ we can see that Da is a singleton, say
Da = {ka}. We set ga1 = e∗ka

, ga2 = 0, ga3 = 0 and the inequality is easily
verified.

Let a ∈ A be not maximal and suppose gb1, g
b
2, g

b
3 have been defined

for every b ∈ A with b A a according to our inductive hypotheses. We
distinguish the following cases:

Case 1: fa is of type I with fa = 1
2mja

∑
s∈Sa

fs and ja ≥ j0. By Lemma
5.2 there exists at most one ka ∈ Da such that |fa(xka)| > 5/mj0 . Suppose
without loss of generality that such a ka exists. We set ga1 = 1

2e
∗
ka

, ga2 = 0
and ga3 = 5

mj0

∑
k∈Da\{ka} e

∗
k. Then



A Gowers tree like space 255∣∣∣fa( ∑
k∈Da

λkxk

)∣∣∣ ≤ |fa(λkaxka)|+
∣∣∣fa( ∑

k∈Da\{ka}

λkxk

)∣∣∣
≤ 4C(ga1 + ga2 + ga3)

( ∑
k∈Da

|λk|ek
)
.

Case 2: fa is of type I with fa = 1
2mja

∑
s∈Sa

fs and ja < j0. We
enumerate Sa as {sa1 < · · · < sar}; we know that |Sa| ≤ nja . We can see
that Da = Ea ∪

⋃
s∈Sa

Ds and |Ea| ≤ nja . By Remark 6.1 we find that
(Dsa

i
)ri=1 are successive subsets of N, and thus (gsi

1 )ri=1, (gsi
2 )ri=1 and (gsi

3 )ri=1

are block sequences. Now since (xk)k is a j0-separated (C, ε) RIS we have
|fa(xk)| ≤ C/2mja for all k. Hence,∣∣∣fa( ∑

k∈Da

λkxk

)∣∣∣ ≤ ∣∣∣fa( ∑
k∈Ea

λkxk

)∣∣∣+
∣∣∣∣ 1
2mja

∑
s∈Sa

fs

( ∑
k∈

S
s∈Sa

Ds

λkxk

)∣∣∣∣.
But ∣∣∣fa( ∑

k∈Ea

λkxk

)∣∣∣ ≤ C

2mja

∑
k∈Ea

|λk|

and ∣∣∣∣ 1
2mja

∑
s∈Sa

fs

( ∑
k∈

S
s∈Sa

Ds

λkxk

)∣∣∣∣ =
∣∣∣∣ 1
2mja

∑
s∈Sa

fs

( ∑
k∈Ds

λkxk

)∣∣∣∣.
Thus∣∣∣fa( ∑

k∈Da

λkxk

)∣∣∣
≤ 4C

(
1

2√mja

∑
s∈Sa

gs1 +
1

2√mja

∑
s∈Sa

gs2 +
1

2mja

∑
s∈Sa

gs3

)( ∑
k∈

S
s∈Sa

Ds

|λk|ek
)

+
C

2√mja

∑
k∈Ea

|λk|.

We set

ga1 =
1
√
mja

( ∑
k∈Ea

e∗k +
∑
s∈Sa

gs1

)
, ga2 =

1
√
mja

∑
s∈Sa

gs2, ga3 =
1

2mja

∑
s∈Sa

gs3.

In what follows we actually use the following stronger inequality:

(4)
∣∣∣fa( ∑

k∈Da

λkxk

)∣∣∣ ≤ 4C
(

1
2
ga1 +

1
2
ga2 + ga3

)( ∑
k∈Da

|λk|ek
)
.

In addition we observe that w(ga1) = w(ga2) = w(fa) and ga1 , g
a
2 ∈ Gj0 . The

latter holds as |Ea|+|Sa| ≤ 2nja and by Remark 6.1 the family {e∗k : k ∈ Ea}
∪{gs1 : s ∈ Sa} consists of successive functionals. Finally, as ‖gs3‖∞ ≤ 10/mj0
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for all s ∈ Sa and (supp gs2)s∈Sa are successive we have the crucial prop-
erty

‖ga3‖∞ ≤
1
2

1
mja

10
mj0

.

Case 3: fa is a type III functional, i.e. fa =
∑

s∈Sa
rsfs with rs ∈ Q+

and
∑

s∈Sa
rs = 1. In this case we set gai =

∑
s∈Sa

rsg
s
i for i = 1, 2, 3 and

all the desired properties can be readily verified.

Case 4: fa is a special functional. Then fa =
∑

s∈Sa
fs where each fs

is as in Definition 3.7. We set S1
a = {s ∈ Sa : ind fs < j0} and S2

a = Sa \ S1
a.

Observe that |S1
a| ≤ j0. Let ka ∈ N be such that there exist s1 ∈ S1

a and
s2 ∈ S2

a satisfying ranxka ∩ ran fsi 6= ∅ for i = 1, 2. We can assume that such
a ka exists. We define

D≤j0 = {k ∈ Da : xk < xka}, D>j0 = {k ∈ Da : xk > xka}

Also by Remark 5.7 the set {s ∈ S1
a : ∃k ∈ D≤j0 , ran fs ∩ ranxk 6= ∅}

contains at most one element, say s0. We note that

Da = D≤j0 ∪D>j0 ∪ {ka}

and we have the following estimates:∣∣∣fa( ∑
k∈Da

λkxk

)∣∣∣ =
∣∣∣fa( ∑

k∈D≤j0

λkxk +
∑

k∈D>j0

λkxk + λkaxka

)∣∣∣
≤ 2C

1
2
|λka |+

∣∣∣fs0( ∑
k∈Ds0

λkxk

)∣∣∣+
∣∣∣fa( ∑

k∈D>j0

λkxk

)∣∣∣
and by our inductive hypothesis and inequality (4),∣∣∣fs0( ∑

k∈Ds0

λkxk

)∣∣∣ ≤ 4C
(

1
2
gs01 +

1
2
gs02 + gs03

)( ∑
k∈Ds0

|λk|ek
)
.

As (xk)k is j0-separated, the set La = {k ∈ D>j0 : |(
∑

s∈S2
a
fs)(xk)| ≥

10/mj0} contains at most two elements, hence∣∣∣fa( ∑
k∈D>j0

λkxk

)∣∣∣ ≤ C ∑
k∈La

|λk|+
10
mj0

∑
k∈D>j0

\La

|λk|

≤ 4C
(

1
2

∑
k∈La

e∗k +
1
2

10
mj0

∑
k∈D>j0

\La

e∗k

)( ∑
k∈D>j0

|λk|ek
)
.

Finally, we have
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k∈Da

λkxk

)∣∣∣ ≤ 4C
(

1
2
e∗ka

)
(|λka |eka)

+ 4C
(

1
2
gs01 +

1
2
gs02 + gs03

)( ∑
k∈Ds0

|λk|ek
)

+ 4C
1
2

( ∑
k∈La

e∗k +
10
mj0

∑
k∈D>j0

\La

e∗k

)( ∑
k∈D>j0

|λk|ek
)

= 4C
(
ga1 +

1
2
ga2 + ga3

)( ∑
k∈Da

|λk|ek
)
,

where we have set

ga1 =
1
2

(
gs01 + e∗ka

+
∑
k∈La

e∗k

)
, ga2 = gs02 ,

ga3 =
5
mj0

∑
k∈D>j0

\La

e∗k + gs03 .

We can see that ga1 ∈W
j0
gt since the set {gs01 }∪{e∗ka

}∪{e∗k : k ∈ La} consists
of successive functionals and has cardinality almost 4, which is less than
m3
j0

. At the same time ‖ga3‖∞ ≤ 10/mj0 and of course ga2 = 1
2g
s0
2 ∈ Gj0 . In

addition supp(gai ) ⊂ Da for i = 1, 2, 3 and supp gai ∩ supp ga3 = ∅ for i = 1, 2.
We point out that if ind fa < j0 then the functionals gai for i = 1, 2, 3 have
the following important properties:

P1. gai = 1
2g
s0
i for i = 1, 2.

P2. ‖gs03 ‖∞ ≤
1

mjs0

10
mj0

.

Case 5:fa is a type II functional. We distinguish the following sub-
cases:

Subcase A: ind fa < j0 and fa =
∑

s∈Sa
asfs where

∑
s∈Sa

a2
s ≤ 1 and

(fs)s are special functionals with disjoint sets of indices. Then∣∣∣( ∑
s∈Sa

asfs

)( ∑
k∈Da

λkxk

)∣∣∣ ≤ ∑
s∈Sa

|as|
∣∣∣fs( ∑

k∈Ds

λkxk

)∣∣∣
≤ 4C

(∑
s∈Sa

|as|
(
gs1 +

1
2
gs2 + gs3

))( ∑
k∈Ds

|λk|ek
)
.

We set ga1 =
∑

s∈Sa
|as|gs1, ga2 =

∑
s∈Sa
|as|gs2 and ga3 =

∑
s∈Sa
|as|gs3. Ac-

cording to Properties P1 and P2 established in the previous case and as
ind fs < j0 for s ∈ Sa we have the following:
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• gai ∈ Gj0 for i = 1, 2. This is based on the observation that w(gs1) =
w(gs2) for all s ∈ Sa and as (ind fs)s are all smaller than j0 and mu-
tually disjoint it follows that ga1 , g

a
2 are both the result of the (j0, `2)

operation.

• ‖ga3‖∞ ≤
∑
s∈Sa

‖gs3‖∞ ≤
∑
s∈Sa

1
2

1
mjs

10
mj0

≤ 5
mj0

.

Finally, we have the following stronger inequality:∣∣∣fa( ∑
k∈Da

λkxk

)∣∣∣ ≤ 4C
(
ga1 +

1
2
ga2 + ga3

)( ∑
k∈Da

|λk|ek
)
.

We note that the 1
2 in front of ga2 is crucial for the last subcase of the type

II functionals.

Subcase B: ind fa ≥ j0 and fa =
∑

s∈Sa
asfs where

∑
s∈Sa

a2
s ≤ 1 and

(fs)s are special functionals with disjoint sets of indices. Then by Remark
6.1, either Da = ∅ in which case we set ga1 = ga2 = ga3 = 0, or Da = Ea.
If Da 6= ∅ we set La = {k ∈ Da : |fa(xk)| ≥ 5/mj0} and as (xk)k is
j0-separated it follows that |La| ≤ 1025m2

j0
. We set ga1 = 0, ga2 = 1

2

∑
k∈La

e∗k
and ga3 = 5

mj0

∑
k∈Da\La

e∗k. We can see that ga2 ∈ Gj0 , ‖ga3‖∞ ≤ 5/mj0 and
supp gai ⊆ Da.

The following inequality is straightforward:∣∣∣fa( ∑
k∈Da

λkxk

)∣∣∣ ≤ 4C
(

1
2
ga2 + ga3

)( ∑
k∈Da

|λk|ek
)
.

We note again that ga2 is multiplied by 1
2 for later use.

Subcase C: fa is of the form fa = fs1 + fs2 where fs1 = fa,<j0 and
fs2 = fa,≥j0 . By Remark 6.1, Da = Ds1 ∪ Ds2 and for every k ∈ Da,
ranxk ∩ ran fsi 6= ∅ if and only if k ∈ Dsi , for i = 1, 2. Thus we set ga1 = gs11 ,
ga2 = 1

2(gs22 + gs12 ). The functionals gs22 , g
s1
2 are elements of Gj0 and since ga2

is their convex combination we conclude that ga2 ∈ Gj0 . Finally, set ga3 =
gs13 + gs23 . The estimates take the following form:∣∣∣fa( ∑

k∈Da

λkxk

)∣∣∣ ≤ ∣∣∣fs1( ∑
k∈Ds1

λkxk

)∣∣∣+
∣∣∣fs2( ∑

k∈Ds2

λkxk

)∣∣∣
≤ 4C

(
1
2
gs11 +

1
2
gs12 + gs13

)( ∑
k∈Ds1

|λk|ek
)

+ 4C
(

1
2
gs22 + gs23

)( ∑
k∈Ds2

|λk|ek
)
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≤ 4C
(

1
2
gs11 +

1
2
gs12 + gs13

)( ∑
k∈Da

|λk|ek
)

+ 4C
(

1
2
gs22 + gs23

)( ∑
k∈Da

|λk|ek
)

≤ 4C(ga1 + ga2 + ga3)
( ∑
k∈Da

|λk|ek
)
.

Moreover, gai ∈ Gj0 for i = 1, 2, ‖ga3‖∞ ≤ 10/mj0 and supp gai ⊆ Da.
The induction is complete.

7. Consequences of the Basic Inequality and exact pairs. In this
section we analyze the consequences of the Basic Inequality. In particular,
we recall the definitions of exact pairs and dependent sequences and then
prove that every block subspace of Xgt contains a dependent sequence. We
start with

Lemma 7.1. Let j0 ∈ N with j0 ≥ 3. Let also (xk)k be a (C, ε) RIS which
is j0-separated. Then for every choice of natural numbers k1 < · · · < knj0

we have ∥∥∥∥ 1
nj0

nj0∑
i=1

xki

∥∥∥∥
gt

≤ 15C
mj0

.

Proof. We set x = 1
nj0

∑nj0
i=1 xki

. Let f ∈ Ggt. We distinguish the follow-
ing cases:

• f ∈ {±e∗k : k ∈ N}. Then |f(x)| ≤ C/nj0 ≤ 15C/mj0 .
• w(f) ≥ mj0 . Then

|f(x)| ≤
C + (nj0 − 1) 5

mj0

nj0
≤ 6C
mj0

.

• w(f) = mi < mj0 . Then by the Basic Inequality there exist g1, g2, g3
with gj ∈ Gj0 , w(gj) = mi for j = 1, 2 and ‖g3‖∞ ≤ 1

mi
· 10
mj0

such that

|f(x)| ≤ 4C
(

1
2
g1 +

1
2
g2 + g3

)(
1
nj0

nj0∑
i=1

eki

)
.

Thus, by Lemma 6.2 we have

|f(x)| ≤ 4C
(

4
√
mimj0

+
1
mi

10
mj0

)
≤ 8C
mj0

.

• f is of type II, f =
∑d

i=1 aix
∗
i where (x∗i )

d
i=1 are special functionals

with disjoint sets of indices. We write f = f<j0 + f≥j0 . For f≥j0 we
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have
|{k ∈ N : |f≥j0(xk)| ≥ 5/mj0}| ≤ 1025m2

j0

and thus

|f≥j0(x)| ≤
C · 1025m2

j0
+ 5

mj0
(nj0 − 1025m2

j0
)

nj0
≤ 6C
mj0

.

For f<j0 we have |f<j0(x)| ≤
∑d

i=1 |x∗i,<j0(x)| ≤
∑

i∈A |fi(x)| where
fi ∈ Ggt are of type I and w(fi) = mi < mj0 and |A| < mj0 . By the
Basic Inequality we obtain

f<j0(x) ≤ 4C
∑
i∈A

(
2

√
mimj0

+
10

mimj0

)
≤ 8C
mj0

.

Finally, |f(x)| ≤ 15C/mj0 .
• f is of type III with f =

∑d
i=1 qifi such that qi ∈ Q+,

∑
i qi = 1 and

fi is not of type III for every i = 1, . . . , d. Using the previous cases we
have

|f(x)| ≤
d∑
i=1

qi
15C
mj0

≤ 15C
mj0

.

An immediate consequence of the above lemma and Proposition 5.2 is

Corollary 7.1. The space Xgt does not contain an isomorphic copy
of `1.

In the rest of this section we define exact pairs and prove that one can
find a (C, j) exact pair for each j ∈ N.

Definition 7.1. Let x ∈ Xgt and φ ∈ Ggt. The pair (x, φ) is called a
(C, j) exact pair for some C ≥ 1 and j ∈ N if:

• ‖x‖gt ≤ 30C.
• φ is of type I and w(φ) = mj .
• ranφ = ranx and φ(x) = 1.
• If f ∈ Ggt is of type I with w(f) = mi < mj then |f(x)| ≤ 100C/

√
mi.

Proposition 7.1. Let Z be a block subspace of Xgt and j ∈ N. Then
there exists a (6, j) exact pair (w, f) with w ∈ Z.

Proof. By Proposition 5.2 there exists a j-separated (6, ε) RIS (xk)k with
0 < ε < 5/mj and xk ∈ Z for all k. Additionally, each xk is a 2-`

njk
1 average

and thus ‖xk‖gt > 1. We can also assume that limk x
∗(xk) = 0 for every

special x∗. We choose (fk)k ⊂ Ggt such that ran fk = ranxk and fk(xk) = 1
for all k. Set

w =
2mj

nj

nj∑
k=1

xk, f =
1

2mj

nj∑
k=1

fk.
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Then (w, f) is a (6, j) exact pair. Indeed, by the choice of (fk)k we have
ran f = ranw and f(w) = 1. Moreover, Lemma 7.1 yields |g(w)| ≤
100C/

√
mi for every g ∈ Ggt with w(g) = mi < mj .

Definition 7.2. A sequence of pairs (wk, fk)k∈N with wk ∈ Xgt is said
to be C-dependent if:

• (wk, fk) is a (C, jk) exact pair for every k ∈ N.
• (fk)k is a special sequence with w(fk) = mjk .

The last proposition of this section establishes the existence of a 6-
dependent sequence in every subspace of Xgt with the additional property
that the sequence is weakly Cauchy. The existence of a 6-dependent sequence
in every subspace of Xgt is an immediate consequence of Proposition 7.1. To
prove that it is weakly Cauchy we need the following lemma which describes
the structure of X∗gt and for which we give a short proof. For a detailed ex-
position, see [ATO, Proposition II.26].

Lemma 7.2. The dual of the space Xgt can be described as follows:

X∗gt = 〈{e∗n : n ∈ N} ∪ {f : f is an infinite special functional}〉‖·‖.

Proof. Suppose otherwise and set

Z = 〈{e∗n : n ∈ N} ∪ {f : f is an infinite special functional}〉‖·‖.

Then there exists a functional x∗ ∈ X∗gt \ Z of norm 1. Thus, there exists
x∗∗ ∈ X∗∗gt such that x∗∗(x∗) = θ > 0 and x∗∗(f) = 0 for every f ∈ Z.
We may assume that ‖x∗∗‖ ≤ 1. By Corollary 7.1 and the Odell–Rosenthal
theorem [OR] there exists a sequence (xn)n in Xgt with ‖xn‖ ≤ 1 for all

n ∈ N such that xn
w∗→ x∗∗. By passing to a subsequence we may assume

that x∗(xn) > θ/2 for all n ∈ N. In addition, as e∗k ∈ Z for all k ∈ N,
using a sliding hump argument, we may suppose that (xn)n is in fact a
block sequence. Using the fact that x∗(xn) > θ/2 we can construct a block
sequence (yn)n of successive `1 averages of (xn)n with increasing lengths and
x∗(yn) > θ/2 for all n. Thus, by passing to subsequences, we assume that
(yn)n is a (6, ε) RIS. As f(yn) → 0 for every infinite special functional f ,
we can pass to a further subsequence and suppose that (yn)n is j-separated
for j satisfying 60/mj < θ/2. Thus, setting y = 1

nj

∑nj

i=1 yi, we obtain the
following contradictory facts: ‖y‖ ≥ x∗(y) > θ/2, and by Lemma 7.1, ‖y‖ ≤
60/mj < θ/2. This completes the proof.

Proposition 7.2. Let Y and Z be block subspaces of Xgt. Then there
exists a 6-dependent sequence (wk, fk)k with w2k−1 ∈ Y and w2k ∈ Z for all
k ∈ N. In addition, (w2k−1 − w2k)k is weakly null.
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Proof. By repeated application of Proposition 7.1 we can inductively
construct a 6-dependent sequence (wk, fk)k with w2k−1 ∈ Y and w2k ∈ Z
for all k ∈ N. Each wk is of the form

wk =
2mjk

njk

∑
i∈Fk

yi

where |Fk| = njk . Furthermore, we assume that for each k the sequence
(yi)i∈Fk

is a jk-separated (6, ε) RIS with 0 < ε < 5/m2
jk

which also satisfies
the conclusion of Remark 5.4. Now consider a special functional f =

∑
i gi

where (gi)i is a special sequence different from (fi)i. By Remark 3.1 there
exists r ∈ N such that

fi = gi for i = 1, . . . , r, fr+1 6= gr+1, w(fr+1) = w(gr+1),

while w(fi) 6= w(gi) for i > r + 1. Let ε > 0. We pick l ∈ N with l > r + 1
and 1/mjl < ε. Set i0 = min{i ∈ N : ind gi > jl}. We choose k0 ∈ N such
that

mjk0

njk0

< ε, ran gi0 < ranw2k0−1, ind gi0 < j2k0−1.

For k ≥ k0 we have

|g(wk)| ≤
∑

mjl
<w(gi)=mi<mjk

|gi(wk)|+ |x∗(wk)|

where indx∗ > jk. However,∑
mjl

<w(gi)=mi<mjk

|gi(wk)| ≤
∑

jl<i<jk

600
mi

< 600ε

and by Remark 5.4,

|x∗(wk)| ≤
mjk

njk

(
8 +

10
m2
jk

(njk − 2)
)
≤ 18ε.

Therefore, limk(
∑

i gi)(wk) = 0 for every special sequence (gi)i distinct from
(fi)i. Consequently, Lemma 7.2 shows that (w2k−1−w2k)k is weakly null.

Remark 7.1. In the proof of the above proposition we have seen that
limk x

∗(wk) = 0 for every dependent sequence (fk, wk)k and every special
functional x∗ distinct from

∑
i fi. Using this along with Remark 5.6 we can

obtain, for every j0 > 3, an L ∈ [N] such that:

• For every special x∗ such that x∗ 6=
∑

i fi and indx∗ ≥ j0 the set
{k ∈ L : |x∗(wk)| > 10/mj0} contains at most two elements.
• For every y∗ =

∑d
j=1 ajx

∗
j ∈ Ggt of type II with ind y∗ ≥ j0 and

x∗j 6=
∑

i fi for all j we have |{k ∈ L : |y∗(wk)| ≥ 5/mj0}| ≤ 1025m2
j0

.
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8. The basic properties of Xgt. In this section we establish the basic
properties of Xgt. In particular, we show that every infinite-dimensional
closed subspace of Xgt has nonseparable dual and that Xgt is hereditarily
indecomposable (HI).

Definition 8.1. Let j0 ∈ N and Y be a block subspace of Xgt. A se-
quence (wt, ft, jt)t∈2<ω of triples will be called a special tree in Y if:

• For every t ∈ 2<ω, (wt, ft) is a (C, jt) exact pair for some C ≥ 1 and
wt ∈ Y .
• For every t ∈ 2<ω we have jt = σ((f ′t)t′@t).
• For every t ∈ 2<ω we have wta0 < wta1 and wt′ < wt for all t′ ∈ 2<ω

with |t′| < |t|.
If moreover j∅ > j0 and min suppw∅ > mj0 then the sequence will be called
a j0-special tree.

Theorem 8.1. Let Y be a closed infinite-dimensional subspace of Xgt.
Then Y ∗ is nonseparable.

Proof. We can reduce the problem to the case of an arbitrary block
subspace Y . We shall construct an uncountable set A ⊂ X∗gt such that
‖x∗|Y −y∗|Y ‖ ≥ δ for all x∗, y∗ ∈ A and an appropriate δ. By recursive appli-
cations of Proposition 7.1 we can construct a special tree T = (wt, ft, jt)t∈2<ω

such that wt ∈ Y for all t ∈ 2<ω. Let A = {
∑

t@b ft : b is a branch of 2<ω}.
Let b1, b2 be two different branches of 2<ω and gb1 , gb2 the corresponding
elements of A. Since b1 6= b2 there exists t ∈ b1 \ b2. Hence,

‖gb1 |Y − gb2 |Y ‖ ≥
(gb1 − gb2)(wt)
‖wt‖gt

≥ 1
30 · 6

.

Thus if we set δ = 1/180 the proof is complete.

Theorem 8.2. The space Xgt is HI.

Proof. Let Z and Y be two infinite-dimensional block subspaces of Xgt

and let ε > 0. According to Proposition 7.2 there exists a 6-dependent
sequence (wk, fk)k such that w2k−1 ∈ Y and w2k ∈ Z for all k and in
addition (w2k−1−w2k)k is weakly null. By Mazur’s theorem there exists an
n0 ∈ N and a sequence (λi)n0

i=1 of scalars with λi ∈ R+ and
∑n0

i=1 λi = 1 such
that ‖

∑n0
i=1 λi(w2i−1 − w2i)‖gt < ε. We set y =

∑n0
i=1 λiw2i−1 ∈ Y and z =∑n0

i=1 λiw2i ∈ Z. We observe that ‖y − z‖gt < ε while if we set f =
∑2n0

i=1 fi
then f ∈ Ggt since (fi)i is a special sequence and ‖y + z‖gt ≥ f(y + z) = 2.
Thus, ‖y − z‖gt < ε < ε‖y + z‖gt and we have shown that Xgt is HI.

9. The space of bounded linear operators on Xgt. In this section
we study the structure of operators on Xgt. In particular, we show that every
bounded linear operator T : Xgt → Xgt is of the form λI + W , where I is
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the identity operator and W a weakly compact operator. We start with the
following central lemma:

Lemma 9.1. Let Y be a block subspace of Xgt and T : Y → Xgt be
a bounded linear operator. Suppose that (yn)n is a block sequence of 2-`1
averages with increasing lengths in Y such that (T (yn))n is also a block
sequence. Then limn dist(Tyn,R yn) = 0.

Proof. Suppose not. Then there exist L ∈ [N] and δ > 0 such that
dist(Tyn,R yn) > δ for all n ∈ L. By the Hahn–Banach theorem there exists
φn ∈ BX∗gt

such that φn(yn) = 0 and φn(Tyn) > δ for all n ∈ L. As BX∗gt
=

G
w∗

gt , we may assume that φn ∈ Ggt for all n ∈ L and ranφn ⊂ ranTyn.
Now since (yn)n∈L is a sequence of 2-`1 averages with increasing lengths one
can inductively construct in Y a 6-dependent sequence (wk, fk)k such that
each wk is of the form

wk =
2mjk

njk

∑
i∈Fk

yi

and |Fk| = njk . As, by Proposition 7.2, (wk)k is weakly Cauchy, there exists
n0 ∈ N and a convex combination un0 of the form

un0 = λ1(w2k1−1 − w2k1) + · · ·+ λn0(w2kn0−1 − w2kn0
), k1 < · · · < kn0 .

such that ‖un0‖ < 1
‖T‖ ·

δ
2 . We observe that ‖T (un0)‖ < δ/2. Set

w∗k =
1

2mjk

∑
i∈Fk

φi

and observe that w∗k ∈ Ggt, ranw∗k ⊂ ranTyk and w∗k(Tyk) ≥ δ/2. Finally,
setting f = w∗2k1−1 + · · · + w∗2kn0−1 we obtain f(T (un0)) ≥ δ/2. This is a
contradiction which completes the proof.

We need a slight modification of the above lemma; we omit the proof as
it is quite similar to the one above.

Lemma 9.2. Let Y be a block subspace of Xgt and T : Y → Xgt a bounded
linear operator. Suppose that (yn)n is a block sequence of 2-`1 averages with
increasing lengths in Y such that :

• ‖yn‖ > δ > 0.
• (T (wn))n is also a block sequence, where wn = y2n−1 − y2n for all n.

Then limn dist(Twn,Rwn) = 0.

Proposition 9.1. Let Y be an infinite-dimensional closed subspace
of Xgt. Then every bounded linear operator T : Y → Xgt takes the form
λI + S where S is a strictly singular operator.
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For the proof we refer to [AT, Theorem IV.12]. The next proposition
concludes the investigation of the structure of the bounded linear operators
on Xgt. Its proof is similar to the proof of Theorem 9.4 in [ATO], but we
include it for completeness.

Proposition 9.2. Every bounded linear operator T : Xgt → Xgt is of
the form λI +W where W is a weakly compact operator.

Proof. Let T : Xgt → Xgt be a bounded linear operator and suppose
that it is not weakly compact. We shall show that T is not strictly singular.
Since T is not weakly compact there exists a normalized sequence (xn)n
such that (Txn)n has no weakly convergent subsequence. However, since
Xgt does not contain `1 we may assume that (Txn)n is nontrivial weakly
Cauchy. Denote by y∗∗ ∈ X∗∗gt \ Xgt the w∗-limit of (Txn)n and assume also
that x∗∗ ∈ X∗∗gt \ Xgt is the w∗-limit of (xn)n. Obviously y∗∗ = T ∗∗x∗∗.

As the basis (en)n is boundedly complete we may assume that xn = x+un
for all n ∈ N where x =

∑
i x
∗∗(e∗i )ei and (un)n is a block sequence. We

observe that un
w∗→ x∗∗−x and Tun

w∗→ y∗∗−Tx. Thus, we may assume that
x = 0 and (xn)n is a block sequence. Similarly, we may assume that there
exists a block sequence (zn)n and z ∈ Xgt such that Txn = z+zn for each n.
We set θ = dist(y∗∗,Xgt). If we write z =

∑∞
n=1 anen we know that there

exists n0 ∈ N such that ∥∥∥ ∞∑
n=n0+1

anen

∥∥∥ < θ/4.

We claim that there exists y∗ ∈ BX∗gt
such that y∗∗(y∗) > 3θ/4 and

y∗|span{e1,...,en0} = 0. To see this we set

w1 =
n0∑
n=1

anen, w2 =
∞∑

n=n0+1

anen.

As ‖y∗∗−w1‖ ≥ dist(y∗∗,Xgt) we may choose x∗ ∈ BX∗gt
such that |y∗∗(x∗)−

x∗(w1)| > 3θ/4. We set y∗ = P ∗[n0+1,∞)(x
∗), where P ∗[n0+1,∞) denotes the

canonical projection onto the interval [n0 + 1,∞) associated to the basis
(e∗n)n of the predual. Observe now that y∗|span{e1,...,en0} = 0 and

y∗∗(y∗) = lim
n
y∗(Txn) = lim

n
y∗(z + zn) = y∗(w1 + w2) + lim

n
y∗(zn)

= x∗(w2) + lim
n
y∗(zn).

Since (zn)n is a block sequence it can be readily seen that limn y
∗(zn) =

limn x
∗(zn). Therefore, y∗∗(y∗) = x∗(w2)+limn x

∗(zn), and as limn x
∗(zn) =

y∗∗(x∗)− x∗(z), we obtain

|y∗∗(y∗)| = |y∗∗(x∗)− x∗(w1)| > 3θ/4.
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As y∗(Txn)→ y∗∗(y∗) we may also assume that y∗(Txn) = y∗(z+ zn) >
3θ/4 for all n. Since |y∗(z)| < θ/4 we obtain

y∗(zn) > θ/2 for all n.

Pick x∗ ∈ BX∗gt
such that x∗∗(x∗) > δ > 0 and suppose also that x∗(xn) > δ

for all n ∈ N. We inductively construct a block sequence (yn)n of (xn)n
such that (yn)n are 2-`1 averages with increasing lengths. Now as (yn)n are
convex combinations of (xn)n we can see that for all n we have

‖yn‖ ≥ x∗(yn) > δ, y∗(Tyn) > 3θ/4.

In addition we observe that there exists a block sequence (vn)n of convex
combinations of (zn)n such that for all n we have

Tyn = z + vn,

which gives
‖vn‖ ≥ y∗(Tyn)− y∗(z) > θ/2

for all n. We set wn = y2n−1 − y2n and observe that (Twn)n is a block
sequence. Hence, by Lemma 9.2, dist(Twn,Rwn)→ 0, and thus there exists
a sequence (λn)n of reals such that

‖Twn − λnwn‖ → 0.

We can see that the sequence (λn)n is bounded and assume that λn → λ 6= 0.
We set sk = wk/‖wk‖ and pass to a subsequence to obtain

∞∑
k=1

‖Tsk − λsk‖ < |λ|/2.

We claim that if we set F = span{sk : k ∈ N} then T restricted to F is
an isomorphic embedding and hence T is not strictly singular. Indeed, let
x ∈ F with ‖x‖ = 1 be of the form x =

∑∞
k=1 bksk. Since |bk| ≤ 1 for each k,

we have

‖Tx− λx‖ ≤
∞∑
k=1

|bk| ‖Tsk − λsk‖ ≤ |λ|/2.

Therefore, ‖Tx‖ ≥ |λ|/2.

10. The James tree structure of Xgt. In this section we show that
`2 is contained in both the dual and second dual of Xgt. The basic tool for
proving this is Proposition 10.1 asserting that a sequence of incomparable
special functionals constructed through dependent sequences is equivalent to
the standard `2 basis. The proof of the proposition is based on Proposition
10.2 which is another Basic Inequality. It provides estimates for `2 sums
of certain averages of vectors of the corresponding dependent sequences.
After establishing the above propositions we apply them to indicate the
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similarities in the structure of the triples Xgt,X
∗
gt,X

∗∗
gt and JT, JT ∗, JT ∗∗,

where JT denotes the James tree space. Among these applications we find
that every subspace of Xgt has `2 as a quotient space, and its dual contains `2.
Moreover, it is shown that `2(c) (c denotes the Cantor set) is isomorphic to
a subspace of X∗∗gt , and X∗gt has `2(c) as a quotient space. We start with

Proposition 10.1. For all i ∈ N consider a 6-dependent sequence
(win, f

i
n)n. Assume that ind f in ∩ ind f i

′
n = ∅ for all i 6= i′ ∈ N and set

b∗i =
∑

n f
i
n for all i ∈ N. Then (b∗i )i∈N is equivalent to the standard `2

basis.

Proof. Let 0 < ε < 1, d ∈ N and consider scalars a1, . . . , ad such that∑d
i=1 a

2
i = 1. Clearly, by the definition of the norming set, ‖

∑d
i=1 aib

∗
i ‖ ≤ 1.

To complete the proof we shall show that

1
14400

≤
∥∥∥ d∑
i=1

aib
∗
i

∥∥∥.
For that, first choose j0 ∈ N which satisfies the following conditions:

d · 5 · 7202 < mj0 , 2d < mj0 − 2, d
d∑
i=1

|ai| < mj0 , 1/mj0 < ε,

and then a finite sequence {lit : 1 ≤ i ≤ d, 1 ≤ t ≤ nj0} such that if we set
x(t,i) = wi

lit
then (x(t,i))(t,i) has the following properties:

P1. w(f i
lit

) > mj0 for every (t, i).
P2. min suppx(t,i) > mj0 and ‖x(t,i)‖ ≤ 180 for all t, i. In addition, there

exists a sequence (j(t,i))t,i of natural numbers such that j0 < j(t,i) <
j(t,i+1) for all i = 1, . . . , d−1 and j(t,d) < j(t+1,1) for all t ∈ N, and for
all f ∈ Ggt with w(f) = ml, l < j(t,i) we have |f(x(t,i))| < 600/

√
ml.

Furthermore,
|suppx(t,i)|
mj(t,i+1)

<
1
√
mj0

, t ∈ N, i = 1, . . . , d− 1,

|suppx(t,d)|
mj(t+1,1)

<
1
√
mj0

.

P3. For every special functional x∗ /∈ {b∗1, . . . , b∗d} with indx∗ ≥ j0, and
every i, at most two t satisfy |x∗(x(t,i))| > 1202/√mj0 .

P4. For every y∗ =
∑d

k=1 aix
∗
k ∈ Ggt of type II with ind y∗ ≥ j0 and

x∗k /∈ {b∗1, . . . , b∗d} for all k = 1, . . . , d, and for every i, the cardinality
of {t : |y∗(x(t,i))| ≥ 602/√mj0} is at most 5 · 7202mj0 .

P5. For every i 6= i′ we have |bi′(x(t,i))| ≤ 1/m2
j0

for all t = 1, . . . , nj0 .
P6. (x(t,i))(t,i) ordered lexicographically is a block sequence.
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The choice of such a sequence (x(t,i))(t,i) is possible through the use of Re-
mark 7.1 and Proposition 7.2. Set

zi =
1
nj0

nj0∑
t=1

x(t,i) for i = 1, . . . , d.

Property P5 yields
d∑
i=1

aib
∗
i

( d∑
i=1

aizi

)
≥ 1− ε.

It remains to show that ‖
∑d

i=1 aizi‖gt is bounded by a constant. This is
done in the following two lemmas where a second Basic Inequality is stated
and proved. Namely, we shall show that

(5)
∥∥∥ d∑
i=1

aizi

∥∥∥
gt
≤ 14400.

The auxiliary space is defined through the following norming set:

Definition 10.1. Let k(t,i) = min suppx(t,i) and si = {k(t,i) : t =
1, . . . , nj0} for i = 1, . . . , d. We denote by D the minimal subset of c00(N)
satisfying:

• D contains the set {
∑d

i=1

∑
j λi,js

∗
i,j :

∑
i,j λ

2
i,j ≤ 1, λ(i,j) ∈ Q and

(s∗i,j)j are disjoint subsets of si} ∪ {e∗n : n ∈ N}.
• D is closed under the (A2nj , 1/mj) operations for all j ∈ N.
• D is closed under the (Am2

j0
, 1/2) operation.

• For every sequence (fk)rk=1 with r < j0, fk of type I, w(fk) < mj0 and
w(fk) 6= w(fk′) for all k 6= k′ < d, we have

∑d
k=1 akfk ∈ D whenever∑r

k=1 a
2
k ≤ 1.

• D is rationally convex.

We use an enlarged norming set D′ that contains D, as in Section 5,
defined as follows.

Definition 10.2. Let k(t,i) = min suppx(t,i) and si = {k(t,i) : t =
1, . . . , d}. We consider the minimal subset D′ of c00(N) that satisfies:

• D′ contains the set {
∑d

i=1

∑
j λi,js

∗
i,j :

∑
i,j λ

2
i,j ≤ 1, λ(i,j) ∈ Q and

(s∗i,j)j are disjoint subsets of si} ∪ {e∗n : n ∈ N}.
• D′ is closed under the (A2nj , 1/

√
mj) operations for all j < j0 and

under the (A2nj , 1/mj) operations for all j ≥ j0.
• D′ is closed under the (Am2

j0
, 1/2) operation.

• D′ is rationally convex.
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For each i ∈ {1, . . . , d} we set

z̃i =
1
nj0

nj0∑
t=1

ek(t,i) .

Before proceeding we need a slight modification of Definition 3.7.

Notation 10.1. For every functional y∗ =
∑r

k=1 βkx
∗
k ∈ Ggt of type II

we set

Iy∗ = {k ∈ {1, . . . r} : x∗k = Eb∗i for some i ∈ {1, . . . d}
and some interval E of N}.

Definition 10.3. Let f ∈ Ggt and j0 ∈ N and (b∗i )i be a finite collection
of infinite special functionals. A family (fa)a∈A is called a j0-tree analysis of
f with respect to (b∗i )i if:

(1) A is a finite tree with a least element denoted by 0 and fa ∈ Ggt for
all a ∈ A with f0 = f .

(2) For a, b ∈ A with a < b we have ran fb ⊂ ran fa.
(3) For a ∈ A maximal we have fa ∈ {±en : n ∈ N}.
(4) For a ∈ A not maximal, if we denote by Sa the immediate successors

of a in A then fa has one of the following forms:

• If fa is of type I then fa = 1
2mja

∑
s∈Sa

fs, |Sa| ≤ nja and (fs)s∈Sa

is a block sequence.
• If fa is special then fa = Ea

∑
i fi, where Ea is a finite interval of

N and (fi)i is a special sequence. We set Fa = {i ∈ N : ran fi ∩
Ea 6= ∅} = {ia1, . . . , iada

} and Sa = {s1, . . . , sda} where fsj = Eafij
and w(fsj ) = w(fij ) for all j ∈ {1, . . . , da}. Finally, we write
fa =

∑
s∈Sa

fs.
• If fa is of type II with fa =

∑r
k=1 βkx

∗
k then Sa = {s1, s2, s3} and

fa = fs1+fs2+fs3 , where fs1 =
∑

k∈Ic
a
βkx

∗
k,<j0

, fs2 =
∑

k∈Ia βkx
∗
k

and fs3 =
∑

k∈Ic
a
βkx

∗
k,≥j0 . In addition, as in Definition 3.7, if two

of the functionals fsi , i = 1, 2, 3, are zero then fa =
∑

s∈Sa
asfs,

where (as)s∈Sa ⊂ Q, (fs)s∈Sa are special functionals with disjoint
sets of indices and

∑
s∈Sa

a2
s ≤ 1.

• If fa is of type III then fa=
∑

s∈Sa
rsfs, rs ∈ Q+ and

∑
s∈Sa

rs=1.

Now let f ∈ Ggt and (fa)a∈A be a tree analysis of f as above. Define
A(t,i) to be the set of all a ∈ A such that:

• ran fa ∩ ranx(t,i) 6= ∅.
• For every b v a with b ∈ Su such that fu ∈ S or fu is of type I we

have ran fu ∩ ranx(t,i) = ran fb ∩ ranx(t,i).
• There exists no b @ a such that fb = Eb∗i for an interval E and
i ∈ {1, . . . , d} or b ∈ Su, fu is of type II and fb =

∑
k∈Ic

a
βkx

∗
k,≥j0 .
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• Either fa is of type 0 or I or special and ran fb ∩ ranx(t,i) 6= ran fa ∩
ranx(t,i) for every b ∈ Sa, or fa =

∑
k∈Ic

a
βkx

∗
k,≥j0 , or fa =

∑
k∈Ia βkx

∗
k

and a ∈ Su and fu is of type II.

For each a ∈ A we set
Di
a = {t ∈ {1, . . . , nj0} : ∃b A a with b ∈ A(t,i)}, i = 1, . . . , d,

Da =
d⋃
i=1

Di
a,

Eia = {t ∈ {1, . . . , nj0} : a ∈ A(t,i)}, Ea =
d⋃
i=1

Eia,

Fa = {i ∈ {1, . . . , d} : Di
a 6= ∅}, Ha = {i ∈ {1, . . . , d} : Eia 6= ∅}.

Proposition 10.2. Let f ∈ Ggt. Then there exist g1, g2, g3, g4 ∈ c00(N)
with nonnegative coordinates satisfying

g1, g2, g3 ∈ D′, ‖g4‖∞ ≤
1204
√
mj0

,

such that∣∣∣f( d∑
i=1

aizi

)∣∣∣ ≤ 4C(g1 + g2 + g3 + g4)
( d∑
i=1

|ai|z̃i
)

(C = 1200).

Proof. We observe that
d∑
i=1

aizi =
1
nj0

( nj0∑
t=1

d∑
i=1

b(t,i)x(t,i)

)
where b(t,i) = ai for t = 1, . . . , nj0 . Let f ∈ Ggt and (fa)a∈A be a tree analysis
of f . We will recursively construct for each a ∈ A functionals ga1 , g

a
2 , g

a
3 , g

a
4 ∈

c00(N) such that:

• supp gai ⊆ Da for i = 1, 2, 3, 4 and gai ∈ D′.
• ‖ga4‖∞ ≤ 1204/√mj0 .

•
∣∣∣∣fa( 1

nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣
≤ 4C(ga1 + ga2 + ga3 + ga4)

(
1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
.

In case fa is of type I with w(fa) = mja < mj0 we have the stronger
conditions

‖ga4‖∞ ≤
1
mja

1204
√
mj0

, w(fa) = w(ga1) = w(ga3) = w(ga3).
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The proof is by induction. We present the proof without considering restric-
tions to intervals, as for those one can apply the same techniques used in
Proposition 6.1.

Let a ∈ A be a maximal node. Then if Da = ∅ we set gai = 0 for
i = 1, 2, 3, 4. If Da 6= ∅ we can see that Da is a singleton, say Da = {(ta, ia)}.
We set ga1 = e∗k(ta,ia)

, ga2 = 0, ga3 = ga4 = 0 and the inequality is easily verified.

Let a ∈ A be nonmaximal and suppose that (gbi )
4
i=1 have been defined

for every b ∈ A with b A a according to our inductive hypotheses. We
distinguish the following cases:

Case 1: fa is of type I with fa = 1
2mja

∑
s∈Sa

fs and ja ≥ j0. By the
choice of (x(t,i)) there exists at most one (ta, ia)∈Da such that |fa(x(ta,ia))| >
601/√mj0 . Suppose without loss of generality that such a (ta, ia) exists. We
set ga1 = 1

2 e
∗
k(ta,ia)

, g2
a = 0, g3

a = 0, and ga4 = 601√
mj0

∑
(t,i)∈Da\{(ta,ia)} e

∗
k((t,i)

.
The inequalities are easily verified.

Moreover, we can see that ga1 , g
a
2 , g

a
3 ∈ D′, ‖ga4‖∞ ≤ 601/√mj0 and

supp gai ⊆ Da, i = 1, 2, 3, 4.

Case 2: fa is of type I with fa = 1
2mja

∑
s∈Sa

fs and ja < j0. We enu-
merate Sa as {sa1 < · · · < sar}; we know that |Sa| ≤ nja . We can see that
Da = Ea ∪

⋃
s∈Sa

Ds and |Ea| ≤ nja . By Remark 6.1, (Dsa
i
)ri=1 are succes-

sive subsets of N and thus (gsi
1 )ri=1, (gsi

2 )ri=1, (gsi
3 )ri=1 and (gsi

4 )ri=1 are block
sequences. By the choice of (x(t,i)) we have |fa(x(t,i))| ≤ 600/√mja for all
(t, i). Set

ga1 =
1
√
mja

( ∑
(t,i)∈Ea

e∗k(t,i) +
∑
s∈Sa

gs1

)
,

ga2 =
1
√
mja

∑
s∈Sa

gs2, ga3 =
1
√
mja

∑
s∈Sa

gs3, ga4 =
1

2mja

∑
s∈Sa

gs4.

We obtain the following stronger inequality:

(6)
∣∣∣∣fa( 1

nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣
≤ 4C

(
1
2
ga1 +

1
2
ga2 +

1
2
ga3 + ga4

)(
1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
.

We can also verify that w(ga1) = w(ga2) = w(ga3) = w(fa). At the same time

‖ga4‖∞ ≤
1
2

1204
mja
√
mj0

.
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Case 3: fa is a type III functional, i.e. fa =
∑

s∈Sa
rsfs with rs ∈ Q+

and
∑

s∈Sa
rs = 1. In this case we set gai =

∑
s∈Sa

rsg
s
i for i = 1, . . . , 4. All

the desired properties can be readily verified.

Case 4: fa is a special functional. Then fa =
∑

s∈Sa
fs. We distinguish

the following subcases:

Subcase (i): ind fa ∩
⋃
i ind b∗i = ∅. Set S1

a = {s ∈ Sa : ind fs < j0} and
S2
a = Sa \ S1

a. We can observe that |S1
a| ≤ j0. Let (ta, ia) be such that there

exist s1 ∈ S1
a and s2 ∈ S2

a satisfying ranx(ta,ia) ∩ ran fsi 6= ∅ for i = 1, 2. We
can assume that such a (ta, ia) exists. We define

D<j0 = {(t, i) ∈ Da : x(t,i) < x(ta,ia)}, D>j0 = {(t, i) ∈ Da : x(t,i) > x(ta,ia)}.

By Remark 5.7 the set {s ∈ S1
a : ∃(t, i) ∈ D<j0 , ran fs ∩ ranx(t,i) 6= ∅}

contains at most one element. We assume that all the aforementioned sets are
nonempty and we set {s ∈ S1

a : ∃(t, i) ∈ D<j0 , ran fs∩ranx(t,i) 6= ∅} = {s0}.
We have

Da = D<j0 ∪D>j0 ∪ {(ta, ia)}.

Set La = {(t, i) ∈ D>j0 : |fa(x(t,i))| > 1202/√mj0}. Then La contains at
most two elements. We set

ga1 =
1
2

(
gs01 + e∗k(ta,ia)

+
∑

(t,i)∈La

e∗k(t,i)

)
,

gai = gs0i for i = 2, 3,

ga4 = gs04 +
601
√
mj0

∑
(t,i)∈D>j0

\La

e∗k(t,i) .

The desired properties of the functionals gai , i = 1, 2, . . . , can be readily
verified.

In addition we record the following stronger inequality:

(7)
∣∣∣∣fa( 1

nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣
≤ 4C

(
ga1 +

1
2
ga2 +

1
2
ga3 + ga4

)(
1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
.

Subcase (ii): There exists i0 ∈ {1, . . . , d} and an interval E such that
x∗ = Eb∗i0 . By the bimonotonicity of the basis of Xgt for each (t, i) we have

|fa(x(t,i))| ≤ |b∗i0(x(t,i))|.

Moreover, by the definition of each A(t,i) we know that gsi = 0 for all
s ∈ Sa. Suppose that Da 6= ∅. By the choice of (x(t,i))(t,i), if we set
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ga2 = s∗i0 =
nj0∑
t=1

e∗k(t,i0)
, gai = 0 for i = 1, 3,

ga4 =
1
m2
j0

∑
(t,i)∈Di0

a

e∗k(t,i0)
,

we obtain all the desired properties and in addition∣∣∣∣fa( 1
nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣
≤ 4C

(
ga1 +

1
2
ga2 + ga3 + ga4

)(
1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
.

Note again that the 1
2 in front of ga2 is important for this case. Finally,

‖ga4‖∞ ≤ 1/m2
j0

.

Case 5: fa is a type II functional. We have the following subcases:

Subcase A: ind fa < j0 and fa =
∑

s∈Sa
asfs where

∑
s∈Sa

a2
s ≤ 1 and

(fs)s are special functionals with disjoint sets of indices. By the previous
case each gsi for i = 1, 2, 3 is a functional in D′ with weight and all these
weights are different. Moreover,

‖gs4‖∞ ≤
1

2w(gs1)
1204
√
mj0

for all s ∈ Sa. Hence if we set

gai =
∑
s∈Sa

asg
s
i for i = 1, 2, 3, ga4 =

∑
s∈Sa

asg
s
4,

we find that gai ∈ D′ for i = 1, 2, 3 and

‖gs4‖∞ ≤
1
2

∑
s∈Sa

1
mjs

1204
√
mj0

≤ 602
√
mj0

.

Finally, by (7),

(8)
∣∣∣∣fa( 1

nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣
≤ 4C

(
1
2
ga1 +

1
2
ga2 +

1
2
ga3 + ga4

)(
1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
.

We note that the coefficient 1
2 in front of gai , i = 1, 2, 3, is crucial for this

subcase.

Subcase B: ind fa ≥ j0 and fa =
∑

s∈Sa
asfs where

∑
s∈Sa

a2
s ≤ 1, (x∗s)s

are special functionals with disjoint sets of indices and incomparable to the
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functionals (b∗i )
d
i=1. Then either Da = ∅ in which case we set gai = 0 for

i = 1, . . . , 4, or Da = Ea. If Da 6= ∅ we set Lia = {t ∈ Di
a : |fa(x(t,i))| ≥

602/√mj0}. We know that |Lia| ≤ 5 · 7202mj0 for all i = 1, . . . , d. We set
La =

⋃
i L

i
a,

ga1 = ga2 = 0, ga3 =
1
2

∑
(t,i)∈La

e∗k(t,i) , ga4 =
602
√
mj0

∑
k∈Da\La

e∗k(t,i) .

We can see that ga3 ∈ D′ and ‖ga4‖∞ ≤ 602/√mj0 , and supp gai ⊆ Da for all
i = 1, . . . , 4. Finally,∣∣∣∣fa( 1

nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣
≤ 4C

(
ga1 + ga2 +

1
2
ga3 + ga4

)(
1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
.

Subcase C: fa is of the form fa =
∑

s∈Sa
asfs and for every s ∈ Sa

there exists is ∈ {1, . . . , d} such that fs = Esb
∗
is

. We set ga1 = ga3 = 0,
ga2 =

∑
s∈Sa

asg
s
2 and ga4 =

∑
s∈Sa

gs4. Then ga2 ∈ D′ as the gs2 are of the form
s∗is and have disjoint supports. The following inequality holds:∣∣∣∣fa( 1

nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣
≤ 4C

(
ga1 +

1
2
ga2 + ga3 + ga4

)(
1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
We can also observe that ‖ga4‖∞ ≤ 1/m2

j0
.

Subcase D: fa = fs1 + fs2 + fs3 where (fsi)
3
i=1 are as in Definition

10.3. We have Da = Ds1 ∪Ds2 ∪Ds3 and for every (t, i) ∈ Da, ranx(t,i) ∩
ran fsi 6= ∅ if and only if (t, i) ∈ Dsi for i = 1, 2, 3. Thus if we set ga1 = 1

2g
s1
1 ,

ga2 = 1
2(gs22 + gs12 ), ga3 = 1

2(gs13 + gs33 ) and ga4 = gs14 + gs24 + gs34 we obtain
gai ∈ D′ for i = 1, 2, 3 and ‖ga4‖∞ ≤ 1204/√mj0 , and supp gai ⊆ Da for
i = 1, 2, 3, 4. In addition, it can be readily verified that∣∣∣∣fa( 1

nj0

∑
(t,i)∈Da

b(t,i)x(t,i)

)∣∣∣∣ ≤ 4C(ga1 +ga2 +ga3 +ga4)
(

1
nj0

∑
(t,i)∈Da

|b(t,i)|ek(t,i)

)
.

The induction is complete.

An immediate consequence of Proposition 10.1 is

Proposition 10.3. Let Y be an infinite-dimensional closed subspace of
Xgt. Then Y ∗ contains an isomorphic copy of `2.
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Proof. By repeated application of Proposition 7.1 one can construct for
each i ∈ N a 6-dependent sequence (yin, f

i
n)n such that yin ∈ Y for all n, i ∈ N

and f in ∈ Y ∗ with the additional property that the functionals f i =
∑

n f
i
n

are incomparable. By Proposition 10.1 the sequence (f i)i ⊂ Y ∗ is equivalent
to the standard `2 basis.

The above proposition implies that no subspace of Xgt is quotient HI.
More precisely, we have

Theorem 10.1. Every closed infinite-dimensional subspace of Xgt has
`2 as a quotient space.

At this point we would like to illustrate the differences in behavior be-
tween quotients of Xgt by an arbitrary subspace Y and those by block sub-
spaces. In particular, one can show that for every w∗-closed subspace Z of
Xgt with infinite codimension the quotient Xgt/Z is HI. The proof requires
the next two lemmas.

Lemma 10.1. Let Z be a w∗-closed subspace of Xgt and Y a closed sub-
space of Xgt such that Z ⊂ Y and Y/Z is infinite-dimensional. Then for
all ε > 0 and m, k ∈ N there exists a 2-`k1 average x in 〈ei : i ≥ m〉 with
dist(x, Y ) < ε and f ∈ B(Xgt)∗ such that dist(f, Z⊥) < ε and f(x) > 1,
where we have set Z⊥ = {f ∈ (Xgt)∗ : f(z) = 0 for all z ∈ Z}.

Lemma 10.2. Let Y and Z be as in the previous lemma. Then for every
j ∈ N and every ε > 0 there exists a (6, j) exact pair (y, f) with dist(y, Y ) < ε
and dist(f, Z⊥) < ε.

We omit the proofs as they are identical to those of Lemmas 2.19 and
2.20 in [AAT]. The above yields

Proposition 10.4. Let Z be an infinite-dimensional w∗-closed subspace
of Xgt of infinite codimension. Then Xgt/Z is HI.

Proof. Let Q : Xgt → Xgt/Z be the quotient map. Let Y1, Y2 be two
subspaces of Xgt such that Z is a subspace of Y1 ∩ Y2 and is of infinite
codimension in each Yi. Let ε > 0 and choose a sequence (εk)k of positive
numbers such that

∑
k εk < ε/2. Then, by Lemmas 10.2 and 7.2, there exists

a 6-dependent sequence (xk, fk)k such that

dist(x2k−1, Y1) <
εk

2‖Q‖
, dist(x2k, Y2) <

εk
2‖Q‖

, dist(fk, Z⊥) < εk,

for all k ∈ N, and in addition (x2k−1−x2k)k is weakly null. Choose a convex
combination u = λ1x2k1−1−w2k1 + · · ·+λnx2kn−1−w2kn with k1 < · · · < kn
with ‖u‖Xgt < ε/2‖Q‖. Set w1 =

∑n
i=1 λix2ki−1, w2 =

∑n
i=1 λkx2ki

and
ŵi = Q(wi) for i = 1, 2. By the choice of wi, we obtain ‖ŵ1 − ŵ2‖ < ε/2.
Set f =

∑
k x
∗
k ∈ Ggt and observe that dist(f, Z⊥) < ε/2 so we may choose

x∗ ∈ Z⊥ such that ‖f − x∗‖ < ε/2. Moreover, ‖ŵ1 + ŵ2‖ ≥ x∗(ŵ1 + ŵ2) ≥



276 G. Petsoulas and T. Raikoftsalis

f(ŵ1 + ŵ2)− ε/2 = 1− ε/2. This shows that there exist y1 ∈ Y1 and y2 ∈ Y2

such that ‖Q(y1) − Q(y2)‖ < ε‖Q(y1) + Q(y2)‖, which implies that Xgt/Z
is HI.

We now show that the second dual of every infinite-dimensional closed
subspace of Xgt contains an isomorphic copy of `2(2ω).

Proposition 10.5. Let Y be a block subspace of Xgt. Then Y ∗∗ contains
an isomorphic copy of `2(2ω).

Proof. By recursive application of Lemma 7.1 we construct a special tree
T = (wt, ft, jt)t∈2<ω in Y with the additional property that for every n ∈ N
if we order the set {t ∈ 2<ω : |t| = n} lexicographically as (ti)2

n

i=1 then
wti < wt′i whenever ti <lex t′i and |ti| = |t′i| = n. We know by Proposition
7.2 that for each b ∈ 2ω the sequence (wb|n)n is nontrivial weakly Cauchy.
We set

w∗∗b = lim
n
wb|n, w∗b =

∑
n

fb|n, b ∈ 2ω,

where the limits are taken with respect to the w∗ topology in Y ∗∗ and Y ∗

respectively. We claim that the family (w∗∗b )b∈2ω generates `2(c). Let F =
{b1, . . . , bd} be a finite subset of 2ω and a1, . . . , ad scalars with

∑d
i=1 a

2
i = 1.

Notice that for b1 6= b2 ∈ 2ω we have w∗∗b1 (w∗b2) = 0 as limnw
∗
b1

(wb2|n) = 0
while w∗∗b1 (w∗b1) = 1, by the choice of the special tree. Therefore, by choosing
n0 ∈ N such that the functionals w∗bi|>n0

=
∑∞

n=n0+1 fbi|n are mutually

incomparable we see that ‖
∑d

i=1 aiw
∗
bi|n>n0

‖ ≤ 1 and∥∥∥ d∑
i=1

aiw
∗∗
bi

∥∥∥ ≥ ( d∑
i=1

aiw
∗∗
bi

)( d∑
i=1

aiw
∗
bi|n>n0

)
=

d∑
i=1

a2
i .

Now as in the proof of Proposition 10.1 we can construct for each i ∈
{1, . . . , d} a sequence (zin)n of successive averages of (wbi|n)n so that by
Proposition 10.2, for every n ∈ N,∥∥∥ d∑

i=1

aiz
i
n

∥∥∥
gt
≤ 14400.

As for each i = 1, . . . , d the sequence (zin)n w∗-converges again to w∗∗bi we
deduce that ∥∥∥ d∑

i=1

aiw
∗∗
bi

∥∥∥ ≤ 14400.

11. Properties of the predual (Xgt)∗. In this section we study the
structure of (Xgt)∗. We show that this space is HI and that every bounded
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linear operator T : (Xgt)∗ → (Xgt)∗ is of the form λI + S where S is strictly
singular. We start with

Definition 11.1. Let k ∈ N and x∗ be a finitely supported vector in
(Xgt)∗. We say that x∗ is an M -ck0 vector if:

• There exist x∗1 < · · · < x∗k ∈ 〈e∗n : n ∈ N〉 with x∗ = x∗1 + · · ·+ x∗k.
• ‖x∗i ‖ > 1/M for each i = 1, . . . , k.
• ‖x∗‖ ≤ 1.

The following lemma is an application of Ramsey’s theorem. For a de-
tailed exposition we refer to [ATO].

Lemma 11.1. Let Z be a block subspace of (Xgt)∗ and k ∈ N. There
exists a block sequence (z∗n)n ⊂ Z such that for every i1 < · · · < ik the sum
z∗i1 + · · ·+ z∗ik is a 2-ck0 vector.

We also make use of

Lemma 11.2. Let f ∈ 〈e∗n : n ∈ N〉 with ‖f‖ ≤ 1 and ε > 0. Then there
exists g ∈ Ggt with ‖f − g‖ < ε and ran g ⊂ ran f .

Theorem 11.1. The space (Xgt)∗ is HI.

Proof. Let Z and U be block subspaces of (Xgt)∗ and let ε > 0. We shall
show that there exist gZ ∈ Z and hU ∈ U such that

‖g + h‖ < ε‖g − h‖.
To do so we will construct a 6-dependent sequence (wk, fk)k such that
dist(Z, f2k−1) < ε2k−1 and dist(U, f2k) < ε2k where εk > 0 and

∑
k εk < 1/2.

Let j1 ∈ Ω1. There exist z∗1,1 < · · · < z∗1,n1
in Z such that z∗1 = z∗1,1+· · ·+z∗1,n1

is a 2-cn1
0 vector. Since ‖z∗1,i‖ > 1/2 we can choose z1,i ∈ BXgt for i =

1, . . . , n1 such that z∗1,i(z1,i) > 1/2 and ran z1,i = ran z∗1,i. We set

z1 =
1
n1

(z1,1 + · · ·+ z1,n1)

and observe that z∗1(2z1) > 1 and ran z1 = ran z∗1 . By Lemma 11.2 there
exists g1 ∈ Ggt such that ran g1 ⊂ ran z∗1 and

‖z∗1 − g1‖ < min
{

2mj1

nj1
ε1, z

∗
1(z1)− 1

2

}
.

Observe that g1(2z1) > 1 and dist(g1, Z) < 2mj1
nj1
· ε1.

Proceeding similarly we construct a double sequence (2zi, gi)i such that
each 2zi is a 2-`ni

1 average and (ni)i is strictly increasing. By passing to a
subsequence we may assume that (2zi)i is j1-separated and thus if we set

w1 =
2mj1

nj1

nj1∑
i=1

2zi, f1 =
1

2mj1

nj1∑
i=1

gi,
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then (w1, f1) is a (6, j1) exact pair and dist(f1, Z) ≤ ε1. In an analogous
manner, we inductively construct a 6-dependent sequence (wk, fk)k such that
dist(Z, f2k−1) < ε2k−1 and dist(U, f2k) < ε2k. The sequence (w2k−1 − w2k)k
is weakly null and thus we can choose a finite convex combination

un0 = λ1(w2k1−1 − w2k1) + · · ·+ λn0(w2kn0−1 − w2kn0
)

with ‖un0‖ < (2 + ε)/2ε. Set

f = f2k1−1 + · · ·+ f2kn0
, g =

n0∑
i=1

f2ki−1, h =
n0∑
i=1

f2ki
.

We observe that dist(Z, g) < 1/2 and dist(U, h) < 1/2. Hence, there exist
gZ , hU in Z,U respectively such that ‖g − gZ‖ < 1/2 and ‖h − hU‖ < 1/2.
Observe that ‖gZ + hU‖ < 2 and ‖gZ − hU‖ ≥ ‖g − h‖ − 1. Moreover,

‖g − h‖ ≥ (g − h)(un0)
‖un0‖

=
2
‖un0‖

>
2
ε

+ 1.

Thus ‖gZ − hU‖ > 2/ε and the proof is complete.

11.1. The space of operators on (Xgt)∗. We now show that every bounded
linear operator T : (Xgt)∗ → (Xgt)∗ is of the form λI +W , with W a weakly
compact operator. We begin by showing that each T : (Xgt)∗ → (Xgt)∗ is
of the form λI + S with S strictly singular and then we prove that every
strictly singular operator on this space is weakly compact. The techniques
involved are quite similar to the ones used in [ATO]. For the results stated
without proof we refer the interested reader to Paragraph IV.2 in [ATO].
We start with the following general lemma:

Lemma 11.3. Let X be an HI space with a basis (en)n, and T : X → X
a bounded linear operator on X. Suppose that T is not of the form λI + S
with S strictly singular. Then there exist n0 ∈ N and δ > 0 such that
dist(T (z), 〈z〉) ≥ δ‖z‖ for every z ∈ 〈en : n ≥ n0〉.

Lemma 11.4. Let T : (Xgt)∗ → (Xgt)∗ be a bounded linear operator with
‖T‖ = 1. Suppose that (Te∗n)n is a block sequence. If T is not of the form
λI + S then for every k ∈ N and any block subspace Z of (Xgt)∗ there exist
z∗ ∈ Z with ‖z∗‖ ≤ 1 and z ∈ Xgt which is a (2/δ)-`k1 average such that

z∗(z) = 0, (Tz∗)(z) > 1, ran z ⊂ ran z∗ ∪ ranTz∗.

Proof. Since T is not of the form λI+S with S strictly singular, Lemma
11.3 shows that there exist δ > 0 and n0 ∈ N such that dist(T (f), 〈f〉) ≥
δ‖f‖ for every f ∈ 〈e∗n : n ≥ n0〉. Let Z be a block subspace of (Xgt)∗ and
k ∈ N. By Lemma 11.1 there exists a block sequence (z∗i )i in Z such that
for any i1 < · · · < ik the element z∗i1 + · · ·+ z∗ik is a 2-ck0 vector. In addition
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we suppose that ran z∗1 > n0. Furthermore, our assumptions yield

dist(Tz∗i , 〈z∗i 〉) ≥ δ‖z∗i ‖ > δ/2

for all i, and since the basis of Xgt is boundedly complete and bimonotone,
for every i there exists zi ∈ Xgt such that

‖zi‖ = 1, z∗i (zi) = 0, (Tz∗i )(zi) > 1, ran zi ⊂ ran z∗i ∪ ranTz∗i .

As (Te∗n)n has been assumed to be a block sequence, we can choose ii <
· · · < ik such that (ran z∗ij ∪ ranTz∗ij )kj=1 is a block sequence. It is clear that
the vectors

z =
1
k

(
2
δ
zi1 + · · ·+ 2

δ
zik

)
and z∗ = z∗i1 + · · ·+ z∗ik

satisfy the conclusion of the lemma.

Proposition 11.1. Let T : (Xgt)∗ → (Xgt)∗ be a bounded linear opera-
tor. Then T is of the form λI + S with S a strictly singular operator.

Proof. It is enough to consider an operator T such that ‖T‖ = 1. Suppose
that T is not of the desired form and choose n0 ∈ N and δ > 0 such that

dist(T (f), 〈f〉) ≥ δ‖f‖ for every f ∈ 〈e∗n : n ≥ n0〉.

Using the previous lemma and the fact that e∗n
w→ 0 we can construct a

double sequence (zk, z∗k)k such that:

• z∗k(zk) = 0 and (Tz∗k)(zk) > 1 for all k ∈ N.
• ran zk ⊂ ran z∗k ∪ ranTz∗k.
• (ran z∗k ∪ ranTz∗k)k is a block sequence.
• Each zk is a (2/δ)-`k1 average.

Furthermore, by Lemma 11.2 we can assume, up to a sufficiently small per-
turbation, that z∗k ∈ Ggt for all k ∈ N. Let now j1 ∈ Ω1. We can assume by
passing to subsequences if necessary that (zk)k is j1-separated. Thus if we
set

w1 =
2mj1

nj1

nj1∑
k=1

zk, f1 =
1

2mj1

nj1∑
k=1

z∗k,

we deduce that the pair (w1, f1) has the following properties:

P1. ‖w1‖gt ≤ 300 · 2/δ.
P2. f1 is of type I and w(f1) = mj1 .
P3. ran f1 ⊂ ranw1 ∪ ranTw1 and f1(w1) = 0.
P4. If φ ∈ Ggt is of type I with w(φ) = mi < mj1 then |φ(w1)| ≤ 72√

mi
· 2δ .

Proceeding similarly we construct a double sequence (wi, fi)i such that the
corresponding properties P1–P4 are satisfied for all i ∈ N and moreover
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(fi)i is a special sequence. A slight adaptation of the proof of Proposition
7.2 would also yield (wi)i weakly null. Thus, pick a convex combination

uk0 = λ1wi1 + · · ·+ λk0wik0

such that ‖uk0‖ < 1/2 and compute∥∥∥T( ik0∑
l=1

fl

)∥∥∥ ≥ T (
∑ik0

l=1 fl)(uk0)
‖uk0‖

=
T (fi1 + · · ·+ fik0

)(uk0)
‖uk0‖

>
1
‖uk0‖

> 2

and at the same time since
∑ik0

l=1 fl ∈ Ggt and ‖T‖ = 1 we have∥∥∥T( ik0∑
l=1

fl

)∥∥∥ ≤ 1,

which is clearly a contradiction.

We now show that every strictly singular operator S : (Xgt)∗ → (Xgt)∗
is in addition weakly compact. We start with

Proposition 11.2. Let T : (Xgt)∗ → (Xgt)∗ be a strictly singular oper-
ator. Then T ∗ : Xgt → Xgt is also strictly singular.

Proof. By Proposition 9.2, T ∗ = λI + W where W is strictly singular
and weakly compact. To show that T ∗ is strictly singular we only need to
prove that λ = 0. Consider W ∗ : X∗gt → X∗gt. Then W ∗ = T ∗∗ − λIX∗gt

. The
operator W ∗ restricted to (Xgt)∗ is weakly compact. It is easily seen that
every nonstrictly singular weakly compact operator must be an isomorphism
on a reflexive subspace, and as (Xgt)∗ does not contain a reflexive subspace,
we conclude that W ∗ restricted to (Xgt)∗ must be strictly singular. However,
since T ∗∗ restricted to (Xgt)∗ is equal to T we see that W ∗−T ∗∗ : (Xgt)∗ →
(Xgt)∗ is strictly singular. Therefore, λ = 0 and thus T ∗ is strictly singular.

The above yields

Theorem 11.2. Let T : (Xgt)∗ → (Xgt)∗ be a bounded linear operator.
Then T = λI +W where W is a strictly singular and weakly compact oper-
ator.

Proof. Proposition 11.1 yields λ ∈ R and S : (Xgt)∗ → (Xgt)∗ strictly
singular such that T = λI + S. By Proposition 11.2, S∗ is strictly singular
and thus weakly compact. Thus, S is also weakly compact.
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