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Greedy approximation and the multivariate Haar system

by

A. Kamont (Sopot) and V. N. Temlyakov (Columbia, SC)

Abstract. We study nonlinear m-term approximation in a Banach space with regard
to a basis. It is known that in the case of a greedy basis (like the Haar basis H in Lp([0, 1]),
1 < p < ∞) a greedy type algorithm realizes nearly best m-term approximation for any
individual function. In this paper we generalize this result in two directions. First, instead
of a greedy algorithm we consider a weak greedy algorithm. Second, we study in detail
unconditional nongreedy bases (like the multivariate Haar basis Hd = H × . . . × H in
Lp([0, 1]d), 1 < p <∞, p 6= 2). We prove some convergence results and also some results
on convergence rate of weak type greedy algorithms. Our results are expressed in terms
of properties of the basis with respect to a given weakness sequence.

1. Introduction. This paper deals with nonlinear m-term approxima-
tion with respect to a basis. Let X be an infinite-dimensional separable
Banach space with a norm ‖ · ‖ := ‖ · ‖X and let Ψ := {ψn}∞n=1 be a nor-
malized basis for X (‖ψn‖ = 1, n ∈ N). All bases considered in this paper
are assumed to be normalized. For a given f ∈ X we define the best m-term
approximation with regard to Ψ as follows:

σm(f, Ψ) := σm(f, Ψ)X := inf
bk,Λ

∥∥∥f −
∑

k∈Λ
bkψk

∥∥∥
X
,

where the inf is taken over coefficients bk and sets Λ of indices with car-
dinality #Λ = m. There is a natural algorithm of constructing an m-term
approximant. For a given element f ∈ X we consider the expansion

(1.1) f =
∞∑

k=1

ck(f, Ψ)ψk.

We call a permutation %, %(j) = kj , j = 1, 2, . . . , of the positive integers
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decreasing and write % ∈ D(f) if

|ck1(f, Ψ)| ≥ |ck2(f, Ψ)| ≥ . . .
In the case of strict inequalities here D(f) consists of only one permutation.
We define the mth greedy approximant of f with regard to the basis Ψ
corresponding to a permutation % ∈ D(f) by

Gm(f, Ψ) := GXm(f, Ψ) := Gm(f, Ψ, %) :=
m∑

j=1

ckj (f, Ψ)ψkj .

It is a simple algorithm which describes a theoretical scheme (it is not com-
putationally ready) for m-term approximation of an element f . This algo-
rithm is known in the theory of nonlinear approximation under the name of
Greedy Algorithm (see for instance [T2], [T3], [W]) and under the more spe-
cific name of Thresholding Greedy Algorithm (TGA) (see [T8], [DKKT]).
We will use the latter name in this paper. The best we can achieve with the
algorithm Gm is

‖f −Gm(f, Ψ, %)‖X = σm(f, Ψ)X ,

or a little weaker

(1.2) ‖f −Gm(f, Ψ, %)‖X ≤ Gσm(f, Ψ)X

for all f ∈ X with a constant G = C(X,Ψ) independent of f and m. The
following concept of a greedy basis has been introduced in [KT].

Definition 1.1. We call a basis Ψ a greedy basis if for every f ∈ X
there exists a permutation % ∈ D(f) such that

(1.3) ‖f −Gm(f, Ψ, %)‖X ≤ Gσm(f, Ψ)X

with a constant independent of f , m.

The first result in this direction (see [T2]) was that the univariate Haar
basis is a greedy basis. We recall the definition of the Haar basis. Let H :=
{Hk}∞k=1 be the Haar basis on [0, 1) normalized in L2(0, 1): H1 = 1 on [0, 1)
and for k = 2n + l, where n = 0, 1, . . . and l = 1, 2, . . . , 2n,

Hk(x) =





2n/2, x ∈ [(2l − 2)2−n−1, (2l − 1)2−n−1),

−2n/2, x ∈ [(2l − 1)2−n−1, 2l2−n−1),

0, otherwise.

We denote by Hp := {Hk,p}∞k=1 the Haar basis H renormalized in Lp(0, 1).
The following weak type greedy algorithm was considered in [T2]. Let

t ∈ (0, 1] be a fixed parameter. For a given basis Ψ and a given f ∈ X denote
by Λm(t) any set of m indices such that

(1.4) min
k∈Λm(t)

|ck(f, Ψ)| ≥ t max
k 6∈Λm(t)

|ck(f, Ψ)|
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and define
GX,tm (f, Ψ) :=

∑

k∈Λm(t)

ck(f, Ψ)ψk.

It was proved in [T2] that if X = Lp, 1 < p <∞, and Ψ is the Haar system
H then for any f ∈ Lp,
(1.5) ‖f −GLp,tm (f,H)‖Lp ≤ C(p, t)σm(f,H)Lp .

We note here that the proof of (1.5) from [T2] works for any greedy basis in
place of the Haar system H. Thus for any greedy basis Ψ of a Banach space
X and any t ∈ (0, 1] we have, for each f ∈ X,

(1.6) ‖f −GX,tm (f, Ψ)‖X ≤ C(p, t)σm(f, Ψ)X .

This means that for greedy bases we have more flexibility in constructing
nearly best m-term approximants.

Recently, in the theory of greedy algorithms with regard to redundant
systems the Weak Greedy Algorithm with an arbitrary weakness sequence
τ := {tk}∞k=1 has been studied (see [T7], [LTe], [T9]). In this paper we study
its modification aimed at a further weakening of the restriction (1.4). We
call this modification the Weak Thresholding Greedy Algorithm (WTGA).
Let a weakness sequence τ := {tk}∞k=1, tk ∈ [0, 1], k = 1, 2, . . . , be given. We
define the WTGA by induction. We take an element f ∈ X and at the first
step we let

Λ1(τ) := {n1}, Gτ1(f, Ψ) := cn1ψn1 ,

with any n1 satisfying
|cn1 | ≥ t1 max

n
|cn|

where we write for brevity cn := cn(f, Ψ). Assume we have already defined

Gτm−1(f, Ψ) := GX,τm−1(f, Ψ) :=
∑

n∈Λm−1(τ)

cnψn.

Then at the mth step we define

Λm(τ) := Λm−1(τ) ∪ {nm}, Gτm(f, Ψ) := GX,τm (f, Ψ) :=
∑

n∈Λm(τ)

cnψn,

with any nm 6∈ Λm−1(τ) satisfying

|cnm | ≥ tm max
n6∈Λm−1(τ)

|cn|.

Thus for an f ∈ X the WTGA builds a rearrangement of a subsequence
of the expansion (1.1). If Ψ is an unconditional basis then we always have
Gτm(f, Ψ) → f∗. It is clear that in this case f∗ = f if and only if the
sequence {nk}∞k=1 contains the indices of all nonzero cn(f, Ψ). We say that
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the WTGA corresponding to Ψ and τ is convergent (converges) if for any
realization Gτm(f, Ψ) we have

‖f −Gτm(f, Ψ)‖ → 0 as m→∞
for all f ∈ X.

In Section 2 we prove the following three theorems on convergence of
the WTGA. The first one deals with an arbitrary Banach space X and any
basis Ψ .

Theorem 1. Let X be a Banach space with a normalized basis Ψ . Let
τ = {tn, n ≥ 1} be a weakness sequence. The following condition (D) is a
necessary condition for the WTGA corresponding to Ψ and τ to be conver-
gent.

(D) For each subsequence {nk, k ≥ 1} of different indices, the series∑∞
k=1 tkψnk diverges in X.

If the basis Ψ is unconditional , then (D) is also sufficient condition for the
convergence of the WTGA corresponding to Ψ and τ .

In the case X = Lp([0, 1]d) we can derive from Theorem 1 a more specific
condition in terms of τ .

Theorem 2. Let 2 ≤ p <∞, d ≥ 1 and let Ψ be a normalized uncondi-
tional basis in Lp([0, 1]d). Let τ = {tn, n ≥ 1} be a weakness sequence. Then
the WTGA corresponding to Ψ and τ converges if and only if τ 6∈ lp.

We do not have such a simple criterion in terms of τ for X = Lp([0, 1]d),
1 < p < 2, and arbitrary unconditional basis Ψ . In this case we have the
following result for the multivariate Haar basis Hdp defined as the tensor
product of the univariate Haar bases: Hdp := Hp × . . . × Hp. To formulate
the result, we introduce the following notation. For a sequence {tk, k ≥ 1} of
nonnegative numbers such that limk→∞ tk = 0, {t∗k, k ≥ 1} is a nonincreas-
ing rearrangement of the subsequence {tnk , k ≥ 1} consisting of the positive
elements of {tk, k ≥ 1}.

Theorem 3. Let d ≥ 1 and 1 < p < 2. The WTGA corresponding to
Hdp and a weakness sequence τ converges in Lp([0, 1]d) if and only if one of
the following conditions is satisfied :

(i) The sequence τ = {tk} does not converge to 0.

(ii) limk→∞ tk = 0 and

(1.7)
∞∑

k=2

(t∗k)2(k(log k)1−d)2/p−1 =∞.

Along with convergence of the WTGA we study efficiency of approxi-
mation by Gτm(·, Ψ). We compare accuracy of the WTGA with best m-term
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approximation. In the case of a greedy basis and τ = {t}, t ∈ (0, 1], the re-
lation (1.6) shows that Gτm(·, Ψ) realizes nearly best m-term approximation.
There are two natural ways of adapting (1.6) to the case of nongreedy bases
or general weakness sequences. The first way (see [T5], [T3], [W], [Os]) is to
write (1.6) in the form

‖f −Gτm(f, Ψ)‖ ≤ C(m, τ, Ψ)σm(f, Ψ)

and look for the best (in the sense of order) constant C(m, τ, Ψ).
We now formulate the corresponding results. For a basis Ψ we define the

fundamental function

ϕ(m) := sup
#A≤m

∥∥∥
∑

k∈A
ψk

∥∥∥.

We also need the functions

ϕs(m) := sup
#A=m

∥∥∥
∑

k∈A
ψk

∥∥∥, ϕi(m) := inf
#A=m

∥∥∥
∑

k∈A
ψk

∥∥∥.

It is clear that
ϕ(m) = sup

n≤m
ϕs(n).

We now introduce some characteristics of a basis with respect to a weakness
sequence τ . For a subset V ⊆ [1,m] of integers we define

φ(τ,m, V ) := inf
{ki}

∥∥∥
∑

i∈V
tiψki

∥∥∥

where the inf is taken over all sets {ki} of different indices. For two integers
1 ≤ n ≤ m we define

φ(τ,m, n) := inf
#V=n

φ(τ,m, V ),

and finally

µ(τ,m) := sup
n≤m

ϕs(n)
φ(τ,m, n)

.

We have the following result.

Theorem 4. Let Ψ be a normalized unconditional basis for X. Then

‖f −Gτm(f, Ψ)‖ ≤ C(Ψ)µ(τ,m)σm(f, Ψ).

In the case τ = {1} Theorem 4 is known. The first result in this direction
was obtained for the multivariate Haar basis Hdp (see [T3]). Then it was
generalized in [W] to other bases, in particular, to normalized unconditional
bases. Moreover, it has been proved in [W] that µm({1},m) is an optimal
extra factor in the above inequality for τ = {1}.

In Theorem 4 we compare efficiency of Gτm(·, Ψ) with σm(·, Ψ). It is
known in approximation theory that sometimes it is convenient to compare
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efficiency of an approximating operator which is characterized by m param-
eters with best possible approximation corresponding to a smaller number
of parameters n ≤ m. We use this idea in approximation by the WTGA. In
this paper we study a setting when we write (1.6) in the form

‖f −Gτvm(f, Ψ)‖ ≤ C(Ψ)σm(f, Ψ)

and look for the best (in the sense of order) sequence {vm} that is determined
by the weakness sequence τ and the basis Ψ . We need some more notation.
Define

φ(τ,N) := φ(τ,N, [1, N ]) = inf
k1,...,kN

∥∥∥
N∑

j=1

tjψkj

∥∥∥.

Assume that φ(τ,N) → ∞ as N → ∞ and denote by vm the smallest N
satisfying

φ(τ,N) ≥ 2ϕ(m).

We have the following result in this case.

Theorem 5. For any normalized unconditional basis Ψ we have

‖f −Gτvm(f, Ψ)‖ ≤ C(Ψ)σm(f, Ψ).

It is interesting to compare this result with some recent results from
[DKKT]. It has been established in [DKKT] that the inequalities

(1.8) ‖f −Gλm(f, Ψ)‖ ≤ C(Ψ, λ)σm(f, Ψ)

with fixed λ > 1 are characteristic for a special class of bases. We describe
this class now. Let us say that a basis Ψ is almost greedy if there is a constant
C so that for any f ∈ X,

‖f −Gm(f, Ψ)‖ ≤ C inf
Λ,#Λ=m

∥∥∥f −
∑

k∈Λ
ck(f, Ψ)ψk

∥∥∥.

It is clear that each greedy basis is almost greedy. It has been proved in
[DKKT] that if (1.8) holds for some λ > 1 and all f ∈ X then Ψ is almost
greedy. It has also been proved in [DKKT] that (1.8) holds for any λ > 1
and all f ∈ X provided Ψ is almost greedy.

When the results of this paper were completed (see survey [KTe]) we
learned from P. Wojtaszczyk that he had also obtained results in the style
of Theorem 5 in the case τ = {1} (see Theorem 4 of [Wo]).

In Section 4 we discuss the greedy properties of subsequences of the
Haar basis Hdp := Hp× . . .×Hp that is the tensor product of the univariate
Haar bases H. It is known (see [T2] and [T3]) that Hp is a greedy basis for
Lp([0, 1]), 1 < p < ∞, and Hdp is a greedy basis for Lp([0, 1]d), d ≥ 2, only
for p = 2. Let M be a subset of the set of indices n ∈ Zd+. We define

Hdp[M] := {Hn,p,n ∈ M},
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Lp[M] := {f ∈ Lp([0, 1]d) : 〈f,Hn〉 = 0, n 6∈ M} = span{Hdp[M]},
where the closure is taken in Lp([0, 1]d).

We introduce some more notation. Let us define the decomposition of
Hdp into dyadic blocks. First, define

(1.9) U0 := {1, 2}, Us := {n ∈ N : 2s + 1 ≤ n ≤ 2s+1} for s ≥ 1.

For s = (s1, . . . , sd) we set

(1.10) Us := {n = (n1, . . . , nd) : ni ∈ Usi for i = 1, . . . , d}.
We note that for each s the supports of the functions {Hn,p,n ∈ Us} have
the same shape and measure 2−|s|, where |s| = s1 + . . . + sd. Moreover, if
s = (s1, . . . , sd) with si 6= 0 for all 1 ≤ i ≤ d, then #Us = 2|s| and the
supports of the functions {Hn,p,n ∈ Us} are disjoint. For general s we have
2|s| ≤ #Us ≤ 2|s|+d, and at most 2d different functions from {Hn,p,n ∈ Us}
have the same support.

For a positive constant K we define two classes of subsequences M:

R(K) := {M : ∀n #{s :M∩ Us 6= ∅, |s| = n} ≤ K},
J(K) := {M : ∀s #(M∩ Us) ≤ K}.

Denote by G(d) the set of all subsequences M representable in the form
M =M1∪M2, whereM1 ∈ R(K1) andM2 ∈ J(K2) with some constants
K1, K2.

Theorem 6. Let M ∈ G(d). Then Hdp[M] is a greedy basis for Lp[M],
1 < p <∞.

It is clear that the condition M ∈ G(d) is not necessary for Hdp[M] to
be a greedy basis for Lp[M]. Indeed, we can find a sequenceM 6∈ G(d) with
disjoint supports of Hn, n ∈ M. However, we will show in Section 4 that
Theorem 6 is sharp in a certain sense.

In Section 5 we present results on relations between {σm(f,Hd)p} and
{cn(f,Hdp)}. We give some embedding theorems in terms of the Lorentz
spaces and their slight modifications.

Let us agree to denote by C various positive absolute constants and
by C with arguments or indices (C(q, p), Cr and so on) positive numbers
which depend on the arguments indicated. For two nonnegative sequences
a = {an}∞n=1 and b = {bn}∞n=1 the relation (order inequality) an � bn means
that there is a number C(a, b) such that an ≤ C(a, b)bn for all n; and the
relation an � bn means that an � bn and bn � an.

Acknowledgements. We would like to thank Professor P. Wojtaszczyk
and Professors S. J. Dilworth, N. J. Kalton and D. Kutzarova for letting us
know early versions of their papers [Wo] and [DKK].
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2. The convergence results. In this section we will prove and discuss
Theorems 1–3.

Proof of Theorem 1. We begin with the necessity part. Our proof is by
contradiction. Suppose that

∑∞
k=1 tkψnk converges in X for some sequence

{nk, k ≥ 1} of different indices.
First, we consider a special case. Let {nk, k ≥ 1} be a sequence of differ-

ent indices such that
∑∞
k=1 tkψnk converges in X and there is a ν ∈ N such

that nk 6= ν for all k ∈ N. Take

f = ψν +
∞∑

k=1

tkψnk .

Then we can take the following realization of the WTGA:

Gτm(f, Ψ) =
m∑

k=1

tkψnk .

Thus

f −Gτm(f, Ψ) = ψν +
∞∑

k=m+1

tkψnk

and ‖f−Gτm(f, Ψ)‖ 6→ 0. Consequently, the WTGA corresponding to Ψ and
τ is not convergent.

We now reduce the general case to the above special case. Let {nk, k ≥ 1}
be a sequence of different indices such that

∑∞
k=1 tkψnk converges in X. This

implies that limk→∞ tk = 0, so there is a subsequence {kl, l ≥ 1} with k1 = 1
such that ∞∑

l=1

tkl <∞.

Clearly, then both
∞∑

l=1

tklψnkl and
∞∑

l=1

tklψnkl+1

converge in X, and
∞∑

k=1

tkψnk −
∞∑

l=1

tklψnkl +
∞∑

l=1

tklψnkl+1
=
∞∑

k=1

tkψsk ,

where

sk =
{
nk if k 6= kl for all l ≥ 1,

nkl+1 if k = kl for some l ≥ 1.

Note that {sk, k ≥ 1} is a sequence of different indices such that sk 6= n1

for all k ≥ 1. Therefore we are in the special case considered above. This
completes the proof of the necessity part.
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We now proceed to the sufficiency part. Our proof is again by contradic-
tion. Assume that Ψ is an unconditional basis. Suppose that f ∈ X is such
that

Gτm(f, Ψ) 6→ f

in X. By definition,

Gτm(f, Ψ) =
m∑

k=1

cnkψnk ,

where

(2.1) |cn1 | ≥ t1 sup
n∈N
|cn|, |cnk | ≥ tk sup

n6=n1,...,nk−1

|cn| for k ≥ 2.

As Gτm(f, Ψ) 6→ f and the basis Ψ is unconditional, there is µ ∈ N with
cµ 6= 0 such that nk 6= µ for all k ∈ N. Hence (2.1) implies that tk ≤
|cnk |/|cµ|. Since the basis Ψ is unconditional, it follows that the series∑∞
k=1 tkψnk converges in X. Theorem 1 is now proved.

Remark 2.1. In the case of conditional bases, the condition (D) is not
sufficient for convergence of the corresponding algorithm. For example, it is
clear that for TGA (τ = {1}) this condition is always satisfied. However,
the TGA may not converge for some bases. For instance, it was proved in
[T5] (see also [CF] for 1 ≤ p < 2) that the TGA may diverge in Lp, p 6= 2,
for the trigonometric system.

Let us note that convergence of TGA can be used as a defining condition
for a class of bases called quasi-greedy bases (see [KT], [W]; more precisely,
the definition of a quasi-greedy basis in [KT] is different, and in [W] the
equivalence of this definition and convergence of TGA is proved). It is clear
that any unconditional basis is a quasi-greedy basis. It is known (see [KT])
that there is a quasi-greedy basis that is not an unconditional basis. For more
examples of conditional quasi-greedy bases see [W], [DM]. We also remark
that the question of existence of quasi-greedy bases in Banach spaces, in a
very general setting, has been treated in the recent paper [DKK].

We will prove one technical result that we will need later on. Let M =
{mk, k ≥ 1} be a sequence of different indices, and let τ = {tk, k ≥ 1} be a
weakness sequence. Consider a new weakness sequence τ(M) = {ηn, n ≥ 1},
where

ηn =
{
tk when n = mk for k ≥ 1,

0 otherwise.
We have the following corollary of Theorem 1.

Proposition 2.1. Let Ψ be a normalized unconditional basis in a Ba-
nach space X. Then the WTGA corresponding to Ψ and τ(M) is convergent
if and only if the WTGA corresponding to Ψ and τ is convergent.
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Proof. It is clear that if τ(M) does not satisfy the necessary and suffi-
cient condition (D) from Theorem 1, then neither does τ . Thus if the WTGA
diverges for τ(M) it diverges for τ . We now prove that if τ does not sat-
isfy (D) then τ(M) also does not satisfy (D). Assume that

∑∞
k=1 tkψnk

converges. Then tk → 0 and we let K := {kj}∞j=1 be an infinite set such that

∞∑

j=1

tkj <∞.

Let L := N \ K and note that the series
∑
k∈L tkψnk also converges.

We now assign to each ηmk = tk, k ∈ L, from the sequence τ(M) a basic
function ψnk . We split the infinite set K into a union of two infinite sets K1

and K2. Then we set up a one-to-one correspondence k ↔ k′ between K and
K1 and assign to each ηmk = tk, k ∈ K, a basic function ψnk′ ; to different
ηl = 0 we assign different basic functions ψs with s ∈ ⋃k∈K2

{nk}. Then the
corresponding sum from the condition (D) for τ(M) will be

∑

k∈L
tkψnk +

∑

k∈K
tkψnk′ .

This series converges and therefore τ(M) does not satisfy (D). By Theo-
rem 1 we conclude that the WTGA corresponding to τ(M) diverges. This
completes the proof of Proposition 2.1.

Proof of Theorem 2. Since Ψ is a normalized unconditional basis in
Lp([0, 1]d) with p ≥ 2, for any set {nk} of different indices and N ∈ N
we have

∥∥∥
N∑

k=1

tkψnk

∥∥∥
p
≥ C

( �

[0,1]d

( N∑

k=1

|tk|2|ψnk(x)|2
)p/2

dx
)1/p

≥ C
( N∑

k=1

|tk|p
)1/p

.

Therefore, by the sufficiency part of Theorem 1 the WTGA with a weakness
sequence τ converges if τ 6∈ lp.

Assume now that τ ∈ lp. Then it is known (see [KP, Theorem 4]) that
an unconditional basis Ψ = {ψn}∞n=1 of Lp([0, 1]d), 1 < p < ∞, contains a
subsequence {ψnk}∞k=1 such that each series

∑∞
k=1 akψnk converges provided

{ak}∞k=1 ∈ lp. Specifying ak = tk and applying Theorem 1 we conclude that
the WTGA with the weakness sequence τ does not converge. This completes
the proof of Theorem 2.

The case of Lp([0, 1]d) with 1 < p < 2 is different—the condition on the
weakness sequence τ depends now on a particular unconditional basis Ψ .
Let Ψ be a normalized unconditional basis in Lp([0, 1]d) with 1 < p < 2.
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Then for any coefficients {an} and N ∈ N we have

C1

( N∑

n=1

|an|2
)1/2

≤
∥∥∥

N∑

n=1

anψn

∥∥∥
p
≤ C2

( N∑

n=1

|an|p
)1/p

.

Thus by Theorem 1 if a weakness sequence τ ∈ lp, then the WTGA corre-
sponding to Ψ and τ is not convergent in Lp([0, 1]d). Also, if τ 6∈ l2 then the
WTGA corresponding to Ψ and τ is convergent in Lp([0, 1]d). In addition,
as Lp⊕l2 is isomorphic to Lp, there is an unconditional basis Ψ in Lp([0, 1]d)
(1 < p < 2) for which the condition τ 6∈ l2 is also a necessary condition for
the WTGA corresponding to Ψ and τ to be convergent.

Let us consider in detail the case of the Haar system Hdp.

Proof of Theorem 3. If τ = {tk, k ≥ 1} is a sequence of nonnegative num-
bers which does not converge to 0, then lim supk→∞ tk > 0, and convergence
of the WTGA corresponding to Hdp and τ is an immediate consequence of
Theorem 1.

It remains to consider sequences τ such that limk→∞ tk = 0. By Propo-
sition 2.1, it is sufficient to consider a sequence τ with tk 6= 0. Set

qm := #{n : |suppHn| = 2−m}, ν0 = 0, νm =
m−1∑

j=0

qj for m ≥ 1.

Note that qm � md−12m � νm and log qm � m � log νm for m ≥ 1. As the
sequence {t∗k, k ≥ 0} is nonincreasing, for νm ≤ k ≤ νm+1 we have

C1(t∗νm+1
)22m(2/p−1) ≤ (t∗k)2(k(log k)1−d)2/p−1 ≤ C2(t∗νm)22m(2/p−1),

which implies that

(2.2)
∞∑

k=1

(t∗k)2(k(log k)1−d)2/p−1 <∞ ⇔
∞∑

m=1

(t∗νm+1
)2md−122m/p <∞.

Let us recall (see Lemma 3.1 below for more detail) that for any N
different indices n1, . . . ,nN ,

(2.3)
∥∥∥

N∑

i=1

Hni,p

∥∥∥
p
≥ C(p, d)(logN)(d−1)(1/2−1/p)N1/p, 1 < p ≤ 2.

For any sequence {nk, k ≥ 1} of different indices,

∥∥∥
∞∑

k=1

tkHnk,p

∥∥∥
p

=
∥∥∥
∞∑

k=1

t∗kHn∗k,p

∥∥∥
p
≥ C(p, d)

( ∞∑

m=0

∥∥∥
νm+1∑

k=νm+1

t∗kHn∗k,p

∥∥∥
2

p

)1/2
,

where n∗k is such that t∗k = tk∗ and n∗k = nk∗ . By (2.3) we continue the
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estimate:

≥ C(p, d)
( ∞∑

m=0

(t∗νm+1
(log qm)(d−1)(1/2−1/p)q1/p

m )2
)1/2

≥ C(p, d)
( ∞∑

m=0

(t∗νm+1
)2(m+ 1)d−122m/p

)1/2
.

Thus, it follows from (2.2) and Theorem 1 that if a weakness sequence τ
satisfies the condition (1.7), then the WTGA corresponding to Hdp and τ
converges.

Suppose now that

(2.4)
∞∑

k=1

(t∗k)2(k(log k)1−d)2/p−1 <∞.

Take a sequence {nk, k ≥ 1} of different indices satisfying

|suppHnk,p| = 2−m for νm + 1 ≤ k ≤ νm+1,

i.e. we order the functions Hn,p according to the measure of their supports
(more precisely, the sequence |suppHnk,p| is nonincreasing). Note that with
this ordering we have

∑νm+1

k=νm+1 |Hnk,p(x)|2 � (m + 1)d−122m/p for each
x ∈ [0, 1]d. Then, using unconditionality of Hdp, we obtain

∥∥∥
∞∑

k=1

t∗kHnk,p

∥∥∥
p

p
≤ C(p, d)

�

[0,1]d

( ∞∑

k=1

|t∗kHnk,p(x)|2
)p/2

dx

≤ C(p, d)
�

[0,1]d

( ∞∑

m=1

(t∗νm+1)2
νm+1∑

k=νm+1

|Hnk,p(x)|2
)p/2

dx

≤ C(p, d)
( ∞∑

m=0

(t∗νm+1)2(m+ 1)d−122m/p
)p/2

.

The above inequality combined with Theorem 1 and (2.2) implies that for
τ satisfying (2.4) the corresponding WTGA is not convergent.

3. Proof of Theorems 4 and 5. This proof uses an idea from [T2]
(see also [KT]). The following proposition is a well known fact about uncon-
ditional bases (see [LT, vol. I, p. 19]).

Proposition 3.1. Let Ψ be an unconditional basis for X. Then for
every choice of bounded scalars {λk}∞k=1, we have

∥∥∥
∞∑

k=1

λkakψk

∥∥∥ ≤ K sup
k
|λk|

∥∥∥
∞∑

k=1

akψk

∥∥∥.
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Take any ε > 0 and find

pm(f) :=
∑

k∈P
bkψk

such that #P = m and

(3.1) ‖f − pm(f)‖ ≤ σm(f, Ψ) + ε.

For any finite set Λ of indices we denote by SΛ the projector

SΛ(f) :=
∑

k∈Λ
ck(f, Ψ)ψk.

Proposition 3.1 implies that

(3.2) ‖f − SP (f)‖ ≤ K(σm(f, Ψ) + ε).

Let
GτN (f, Ψ) =

∑

k∈Q
ck(f, Ψ)ψk = SQ(f).

Then

(3.3) ‖f −GτN (f, Ψ)‖ ≤ ‖f − SP (f)‖+ ‖SP (f)− SQ(f)‖.
The first term on the right side of (3.3) has been estimated in (3.2). We now
estimate the second term. We have

(3.4) SP (f)− SQ(f) = SP\Q(f)− SQ\P (f).

Similarly to (3.2) we have

(3.5) ‖SQ\P (f)‖ ≤ K(σm(f, Ψ) + ε).

We now estimate ‖SP\Q(f)‖. Let J be the set of indices i such that the
elements of P ∩Q were chosen at steps i ∈ J . Set

a := max
k∈P\Q

|ck(f, Ψ)|.

Then from the definition of the WTGA we obtain

SQ\P (f) =
∑

k∈Q\P
ck(f, Ψ)ψk

and {ck(f, Ψ)}k∈Q\P can be enumerated by indices i ∈ V := [1, N ] \ J in
such a way that

|cki(f, Ψ)| ≥ tia, i ∈ V.
Then by Proposition 3.1 we have

(3.6) ‖SQ\P (f)‖ ≥ K−1aφ(τ,N, V )

and

(3.7) ‖SP\Q(f)‖ ≤ Kaϕs(#(P \Q)).
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Thus in the case of N = m (Theorem 4) setting n := #(P \Q) = #(Q \ P )
we get

‖SP\Q(f)‖ ≤ K2 ϕs(n)
φ(τ,m, n)

‖SQ\P (f)‖ ≤ K2µ(τ,m)‖SQ\P (f)‖.

In the case of N = vm (Theorem 5) we obtain

(3.8) φ(τ,N, V ) ≥ φ(τ,N)−
∥∥∥
∑

i∈J
tiψki

∥∥∥ ≥ φ(τ,N)− ϕ(m) ≥ ϕ(m).

Combining (3.6)–(3.8) we get

‖SP\Q(f)‖ ≤ K2‖SQ\P ‖.
It remains to substitute this inequality and (3.5) into (3.4) and use (3.3).

Theorems 4 and 5 are proved.

Let us make some comments on Theorems 4 and 5. First we consider the
case when Ψ is a greedy basis. Then by Definition 1.1 we have (1.3) satisfied.
Let us see what Theorem 4 gives in this case. We recall a result from [KT].

Definition 3.1. We say that a normalized basis Ψ = {ψk}∞k=1 is a
democratic basis for X if there exists a constant D := D(X,Ψ) such that
for any two finite sets of indices P and Q with the same cardinality we have

(3.9)
∥∥∥
∑

k∈P
ψk

∥∥∥ ≤ D
∥∥∥
∑

k∈Q
ψk

∥∥∥.

The following theorem was proved in [KT].

Theorem 3.1. A normalized basis is greedy if and only if it is uncon-
ditional and democratic.

Thus by Theorem 3.1 a greedy basis satisfies (3.9). It is easy to see
that (3.9) implies ϕs(m) ≤ Dφ(m) and therefore for τ = {1} we get
µ({1},m) ≤ D. This means that Theorem 4 states that for any greedy basis
Ψ we have (1.3) for any % ∈ D(f).

We now apply Theorems 4 and 5 for Ψ = Hdp, 1 < p < ∞, with the
weakness sequence τ = {1}. We will use the following known inequalities.

Lemma 3.1. Let Λ be a set of indices with #Λ=m. Then for 2≤p<∞,

C1
p,dm

1/p min
n∈Λ
‖cnHn‖p ≤

∥∥∥
∑

n∈Λ
cnHn

∥∥∥
p

≤ C2
p,dm

1/p(logm)h(p,d) max
n∈Λ
‖cnHn‖p,
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and for 1 < p ≤ 2,

C3
p,dm

1/p(logm)−h(p,d) min
n∈Λ
‖cnHn‖p ≤

∥∥∥
∑

n∈Λ
cnHn

∥∥∥
p

≤ C4
p,dm

1/p max
n∈Λ
‖cnHn‖p,

where h(p, d) := (d− 1)|1/2− 1/p|.
Lemma 3.1 in the case d = 2, 4/3 ≤ p ≤ 4 has been proved in [T3] and

in the general case in [W]. Lemma 3.1 implies that for 1 < p <∞,

µ({1},m) � C(p, d)(logm)(d−1)|1/2−1/p|,

vm � C(p, d)m(logm)(d−1)|p/2−1|.

Therefore Theorem 4 gives the known result (see [T3], [W])

(3.10) ‖f −Gm(f,Hdp)‖p
≤ C(p, d)(logm)(d−1)|1/2−1/p|σm(f,Hdp)p, 1 < p <∞.

Theorem 5 gives a new result. We note that for functions f with slow
decay of σm(f,Hdp)p Theorem 5 gives a better estimate than (3.10). Consider
for example σm(f,Hdp)p � m−α. Then (3.10) gives

(3.11) ‖f −Gm(f,Hdp)‖p � (logm)(d−1)|1/2−1/p|m−α, 1 < p <∞,
while Theorem 5 gives

(3.12) ‖f −Gm(f,Hdp)‖p � (m(logm)−(d−1)|p/2−1|)−α, 1 < p <∞.
For α < 1/p the estimate (3.12) is better than (3.11).

Let us now discuss optimality of the sequence {vm}.
Theorem 3.2. Let X be a Banach space with a normalized uncondi-

tional basis Ψ . Let τ = {tn, n ≥ 1} be a weakness sequence such that the
WTGA with respect to Ψ and τ is convergent. Let {vm,m ∈ N} be a se-
quence of natural numbers with vm ≥ m. Then the following two conditions
are equivalent.

(i) There is a constant C such that for each pair of natural numbers
n ≤ m and any set V ⊆ [1, vm] with #V = vm −m+ n we have

∥∥∥
∑

j∈A
ψj

∥∥∥ ≤ C
∥∥∥
∑

i∈V
tiψki

∥∥∥

for any two sets of indices A and B := {ki, i ∈ V } (all ki, i ∈ V , are
different) satisfying A ∩B = ∅ and #A = n.

(ii) There is a C > 0 such that for all f ∈ X and m ∈ N,

(3.13) ‖f −Gτvm(f, Ψ)‖ ≤ Cσm(f, Ψ).
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Proof. The implication (i)⇒(ii) can be proved in the same way as The-
orem 5. We will not dwell on it here. We only note that we use (i) with
A = P \ Q and B = Q \ P to get from the following analogs of (3.6) and
(3.7):

‖SQ\P (f)‖ ≥ K−1a
∥∥∥
∑

i∈V
tiψki

∥∥∥, B = {ki, i ∈ V },(3.14)

‖SP\Q(f)‖ ≤ Ka
∥∥∥
∑

n∈A
ψn

∥∥∥,(3.15)

the inequality

‖SP\Q(f)‖ ≤ CK2‖SQ\P (f)‖.

We now prove that (ii)⇒(i). Let n ≤ m be given and let V , A, B satisfy
the conditions of (i). Let Y be such that #Y = m− n and A ∩ Y = ∅ and
B ∩ Y = ∅. Consider

f :=
∑

n∈A∪Y
ψn +

∑

i∈V
tiψki .

We take the following realization of the WTGA. For steps i ∈ V we take
ni = ki and for steps i 6∈ V we take different ni ∈ Y . Then we get

Gτvm(f, Ψ) =
∑

n∈Y
ψn +

∑

i∈V
tiψki .

This implies by (ii) that
∥∥∥
∑

n∈A
ψn

∥∥∥ = ‖f −Gτvm(f, Ψ)‖ ≤ Cσm(f, Ψ) ≤ C
∥∥∥
∑

i∈V
tiψki

∥∥∥.

This completes the proof of Theorem 3.2.

Let us make some more comments on Theorems 4 and 5.
It is well known that for τ = {1} and a normalized unconditional ba-

sis Ψ , the extra factor µ({1},m) in Theorem 4 is finite and µ({1},m) ≤ Cm
(see e.g. Corollaries to Theorem 5 in [W] or formula (1.8) in [Os]). However,
even for τ = {1} it may happen that there is no sequence {vm} such that
inequality (3.13) holds for all f ∈ X and m, with a constant C indepen-
dent of f and m. A simple example of such a space X and an unconditional
basis Ψ is X = l1 ⊕ c0 with Ψ = {en, n ∈ N} ∪ {fn, n ∈ N}, {en, n ∈ N}
and {fn, n ∈ N} being the unit vector bases in l1 and c0, respectively: for
any finite A ⊂ N one has ‖∑n∈A en‖ = #A and ‖∑n∈A fn‖ = 1, which
means that condition (i) of Theorem 3.2 cannot be satisfied by any sequence
{vm}. This example has been suggested to us by the referee and replaces
our previous, more complicated example.
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4. Greedy subsequences of the multivariate Haar basis. It is well
known that for p 6= 2 and d ≥ 2 the d-variate tensor product Haar system
Hdp is not a greedy basis in the corresponding Lp([0, 1]d) space. However,
for some functions the Thresholding Greedy Algorithm may give an order
of approximation comparable with the order of best approximation. In this
section we address the question: For what functions does the TGA realize
nearly best m-term approximation? Let us recall that for s = (s1, . . . , sd),
the dyadic block Us is defined by (1.10), and the Haar functions Hn,p with
n ∈ Us have the same shape of supports.

We are interested in the influence of some “structural constraints” im-
posed on a function on the efficiency of TGA with respect to the Haar
system Hdp. By “structural constraints” we mean constraints imposed on
the number of nonzero coefficients in dyadic blocks or on the number of
dyadic blocks with nonzero coefficients. These constraints are expressed in
terms of classes of sequences R(K), J(K), and G(d) (see the Introduction).
We begin by proving Theorem 6.

Proof of Theorem 6. For any sequenceM the systemHdp[M] is an uncon-
ditional basis for Lp[M], 1 < p <∞. Thus by Theorem 3.1 it is sufficient to
establish that Hdp[M] is democratic provided M ∈ G(d). This follows from
Lemmas 4.1 and 4.2 below.

Lemma 4.1. Let 1 < p < ∞ and M ∈ R(K). Then for any different
n1, . . . ,nm ∈M we have

∥∥∥
m∑

k=1

Hnk,p

∥∥∥
p
� m1/p

with constants depending only on K, d and p.

Lemma 4.2. Let 1 < p < ∞ and M ∈ J(K). Then for any different
n1, . . . ,nm ∈M we have

∥∥∥
m∑

k=1

Hnk,p

∥∥∥
p
� m1/p

with constants depending only on K, d and p.

For d = 1 Lemma 4.1 withM = N was proved in [T2]. That same proof
works for d ≥ 2 under the assumption M ∈ R(K) (see also the proof of
Lemma 9 in [W]). Let us prove Lemma 4.2.

Proof of Lemma 4.2. We recall (see Lemma 3.1) that by the Littlewood–
Paley theory we have

∥∥∥
m∑

k=1

Hnk,p

∥∥∥
p
≤ C(p, d)m1/p for 1 < p ≤ 2



216 A. Kamont and V. N. Temlyakov

and

C(p, d)m1/p ≤
∥∥∥

m∑

k=1

Hnk,p

∥∥∥
p

for 2 ≤ p <∞

for any different n1, . . . ,nm. To prove the upper estimate in the case 2 <
p < ∞, we use the following inequality, which is a special case of Lemma
2.3 of [T1]: for 2 < p <∞ and f =

∑
s fs with fs =

∑
n∈Us

cn(f)Hn,

(4.1) ‖f‖p ≤ Cp,d
(∑

s

(2|s|(1/2−1/p)‖fs‖2)p
)1/p

.

For each s, let ms be the number of nk’s in Us. Note that
∥∥∥
∑

k:nk∈Us

Hnk,p

∥∥∥
2

= 2|s|(1/p−1/2)m1/2
s ,

and therefore by (4.1),
∥∥∥

m∑

k=1

Hnk,p

∥∥∥
p
≤ Cp,d

(∑

s

mp/2
s

)1/p
.

Taking into account that m =
∑

sms and ms ≤ K by the assumption
M ∈ J(K) we get

∥∥∥
m∑

k=1

Hnk,p

∥∥∥
p
≤ Cp,dm1/p for 2 < p <∞

with the constant depending only on p, d and K.
To complete the proof, recall that the lower estimate in the case 1 < p < 2

follows from the upper estimates for all 2 < p < ∞ by duality. Using the
Hölder inequality we obtain

m =
m∑

k=1

�

[0,1]d

Hnk,p(x) ·Hnk,p′(x) dx

=
�

[0,1]d

( m∑

k=1

Hnk,p(x)
)
·
( m∑

k=1

Hnk,p′(x)
)
dx

≤
∥∥∥

m∑

k=1

Hnk,p

∥∥∥
p
·
∥∥∥

m∑

k=1

Hnk,p′

∥∥∥
p′
≤ Cm1/p′

∥∥∥
m∑

k=1

Hnk,p

∥∥∥
p
,

which gives the lower estimate in the case 1 < p < 2 with a constant
depending only on p, d and K.

This completes the proof of Theorem 6.

We now proceed to a discussion of in what sense Theorem 6 is sharp. We
need some more notation describing the structural constraints on functions.
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Let Λ = {λs, s = (s1, . . . , sd) ∈ Zd+} be a sequence of integers satisfying

(4.2) 0 ≤ λs ≤ #Us.

Define
V(Λ) := {M : #(M∩ Us) ≤ λs}.

For 1 < p <∞ consider the following sets of functions:

(4.3) Lp(Λ) =
⋃

M∈V(Λ)

Lp[M],

i.e. Lp(Λ) consists of f ∈ Lp([0, 1]d) with at most λs nonzero coefficients in
blocks Us, s ∈ Zd+.

We describe a distribution of λs’s for a given sequence Λ by defining, for
nonnegative integers µ,M ,

(4.4) αµ,M (Λ) := #{s : |s| = µ and λs ≥M}.
Now, let A := {aµ,M} be a sequence of nonnegative integers satisfying

(4.5) aµ,M1 ≤ aµ,M2 for M1 ≥M2,

(4.6) aµ,0 = #{s = (s1, . . . , sd) : |s| = µ}, aµ,M = 0 for M > max
|s|=µ

#Us.

Note that the sequence {αµ,M (Λ)} defined above satisfies these conditions
for any Λ.

To formulate the next result, we define a type of a sequence Λ and full
range sequences.

Definition 4.1. Let A = {aµ,M} be a sequence satisfying (4.5) and
(4.6), and let Λ = {λs} be a sequence of integers satisfying (4.2). Λ is called
a type A sequence if αµ,M (Λ) = aµ,M for all µ,M ≥ 0 (where αµ,M (Λ) is
given by (4.4)).

Definition 4.2. Let A = {aµ,M} be a sequence satisfying (4.5) and
(4.6). It is called a full range sequence if lim supµ→∞ aµ,M = ∞ for each
M > 0.

Take a sequence M ∈ G(d) and define

aµ,M (M) := #{s : |s| = µ and #(M∩ Us) ≥M}.
From the definition of G(d) we get

M =M1 ∪M2, M1 ∈ R(K1), M2 ∈ J(K2).

Thus for M > K2 we have aµ,M (M) ≤ K1. Therefore any M ∈ G(d) has a
distribution that is not a full range sequence. It follows from Definition 4.2
that the opposite is also true: if {aµ,M (M)} is not a full range sequence then
M ∈ G(d). Theorem 4.1 below states that if constraints on the structure of
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a function are given in terms of the distribution sequence {aµ,M (M)} then
Theorem 6 is the best possible.

Theorem 4.1. Let A = {aµ,M} be a sequence satisfying (4.5) and (4.6).
Let d ≥ 2, 1 < p <∞, p 6= 2. Then the following conditions are equivalent :

(i) A is not a full range sequence.
(ii) There is a constant C = C(A, d, p) (depending only on A, d and p)

such that for each Λ = {λs, s = (s1, . . . , sd)} of type A we have, for all
f ∈ Lp(Λ) and m ∈ N,

(4.7) ‖f −Gm(f,Hdp)‖p ≤ Cσm(f,Hdp).
Proof. If A is not a full range sequence, then for some M,L we have

aµ,M ≤ L for all µ ≥ 0, and each M satisfying aµ,M (M) ≤ aµ,M can
be written as M = M1 ∪ M2 with M1 ∈ R(L) and M2 ∈ J(M). The
implication (i)⇒(ii) now follows from Lemmas 4.1 and 4.2.

We now prove that (ii)⇒(i). For any given sequence A of full range we
will construct a Λ of type A such that (4.7) does not hold. We begin with a
construction which will provide us with building blocks of the counterexam-
ple sequenceM. This construction is a modification of a construction from
[T3, Section 4].

For a given pair of natural numbers k and l such that l < k we consider
the following special polynomials. First, set

I(k, l) := {s : |s| = kd, sj ≥ k − l, j = 1, . . . , d}.
Then

#I(k, l) � ld−1.

Consider the cube [0, 2l−k)d and define

Us(k, l) := {n : n ∈ Us and suppHn ⊆ [0, 2l−k)d},
E(k, l) :=

⋃

s∈I(k,l)
Us(k, l).

Define a polynomial
gk,l :=

∑

n∈E(k,l)

Hn,p.

By the Littlewood–Paley theory we have

(4.8) ‖gk,l‖p �
∥∥∥
( ∑

n∈E(k,l)

|Hn,p(x)|2
)1/2∥∥∥

p
, 1 < p <∞.

The supports of
∑

n∈Us(k,l)Hn,p, s ∈ I(k, l), cover the cube [0, 2l−k)d and
therefore from (4.8) we obtain

(4.9) ‖gk,l‖p � 2ld/pl(d−1)/2.
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The number m := m(k, l) of terms of the polynomial gk,l satisfies

(4.10) C1(d)ld−12ld ≤ m ≤ C2(d)ld−12ld.

Take a companion (to gk,l) polynomial

hm :=
m∑

i=1

Hni,p

such that ni 6∈ E(k, l) for i = 1, . . . ,m and

suppHni ∩ suppHnj = ∅, i 6= j.

Then

(4.11) ‖hm‖p � m1/p.

Considering the function f := gk,l + 2hm in the case 2 < p < ∞ and
f := 2gk,l + hm in the case 1 < p < 2 we will get, for an M containing
E(k, l) and {ni}mi=1,

‖f −Gm(f,Hdp[M])‖p/σm(f,Hdp[M])p � (logm)(d−1)|1/p−1/2|.

Let A be a full range sequence. Then there is an increasing sequence {µl}
such that

(4.12) adµl,2ld ≥ Cld−1 + 1,

where C is such that #I(k, l) ≤ Cld−1 for all k, l. We define

M :=
( ∞⋃

l=1

E(µl, l)
)
∪ ({nj}∞j=1),

where {nj}∞j=1 is such that

(4.13) suppHnj ⊂ [1/2, 1)d, suppHni ∩ suppHnj = ∅, i 6= j.

It is clear that {nj}∞j=1 with the properties (4.13) can be chosen in such a
way that aµ,M (M) ≤ aµ,M for all µ,M . To complete the proof of Theorem
4.1, it is enough to take any Λ of type A such that M ∈ V(Λ).

We note that the above argument implies even more.

Proposition 4.1. Let A = {aµ,M} be a full range sequence and d ≥ 2,
1 < p < ∞. Let {C(m,A, d, p),m ∈ N} be a sequence of reals such that for
each Λ = {λs} of type A, f ∈ Lp(Λ) and m ∈ N,

‖f −Gm(f,Hdp)‖p ≤ C(m,A, p)σm(f,Hdp)p.
Then

C(m,A, d, p) � (logm)(d−1)|1/2−1/p|.

5. Some direct and inverse theorems in m-term approximation
with regard to Hdp. In the case d = 1 the Haar basis is a greedy basis for
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Lp, 1 < p <∞. The following characterization theorem has been established
in [T3] (for the case p = 2 see [St], [DT]). We will use the notation

an(f, p) := |ckn(f,Hdp)|
for the decreasing rearrangement of the coefficients of f .

Theorem 5.1. Let d = 1, 1 < p < ∞ and 0 < q < ∞. Then for any
positive r we have the equivalence

∞∑

m=1

σm(f,H)qpm
rq−1 <∞ ⇔

∞∑

n=1

an(f, p)qnrq−1+q/p <∞.

Let us recall the definition of the Lorentz spaces of sequences and intro-
duce new spaces which provide a finer (logarithmic) scale. For a sequence
{xk}∞k=1 let {x%(k)}∞k=1 be a decreasing rearrangement

|x%(1)| ≥ |x%(2)| ≥ . . .
For r > 0 and 0 < q <∞ let

`rq :=
{
{xk}∞k=1 :

∞∑

k=1

|x%(k)|qkrq−1 <∞
}

or, equivalently,

`rq :=
{
{xk}∞k=1 :

∞∑

s=0

|x%(2s)|q2rqs <∞
}
.

For r > 0, b ∈ R and 0 < q <∞ let

`r,bq :=
{
{xk}∞k=1 :

∞∑

s=1

(|x%(2s)|2rssb)q <∞
}
.

It is clear that `r,0q = `rq.
The proof of Theorem 5.1 was based on the following two lemmas.

Lemma 5.1. For any two positive integers N < M we have

aM (f, p) ≤ C(p)σN (f,H)p(M −N)−1/p.

Lemma 5.2. For any sequence m0 < m1 < . . . of nonnegative integers
we have

σms(f,H)p ≤ C(p)
∞∑

i=s

ami(f, p)(mi+1 −mi)1/p.

We will prove in this section the following multivariate analogs of the
above lemmas.
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Lemma 5.3. For any two positive integers N < M we have

aM (f, p) ≤ C(p, d)σN (f,Hd)p(M −N)−1/p, 2 ≤ p <∞,
aM (f, p) ≤ C(p, d)σN (f,Hd)p(M −N)−1/p(logM)h(p,d), 1 < p ≤ 2,

with h(p, d) := (d− 1)|1/2− 1/p|.
Lemma 5.4. For any sequence m0 < m1 < . . . of nonnegative integers

we have

σms(f,Hd)p ≤ C(p, d)
∞∑

i=s

ami(f, p)(mi+1 −mi)1/p(logmi+1)h(p,d),

2 ≤ p <∞,

σms(f,Hd)p ≤ C(p, d)
∞∑

i=s

ami(f, p)(mi+1 −mi)1/p, 1 < p ≤ 2.

Proof of Lemmas 5.3 and 5.4. Lemma 5.4 follows directly from Lemma
3.1. To prove Lemma 5.3, for given f =

∑
n cnHn,p, let ΛN and {un,n ∈ ΛN}

be the set of indices with #ΛN = N and coefficients such that
∥∥∥f −

∑

n∈ΛN
unHn,p

∥∥∥
p
≤ 2σN (f,Hd)p.

Moreover, let GM = {n1, . . . ,nM}, where ak(f, p) = |cnk |. By uncondition-
ality of Hdp we have

∥∥∥f −
∑

n∈ΛN
cnHn,p

∥∥∥
p
≤ C

∥∥∥f −
∑

n∈ΛN
unHn,p

∥∥∥
p
≤ 2CσN (f,Hd)p,

aM (f, p)
∥∥∥

∑

n∈GM\ΛN
Hn,p

∥∥∥
p
≤ C

∥∥∥
∑

n∈GM\ΛN
cnHn,p

∥∥∥
p

≤ C
∥∥∥f −

∑

n∈ΛN
cnHn,p

∥∥∥
p
.

As #(GM \ ΛN ) ≥M −N , Lemma 5.3 now follows from Lemma 3.1.

Using Lemmas 5.3 and 5.4 one can establish the following embedding
theorem in the same way as Theorem 5.1 was deduced from Lemmas 5.1
and 5.2 in [T3].

Theorem 5.2. Let 1 < p <∞. Define

σ(f)p := {σm(f,Hd)p}∞m=1, a(f, p) := {an(f, p)}∞n=1.

Then we have the implications:

σ(f)p ∈ `r,bq ⇒ a(f, p) ∈ `r+1/p,b
q , 2 ≤ p <∞,(5.1)

σ(f)p ∈ `r,bq ⇒ a(f, p) ∈ `r+1/p,b−h(p,d)
q , 1 < p ≤ 2,(5.2)
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a(f, p) ∈ `r+1/p,b
q ⇒ σ(f)p ∈ `r,b−h(p,d)

q , 2 ≤ p <∞,(5.3)

a(f, p) ∈ `r+1/p,b
q ⇒ σ(f)p ∈ `r,bq , 1 < p ≤ 2.(5.4)

Let us discuss in more detail the implication (5.1). We want to under-
stand what smoothness classes are natural for m-term approximation with
regard to the basis Hd which is the tensor product of the univariate Haar
basis H. We consider the relation a(f, p) ∈ `r+1/p,b

q for a special choice of
b = 0 and q = ξ := (r + 1/p)−1. Then a(f, p) ∈ `

r+1/p
q is equivalent to∑

n an(f, p)ξ <∞ or

(5.5)
∑

n

‖cn(f)Hn‖ξp <∞, where f =
∑

n

cn(f)Hn.

Next, for n ∈ Us we have

‖cn(f)Hn‖p = ‖cn(f)Hn‖ξ2−|s|(1/p−1/ξ) = ‖cn(f)Hn‖ξ2−r|s|.
Thus (5.5) is equivalent to

(5.6)
∑

s

(
2−r|s|

∑

n∈Us

‖cn(f)Hn‖ξ
)ξ

<∞.

The above relation says that f belongs to the mixed smoothness Besov
class MBrξ (Lξ). Thus we conclude that the multivariate classes with mixed
smoothness are natural for studying nonlinear m-term approximation with
regard to a basis which is a tensor product of univariate bases. There is an
extensive literature on approximation theory in function classes with mixed
smoothness. For the linear theory see [Te1], [Te2] and for some results on
nonlinear m-term approximation see [T4] and [T6].
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