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Isomorphisms of some reflexive algebras
by

JIANKUI L1 (Shanghai) and ZHIDONG PAN (University Center, MI)

Abstract. Suppose £ and L2 are subspace lattices on complex separable Banach
spaces X and Y, respectively. We prove that under certain lattice-theoretic conditions
every isomorphism from alg £; to alg L2 is quasi-spatial; in particular, if a subspace lattice
L of a complex separable Banach space X contains a sequence F; such that (E;)— # X,
E; CEiq1, and V2, E; = X then every automorphism of alg £ is quasi-spatial.

1. Introduction. Let X and Y be separable complex Banach spaces
and let B(X,Y) be the set of all bounded linear maps from X into Y. When
X =Y, we use B(X) instead of B(X,Y). When X is a Hilbert space, we
use H instead of X. For vector spaces U and V, we write L(U,V) for the
set of all linear maps from U to V. By a subspace lattice on X, we mean a
collection L of closed subspaces of X with 0 and X in £ such that for every
family {M,} of elements of £, both (M, and \/ M, belong to L. If the
operations of meet and join distribute over each other for any collections
of subspaces in £, then £ is said to be completely distributive. If L € L,
we denote by L_ the subspace \/{M € £: L ¢ M} and denote by L, the
subspace [\{M € L : M ¢ L}. For a subspace lattice £ of X, we use alg £ to
denote the algebra of all operators on X that leave members of £ invariant.

For Hilbert spaces, a common practice is to disregard the distinction
between a subspace and the orthogonal projection onto it. A Hilbert space
subspace lattice £ is called a commutative subspace lattice if it consists of
mutually commuting projections. If £ is a commutative subspace lattice
then alg £ is called a CSL algebra.

If £ is a subspace lattice on X, we define J; = {L € L : L # 0 and
L_ # X}. We say Jr is sequentially dense in X if there exists a sequence
E; € Jr such that E; C E; 11 and \/fi1 FE; = X. Quasi-spatiality of isomor-
phisms has been studied in [1, 2, 4, 5]. The main task of [4] is to show that
if £ is a commutative subspace lattice on a Hilbert space H such that J is

2000 Mathematics Subject Classification: Primary 47B47, 47TL35.
Key words and phrases: subspace lattice, isomorphism, reflexive.
This work was completed with the support of NSF of China.

[95] © Instytut Matematyczny PAN, 2008



96 J. K. Li and Z. D. Pan

sequentially dense in H then every automorphism on alg £ is quasi-spatial.
In this paper, we generalize the above result, with a relatively simpler proof,
to non-commutative subspace lattices on Banach spaces; more specifically,
we show that if £ is any subspace lattice on a Banach space X such that J,
is sequentially dense in X then every automorphism on alg £ is quasi-spatial.
Our main result, Theorem 2.6, is stated in a slightly more general form; this
also makes the presentation of the proof a little clearer.

2. The main result. For a subspace E of a Banach space X, we define
E+ ={f*e X*: f*|p =0}. For any v € X and f* € X*, we use z ® f* to
denote the rank-one operator satisfying = ® f*(u) = f*(u)x for all u € X. It
follows from [3] that x ® f* € alg £ if and only if there exists an L € J, such
that z € L and f* € (L_)*. In the following, we suppose £; and Lo are
subspace lattices on Banach spaces X and Y, respectively; and alg £ and
alg Lo are the corresponding subalgebras of B(X) and B(Y'), respectively.

We will break the proof of the main result into a few lemmas.

LEMMA 2.1. Suppose Jr, is sequentially dense in Y, 1) is an isomor-
phism from alg Lo to alg L1, and E € Jr,. Then for any x € E, there exist
K€ Jr,,yc€ K,h* € (K_)*, and 0 # g* € X* such that Y(y®@h*) = x2g*.

Proof. Take any € E and 0 # [* € (E_)*. Then 2 ® I* € alg £;. Since
1 is surjective, there exists a B € alg Lo such that ¢(B) = x ® [*. Since
Jr, is sequentially dense in Y, there exist a K € J, and w € K such that
y = Bw # 0. Choose 0 # h* € (K_)* and set A = y(w®h*) and g* = A*[*.
Then (y@h*) = Y((Bw)@h*) = p(Bw@h*) = Y(B)Y(wl*) =x@1*A =
T & g*. u

REMARK 2.2. Let K be as in Lemma 2.1. From the proof of Lemma 2.1,
one can see that, for any L € Jp, with K C L, there exist y; € L,
hi € (L-)*, and 0 # g; € X* such that ¥(y1 ® h}) = * ® g}.

LEMMA 2.3. Suppose E; € Jr, with E; C Eit1, o, Ei = X, and
K; € Jr, with K; C K41 and \/;’i1 K; =Y. If ¢ is an isomorphism from
alg L1 to alg Lo, then there exist Ky, € Jr, with K,, C Ky, |, \/ioq Kn, =
Y, and injective T; € L(E;,Y) with ran(T;) C K, such that ¢(A)T;x =
T; Az for every x € E; and A € alg L.

Proof. For any 0 # ff € ((E;)-)*, there exist E,,, and z; € E,,, such
that f7(z;) = 1. By Lemma 2.1, there exist y; € Ky, € Jr,, b} € (Ky,)-)F,
and 0 # gf € X* such that ¢~ (y; ® h}) = x; ® g}. Since E; C E;41 and
Vic, E;i = X, there exist E,, and u; € E,, such that gf(u;) = 1. Define
T; € L(E;,Y) by

(2.1) Tz =¢(z® f)y;, VrekE;
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and define S; € L(K,,, X) by
(2.2 Sw=¢ly o h)u, Wy e K.
It is clear from the definition of 7; that ran(7;) C K,,.
For any =z € E;,

(2.3) SiTix = ¢~ (Tiz ® hi)u; = ¢~ ((¢(x @ f7)yi) ® hi)u;

= (2@ f1)67 (1 ® h)ui = (v.® f) (i @ g7 )us

=(z® fz; = x.
In particular, 7; and S;|y; are injective, where V; = ran(7;). Furthermore,
(24)  9(A)Tiz = ¢(A)o(z ® )y = ¢(Az ® i)y = T; Az,

Ve e by, A€ algly.

Similar to (2.1) and (2.2), we can construct T;4; and Si41; by Remark 2.2

we can assume kK, C K, =

i1t

For any Banach space X, f* € X* and E C X, define

[E® flx ={z® f*:x € E}.

LEMMA 2.4. Suppose E; € Jr, with E; C Eip1, ;o) Ei = X, and
K; € Jg, with K; C K1, \/fil K, =Y. If ¢ is an isomorphism from
alg L1 to alg Lo, then for each a} € ((E;)_)*, there is a bf € Y* such that
P([Ei ®@ajlx) € [Y @b]ly.

Proof. Let T; be as in Lemma 2.3. Then by (2.4) we have
(2.5) o(A)Tix = T;Ax, Vo € E;, A€ algl;.
It follows that BT;x = T;¢~!(B)z for x € E; and B € alg £o. This implies
that whenever B is a rank-one operator, ¢~ !(B) is also a rank-one operator,
since \/;2, E; = X and T; is injective. By the symmetry of X and Y, ¢ also
maps rank-one operators to rank-one operators.

For each fixed m, fix 0 # 21 € E,, and 0 # a, € ((E,,)_)* and suppose
d(z1 @ al,) = y1 @b, for some y; € Y and b, € Y*. We will show

([Em ® agy]x) S [Y @by ]y

Take any xo € E,, such that {z1,z2} is linearly independent. Suppose
d(ze ® al,) = y2 ® ¢, for some y2 € Y and ¢, € Y*. We only need to
show {b},, ¢ } is linearly dependent.

Applying (2.5) with A = z; ® o), and A = 3 ® a},, respectively, we
obtain
(2.6) by (Tix)y = a), (z)Tiz1, VY € Ej,
and

(2.7) e (Tix)ys = a), (x)Tize, Vx € Ej,
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Since E; C E;yq and /2, E; = X, there exist E; and « € E; such that
a’ (z) # 0. Since T; is injective and {z1,z2} is linearly independent,
{T;x1,Tix2} is linearly independent; so {yi,y2} is linearly independent,
by (2.6) and (2.7).

Since ¢ maps rank-one operators to rank-one operators, ¢((z1+z2)®a))
is a rank-one operator. Thus, y; ® b}, + y2 ® ¢, = ¢((x1 + x2) ® af,) is a
rank-one operator. Since {y1,y2} is linearly independent, {b},, ¢}, } is linearly
dependent. =

For a subspace S of L(U,V), define refo(S) = {T" € LU,V)
Tz € Sz, Vx € U}. We say S is algebraically reflexive if ref,(S) = S.
It is well known and not hard to show that every one-dimensional subspace
of L(U,V) is algebraically reflexive.

LEMMA 2.5. Assuming the same hypotheses and notations as in Lem-
ma 2.3, by rescaling T; we can have Tip1|p, = T; fori=1,2,....

Proof. Fix any a} € ((E;)-)* and v € Y, and define D € L(E;,Y) by
Dz = ¢(x®a)v for x € E;. If D is not the zero operator then D is injective;
indeed, by Lemma 2.4, there exists b; € Y* such that ¢p(x®a)) = \; @b} for
all z € E;. Since ¢ maps rank-one operators to rank-one operators, A\, # 0
for all 0 # x € E;. If D is not the zero operator then bf(v) # 0, so D is
injective; in particular, the operators T; defined by (2.1) are injective (which
we already knew). By the symmetry of X and Y, the operators S; defined
by (2.2) are also injective.

Suppose T;, S;, T;+1, and S;11 have been constructed as in Lemma, 2.3.
Then S;11T;412 = « for all x € Fj;4q; in particular, S;41T;+1x = z for
all x € E;. Let V; = ran(T;) and note that V; C K,,, C K, ,. Consider
Silv;, Si+1lv; € L(V;, X). Since the one-dimensional subspace generated by
the transformation S;|y; is algebraically reflexive in L(V;, X) and

SipiTiz = ¢ (Tix @ by uiv1 = ¢~ (3@ @ £7)yi) @ hiyy)uit

= (x ® fz*)d)il(yz ® h?ﬁ»l)“i-{-l = (x & fi*)ti—i—l
= fi(tiv1)r = fi (tix1)SiTix, Vz € Ej,

where t;11 = ¢ 1 (y; ® hi 1 )uiy1, it follows that Siy1|y; = ¢;S;ly; for some
scalar ¢;. Since S;41 is injective, ¢; # 0.

Replacing Si+1 by (1/¢;)Si+1 and Tij41 by ¢;T;41 and still calling them
Si+1 and Tj4q, respectively, we have Sii1ly; = Si|v;, and for any =z € Ej;,
Sit1Tix = SiTix = v = Sip1Tip1x. It follows that Ty 1z = Tz for all
rE€EFE,. un

We say ¢ is quasi-spatial if there exists an injective linear transformation
T € L(D(T),Y), where D(T) is the domain of T such that D(T) is dense
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in X and invariant under alg £, the range of T is dense in Y, and
(2.8) p(A)Tx =TAzx, VreD(T), AcalgLl.

THEOREM 2.6. Suppose Jr, is sequentially dense in X and Jr, is se-
quentially dense in Y. Then every isomorphism ¢ from alg Ly to alg Lo is
quasi-spatial; in particular, ¢ preserves ranks of operators.

Proof. By the assumptions, there exist F; € Jz, with E; C E;yq,
\/z?il FE;, = X, and K; € j52 with K; C Ki+1> v;.il K, =Y. Now we
can construct T; as in Lemma 2.3, with modifications as in Lemma 2.5.
Let E = |J;2, E;, the non-closed union of E;, so E is dense in X. Clearly,
FE' is invariant under alg £y, and if z € F then z € F; for some i. Define
Tx = T;x. By the agreement among T;, it follows that T is a well-defined,
injective, linear transformation on FE; moreover, ¢p(A)Tx = T Az for all
z € E and A € alg L. Let ran(T) be the range of T and K = [J;2, K;.
Clearly K is dense in Y and ran(7") C K; we will show ran(7") = K. Take
any y € K. There exists K,, such that y € K,,. By (2.2) of Lemma 2.3,
Siy = ¢y ® h)u; € Ep, € E. By (2.1) of Lemma 2.3,

TSiy = TpSiy = (¢~ (y @ )i @ f )y, = (y @ hi)d(ui @ £y,

= hi (d(u; @ f.)yp; )y = 1y,
where p; = hi(¢(u; @ fp,)yp;). Since Tj,, and S; are injective, p; # 0. Now
T(u;~1Swy) =y, so ran(T) = K.
Rank-preserving follows from (2.8) directly. =
The following corollary is the main result of [4]. A special case of the

corollary was proved earlier in [1] with an additional hypothesis of subspace
lattices being completely distributive.

COROLLARY 2.7 ([4, Theorem 17]). Suppose L1 and Ly are commutative
subspace lattices on a Hilbert space H and Jr, is sequentially dense in H.
Then every isomorphism from alg L1 to alg Lo is quasi-spatial.

Proof. By [4, Theorem C], we can assume £ = L2. Now the conclusion
follows from Theorem 2.6. m

Remark: The hypotheses in [4, Theorem 17] are stated differently from
Corollary 2.7, but it is easy to check that they are equivalent.

THEOREM 2.8. If Ly is a subspace lattice with X_ # X and Lo is
a subspace lattice with Y_ # Y| then every isomorphism from alg Ly to
alg Lo is spatially implemented and every bounded isomorphism from alg £q
to alg Lo is spatially implemented by a bounded operator.

Proof. Suppose ¢ is an isomorphism from alg £ to alg L. Take E; = X
and K; = Y, then the hypotheses of Theorem 2.6 are satisfied. Let T;
be defined by (2.1) and S; be defined by (2.2) in Lemma 2.3. By (2.3),
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S; € L(Y, X) is surjective. By the first paragraph of the proof of Lemma 2.5,
S; is injective, so S; has an inverse. Now the equality S;T;x = z for all
x € E; (= X) implies T; is invertible with 7, ' = S;. Finally, (2.5) of
Lemma 2.4 implies ¢ is spatially implemented. If ¢ is bounded, then so are
T; and S;. =

COROLLARY 2.9. If L s a subspace lattice on a Hilbert space H with
04+ # 0, then every automorphism of alg L is spatial.

Proof. Suppose L satisfies 04 # 0 and ¢ is an automorphism of alg L.
Let £+ ={I —L:L € L}, where I is the identity operator on H. Then £t
satisfies H_ # H.

Define ¢*(A*) = (¢(A))* for A* € alg L. Then ¢* is an automorphism
of alg £L+. By Theorem 2.8, we have ¢*(A*) = (¢(A))* = TA*T~! for some
T € B(H). So ¢ is spatial. =
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