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From restricted type to strong type estimates
on quasi-Banach rearrangement invariant spaces

by

MARIA CARRO (Barcelona), LEONARDO COLZANI (Milano)
and GORD SINNAMON (London, Ont.)

Abstract. Let X be a quasi-Banach rearrangement invariant space and let 7" be an
(e, 6)-atomic operator for which a restricted type estimate of the form | Txg||x < D(|E|)
for some positive function D and every measurable set E is known. We show that this
estimate can be extended to the set of all positive functions f € L' such that || f|le < 1,
in the sense that | Tf||x < D(||f|]1). This inequality allows us to obtain strong type
estimates for T on several classes of spaces as soon as some information about the galb
of the space X is known. In this paper we consider the case of weighted Lorentz spaces
X = A%(w) and their weak version.

1. Introduction. It is well known (see [1], [3], [4] and [14]) that, for
many interesting operators only a restricted estimate on characteristic func-
tions is known, and it is of a general interest to show what kind of strong
type estimate can be obtained from it. This is, for example, the principle of
the weak type extrapolation theory where we have an operator satisfying

1
|ITxEllLroe < —— |E|VP
p—1

for every 1 < p < pg, and it is an open question to see if this implies that
T is bounded from the Orlicz space Llog L into L'*>°. A positive solution to
this question will give us, when applied to the Carleson operator

Sf(x) = sup|Snf(x)],
where S,, f(z) = (Dpx f)(x), Dy, is the Dirichlet kernel on T ={z € C; |z| =1}

and f € L'(T), the almost everywhere convergence of the Fourier series of a
function in Llog L(T).
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In a recent paper [4], it was proved that if the operator T is (e, §)-atomic

approximable (see Definition 2.2), then an estimate of the form
(Txe)"(t) < h(t,|E])

for every measurable set can be extended to every function f bounded by
1 and, from it, some strong type estimates on logarithmic type spaces were
proved. In particular, if h(t,s) < R(t)D(s), the above inequality is equiva-
lent to | Txe|lx < D(|E|), where X is a weak weighted Lorentz space (see
definition below).

The first purpose of this paper consists in proving, in Section 2, that
a slight modification of the main theorem in [4] shows that if T is (e, d)-
atomic approximable, and | Txg|x < D(]E|) for some positive function D
and every measurable set E where X is any quasi-Banach r.i. space, then
ITfllx < D(||f|l1) for every f € L' such that || f]|sc < 1.

Our second step will be to obtain, from this inequality, a strong type
estimate, for which we need to have some information on Galb(X), which is

defined (see [21]) by
Galb(X) = {(cn)n; 3" cnfa € X whenever |fullx < 1},

endowed with the norm ||c| gam(x) = sup| s, <1 [ 22 enfullx. In particular,
we study, in Section 3, this galb for weighted Lorentz spaces X = A9(w),
for 0 < ¢ < o0, and also for the weak spaces A?7°°(w). To this end, we use
the following formula for the decreasing rearrangement of a sum of functions

(see [9]): if f =D, cnfn, then

t
1
ren < a0+ | o),
n ant
where {a,}, are any positive numbers such that ) a, =1, and we need to
solve the problem of computing, for ¢ > 1,

s fo (LY, f(s) ds)tw(t) dt

l §o” f(t)aw(t) dt ’
where the supremum extends over the set of decreasing functions f. This
problem will be solved in Section 5. Finally, in Section 4 we present some
concrete examples and applications.

We shall denote by L°(R™) the class of Lebesgue measurable functions
that are finite a.e., and ¢*(t) = inf{s : A\y(s) < t} is the decreasing re-
arrangement of g, where A\y(y) = |{z € R : |g(x)| > y}| is the distribution
function of g with respect to Lebesgue measure. We refer the reader to [2] for
further information about distribution functions, decreasing rearrangements
and rearrangement invariant (r.i.) spaces.
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If, in the definition of a norm, the triangle inequality is weakened to the
requirement that for some constant ¢, ||z +y|| < c(||z|| + ||y||) holds for all =
and y, then we have a quasi-norm. A complete quasi-normed space is called
a quasi-Banach space. It is well known that the spaces /P for 0 < p < 1
are quasi-Banach spaces. Observe that if X is a quasi-Banach r.i. space of
measurable functions on R™ then there is a r.i. quasi-Banach space X* of
measurable functions on R such that || f|x = ||f*||x+ for all f € X. One
simply defines ||g||x+ = ||G||x where G(x) = wg(|z|™) with w chosen so that
g and G are equimeasurable. It is a simple matter to verify that X* is a
quasi-Banach space.

For a measurable set E, x g denotes the characteristic function of E, |E)|
is the Lebesgue measure of E and, for simplicity in our arguments, we say
that an operator T is sublinear if T(Af) = AT f and

(Y h)| < %ITM-

neN
If we only know that |T'(f + g)| < |Tf|+ |Tg|, then we need to assume
some extra boundedness condition on our operator 7', such as the bounded-
ness of T : L' + L™ — LY or to use some standard density argument to
obtain our conclusions.

2. From restricted weak type to strong type. We shall work in R",
and @ will represent a cube with sides parallel to the axes. The results can
be extended in the natural way to TV (identifying T with [0,1)"). In [4],
the following definitions were introduced:

DEFINITION 2.1. Given 6 > 0, a function a € L'(R") is called a 6-atom
if

(i) SRn a(z)dx =0,

(ii) there exists a cube @ such that |Q| < § and suppa C Q.

DEFINITION 2.2.

(a) A sublinear operator T, defined on L' 4+ L> and taking values in L°,
is (e, 9)-atomic if for every € > 0 there exists § > 0 satisfying

(1) |Tal|l 1y~ <e¢llal]i for every J-atom a.

(b) A sublinear operator 7' is (g, 0)-atomic approzimable if there exists a
sequence (T,), of (,d)-atomic operators such that |T,xg| < |Txz|
for every measurable set E and for every f € L! such that || f]|c < 1,
and every t > 0,

(Tf)"(t) < liminf (T, f)* (1)
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In particular, any maximal operator of the form sup; |Kj* f|, where K; €
LPi for some 1 < p; < oo, is (g, d)-atomic approximable (see [4] for more
examples of this kind of operators). As we shall see in this paper, no operator
bounded from LP into LP with 0 < p < 1 is (e, d)-atomic approximable.

DEFINITION 2.3. Given an operator 1" and a quasi-Banach r.i. space X,
we define the fundamental function of T' with respect to X by

ex,r(r) = sup | Txglx.
|E|<r

Observe that if T" is the identity operator, then ¢ x 7 is nothing but ¢ x, the

usual fundamental function of X.

DEFINITION 2.4. Given § > 0, we say that Fs is a 0-net if it is a collection
of open cubes of the following form:

Fs ={Qj; |Q;] = 4, Q; are pairwise disjoint, |JQ; = R"}.

THEOREM 2.1. Let X be a quasi-Banach r.i. space and T a sublinear
(e,8)-atomic approzimable operator. Then, for every positive function f € L'
such that || f|loo <1,

ITfllx < exr(fl)-
Proof. In view of Definition 2.2, it is enough to prove the result for an
(e,d)-atomic operator T
Given X, let X* be the space of measurable functions on (0, c0) such that
I fllx = | £*]lx+. Let f € L' be a positive function such that || f||oc < 1 and,
given € > 0, consider a J-net Fs where 0 is associated to € by the property
that T is (e, d)-atomic.
Given Q; € F;, let f; = fxg,. Then
| filw)de <1Qil,
Rn
and hence we can take a cube Qvl C @Q; satisfying
Qil = | fi(z)de = | f(x)dz.
R Qi

Then it is clear that the function g; = f; — X, is a d-atom and

lgill < § 1f (@) de+ Qi =2 | | f(2)] da.
Qi Qi
Now, f=>".fi=>,9i+ xg, where E =J Qi. Then, by sublinearity,

ITf| <> |Tgil +|Txe| = G+ |Txzl.
7
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For fixed n > 1, we have
(T (2)x(1/nm) (@)
G ((1/n*)2)X(1 oy (@) + (TxE)* (1 = 1/0°)2)X (1 /) ()
= Qn(x) + Rp(x).
For z € (1/n,n), we have 0 <z —1/n < (1 — 1/n?)z, and hence
Rn(z) < (Txe)"(z — 1/n)X1/nmn)(T);
it follows that R} < (T'xg)*. On the other hand,
Qu(@) < G*(1/n°)x(1/n,m) ()

and
1/n3

G*(1/n%) (ZIng) (1/n%) <n® (Z|ng)

1/n3

<Zn | (1) <Z

0 0
< n?’z ITgillL14roe < m SZ lgill < 2n’¢] f]]1-

)
i

(Tg:)"

Using these estimates for R, and @, we have

T X mmllx < 2%l FlllX/mmlx + 1 TxE]x.
We let first ¢ — 0 and n — oo to get
ITfllx < ITxEelx-
Since |E| = 2, 1Qil = 3, $o, f = Ifll1, the result follows.
Also, as a consequence of the previous remark we obtain the following;:

PROPOSITION 2.1. Let X be a quasi-Banach r.i. space and let T be a
non-zero (g,9)-atomic approzimable operator. Then px T is quasi-concave.

Proof. Clearly ¢x 7(r) is non-decreasing. Suppose s > r. If |E| < s then
1(r/s)xEllo <10
(/) Txellx < A/r)exrl(r/s)xel) = (1/r)exr(r).
Since this holds for all such E, (1/7)px r(r) is non-increasing. m

Every quasi-concave function is equivalent to a concave function so we
shall assume from now on that D is a concave function with o x r < D.

REMARK 2.1. From the above proposition, we see that if X is any quasi-
Banach r.i. space and 0 < p < 1, then no operator T" mapping LP to X is
(e,d)-atomic approximable. In particular, convolution operators on LP with
discrete measures with coefficients in ¢P are not (e, d)-atomic approximable.
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DEFINITION 2.5. Given a sequence space S C ¢! and a concave func-
tion D, we shall denote by D(S) the set of all measurable functions f such
that

1 Ip(s) = nf{[| (cn D([[ full1))nlls }
is finite. Here the infimum extends over the set of all possible decompositions
f =2, cnfn ae. such that ||fy]c < 1.

It is an exercise to prove the following.
THEOREM 2.2. If D is concave then L' N L>® C D(S). If, in addition,
s < D(s), then D(S) C L.

Let us now give some concrete examples which will be useful in what
follows:

EXAMPLES. (a) If S = /P with 0 < p < 1, then taking the decomposition
f=2_2"n
neZ

where f, = 27" fXfon-1<|f|<2n}, We have

o= (o) «(Fmovona)”
nez 0
~ ( X Fr@r de(t))l/p = || fll 47 (w)>
0

where A is the distribution function of f and AP(w) is the weighted Lorentz
space with weight w(t) = dDP(t), and hence we have proved that

AP(dDP) C D(¢P).
Therefore, using the previous theorem, we obtain
AP(dDP) + L' 0 L™ C D(¢P).

At this point, and since 0 < p < 1, it will be good to know when this
second space AP(dDP) + L' N L™ is strictly larger than AP(dDP). Obviously,
these two spaces coincide if and only if L' N L> C AP(dDP). It follows from
Theorem 3.3 in [17] that

PROPOSITION 2.2. L' N L>® C AP(dDP) if and only if
00 max(l,y))p/(p_l)
— dDP(y) < oo.
) < Dr(y) W)
(b) If S = llog ¥, and s < D(s), then, taking the decomposition

f:I+ZznfTL7

n>1
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where f = fx{ <1y and f, are as before, we get

[e.9]

1£1lps) = DS + ( § (og™ log™ 5) DO () dy ).
1

From this, it follows using homogeneity that
Lloglog L(D) C D(S),

where
o0

||f||LloglogL(D) = S f*(t)(l + 10g+ 10g+ f*(t)> dD(t)
0

In particular, if D(s) = s(1 +log™(1/s)), then
Lloglog L(D) = Llog Lloglog L.

Now, in this concrete case, it was proved in [8], applying the ideas of [1],
that we can improve the above result by taking the decomposition

F=fo+> 2% fu,
n>1

where fo = fx{ s <2y and fr = 2_2an{22n71§|f‘<22n}. Using this decompo-
sition, it can be proved that

Llog Llogloglog L C D(S),
and, in fact, it was proved in [8] that if D(s) > s and D(s?) < sD(s), then
Llogloglog L(D) C D(S).

For our next purpose, we need the following concept which was introduced
in [21].

DEFINITION 2.6. The galb of a quasi-Banach space X is defined by
Galb(X) = {(cn)n; 3" cufa € X whenever |fu]lx < 1},

endowed with the “norm” |[c[|gamn(x) = SUP||£,[|x <1 1>, enfnllx-

Now, since the motivation of our work is to obtain a certain type of
estimates for an operator 7" for which a restricted estimate is known, on many
occasions it will be enough to have a weak type estimate for the operator T’
or even to know that T'f(z) < oo for a.e. z, for every f € X, in order to
apply some Banach continuity principle. To this end, it will be enough to
identify certain sets containing Galb(X).

DEFINITION 2.7. The weak galb of a quasi-Banach space X is defined by
WGalb(X) = {(Cn)n; chfn € Mx whenever || f,|x < 1}7
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endowed with the norm ||¢||wgam(X) = SUp|| £, || x <1 | 220 enfullaiy, where
My is the maximal Marcinkiewicz space defined by

Mx = {f; Ifllmx = sup fT()px (t) < oo}
The finite galb of X is defined by
FGalb(X) = {(cn)n; chfn is finite a.e. whenever || f,|x < 1}.

It is trivial that
Galb(Mx) = WGalb(Mx)
and
Galb(X) C WGalb(X) C FGalb(X).

We shall see in Proposition 4.1 that the three concepts are different. Note
that the advantage of the finite galb is that if two quasi-Banach spaces X
and Y are such that X C Y continuously, then

FGalb(Y) C FGalb(X).
A first general and important fact is the following;:
THEOREM 2.3. Let X be a quasi-Banach r.i. space. Then,
(2) Calb(X) C WGalb(X) C FGalb(X) C ¢' N L1,

where

Ly = {(enlni 39k (eal) < o0}

Proof. The embedding in ¢! is immediate. To show that FGalb(X)
- L%—(l we suppose that >, ¢x (|ca|) diverges. It is a standard argument
to select sets A, of measure ' (|c,|) such that 3 xa, = co on a set
of positive measure. Set f, = (1/¢n)xa,; then ||follx = 1 and so (¢n)n ¢
FGalb(X). =

REMARK 2.2. Obviously Galb(X) = ¢! if and only if X is a Banach
space. If this is not the case, we shall study conditions on our spaces to have
the equality Galb(X) = L(P;(l Nt

Our second main result can now be formulated in the following way:

THEOREM 2.4. Let T be a sublinear (£,0)-atomic approximable opera-
tor and let X be a quasi-Banach r.i. space. Define ¢x 1(Galb(X)) as in
Definition 2.5. Then:

(a) T : px r(Galb(X)) — X is bounded.
(b) T : px7(WGalb(X)) — Mx is bounded.
(c) For every f € px r(FGalb(X)), Tf(x) < oo almost everywhere.
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Proof. We shall only prove (a), since the proofs of (b) and (c) are com-
pletely similar.
If f=>", cnfn then by sublinearity

ITfllx < llenT fallam(x)-
If we suppose that || fn]|cc < 1 for each n then by Theorem 2.1,
1T fallx < exa(lfnll),

and |Tfllx < |[fllpx.r(Gamb(x)) follows by taking the infimum over all such
representations of f. m

In particular, if 7" is a sublinear (e, §)-atomic approximable operator, the
following corollaries follow from the examples given above.

COROLLARY 2.1. If X is a Banach space, then T : A'(dpx 1) — X is
bounded.

COROLLARY 2.2. If Galb(X) = (P with 0 < p < 1, then
T: AP(dgly p) + L' N L™ — X
1s bounded.
COROLLARY 2.3. If Galb(X) C {(logl)* and s < ¢x 1(s), then
T : L(loglog L)*(dpx 1) — X
is bounded. If, in addition, ox (s*) < spxr(s), then
T : L(logloglog L)*(dex1) — X
s bounded.

Our next step will be to study the galb for the class of weighted Lorentz
spaces.

3. The galb of weighted Lorentz spaces. The purpose of this section
is to obtain information about the galb of the spaces A%(w) for 0 < ¢ < o
and of the weak type spaces A9°°(w). Hence, throughout this section,

[ = Z Cn fn,
n=1

where ||follx < 1 and X = A%w) or X = A?°(w). We shall use the
following formula for the decreasing rearrangement of a sum of functions
(see [9]):
t

© re0 <Y (n0+ | )

n ant
where {ay}, are any positive numbers such that > a, = 1. It is easy to
see that (3) remains valid when the condition ) a, = 1 is weakened to
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> nan < 1. Recall that if A9(w) is quasi-Banach, then the primitive of the
weight W (t) = Sgw satisfies the Ay condition, and hence the number 3 on
the left hand side of the above formula gives no problem at all.

We shall also need some estimates for the Steklov operator on decreasing
functions. This operator is defined, for 0 < a < 1, by

Suf(t) =7 § F(s)ds
LEMMA 3.1.
LW 1t 1
P pro FOWD) UﬁQimWQWm

Proof. The proof follows trivially since the largest function f with the
property that sup,~q f(H)W(t) =1is 1/W.

The meaning of the following two lemmas is that in estimating the norm
of the Steklov operator on Lorentz spaces it is often sufficient to test it only
on characteristic functions.

LEMMA 3.2.
o S () ds)wtydr 1 " wt) .
i S Sud 'Uﬁmmﬂgt‘@”

Proof. This follows using Fubini and Theorem 2.12 of [10]. =
LEMMA 3.3. If ¢ > 1, then
(50" (1§ £ (5) ds)Tuw(t) dt) /e

if and only if
r/a 1/
(4) B := sEp (% S (r —at)? % dt) 1 < 00.

Moreover,

(a) B< A<1+ B9,
(b) if for some D > 1, W(s/a) < DW (s) for all s > 0, then

(1—a)+B=<A=(1-a)+ B(logD)"?.
From this, we can also conclude that
(¢) (1—a)+ B = A= (1-a)+ B(log(B/(a—a)"7.

The proof of this lemma will be postponed to the last section, since it is
somewhat technical.
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3.1. Galb(A2°°(w)). Let us start with the case of A9°°(w) defined by
11l 0.0y = D FH(OOW (1)1,
>0

and observe that A% (w) = AV (w,), where wy(t) = W ()9 w(t), and
hence, the parameter g is somehow superfluous. However, it will be important
for us that, for every ¢ > 1,

AP (w) € Al(w) C AP (w),
where A% (w) = A(w,) with w, as before. Moreover, by real interpolation,
71 ’

Aq(w) = (Aq (w)quoo(w))l/q’,q-
As a first consequence of (2), we obtain the following result:
COROLLARY 3.1. For every 0 < g < o0,

Galb(A?(w)) C Lygy/ay-1 N L
THEOREM 3.1. Let 0 < g < o0 and giwven 0 < a < 1, let

t

H(a) = sup <1 S W(s)~'/a ds> w(t)Y.
>0 \t °,

If (cn)n € 0 and

Znigfq;an(an) < 00,

then (cn)n € Galb(A2*(w)).
Proof. Using (3), we obtain

t
1 *
IEED S TA TR ST C3 WACLS LLORE
n n t>0 t ant
for every positive sequence (ay,), with > a, < 1, and so, by Lemma 3.1,

£l ooy XD en+ > enH(an),

from which the result follows. =

EXAMPLE. If w(t) = 1, then W (t) = t and H(a) = q(1—al?~D/9)/(¢—1).
In particular, H(a) ~ al9"V/7 if ¢ < 1, H(a) = log(1/a) if ¢ = 1, and
H(a)=~1ifg¢> 1.

REMARK 3.1. If H € L, we obtain Galb(A%*°(w)) = ¢*; of course, this
also follows from the fact that H € L if and only if w € By, in which case
A% (w) is a Banach space (see [19]).
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COROLLARY 3.2. If for every t > 0 and every 0 < a < 1,

1 “1/q a
) P VWO s = e

at

then
Galb(A?°(w)) = WGalb(A%*°(w)) = FGalb(A?*°(w)) = L(W1/q)71 net.

Proof. The embedding FGalb(A?>(w)) € Ly1/qy-1 N ¢t follows from
Theorem 2.3 and the opposite embedding follows from Theorem 3.1. Indeed,
condition (5) reads H(a) = a/W(a), and if (¢n)n € Ley1/a)-1 N ¢, we know

that (c,) tends to zero and hence we can assume that (W%)~1(¢,) < 1 for
every n. Therefore,

1/q\—1
1/q\—1 ~ (WH9) ™ (en) _ 1/q\—1
En e H(WH) ™ Hep)) = En cn—cn En (WD) ™ ep) < 00,
and therefore (¢,), € Galb(A%2*°(w)) by Theorem 3.1. =

COROLLARY 3.3. If W(s)Y/%/s is equivalent to a decreasing function,
then

llog ¢ C Galb(A?°(w)).

Proof. Applying the trivial fact that H(a) < log(1/a) and taking a, =
Cn, we obtain the result. m

Observe that if ¢ = 1 and w = 1, we obtain the well-known fact that
Clogl C Galb(Lb®).

3.2. Galb(A9(w)) for 0 < ¢ <1
THEOREM 3.2. For every 0 < q <1,
Galb(A9(w)) C 9.

Proof. Let a1 > 0 be small enough (if necessary) and choose «j, such

that
k—1

w(Say) < %W(ozk).

J=1

Let {A}Y_, be a collection of disjoint sets such that ay = |Ag| and define
Br = W (ag). Obviously (3 is an increasing sequence.

Let fr = Bk_l/qXAk, so that || fi|| 1a(w) = 1, and set

N
=Y el
k=1
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Assume, without loss of generality, that (cx)x is decreasing, and hence also
B 1/ ¢y is decreasing. Let 9 = 0 and ~;, = Z§:1 a;. Then

£ty = B, e,

if yx_1 <t < vk, and therefore

00 N Vi

Vrowyde=> dgt | wt)dt

0 k=1 TE—1
N q Yk 1 N
ZW S w(t)dt>§ZcZ,
k=1 %-1 k=1

from which the result follows. =

THEOREM 3.3. Let 0 < ¢ < 1. Then Galb(A%(w)) = ¢ if and only if
W (t)/t is equivalent to a decreasing function.

Proof. If W(t)/t is equivalent to a decreasing function, then it is known
(see [6]) that A'(w) is a Banach space, and since

|f|q < ch’fnr] and ||f||31q(w) = ||fq”/11(w)a

we obtain

1 %y < S ey < 3 e

therefore ¢4 C Galb(A9(w)) and hence they coincide. To prove the converse,
we observe first that if Galb(A?(w)) = ¢4, then

HfHAq(w < infz an”(jlq(w)a

where the infimum extends over all possible decompositions f =" fn.

Now, we use the same argument as in [6]: let £ € N and s > 0 and
set f = X(o2rs) and fj = X(js,(j+1)s) With j = 0,...,2¥ — 1. Then, since
/= 22 . fj, we obtain

2k_1

W(25s) = [ fl%0() = lefgll w) = 2"W(s);

that is, W (2%s) < 2*W(s) and hence, if s < 7 and k is such that 2¥~'s <
r < 2Fs, then
k k
W(r) - W (2Fs) - 25 (s) - VV(S)7
ro T 2klg T 2ktlg T g
as we wanted to prove. m




14 M. Carro et al.

REMARK 3.2. In particular, if X = LP? with 0 < ¢ < min(p,1), we
recover the result proved in [13].

In general, if w does not satisfy the previous condition we have the fol-
lowing result:

THEOREM 3.4. Given 0 < a < 1, let

If (cn)n €49 and

then (cn)n € Galb(A%(w)).

Proof. Since 0 < ¢ <1, we have |f|?7 < > ¢|fy]?, and hence, using (3),
we obtain

0 t
1l
Iy = el + St § (5 1 fio0as ) a
n n 0 ant

for every positive sequence (ay,), with > a, < 1; so, by Lemma 3.2,
”f”/lq(w) = ZC% + ZC%H(an)v
from which the result follows. =
As a corollary of (2) we obtain:
COROLLARY 3.4.
Galb(A?(w)) = WGalb(A?(w)) = FGalb(A?(w)) C Lyy1/a)-1 N L.
COROLLARY 3.5. If for every v > 0 and every 0 < a < 1,

r ,s/a
w(t) aW (r)
(6) ——=dt |ds = ,
§< ) = ) Wia)

s

then
Galb(A?(w)) = WGalb(A(w)) = FGalb(A?(w)) = Lyy1/a)-1 N L.
Proof. Condition (6) reads H(a) < a/W(a), and hence the assertion
follows as in Corollary 3.2. m
Let us now assume that W is equivalent to a convex function.

LEMMA 3.4. Let f, > 0, and let g, > 0 have disjoint supports and satisfy
fo =g} for every n. If W is equivalent to a convex function, then

Hzn:f" AL (w) = Hzn:g”

A(w)
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Proof. Let us start by proving that, under the above hypotheses,
©0 * c0 *
(2 <1 ()
X n X n

for every > 0. Since ), f, and ), g, have the same integral, it is enough

[(Zo) <i(2h)

We have
S(Zgn)*=sup 1> gns IE!Sx}zsup{Z | gn;Z|En]§x}
0 n E n n B, n

Il

w0

lwr

o]

— —

e

3 %

8

3

IN

| 8
——

Il

w0

lwr

o]
—
=[]
O
=

8

3

AN

8
——

Finally, since W is equivalent to a convex function, we can assume with-
out loss of generality that w is an increasing function; hence, by the dis-
tribution formula for increasing weights, there exists a function ¢, (y) such
that

Han

-1y (an) t) dt dy
G T (Sayonn-|Ta

Consequently, when computing Galb(A!(w)) for an increasing weight, we
can assume that the functions f,, are disjointly supported. Also:

Al

Al

THEOREM 3.5. If W is a convex function, then, for every 0 < q¢ <1,
Galb(A%(w)) = {(¢n)n; (c2), € Galb(A(w))}.

Proof. Since (3, cnfn)? <>, b fi, it is clear that
{(cn)n; (1), € Galb(AY(w))} C Galb(A%(w)).

For the converse inclusion we observe that if (c,), € Galb(A9(w)), then
> nCnfn € A%(w) for every (fn)n disjointly supported with || fn || () < 1.
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Since, in this case,
q
(D cnta) =D et
n n
we deduce that Y, chg, € Al(w) for every (g,), disjointly supported with
llgnll A1 () < 1. Since w is increasing, we conclude that (cfl), € Galb(A' (w)). =

THEOREM 3.6. Suppose that W is a convex function, and, for 0 < a < 1,
set

1) = sup il

If (cn)n €49 and

i q
Znualfg;cnﬂ(an) < 00,

then (cn)n € Galb(A%(w)).

Proof. By Theorem 3.5, it is enough to handle the case ¢ = 1, and since
W is convex, we can assume that the f,, are disjointly supported. Hence, for

every positive sequence (a,), such that > a, <1,
H > cnfn A (uw) X (Z)\fn y/cn) ) (Za At (Y /Cn)>

< | S outw (200D ) gy < [ ) 0 0/

<3 ea (o) § WO, () dy < 3 enl(an)
n 0 n

and taking the infimum over all (ay), we obtain the result. m
3.3. Galb(A9(w)) for ¢ > 1

THEOREM 3.7. For every q > 1, Galb(A%(w)) = ¢! if and only if w € By,
that is, for every r > 0,

w

i
i

t < Jw(t) dt.
0

rd

ﬁwg

w(
4

Proof. This is a consequence of the fact that for ¢ > 1, A9(w) is Banach
if and only if w € B, (see [15]). =

THEOREM 3.8. Given 0 < a < 1, let

r/a
H(a) = sup Wl(r) S (r —at)? % dt.
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If (cn)n € €' and
inf nH (an,) < 00,
anralnglzn:c (an) < 00

then (cn)n € Galb(A%(w)).
Proof. Using (3), we obtain

1Al Aoy =D enllfallaaw)

+Y en sup (?(% § £(s) ds)qw(t) dt)l/q

n Ifllaaey=1 \ ant

for every positive sequence (ay,), with > a, <1, so, by Lemma 3.3,
£l A9 (w) = ch + chH(an),
n n

from which the result follows. =
REMARK 3.3. In particular, if we take A9(w) = L9, which means that

w(t) =971, then
r/a

dt 1
~ _ —_ q_ ~ —
H(a) sgp 7 § (r — at) ; log —,

and hence flog? C Galb(L'%). This estimate is not satisfactory since it is
known that Galb(LY%) = ¢(log £)1/¢" (see [18]).

However, if we use interpolation theory, we can improve the above result
as follows.

THEOREM 3.9. If W(t)'/4/t is equivalent to a decreasing function, then
((og )9 C Galb(A?(w)).

Proof. If W (t)'/4/t is equivalent to a decreasing function, then A" (w,) is
a Banach space with w,(t) = W (t)/9~w(t), and consequently Galb(A'(w,))
= (1. On the other hand, by Corollary 3.3, £log¢ C Galb(AL*(w,)), and
hence, using interpolation (see [5] and [11]), we obtain the result. m

As a corollary of Theorem 3.8, we also obtain the following result.

COROLLARY 3.6. If, for every 0 < a <1 and every r > 0,
r/a

t w
S (r —at)? w(t) dt < (r)a ,
ta W (a)t/a

r

then
Galb(A%(w)) = WGalb(A?(w)) = FGalb(A?(w)) = Lyy1/gy-1 N o
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3.4. Weak galb and finite galb. The purpose of this subsection is to obtain
information about the weak and finite galbs of the spaces A?(w).

THEOREM 3.10. Given 0 < a < 1, let

1/q st _ q-1 1/q
sup W) (S (u at> du) if g >1,

H(a) _ t t ot W(’LL)
W ()4 (min(r, t) — at) ,
" Wi past

If (cn)n € 0* and

then (cn)n € WGalb(A9(w)).
Proof. Using (3), we obtain

£l aocoiwy =D enll Full aaqu)

t

W (t)!/a 1
+ Z Cp SUP ®) sup -\ f*(s)ds
w o llay=1 T 4,

for every positive sequence (a,), with Y a, < 1, and the result follows, in
the case ¢ > 1, from Sawyer’s duality formula (see [15]) and, if ¢ < 1, from
Theorem 2.12 of [10]. =

Using a completely similar argument to that of the previous theorem, we
can prove the following result.

THEOREM 3.11. Given 0 < a < 1, let

‘ u—at>q,_1 )l/ql
— du if ¢ >1,
o U G

(min(r,t) — at)
1:p W (r)l/a .

if ¢ <1.

then (cp)pn € FGalb(A9(w)).

Sometimes, we can use the embedding properties of the weak and finite
galbs in order to obtain some information about the galb, as in the following
corollary:
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COROLLARY 3.7. Let q > 1. If W (s)/s? is equivalent to a bounded,
decreasing function, then
(a)  Llogl = Galb(A?*°(w)) = WGalb(A?*°(w)) = FGalb(A?>(w)),
(b) ((og )7 = Galb(A%(w)) = WGalb(A9(w)) = FGalb(A9(w)).

Proof. (a) By Corollary 3.3,

Clog ¢ C Galb(A9®(w)) € WGalb(A%*(w)) C FGalb(A%*(w)).
Now, since W (s) =< s, we have L} C A%>°(w), and therefore
FCGalb(A%*°(w)) C FGalb(LY>).

Since it is known that FGalb(L*°) = ¢log /¢ (see [13]), we obtain the result.
(b) The proof of this part is completely similar since, by Theorem 3.9,

((log 0)'/7 C Galb(A9(w));

next since W (s) < s?, we have L4 C A4(w); finally, we use the fact that
FGalb(L'9) = ((log £)'/7 (see [18]). =

4. Some examples and applications. If we apply our result to the
classical case of LP'? we obtain the following result:

COROLLARY 4.1.

1) If ¢ > 1 and p > 1, then Galb(LP?) = (1.

2) If p=1, then {log{ = Galb(L>).

3) If p < 1, then Galb(LP>) = (7.

4) If 0 < q <1 and q < p, then Galb(LP?) = /4.

5) If 0<p<1andp<q< oo, then Galb(LP?) = (P.
6) If q > 1, then {(log?)'/7 = Galb(L19).

Proof. 1) is clear because the spaces are Banach spaces, and 2) has al-
ready been mentioned several times. 3) is consequence of (5); 4) of The-
orem 3.3; and 5) of Theorems 3.5 and 3.6 for the case ¢ < 1, while for
q > 1, we have to proceed by interpolation since we already know that
Calb(LP>°) = Galb(LP') = (7. Finally, the embedding ¢(log/)'/? c
Galb(L19) in 6) is a consequence of Theorem 3.9, and for the converse we
have to refer to [18]. m

Another example:

COROLLARY 4.2. If W(t) = t(1 +log™(1/t))™ with a > 0, then, for
every 0 < g <1,
(log 0)* = Galb(A(w)).
Proof. This is a consequence of Theorem 3.6 and (2), since one can easily
check that, in this case, H(a) < (1 +1log*(1/a))®, and Lw;(l =(9(log()“. =
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If T is of restricted weak type (p,p) with constant 1/(p — 1), as happens
with the Carleson operator given in the introduction, then

5] . CIND
Txp) t) < —(1+logm — | <|E|[1+1log" — |=(1+1log™ ¢
(Txe)™(0) = == (1 +1og™ g ) < [EI{ 1+ log™ 7 )5 (14 log™t),
that is,
ITxelx < D(E]),
where X = A1°°(w) with W (t) = t/(1+log™ t) and D(s) = s(1+log™ (1/s)).
Also, when dealing with the bilinear Hilbert transform, the space that ap-
pears naturally is X = AP (w) with p = 2/3 and W (t) = t/(1 + log™ t)*/3
(see |7]). These examples motivate the study of the galb of the above spaces.
COROLLARY 4.3. If W(t) = t(1 +log™ t)=% with a > 0, then
I 0<g<1l,
Galb(A?*°(w)) = Jor 1
lLlogt for q=1.

Proof. This is a consequence of (5). m

Finally, it is important to mention that, in general, Galb(X), WGalb(X)
and FGalb(X) do not coincide, as is shown in the following proposition:

PROPOSITION 4.1. If 0 < g <p <1, then

1) Galb(LP9(R) N L'(R)) = ¢4,
2) WGalb(LP4(R) N L'(R))) = ¢,
3) FGalb(LP4(R) N L'(R))) = (1.

Proof. 1) Recall that Galb(LP9) = ¢4, while Galb(L') = ¢*. In particular,
if (cn)n is in €2 and || fullzp.anr < 1, then

IS, <e(Sient)”
[S s, <X tea < e(Shear) ™

Hence ¢4 C Galb(LP? N L'). To prove the converse inclusion, given a posi-
tive sequence (¢, )n, choose a strictly increasing sequence of integers k,, > 1
so that 27%»/P|c,| is decreasing. Then choose disjoint sets {A,}, with
|A,| = 2%, Finally, let f, = |A,|~"Pxa,, so that

1 foll panpr = max{| Al ~PlIxa, | Lra, | Al TP llxa, o0}
= max{1, |4, V/P} = 1.

It is routine to calculate the rearrangement of the simple function ), ¢, fn
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and, using the fact that |A,| is rapidly increasing, to get

s

Lpa
_ (Z(p/qﬂcn‘qmn‘q/p((zn:|Aj|)Q/p B (nz:l‘Aj‘)q/p))l/q
n 7=1 J=1

- (Z\cn\q)l/q-

We conclude that if (c,), € Galb(LP4 N L), then (c,), € £9.

2) Let (cn)n € P and let || frll ppanpt = 1. Since || frllzpoo < || fn]lLre and
Galb(LP*°) = (P, we have

Sl = ()"

Similarly, || fnllzt.o = || fnll1 and since Galb(LY*°) = flog ¥,

H zﬂ:cnfn P [(en)nlleroge = (Zn: !cn\P)

Hence ¢ C WGalb(LP4 N L'). To prove the converse inclusion, given a
finite sequence (c;)n, choose k and a sequence {A,}, of disjoint sets with
|A,| = Elea|P > 1. Let f,, = |An|~YPxa,, so that ||fu|/ranzt = 1. Then
|3 cenfnl = E7YP on a set of measure Y |A,| =k, |cn|P. In particular,
the norm of >°, ¢, fn in LP is (37, |ca|?)'/?, and hence (¢, ) € 7.

3) First observe that if (c,), € FGalb(LP4 N L'), then in particular
> . len] < oco0. To prove the converse, observe that if )" |c,| < oo and if
| full eanzt = 1, then > ¢, fn(z) converges in L' and therefore it is finite
almost everywhere. m

5. Proof of Lemma 3.3. (a) The inequality B < A is trivial since it is
just taking the supremum over all functions of the form x( ). To prove the
converse, fix a decreasing function f and an r > 0. Let r; =1/ a’ and write

OSO (% | f)qw@) dt <2071 i (U; + V)

0 at j=—00

where
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Since f is decreasing, for each j we have

Ti+1 ¢ s g—1 w(t)
Ui=q | | (Sf) f(S)dSt—th
TP Ti T
i1t s\ q—1
5= w(t)
<q X S(S_a85f> f(S)dSt—th
7']' 7']' as
Ti+1 t g(S) w<t)
=q(1 —a)t? S S(s — )t S dy ds e dt
i T g(t)
Tj+1 t w(t)
+q(1—a)' | S(S—rj)q_ldsg(t)t—th
T'j T'j

=(1-a)" U + (1 -a)-w?

where g(s) = (s71{*_f)771 f(s). Note that g is also decreasing.

Let A\ denote the distribution function of g. To estimate U ](1)

the region of integration by observing that

, we expand

r; <t<Tjq1 g(rjs1) <y <g(r;j)
r;<s<t = 1 Ag(y) <t < Ng(w)/a
g(t) <y <g(s) at <5 < Ag(y)

Performing the inner (ds) integration and using the hypothesis (4) we see
that

9(rj) Ag(y)/a L w(t)

vV< {0 | ) —ap) o ddy
g(rj+1) Ag(y)
g(r;) Ag(y)
< B1 S ( S w) dy.
g(rj41) 0
The estimate for U ](2) is simpler,
(2) Tj4+1 'LU(t) Tj+1
U;” = S (t—r;)?dsg(t) t—th < X gu.
T‘j ’I“j

Now

o0 o0 )\g (y) o0 o0

> @+t 25§ (1w fow= 0 Tom
j=—00 0 0 0 0
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The estimate for V; begins similarly. With g as above,
Ti+17j s
q-1 w(t)
Vi=g¢q S S(Sf) f(s)dst—th

r; at at

Tj41 7y ot f q—1 w
<o 1322 0) swasta

s—as
rj at as
Tj41T; 9(s) w(t)
= q(1—a)'™ S S (s —at)?! S dyds e dt
rj at 9(rj)
Tj+1T5 UJ(t)
+q(1 —a)'"g(ry) S S (s —at)? tds e dt
r;j at

= (1) V) + (1 -,
(

Interchange and expand the region of integration for Vj b by observing that

rj <t <rjp1 g9(rj) <y <g(rj-1)
at < s < r; = ¢ N(y) <t < N\(y)/a
g(rj) <y <g(s) at <s < X (y)
Performing the ds integration and using the hypothesis (4) yields
9(rj—1) Ag(y)/a 9(rj-1)  Ag(y)

it f T e - at)qutdy <Bt | (| w)a
a(rj)  Ag(y) g9(r;) 0
Thus,
00 oo Ag(y) 00
ZVJ.(I)SB‘?S< S w)dy:Bngw.
j=—o00 0 0 0

®)

To estimate V™ we use the fact that g(r;) is a decreasing sequence. For

each k > 1,
k=1 Tj+1 w(t) Tk
Z S (rj—at)qt—thg (1—a)! S w
j:—OO T4 0
and, by (4),
Tk+1 'Z,U(t) Tk
S (rp —at)? ——=dt < B? S w.
t4 5
Tk

It follows that
E o Tis1 Tj

k
S (rj—at)qydtg S ((-a)+ B9 | w

Jj=—00 Tj j=—00 ri—1
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for all k and, because g(r;) is a decreasing sequence,

i V Z (1 -a)?+ BY) SJ w
j=—o0 j=—o0 rio1
< (1-a)?+ B9 | guw
0

Combining the inequalities above, we get

S (%Sf) w(t)dtj(l—i—Bq)Sgw

0 at 0

TN\ L 1/q
< (1+BQ)<§ <¥ | f> w(t)dt) (gqu) :
0 at 0
and we conclude (by approximating f by integrable functions if necessary)

that A <1+ B4,

To prove (b), we shall use some ideas of Stepanov and Ushakova [20, The-
orem 3]. For the converse, we apply Theorem 3.1 of [16], although Theorem
1 of [15] will also do. We have

A= swp (OSO (% § £(s) ds)qw(t) dt> v

11l g () <1
Lf(i ) 0 at
0 1 t
= sup sup g;gﬂ )ds g(t)w(t) dt
HfHL;(iw)Sl HgHLq (w) Lo " at
sup Oﬂof()< ! § (t) (t)dt> (s)d
- sup s g(w(t) — |w(s)ds
loll (ST 122G <1 w(s) t
TG d < ds\ ¢ 1/q
~  sup (S (So x<8)w(8) 5 N §o oo(s)w(s) s> w(z) dm)
9l <t N p N Jow(s)ds foo w(s) ds
where G(s) = 25§/ g(t)w(t) %. Now
x zs/a dt z/a 1 min(z,t)
Jow={ ) gt Fds= ) 3 | dsgltyw(t)dt
0 0 s 0 at
x z/a
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and
< o e dt
Guw=\—= (Hw(t) — w(s) ds
é (S) w(s) § g t
ooS/a o]
= S X g(t)w(t)%ds =(1-a) X gw.
0 s 0

Therefore A ~ A1 + A + A3 where
T g(Bw(t) dt\ ¢ /4
m=t-a sw (| (M) w()ds)
0

191 47 () <1 fow(t) dt
=(l—a su i —Sgog(t)w(t)dt qlwx T v
A=l )gnm/}i)g(é( Jo w(t) dt > ( )d> ’
o (T (E e agemanT N
Ag—”g”m/(lz)gl(é ( {7 w(t) at > (z)d > :

The first two are easy. Hardy’s inequality says that A; = (1 — a)q and
Holder’s inequality yields A2 = 1 —a. For A3 we use Theorem 4.4 of [12]. By
replacing = by s and g(t)w(t) by f(t)t we recognize As as the best constant
in the inequality

- L |
(V(T - ansora)” () uwas) "
0 s 5 / |
< 3§ FO7 1wy~ ar) "
0

It is trivial to check that the so called GHO condition in [12] holds for the
kernel k(s,y) = s — ay and so A3z ~ max(A43 1, A32) where

T ) t oy /g s/a - 1
Az, = e (§ (t — )4 (gw) T w(t) dt) a ( §C £ (t) dt) .
x t —q 1/q s/a . 1/q
Azg = 8<qu§12/a (S (§w> w(t) dt) ( §£ (s — at)?t™w(t) dt) .
S
o B =su ( S:/a(r - atﬁ% dt) Ve
T T Cwydye
we have
Aso < sup (oxo (§w> _qlw(t) dt) 1/ql<5§a(5 at)?w(t) dt) Ha <B
3,2 - < B.
5 s 0 s
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Also
z s/a , t ’ /
Az = Sésxuglt;/a (§ ( :SE (t — )y w(y) dy)q _1(§w> () dt)l/q
x tla )

< sup (S( | (¢t —ay)'y~"w(y) dy)d_l(iw) ) dt)l/q/

s<z<sfa N : 0

!

< B sup <§<§w)_1w(t)dt>l/q

s<z<s/a Ny Vg
<o s (os(fu) - ros(f)) "
< B(log(D))/7.

This completes the proof of (b).
To prove (c), it is enough to show that

s/a s
S w < Dgw, s> 0,
0 0
with D = (B/(y/a — a))??. Now, for any r > 0, we have r/a > r/y/a so
T r/va r/va
quw > S (r —at)t%w(t) dt > (Va —a)? S w.
0 r 0
Hence
s/a s/va s
[ w<(B/(Va-a) | w<(B/(Va-a)*w
0 0 0

This completes the proof. m
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