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From restrited type to strong type estimateson quasi-Banah rearrangement invariant spaesbyMaría Carro (Barelona), Leonardo Colzani (Milano)and Gord Sinnamon (London, Ont.)Abstrat. Let X be a quasi-Banah rearrangement invariant spae and let T be an
(ε, δ)-atomi operator for whih a restrited type estimate of the form ‖TχE‖X ≤ D(|E|)for some positive funtion D and every measurable set E is known. We show that thisestimate an be extended to the set of all positive funtions f ∈ L1 suh that ‖f‖∞ ≤ 1,in the sense that ‖Tf‖X ≤ D(‖f‖1). This inequality allows us to obtain strong typeestimates for T on several lasses of spaes as soon as some information about the galbof the spae X is known. In this paper we onsider the ase of weighted Lorentz spaes
X = Λq(w) and their weak version.1. Introdution. It is well known (see [1℄, [3℄, [4℄ and [14℄) that, formany interesting operators only a restrited estimate on harateristi fun-tions is known, and it is of a general interest to show what kind of strongtype estimate an be obtained from it. This is, for example, the priniple ofthe weak type extrapolation theory where we have an operator satisfying

‖TχE‖Lp,∞ ≤ 1

p − 1
|E|1/pfor every 1 < p ≤ p0, and it is an open question to see if this implies that

T is bounded from the Orliz spae L log L into L1,∞. A positive solution tothis question will give us, when applied to the Carleson operator
Sf(x) = sup

n
|Snf(x)|,where Snf(x) = (Dn∗f)(x), Dn is the Dirihlet kernel on T = {z ∈C; |z|= 1}and f ∈ L1(T), the almost everywhere onvergene of the Fourier series of afuntion in L log L(T).2000 Mathematis Subjet Classi�ation: 47A30, 46E30.Key words and phrases: rearrangement inequality, extrapolation theory, restritedweak type estimates, (ε, δ)-atomi operator, galb.This work has been partially supported by MTM2007-60500 and by CURE 2001SGR00069 and by funding from IMUB and NSERC.[1℄ © Instytut Matematyzny PAN, 2007



2 M. Carro et al.In a reent paper [4℄, it was proved that if the operator T is (ε, δ)-atomiapproximable (see De�nition 2.2), then an estimate of the form
(TχE)∗(t) ≤ h(t, |E|)for every measurable set an be extended to every funtion f bounded by

1 and, from it, some strong type estimates on logarithmi type spaes wereproved. In partiular, if h(t, s) ≤ R(t)D(s), the above inequality is equiva-lent to ‖TχE‖X ≤ D(|E|), where X is a weak weighted Lorentz spae (seede�nition below).The �rst purpose of this paper onsists in proving, in Setion 2, thata slight modi�ation of the main theorem in [4℄ shows that if T is (ε, δ)-atomi approximable, and ‖TχE‖X ≤ D(|E|) for some positive funtion Dand every measurable set E where X is any quasi-Banah r.i. spae, then
‖Tf‖X ≤ D(‖f‖1) for every f ∈ L1 suh that ‖f‖∞ ≤ 1.Our seond step will be to obtain, from this inequality, a strong typeestimate, for whih we need to have some information on Galb(X), whih isde�ned (see [21℄) by

Galb(X) =
{
(cn)n;

∑

n

cnfn ∈ X whenever ‖fn‖X ≤ 1
}
,endowed with the norm ‖c‖Galb(X) = sup‖fn‖X≤1 ‖

∑
n cnfn‖X . In partiular,we study, in Setion 3, this galb for weighted Lorentz spaes X = Λq(w),for 0 < q < ∞, and also for the weak spaes Λq,∞(w). To this end, we usethe following formula for the dereasing rearrangement of a sum of funtions(see [9℄): if f =

∑
n cnfn, then
f∗(3t) ≤

∑

n

cn

(
f∗

n(t) +
1

t

t\
ant

f∗
n(s) ds

)
,where {an}n are any positive numbers suh that ∑

n an = 1, and we need tosolve the problem of omputing, for q ≥ 1,
sup
f↓

T∞
0 (t−1

Tt
at f(s) ds)qw(t) dtT∞

0 f(t)qw(t) dt
,where the supremum extends over the set of dereasing funtions f . Thisproblem will be solved in Setion 5. Finally, in Setion 4 we present someonrete examples and appliations.We shall denote by L0(Rn) the lass of Lebesgue measurable funtionsthat are �nite a.e., and g∗(t) = inf{s : λg(s) ≤ t} is the dereasing re-arrangement of g, where λg(y) = |{x ∈ R : |g(x)| > y}| is the distributionfuntion of g with respet to Lebesgue measure. We refer the reader to [2℄ forfurther information about distribution funtions, dereasing rearrangementsand rearrangement invariant (r.i.) spaes.



From restrited type to strong type estimates 3If, in the de�nition of a norm, the triangle inequality is weakened to therequirement that for some onstant c, ‖x+ y‖ ≤ c(‖x‖+ ‖y‖) holds for all xand y, then we have a quasi-norm. A omplete quasi-normed spae is alleda quasi-Banah spae. It is well known that the spaes ℓp for 0 < p < 1are quasi-Banah spaes. Observe that if X is a quasi-Banah r.i. spae ofmeasurable funtions on R
n then there is a r.i. quasi-Banah spae X∗ ofmeasurable funtions on R suh that ‖f‖X = ‖f∗‖X∗ for all f ∈ X. Onesimply de�nes ‖g‖X∗ = ‖G‖X where G(x) = ωg(|x|n) with ω hosen so that

g and G are equimeasurable. It is a simple matter to verify that X∗ is aquasi-Banah spae.For a measurable set E, χE denotes the harateristi funtion of E, |E|is the Lebesgue measure of E and, for simpliity in our arguments, we saythat an operator T is sublinear if T (λf) = λTf and
∣∣∣T

( ∑

n∈N

fn

)∣∣∣ ≤
∑

n∈N

|Tfn|.If we only know that |T (f + g)| ≤ |Tf | + |Tg|, then we need to assumesome extra boundedness ondition on our operator T , suh as the bounded-ness of T : L1 + L∞ → L0, or to use some standard density argument toobtain our onlusions.2. From restrited weak type to strong type. We shall work in R
n,and Q will represent a ube with sides parallel to the axes. The results anbe extended in the natural way to T

N (identifying T
N with [0, 1)N ). In [4℄,the following de�nitions were introdued:Definition 2.1. Given δ > 0, a funtion a ∈ L1(Rn) is alled a δ-atomif (i) T

Rn a(x) dx = 0,(ii) there exists a ube Q suh that |Q| ≤ δ and supp a ⊂ Q.Definition 2.2.(a) A sublinear operator T , de�ned on L1 +L∞ and taking values in L0,is (ε, δ)-atomi if for every ε > 0 there exists δ > 0 satisfying
‖Ta‖L1+L∞ ≤ ε‖a‖1 for every δ-atom a.(1) (b) A sublinear operator T is (ε, δ)-atomi approximable if there exists asequene (Tn)n of (ε, δ)-atomi operators suh that |TnχE | ≤ |TχE |for every measurable set E and for every f ∈ L1 suh that ‖f‖∞ ≤ 1,and every t > 0,

(Tf)∗(t) ≤ lim
n

inf (Tnf)∗(t).



4 M. Carro et al.In partiular, any maximal operator of the form supj |Kj ∗f |, where Kj ∈
Lpj for some 1 ≤ pj < ∞, is (ε, δ)-atomi approximable (see [4℄ for moreexamples of this kind of operators). As we shall see in this paper, no operatorbounded from Lp into Lp with 0 < p < 1 is (ε, δ)-atomi approximable.Definition 2.3. Given an operator T and a quasi-Banah r.i. spae X,we de�ne the fundamental funtion of T with respet to X by

ϕX,T (r) = sup
|E|≤r

‖TχE‖X .Observe that if T is the identity operator, then ϕX,T is nothing but ϕX , theusual fundamental funtion of X.Definition 2.4. Given δ > 0, we say that Fδ is a δ-net if it is a olletionof open ubes of the following form:
Fδ = {Qj ; |Qj| = δ, Qj are pairwise disjoint, ⋃

Qj = R
n}.Theorem 2.1. Let X be a quasi-Banah r.i. spae and T a sublinear

(ε, δ)-atomi approximable operator. Then, for every positive funtion f ∈L1suh that ‖f‖∞ ≤ 1,
‖Tf‖X ≤ ϕX,T (‖f‖1).Proof. In view of De�nition 2.2, it is enough to prove the result for an

(ε, δ)-atomi operator T .Given X, let X∗ be the spae of measurable funtions on (0,∞) suh that
‖f‖X = ‖f∗‖X∗ . Let f ∈ L1 be a positive funtion suh that ‖f‖∞ ≤ 1 and,given ε > 0, onsider a δ-net Fδ where δ is assoiated to ε by the propertythat T is (ε, δ)-atomi.Given Qi ∈ Fδ, let fi = fχQi . Then\

Rn

fi(x) dx ≤ |Qi|,

and hene we an take a ube Q̃i ⊂ Qi satisfying
|Q̃i| =

\
Rn

fi(x) dx =
\

Qi

f(x) dx.

Then it is lear that the funtion gi = fi − χ
Q̃i

is a δ-atom and
‖gi‖1 ≤

\
Qi

|f(x)| dx + |Q̃i| = 2
\

Qi

|f(x)| dx.

Now, f =
∑

i fi =
∑

i gi + χE , where E =
⋃

Q̃i. Then, by sublinearity,
|Tf | ≤

∑

i

|Tgi| + |TχE | ≡ G + |TχE |.



From restrited type to strong type estimates 5For �xed n > 1, we have
(Tf)∗(x)χ(1/n,n)(x)

≤ G∗((1/n2)x)χ(1/n,n)(x) + (TχE)∗((1 − 1/n2)x)χ(1/n,n)(x)

≡ Qn(x) + Rn(x).For x ∈ (1/n, n), we have 0 ≤ x − 1/n ≤ (1 − 1/n2)x, and hene
Rn(x) ≤ (TχE)∗(x − 1/n)χ(1/n,n)(x);it follows that R∗

n ≤ (TχE)∗. On the other hand,
Qn(x) ≤ G∗(1/n3)χ(1/n,n)(x)and

G∗(1/n3) =
( ∑

i

|Tgi|
)∗

(1/n3) ≤ n3

1/n3\
0

( ∑

i

|Tgi|
)∗

≤
∑

i

n3

1/n3\
0

(Tgi)
∗ ≤

∑

i

n3
1\
0

(Tgi)
∗

≤ n3
∑

i

‖Tgi‖L1+L∞ ≤ n3ε
∑

i

‖gi‖1 ≤ 2n3ε‖f‖1.Using these estimates for Rn and Qn we have
‖(Tf)∗χ(1/n,n)‖X∗ ≤ 2n2ε‖f‖1‖χ(1/n,n)‖X∗ + ‖TχE‖X .We let �rst ε → 0 and n → ∞ to get

‖Tf‖X ≤ ‖TχE‖X .Sine |E| =
∑

i |Q̃i| =
∑

i

T
Qi

f = ‖f‖1, the result follows.Also, as a onsequene of the previous remark we obtain the following:Proposition 2.1. Let X be a quasi-Banah r.i. spae and let T be anon-zero (ε, δ)-atomi approximable operator. Then ϕX,T is quasi-onave.Proof. Clearly ϕX,T (r) is non-dereasing. Suppose s > r. If |E| ≤ s then
‖(r/s)χE‖∞ ≤ 1 so

(1/s)‖TχE‖X ≤ (1/r)ϕX,T (‖(r/s)χE‖1) = (1/r)ϕX,T (r).Sine this holds for all suh E, (1/r)ϕX,T (r) is non-inreasing.Every quasi-onave funtion is equivalent to a onave funtion so weshall assume from now on that D is a onave funtion with ϕX,T � D.Remark 2.1. From the above proposition, we see that if X is any quasi-Banah r.i. spae and 0 < p < 1, then no operator T mapping Lp to X is
(ε, δ)-atomi approximable. In partiular, onvolution operators on Lp withdisrete measures with oe�ients in ℓp are not (ε, δ)-atomi approximable.



6 M. Carro et al.Definition 2.5. Given a sequene spae S ⊆ ℓ1 and a onave fun-tion D, we shall denote by D(S) the set of all measurable funtions f suhthat
‖f‖D(S) = inf{‖(cnD(‖fn‖1))n‖S}is �nite. Here the in�mum extends over the set of all possible deompositions

f =
∑

n cnfn a.e. suh that ‖fn‖∞ ≤ 1.It is an exerise to prove the following.Theorem 2.2. If D is onave then L1 ∩ L∞ ⊆ D(S). If , in addition,
s � D(s), then D(S) ⊆ L1.Let us now give some onrete examples whih will be useful in whatfollows:Examples. (a) If S = ℓp with 0 < p ≤ 1, then taking the deomposition

f =
∑

n∈Z

2nfn,where fn = 2−nfχ{2n−1≤|f |<2n}, we have
‖f‖D(S) �

( ∑

n∈Z

2npDp(λf (2n))
)1/p

�
(∞\

0

yp−1Dp(λf (y)) dy
)1/p

∼
(∞\

0

f∗(t)p dDp(t)
)1/p

= ‖f‖Λp(w),where λf is the distribution funtion of f and Λp(w) is the weighted Lorentzspae with weight w(t) = dDp(t), and hene we have proved that
Λp(dDp) ⊆ D(ℓp).Therefore, using the previous theorem, we obtain

Λp(dDp) + L1 ∩ L∞ ⊆ D(ℓp).At this point, and sine 0 < p ≤ 1, it will be good to know when thisseond spae Λp(dDp) +L1 ∩L∞ is stritly larger than Λp(dDp). Obviously,these two spaes oinide if and only if L1 ∩L∞ ⊆ Λp(dDp). It follows fromTheorem 3.3 in [17℄ thatProposition 2.2. L1 ∩ L∞ ⊆ Λp(dDp) if and only if
∞\
0

(
max(1, y)

Dp(y)

)p/(p−1)

dDp(y) < ∞.(b) If S = ℓ log ℓ, and s � D(s), then, taking the deomposition
f = f +

∑

n≥1

2nfn,



From restrited type to strong type estimates 7where f = fχ{|f |≤1} and fn are as before, we get
‖f‖D(S) � D(‖f‖1) +

(∞\
1

(log+ log+ y)D(λf (y)) dy
)
.From this, it follows using homogeneity that

L log log L(D) ⊆ D(S),where
‖f‖L log log L(D) =

∞\
0

f∗(t)(1 + log+ log+ f∗(t)) dD(t).In partiular, if D(s) = s(1 + log+(1/s)), then
L log log L(D) = L log L log log L.Now, in this onrete ase, it was proved in [8℄, applying the ideas of [1℄,that we an improve the above result by taking the deomposition

f = f0 +
∑

n≥1

22n
fn,

where f0 = fχ{|f |≤2} and fn = 2−2n
fχ{22n−1≤|f |<22n}. Using this deompo-sition, it an be proved that

L log L log log log L ⊆ D(S),and, in fat, it was proved in [8℄ that if D(s) ≥ s and D(s2) ≤ sD(s), then
L log log log L(D) ⊆ D(S).For our next purpose, we need the following onept whih was introduedin [21℄.Definition 2.6. The galb of a quasi-Banah spae X is de�ned by

Galb(X) =
{
(cn)n;

∑

n

cnfn ∈ X whenever ‖fn‖X ≤ 1
}
,endowed with the �norm� ‖c‖Galb(X) = sup‖fn‖X≤1 ‖

∑
n cnfn‖X .Now, sine the motivation of our work is to obtain a ertain type ofestimates for an operator T for whih a restrited estimate is known, on manyoasions it will be enough to have a weak type estimate for the operator Tor even to know that Tf(x) < ∞ for a.e. x, for every f ∈ X, in order toapply some Banah ontinuity priniple. To this end, it will be enough toidentify ertain sets ontaining Galb(X).Definition 2.7. The weak galb of a quasi-Banah spae X is de�ned by

WGalb(X) =
{

(cn)n;
∑

n

cnfn ∈ MX whenever ‖fn‖X ≤ 1
}
,



8 M. Carro et al.endowed with the norm ‖c‖WGalb(X) = sup‖fn‖X≤1 ‖
∑

n cnfn‖MX
, where

MX is the maximal Marinkiewiz spae de�ned by
MX = {f ; ‖f‖MX

= sup
t>0

f∗(t)ϕX(t) < ∞}.The �nite galb of X is de�ned by
FGalb(X) =

{
(cn)n;

∑

n

cnfn is �nite a.e. whenever ‖fn‖X ≤ 1
}
.It is trivial that

Galb(MX) = WGalb(MX)and
Galb(X) ⊆ WGalb(X) ⊆ FGalb(X).We shall see in Proposition 4.1 that the three onepts are di�erent. Notethat the advantage of the �nite galb is that if two quasi-Banah spaes Xand Y are suh that X ⊆ Y ontinuously, then

FGalb(Y ) ⊆ FGalb(X).A �rst general and important fat is the following:Theorem 2.3. Let X be a quasi-Banah r.i. spae. Then,
Galb(X) ⊆ WGalb(X) ⊆ FGalb(X) ⊆ ℓ1 ∩ Lϕ−1

X
,(2)where

Lϕ−1
X

=
{
(cn)n;

∑

n

ϕ−1
X (|cn|) < ∞

}
.Proof. The embedding in ℓ1 is immediate. To show that FGalb(X)

⊆ Lϕ−1
X

we suppose that ∑
n ϕ−1

X (|cn|) diverges. It is a standard argumentto selet sets An of measure ϕ−1
X (|cn|) suh that ∑

n χAn = ∞ on a setof positive measure. Set fn = (1/cn)χAn ; then ‖fn‖X = 1 and so (cn)n /∈
FGalb(X).Remark 2.2. Obviously Galb(X) = ℓ1 if and only if X is a Banahspae. If this is not the ase, we shall study onditions on our spaes to havethe equality Galb(X) = Lϕ−1

X
∩ ℓ1.Our seond main result an now be formulated in the following way:Theorem 2.4. Let T be a sublinear (ε, δ)-atomi approximable opera-tor and let X be a quasi-Banah r.i. spae. De�ne ϕX,T (Galb(X)) as inDe�nition 2.5. Then:(a) T : ϕX,T (Galb(X)) → X is bounded.(b) T : ϕX,T (WGalb(X)) → MX is bounded.() For every f ∈ ϕX,T (FGalb(X)), Tf(x) < ∞ almost everywhere.



From restrited type to strong type estimates 9Proof. We shall only prove (a), sine the proofs of (b) and () are om-pletely similar.If f =
∑

n cnfn then by sublinearity
‖Tf‖X ≤ ‖cnTfn‖Galb(X).If we suppose that ‖fn‖∞ ≤ 1 for eah n then by Theorem 2.1,
‖Tfn‖X ≤ ϕX,T (‖fn‖1),and ‖Tf‖X ≤ ‖f‖ϕX,T (Galb(X)) follows by taking the in�mum over all suhrepresentations of f .In partiular, if T is a sublinear (ε, δ)-atomi approximable operator, thefollowing orollaries follow from the examples given above.Corollary 2.1. If X is a Banah spae, then T : Λ1(dϕX,T ) → X isbounded.Corollary 2.2. If Galb(X) = ℓp with 0 < p < 1, then

T : Λp(dϕp
X,T ) + L1 ∩ L∞ → Xis bounded.Corollary 2.3. If Galb(X) ⊆ ℓ(log ℓ)α and s � ϕX,T (s), then

T : L(log log L)α(dϕX,T ) → Xis bounded. If , in addition, ϕX,T (s2) � sϕX,T (s), then
T : L(log log log L)α(dϕX,T ) → Xis bounded.Our next step will be to study the galb for the lass of weighted Lorentzspaes.3. The galb of weighted Lorentz spaes. The purpose of this setionis to obtain information about the galb of the spaes Λq(w) for 0 < q < ∞and of the weak type spaes Λq,∞(w). Hene, throughout this setion,

f =
∞∑

n=1

cnfn,where ‖fn‖X ≤ 1 and X = Λq(w) or X = Λq,∞(w). We shall use thefollowing formula for the dereasing rearrangement of a sum of funtions(see [9℄):
f∗(3t) ≤

∑

n

cn

(
f∗

n(t) +
1

t

t\
ant

f∗
n(s)ds

)
,(3)where {an}n are any positive numbers suh that ∑

n an = 1. It is easy tosee that (3) remains valid when the ondition ∑
n an = 1 is weakened to



10 M. Carro et al.
∑

n an ≤ 1. Reall that if Λq(w) is quasi-Banah, then the primitive of theweight W (t) =
Tt
0 w satis�es the ∆2 ondition, and hene the number 3 onthe left hand side of the above formula gives no problem at all.We shall also need some estimates for the Steklov operator on dereasingfuntions. This operator is de�ned, for 0 < a < 1, by

Saf(t) =
1

t

t\
at

f(s) ds.Lemma 3.1.
sup
f↓

(t−1
Tt
at f(s) ds)W (t)

supt>0 f(t)W (t)
= sup

t>0

(
1

t

t\
at

1

W (s)
ds

)
W (t).Proof. The proof follows trivially sine the largest funtion f with theproperty that supt>0 f(t)W (t) = 1 is 1/W .The meaning of the following two lemmas is that in estimating the normof the Steklov operator on Lorentz spaes it is often su�ient to test it onlyon harateristi funtions.Lemma 3.2.

sup
f↓

T∞
0 (t−1

Tt
at f(s) ds)w(t) dtT∞

0 f(t)w(t) dt
= sup

r>0

1

W (r)

r\
0

( s/a\
s

w(t)

t
dt

)
ds.Proof. This follows using Fubini and Theorem 2.12 of [10℄.Lemma 3.3. If q > 1, then

A := sup
f↓

(
T∞
0 (t−1

Tt
at f(s) ds)qw(t) dt)1/q

(
T∞
0 f(t)qw(t) dt)1/q

< ∞if and only if
B := sup

r

(
1

W (r)

r/a\
r

(r − at)q w(t)

tq
dt

)1/q

< ∞.(4)Moreover ,(a) B ≤ A � 1 + Bq,(b) if for some D > 1, W (s/a) ≤ DW (s) for all s > 0, then
(1 − a) + B � A � (1 − a) + B(log D)1/q′.From this , we an also onlude that() (1 − a) + B � A � (1 − a) + B(log(B/(

√
a − a)))1/q′.The proof of this lemma will be postponed to the last setion, sine it issomewhat tehnial.



From restrited type to strong type estimates 113.1. Galb(Λq,∞(w)). Let us start with the ase of Λq,∞(w) de�ned by
‖f‖Λq,∞(w) = sup

t>0
f∗(t)W (t)1/q,and observe that Λq,∞(w) = Λ1,∞(wq), where wq(t) = W (t)1/q−1w(t), andhene, the parameter q is somehow super�uous. However, it will be importantfor us that, for every q > 1,

Λq,1(w) ⊆ Λq(w) ⊆ Λq,∞(w),where Λq,1(w) = Λ1(wq) with wq as before. Moreover, by real interpolation,
Λq(w) = (Λq,1(w), Λq,∞(w))1/q′,q.As a �rst onsequene of (2), we obtain the following result:Corollary 3.1. For every 0 < q < ∞,
Galb(Λq,∞(w)) ⊆ L(W 1/q)−1 ∩ ℓ1.Theorem 3.1. Let 0 < q < ∞ and given 0 < a < 1, let

H(a) = sup
t>0

(
1

t

t\
at

W (s)−1/q ds

)
W (t)1/q.If (cn)n ∈ ℓ1 and

inf∑
n an≤1

∑

n

cnH(an) < ∞,then (cn)n ∈ Galb(Λq,∞(w)).Proof. Using (3), we obtain
‖f‖Λq,∞(w) �

∑

n

cn‖fn‖Λq,∞(w) +
∑

n

cn sup
t>0

(
1

t

t\
ant

f∗
n(s) ds

)
W (t)1/q

for every positive sequene (an)n with ∑
an ≤ 1, and so, by Lemma 3.1,

‖f‖Λq,∞(w) �
∑

n

cn +
∑

n

cnH(an),from whih the result follows.Example. If w(t) = 1, then W (t) = t and H(a) = q(1−a(q−1)/q)/(q−1).In partiular, H(a) ≈ a(q−1)/q if q < 1, H(a) = log(1/a) if q = 1, and
H(a) ≈ 1 if q > 1.Remark 3.1. If H ∈ L∞, we obtain Galb(Λq,∞(w)) = ℓ1; of ourse, thisalso follows from the fat that H ∈ L∞ if and only if w ∈ Bq, in whih ase
Λq,∞(w) is a Banah spae (see [19℄).



12 M. Carro et al.Corollary 3.2. If for every t > 0 and every 0 < a < 1,
1

t

t\
at

W (s)−1/q ds � a

W (a)1/qW (t)1/q
,(5)then

Galb(Λq,∞(w)) = WGalb(Λq,∞(w)) = FGalb(Λq,∞(w)) = L(W 1/q)−1 ∩ ℓ1.Proof. The embedding FGalb(Λq,∞(w)) ⊆ L(W 1/q)−1 ∩ ℓ1 follows fromTheorem 2.3 and the opposite embedding follows from Theorem 3.1. Indeed,ondition (5) reads H(a) � a/W (a), and if (cn)n ∈ L(W 1/q)−1 ∩ ℓ1, we knowthat (cn) tends to zero and hene we an assume that (W 1/q)−1(cn) ≤ 1 forevery n. Therefore,
∑

n

cnH((W 1/q)−1(cn)) �
∑

n

cn
(W 1/q)−1(cn)

cn
=

∑

n

(W 1/q)−1(cn) < ∞,and therefore (cn)n ∈ Galb(Λq,∞(w)) by Theorem 3.1.Corollary 3.3. If W (s)1/q/s is equivalent to a dereasing funtion,then
ℓ log ℓ ⊆ Galb(Λq,∞(w)).Proof. Applying the trivial fat that H(a) ≤ log(1/a) and taking an =

cn, we obtain the result.Observe that if q = 1 and w = 1, we obtain the well-known fat that
ℓ log ℓ ⊆ Galb(L1,∞).3.2. Galb(Λq(w)) for 0 < q ≤ 1Theorem 3.2. For every 0 < q ≤ 1,

Galb(Λq(w)) ⊆ ℓq.Proof. Let α1 > 0 be small enough (if neessary) and hoose αk suhthat
W

( k−1∑

j=1

αj

)
≤ 1

2
W (αk).

Let {Ak}N
k=1 be a olletion of disjoint sets suh that αk = |Ak| and de�ne

βk = W (αk). Obviously βk is an inreasing sequene.Let fk = β
−1/q
k χAk

, so that ‖fk‖Λq(w) = 1, and set
f =

N∑

k=1

ckfk.



From restrited type to strong type estimates 13Assume, without loss of generality, that (ck)k is dereasing, and hene also
β
−1/q
k ck is dereasing. Let γ0 = 0 and γk =

∑k
j=1 αj . Then

f∗(t) = β
−1/q
k ckif γk−1 < t < γk, and therefore

∞\
0

f∗(t)qw(t) dt =
N∑

k=1

cq
kβ

−1
k

γk\
γk−1

w(t) dt

=

N∑

k=1

cq
k

W (αk)

γk\
γk−1

w(t) dt >
1

2

N∑

k=1

cq
k,from whih the result follows.Theorem 3.3. Let 0 < q ≤ 1. Then Galb(Λq(w)) = ℓq if and only if

W (t)/t is equivalent to a dereasing funtion.Proof. If W (t)/t is equivalent to a dereasing funtion, then it is known(see [6]) that Λ1(w) is a Banah spae, and sine
|f |q ≤

∑

n

cq
n|fn|q and ‖f‖q

Λq(w) = ‖f q‖Λ1(w),we obtain
‖f‖q

Λq(w)
≤

∑

n

cq
n‖f q

n‖Λ1(w) ≤
∑

n

cq
n;therefore ℓq ⊆ Galb(Λq(w)) and hene they oinide. To prove the onverse,we observe �rst that if Galb(Λq(w)) = ℓq, then

‖f‖q
Λq(w) ≤ inf

∑

n

‖fn‖q
Λq(w),where the in�mum extends over all possible deompositions f =

∑
n fn.Now, we use the same argument as in [6℄: let k ∈ N and s > 0 andset f = χ(0,2ks) and fj = χ(js,(j+1)s) with j = 0, . . . , 2k − 1. Then, sine

f =
∑2k−1

j=0 fj , we obtain
W (2ks) = ‖f‖q

Λq(w) �
2k−1∑

j=0

‖fj‖q
Λq(w) = 2kW (s);

that is, W (2ks) ≤ 2kW (s) and hene, if s < r and k is suh that 2k−1s <
r < 2ks, then

W (r)

r
≤ W (2ks)

2k−1s
� 2kW (s)

2k−1s
� W (s)

s
,as we wanted to prove.



14 M. Carro et al.Remark 3.2. In partiular, if X = Lp,q with 0 < q < min(p, 1), wereover the result proved in [13℄.In general, if w does not satisfy the previous ondition we have the fol-lowing result:Theorem 3.4. Given 0 < a < 1, let
H(a) = sup

r>0

1

W (r)

r\
0

( s/a\
s

w(t)

t
dt

)
ds.If (cn)n ∈ ℓq and

inf∑
n an≤1

∑

n

cq
nH(an) < ∞,then (cn)n ∈ Galb(Λq(w)).Proof. Sine 0 < q ≤ 1, we have |f |q ≤ ∑

n cq
n|fn|q, and hene, using (3),we obtain

‖f‖q
Λq(w) �

∑

n

cq
n‖fn‖q

Λq(w) +
∑

n

cq
n

∞\
0

(
1

t

t\
ant

f∗
n(s)q ds

)
w(t) dtfor every positive sequene (an)n with ∑

an ≤ 1; so, by Lemma 3.2,
‖f‖Λq(w) �

∑

n

cq
n +

∑

n

cq
nH(an),from whih the result follows.As a orollary of (2) we obtain:Corollary 3.4.

Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)) ⊆ L(W 1/q)−1 ∩ ℓq.Corollary 3.5. If for every r > 0 and every 0 < a < 1,
r\
0

( s/a\
s

w(t)

t
dt

)
ds � aW (r)

W (a)
,(6)then

Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)) = L(W 1/q)−1 ∩ ℓq.Proof. Condition (6) reads H(a) � a/W (a), and hene the assertionfollows as in Corollary 3.2.Let us now assume that W is equivalent to a onvex funtion.Lemma 3.4. Let fn ≥ 0, and let gn ≥ 0 have disjoint supports and satisfy
f∗

n = g∗n for every n. If W is equivalent to a onvex funtion, then∥∥∥
∑

n

fn

∥∥∥
Λ1(w)

≤
∥∥∥

∑

n

gn

∥∥∥
Λ1(w)

.



From restrited type to strong type estimates 15Proof. Let us start by proving that, under the above hypotheses,
∞\
x

(∑

n

fn

)∗
≤

∞\
x

( ∑

n

gn

)∗

for every x > 0. Sine ∑
n fn and ∑

n gn have the same integral, it is enoughto prove that
x\
0

( ∑

n

gn

)∗
≤

x\
0

( ∑

n

fn

)∗
.We have

x\
0

( ∑

n

gn

)∗
= sup

{ \
E

∑

n

gn; |E| ≤ x
}

= sup
{ ∑

n

\
En

gn;
∑

n

|En| ≤ x
}

= sup
{ ∑

n

xn\
0

g∗n;
∑

n

xn ≤ x
}

= sup
{∑

n

xn\
0

f∗
n;

∑

n

xn ≤ x
}

= sup
{ ∑

n

\
En

fn;
∑

n

|En| ≤ x
}

≤ sup
{ \

E

∑

n

fn; |E| ≤ x
}

=

x\
0

( ∑

n

fn

)∗
.Finally, sine W is equivalent to a onvex funtion, we an assume with-out loss of generality that w is an inreasing funtion; hene, by the dis-tribution formula for inreasing weights, there exists a funtion cw(y) suhthat

∥∥∥
∑

n

fn

∥∥∥
Λ1(w)

=

∞\
0

∞\
cw(y)

(∑

n

fn

)∗
(t) dt dy

≤
∞\
0

∞\
cw(y)

(∑

n

gn

)∗
(t) dt dy =

∥∥∥
∑

n

gn

∥∥∥
Λ1(w)

.

Consequently, when omputing Galb(Λ1(w)) for an inreasing weight, wean assume that the funtions fn are disjointly supported. Also:Theorem 3.5. If W is a onvex funtion, then, for every 0 < q ≤ 1,
Galb(Λq(w)) = {(cn)n; (cq

n)n ∈ Galb(Λ1(w))}.Proof. Sine (
∑

n cnfn)q ≤
∑

n cq
nf q

n, it is lear that
{(cn)n; (cq

n)n ∈ Galb(Λ1(w))} ⊆ Galb(Λq(w)).For the onverse inlusion we observe that if (cn)n ∈ Galb(Λq(w)), then∑
n cnfn ∈ Λq(w) for every (fn)n disjointly supported with ‖fn‖Λq(w) ≤ 1.



16 M. Carro et al.Sine, in this ase, ( ∑

n

cnfn

)q
=

∑

n

cq
nf q

n,we dedue that ∑
n cq

ngn ∈ Λ1(w) for every (gn)n disjointly supported with
‖gn‖Λ1(w) ≤ 1. Sine w is inreasing, we onlude that (cq

n)n ∈Galb(Λ1(w)).Theorem 3.6. Suppose that W is a onvex funtion, and , for 0 < a < 1,set
H(a) = sup

at≤r≤t

W (t)r

tW (r)
.If (cn)n ∈ ℓq and

inf∑
n an≤1

∑

n

cq
nH(an) < ∞,then (cn)n ∈ Galb(Λq(w)).Proof. By Theorem 3.5, it is enough to handle the ase q = 1, and sine

W is onvex, we an assume that the fn are disjointly supported. Hene, forevery positive sequene (an)n suh that ∑
n an ≤ 1,

∥∥∥
∑

n

cnfn

∥∥∥
Λ1(w)

=

∞\
0

W
( ∑

n

λfn(y/cn)
)

dy =

∞\
0

W

(∑

n

an
λfn(y/cn)

an

)
dy

≤
∞\
0

∑

n

anW

(
λfn(y/cn)

an

)
dy ≤

∞\
0

∑

n

H(an)W (λfn(y/cn)) dy

≤
∑

n

cnH(an)

∞\
0

W (λfn(y)) dy ≤
∑

n

cnH(an),and taking the in�mum over all (an)n we obtain the result.3.3. Galb(Λq(w)) for q > 1Theorem 3.7. For every q > 1, Galb(Λq(w)) = ℓ1 if and only if w ∈Bq,that is, for every r > 0,
rq

∞\
r

w(t)

tq
dt �

r\
0

w(t) dt.Proof. This is a onsequene of the fat that for q > 1, Λq(w) is Banahif and only if w ∈ Bq (see [15℄).Theorem 3.8. Given 0 < a < 1, let
H(a) = sup

r

1

W (r)

r/a\
r

(r − at)q w(t)

tq
dt.
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inf∑

n an≤1

∑

n

cnH(an) < ∞,then (cn)n ∈ Galb(Λq(w)).Proof. Using (3), we obtain
‖f‖Λq(w) �

∑

n

cn‖fn‖Λq(w)

+
∑

n

cn sup
‖f‖Λq(w)=1

(∞\
0

(
1

t

t\
ant

f∗(s) ds

)q

w(t) dt

)1/q

for every positive sequene (an)n with ∑
an ≤ 1, so, by Lemma 3.3,

‖f‖Λq(w) �
∑

n

cn +
∑

n

cnH(an),from whih the result follows.Remark 3.3. In partiular, if we take Λq(w) = L1,q, whih means that
w(t) = tq−1, then

H(a) ∼ sup
r

1

rq

r/a\
r

(r − at)q dt

t
∼ log

1

a
,and hene ℓ log ℓ ⊆ Galb(L1,q). This estimate is not satisfatory sine it isknown that Galb(L1,q) = ℓ(log ℓ)1/q′ (see [18℄).However, if we use interpolation theory, we an improve the above resultas follows.Theorem 3.9. If W (t)1/q/t is equivalent to a dereasing funtion, then

ℓ(log ℓ)1/q′ ⊆ Galb(Λq(w)).Proof. If W (t)1/q/t is equivalent to a dereasing funtion, then Λ1(wq) isa Banah spae with wq(t) = W (t)1/q−1w(t), and onsequently Galb(Λ1(wq))
= ℓ1. On the other hand, by Corollary 3.3, ℓ log ℓ ⊆ Galb(Λ1,∞(wq)), andhene, using interpolation (see [5℄ and [11℄), we obtain the result.As a orollary of Theorem 3.8, we also obtain the following result.Corollary 3.6. If , for every 0 < a < 1 and every r > 0,

r/a\
r

(r − at)q w(t)

tq
dt ≤ W (r)a

W (a)1/q
,then

Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)) = L(W 1/q)−1 ∩ ℓ1.



18 M. Carro et al.3.4.Weak galb and �nite galb. The purpose of this subsetion is to obtaininformation about the weak and �nite galbs of the spaes Λq(w).Theorem 3.10. Given 0 < a < 1, let
H(a) =





sup
t

W (t)1/q

t

( t\
at

(
u − at

W (u)

)q′−1

du

)1/q′ if q > 1,
sup
t,r

W (t)1/q

t

(min(r, t) − at)+

W (r)1/q
if q ≤ 1.If (cn)n ∈ ℓ1 and

inf∑
n an≤1

∑

n

cnH(an) < ∞,then (cn)n ∈ WGalb(Λq(w)).Proof. Using (3), we obtain
‖f‖Λq,∞(w) �

∑

n

cn‖fn‖Λq(w)

+
∑

n

cn sup
t

W (t)1/q

t
sup

‖f‖Λq(w)=1

1

t

t\
ant

f∗(s) dsfor every positive sequene (an)n with ∑
an ≤ 1, and the result follows, inthe ase q > 1, from Sawyer's duality formula (see [15℄) and, if q ≤ 1, fromTheorem 2.12 of [10℄.Using a ompletely similar argument to that of the previous theorem, wean prove the following result.Theorem 3.11. Given 0 < a < 1, let

H(a; t) =





( t\
at

(
u − at

W (u)

)q′−1

du

)1/q′ if q > 1,
sup

r

(min(r, t) − at)+

W (r)1/q
if q ≤ 1.If (cn)n ∈ ℓ1 and , for every t > 0,

inf∑
n an≤1

∑

n

cnH(an; t) < ∞,then (cn)n ∈ FGalb(Λq(w)).Sometimes, we an use the embedding properties of the weak and �nitegalbs in order to obtain some information about the galb, as in the followingorollary:



From restrited type to strong type estimates 19Corollary 3.7. Let q ≥ 1. If W (s)/sq is equivalent to a bounded ,dereasing funtion, then
(a) ℓ log ℓ = Galb(Λq,∞(w)) = WGalb(Λq,∞(w)) = FGalb(Λq,∞(w)),

(b) ℓ(log ℓ)1/q′ = Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)).Proof. (a) By Corollary 3.3,
ℓ log ℓ ⊆ Galb(Λq,∞(w)) ⊆ WGalb(Λq,∞(w)) ⊆ FGalb(Λq,∞(w)).Now, sine W (s) � sq, we have L1,∞ ⊆ Λq,∞(w), and therefore

FGalb(Λq,∞(w)) ⊆ FGalb(L1,∞).Sine it is known that FGalb(L1,∞) = ℓ log ℓ (see [13℄), we obtain the result.(b) The proof of this part is ompletely similar sine, by Theorem 3.9,
ℓ(log ℓ)1/q′ ⊆ Galb(Λq(w));next sine W (s) � sq, we have L1,q ⊆ Λq(w); �nally, we use the fat that

FGalb(L1,q) = ℓ(log ℓ)1/q′ (see [18℄).4. Some examples and appliations. If we apply our result to thelassial ase of Lp,q we obtain the following result:Corollary 4.1.
1) If q > 1 and p > 1, then Galb(Lp,q) = ℓ1.
2) If p = 1, then ℓ log ℓ = Galb(L1,∞).
3) If p < 1, then Galb(Lp,∞) = ℓp.
4) If 0 < q ≤ 1 and q ≤ p, then Galb(Lp,q) = ℓq.
5) If 0 < p ≤ 1 and p ≤ q ≤ ∞, then Galb(Lp,q) = ℓp.
6) If q > 1, then ℓ(log ℓ)1/q′ = Galb(L1,q).Proof. 1) is lear beause the spaes are Banah spaes, and 2) has al-ready been mentioned several times. 3) is onsequene of (5); 4) of The-orem 3.3; and 5) of Theorems 3.5 and 3.6 for the ase q ≤ 1, while for

q > 1, we have to proeed by interpolation sine we already know that
Galb(Lp,∞) = Galb(Lp,1) = ℓp. Finally, the embedding ℓ(log ℓ)1/q′ ⊂
Galb(L1,q) in 6) is a onsequene of Theorem 3.9, and for the onverse wehave to refer to [18℄.Another example:Corollary 4.2. If W (t) = t(1 + log+(1/t))−α with α > 0, then, forevery 0 < q ≤ 1,

ℓq(log ℓ)α = Galb(Λq(w)).Proof. This is a onsequene of Theorem 3.6 and (2), sine one an easilyhek that, in this ase, H(a) � (1 + log+(1/a))α, and Lϕ−1
X

= ℓq(log ℓ)α.



20 M. Carro et al.If T is of restrited weak type (p, p) with onstant 1/(p− 1), as happenswith the Carleson operator given in the introdution, then
(TχE)∗(t) ≤ |E|

t

(
1 + log+ t

|E|

)
≤ |E|

(
1 + log+ 1

|E|

)
1

t
(1 + log+ t),that is,

‖TχE‖X ≤ D(|E|),where X = Λ1,∞(w) with W (t) = t/(1+log+ t) and D(s) = s(1+log+ (1/s)).Also, when dealing with the bilinear Hilbert transform, the spae that ap-pears naturally is X = Λp,∞(w) with p = 2/3 and W (t) = t/(1 + log+ t)4/3(see [7℄). These examples motivate the study of the galb of the above spaes.Corollary 4.3. If W (t) = t(1 + log+ t)−α with α > 0, then
Galb(Λq,∞(w)) =

{
ℓq for 0 < q < 1,
ℓ log ℓ for q = 1.Proof. This is a onsequene of (5).Finally, it is important to mention that, in general, Galb(X), WGalb(X)and FGalb(X) do not oinide, as is shown in the following proposition:Proposition 4.1. If 0 < q < p < 1, then

1) Galb(Lp,q(R) ∩ L1(R)) = ℓq,

2) WGalb(Lp,q(R) ∩ L1(R))) = ℓp,

3) FGalb(Lp,q(R) ∩ L1(R))) = ℓ1.Proof. 1) Reall that Galb(Lp,q) = ℓq, while Galb(L1) = ℓ1. In partiular,if (cn)n is in ℓq and ‖fn‖Lp,q∩L1 ≤ 1, then
∥∥∥

∑

n

cnfn

∥∥∥
Lp,q

≤ c
(∑

n

|cn|q
)1/q

,

∥∥∥
∑

n

cnfn

∥∥∥
L1

≤ c
∑

n

|cn| ≤ c
(∑

n

|cn|q
)1/q

.

Hene ℓq ⊆ Galb(Lp,q ∩ L1). To prove the onverse inlusion, given a posi-tive sequene (cn)n, hoose a stritly inreasing sequene of integers kn ≥ 1so that 2−kn/p|cn| is dereasing. Then hoose disjoint sets {An}n with
|An| = 2kn . Finally, let fn = |An|−1/pχAn , so that

‖fn‖Lp,q∩L1 = max{|An|−1/p‖χAn‖Lp,q , |An|−1/p‖χAn‖L1}
= max{1, |An|1−1/p} = 1.It is routine to alulate the rearrangement of the simple funtion ∑

n cnfn



From restrited type to strong type estimates 21and, using the fat that |An| is rapidly inreasing, to get
∥∥∥

∑

n

cnfn

∥∥∥
Lp,q

=
( ∑

n

(p/q)|cn|q|An|−q/p
(( n∑

j=1

|Aj |
)q/p

−
( n−1∑

j=1

|Aj |
)q/p))1/q

�
( ∑

|cn|q
)1/q

.We onlude that if (cn)n ∈ Galb(Lp,q ∩ L1), then (cn)n ∈ ℓq.2) Let (cn)n ∈ ℓp and let ‖fn‖Lp,q∩L1 = 1. Sine ‖fn‖Lp,∞ � ‖fn‖Lp,q and
Galb(Lp,∞) = ℓp, we have

∥∥∥
∑

n

cnfn

∥∥∥
Lp,∞

�
( ∑

n

|cn|p
)1/p

.

Similarly, ‖fn‖L1,∞ � ‖fn‖L1 and sine Galb(L1,∞) = ℓ log ℓ,
∥∥∥

∑

n

cnfn

∥∥∥
L1,∞

� ‖(cn)n‖ℓ log ℓ �
( ∑

n

|cn|p
)1/p

.

Hene ℓp ⊆ WGalb(Lp,q ∩ L1). To prove the onverse inlusion, given a�nite sequene (cn)n, hoose k and a sequene {An}n of disjoint sets with
|An| = k|cn|p ≥ 1. Let fn = |An|−1/pχAn , so that ‖fn‖Lp,q∩L1 = 1. Then
|∑n cnfn| = k−1/p on a set of measure ∑

n |An| = k
∑

n |cn|p. In partiular,the norm of ∑
n cnfn in Lp,∞ is (

∑
n |cn|p)1/p, and hene (cn)n ∈ ℓp.3) First observe that if (cn)n ∈ FGalb(Lp,q ∩ L1), then in partiular∑

n |cn| < ∞. To prove the onverse, observe that if ∑
n |cn| < ∞ and if

‖fn‖Lp,q∩L1 = 1, then ∑
n cnfn(x) onverges in L1 and therefore it is �nitealmost everywhere.

5. Proof of Lemma 3.3. (a) The inequality B ≤ A is trivial sine it isjust taking the supremum over all funtions of the form χ(0,r). To prove theonverse, �x a dereasing funtion f and an r > 0. Let rj = r/aj and write
∞\
0

(
1

t

t\
at

f

)q

w(t) dt ≤ 2q−1
∞∑

j=−∞
(Uj + Vj)

where
Uj =

rj+1\
rj

( t\
rj

f
)q w(t)

tq
dt and Vj =

rj+1\
rj

( rj\
at

f
)q w(t)

tq
dt.
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Uj = q

rj+1\
rj

t\
rj

( s\
rj

f
)q−1

f(s) ds
w(t)

tq
dt

≤ q

rj+1\
rj

t\
rj

(
s − rj

s − as

s\
as

f

)q−1

f(s) ds
w(t)

tq
dt

= q(1 − a)1−q

rj+1\
rj

t\
rj

(s − rj)
q−1

g(s)\
g(t)

dy ds
w(t)

tq
dt

+ q(1 − a)1−q

rj+1\
rj

t\
rj

(s − rj)
q−1 ds g(t)

w(t)

tq
dt

≡ (1 − a)1−qU
(1)
j + (1 − a)1−qU

(2)
jwhere g(s) = (s−1

Ts
as f)q−1f(s). Note that g is also dereasing.Let λg denote the distribution funtion of g. To estimate U

(1)
j , we expandthe region of integration by observing that





rj < t < rj+1

rj < s < t
g(t) < y < g(s)



 ⇒





g(rj+1) ≤ y ≤ g(rj)
λg(y) ≤ t ≤ λg(y)/a

at ≤ s ≤ λg(y)



 .

Performing the inner (ds) integration and using the hypothesis (4) we seethat
U

(1)
j ≤

g(rj)\
g(rj+1)

λg(y)/a\
λg(y)

(λg(y) − at)q w(t)

tq
dt dy

≤ Bq

g(rj)\
g(rj+1)

( λg(y)\
0

w
)

dy.

The estimate for U
(2)
j is simpler,

U
(2)
j =

rj+1\
rj

(t − rj)
q ds g(t)

w(t)

tq
dt ≤

rj+1\
rj

gw.Now
∞∑

j=−∞
(U

(1)
j + U

(2)
j ) ≤ Bq

∞\
0

( λg(y)\
0

w
)

dy +

∞\
0

gw = (Bq + 1)

∞\
0

gw.
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Vj = q

rj+1\
rj

rj\
at

( s\
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f
)q−1

f(s) ds
w(t)

tq
dt

≤ q

rj+1\
rj

rj\
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(
s − at

s − as

s\
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f

)q−1

f(s) ds
w(t)

tq
dt

= q(1 − a)1−q

rj+1\
rj

rj\
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(s − at)q−1

g(s)\
g(rj)

dy ds
w(t)

tq
dt

+ q(1 − a)1−qg(rj)

rj+1\
rj

rj\
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(s − at)q−1 ds
w(t)

tq
dt

≡ (1 − a)1−qV
(1)
j + (1 − a)1−qV

(2)
j .Interhange and expand the region of integration for V

(1)
j by observing that





rj < t < rj+1

at < s < rj

g(rj) < y < g(s)



 ⇒





g(rj) ≤ y ≤ g(rj−1)
λg(y) ≤ t ≤ λg(y)/a

at ≤ s ≤ λg(y)



 .

Performing the ds integration and using the hypothesis (4) yields
V

(1)
j ≤

g(rj−1)\
g(rj)

λg(y)/a\
λg(y)

(λg(y) − at)q w(t)

tq
dt dy ≤ Bq

g(rj−1)\
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0

w
)

dy.

Thus,
∞∑

j=−∞
V

(1)
j ≤ Bq

∞\
0

( λg(y)\
0

w
)

dy = Bq
∞\
0

gw.

To estimate V
(2)
j we use the fat that g(rj) is a dereasing sequene. Foreah k > 1,

k−1∑

j=−∞

rj+1\
rj

(rj − at)q w(t)

tq
dt ≤ (1 − a)q

rk\
0

wand, by (4),
rk+1\
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(rk − at)q w(t)

tq
dt ≤ Bq

rk\
0

w.It follows that
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j=−∞

rj+1\
rj

(rj − at)q w(t)

tq
dt ≤
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((1 − a)q + Bq)

rj\
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w



24 M. Carro et al.for all k and, beause g(rj) is a dereasing sequene,
∞∑

j=−∞
V

(2)
j ≤
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j=−∞
g(rj)((1 − a)q + Bq)

rj\
rj−1

w

≤ ((1 − a)q + Bq)

∞\
0

gw.

Combining the inequalities above, we get
∞\
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1

t

t\
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f

)q

w(t) dt � (1 + Bq)
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0

gw
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(∞\
0

(
1

t
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)q

w(t) dt

)1/q′(∞\
0

f qw
)1/q

,

and we onlude (by approximating f by integrable funtions if neessary)that A � 1 + Bq.To prove (b), we shall use some ideas of Stepanov and Ushakova [20, The-orem 3℄. For the onverse, we apply Theorem 3.1 of [16℄, although Theorem1 of [15℄ will also do. We have
A = sup

‖f‖Lq(w)≤1
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where G(s) = 1
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Ts/a
s g(t)w(t) dt
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0

1
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at
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0
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(x/t − a)g(t)w(t) dt



From restrited type to strong type estimates 25and
∞\
0

Gw =

∞\
0

1

w(s)

s/a\
s

g(t)w(t)
dt

t
w(s) ds

=

∞\
0

s/a\
s

g(t)w(t)
dt

t
ds = (1 − a)

∞\
0

gw.Therefore A ≈ A1 + A2 + A3 where
A1 = (1 − a) sup
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.The �rst two are easy. Hardy's inequality says that A1 = (1 − a)q andHölder's inequality yields A2 = 1−a. For A3 we use Theorem 4.4 of [12℄. Byreplaing x by s and g(t)w(t) by f(t)t we reognize A3 as the best onstantin the inequality
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.It is trivial to hek that the so alled GHO ondition in [12℄ holds for thekernel k(s, y) = s − ay and so A3 ≈ max(A3,1, A3,2) where
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A3,1 = sup
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≤ B(log(D))1/q′.This ompletes the proof of (b).To prove (), it is enough to show that
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