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From restri
ted type to strong type estimateson quasi-Bana
h rearrangement invariant spa
esbyMaría Carro (Bar
elona), Leonardo Colzani (Milano)and Gord Sinnamon (London, Ont.)Abstra
t. Let X be a quasi-Bana
h rearrangement invariant spa
e and let T be an
(ε, δ)-atomi
 operator for whi
h a restri
ted type estimate of the form ‖TχE‖X ≤ D(|E|)for some positive fun
tion D and every measurable set E is known. We show that thisestimate 
an be extended to the set of all positive fun
tions f ∈ L1 su
h that ‖f‖∞ ≤ 1,in the sense that ‖Tf‖X ≤ D(‖f‖1). This inequality allows us to obtain strong typeestimates for T on several 
lasses of spa
es as soon as some information about the galbof the spa
e X is known. In this paper we 
onsider the 
ase of weighted Lorentz spa
es
X = Λq(w) and their weak version.1. Introdu
tion. It is well known (see [1℄, [3℄, [4℄ and [14℄) that, formany interesting operators only a restri
ted estimate on 
hara
teristi
 fun
-tions is known, and it is of a general interest to show what kind of strongtype estimate 
an be obtained from it. This is, for example, the prin
iple ofthe weak type extrapolation theory where we have an operator satisfying

‖TχE‖Lp,∞ ≤ 1

p − 1
|E|1/pfor every 1 < p ≤ p0, and it is an open question to see if this implies that

T is bounded from the Orli
z spa
e L log L into L1,∞. A positive solution tothis question will give us, when applied to the Carleson operator
Sf(x) = sup

n
|Snf(x)|,where Snf(x) = (Dn∗f)(x), Dn is the Diri
hlet kernel on T = {z ∈C; |z|= 1}and f ∈ L1(T), the almost everywhere 
onvergen
e of the Fourier series of afun
tion in L log L(T).2000 Mathemati
s Subje
t Classi�
ation: 47A30, 46E30.Key words and phrases: rearrangement inequality, extrapolation theory, restri
tedweak type estimates, (ε, δ)-atomi
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2 M. Carro et al.In a re
ent paper [4℄, it was proved that if the operator T is (ε, δ)-atomi
approximable (see De�nition 2.2), then an estimate of the form
(TχE)∗(t) ≤ h(t, |E|)for every measurable set 
an be extended to every fun
tion f bounded by

1 and, from it, some strong type estimates on logarithmi
 type spa
es wereproved. In parti
ular, if h(t, s) ≤ R(t)D(s), the above inequality is equiva-lent to ‖TχE‖X ≤ D(|E|), where X is a weak weighted Lorentz spa
e (seede�nition below).The �rst purpose of this paper 
onsists in proving, in Se
tion 2, thata slight modi�
ation of the main theorem in [4℄ shows that if T is (ε, δ)-atomi
 approximable, and ‖TχE‖X ≤ D(|E|) for some positive fun
tion Dand every measurable set E where X is any quasi-Bana
h r.i. spa
e, then
‖Tf‖X ≤ D(‖f‖1) for every f ∈ L1 su
h that ‖f‖∞ ≤ 1.Our se
ond step will be to obtain, from this inequality, a strong typeestimate, for whi
h we need to have some information on Galb(X), whi
h isde�ned (see [21℄) by

Galb(X) =
{
(cn)n;

∑

n

cnfn ∈ X whenever ‖fn‖X ≤ 1
}
,endowed with the norm ‖c‖Galb(X) = sup‖fn‖X≤1 ‖

∑
n cnfn‖X . In parti
ular,we study, in Se
tion 3, this galb for weighted Lorentz spa
es X = Λq(w),for 0 < q < ∞, and also for the weak spa
es Λq,∞(w). To this end, we usethe following formula for the de
reasing rearrangement of a sum of fun
tions(see [9℄): if f =

∑
n cnfn, then
f∗(3t) ≤

∑

n

cn

(
f∗

n(t) +
1

t

t\
ant

f∗
n(s) ds

)
,where {an}n are any positive numbers su
h that ∑

n an = 1, and we need tosolve the problem of 
omputing, for q ≥ 1,
sup
f↓

T∞
0 (t−1

Tt
at f(s) ds)qw(t) dtT∞

0 f(t)qw(t) dt
,where the supremum extends over the set of de
reasing fun
tions f . Thisproblem will be solved in Se
tion 5. Finally, in Se
tion 4 we present some
on
rete examples and appli
ations.We shall denote by L0(Rn) the 
lass of Lebesgue measurable fun
tionsthat are �nite a.e., and g∗(t) = inf{s : λg(s) ≤ t} is the de
reasing re-arrangement of g, where λg(y) = |{x ∈ R : |g(x)| > y}| is the distributionfun
tion of g with respe
t to Lebesgue measure. We refer the reader to [2℄ forfurther information about distribution fun
tions, de
reasing rearrangementsand rearrangement invariant (r.i.) spa
es.



From restri
ted type to strong type estimates 3If, in the de�nition of a norm, the triangle inequality is weakened to therequirement that for some 
onstant c, ‖x+ y‖ ≤ c(‖x‖+ ‖y‖) holds for all xand y, then we have a quasi-norm. A 
omplete quasi-normed spa
e is 
alleda quasi-Bana
h spa
e. It is well known that the spa
es ℓp for 0 < p < 1are quasi-Bana
h spa
es. Observe that if X is a quasi-Bana
h r.i. spa
e ofmeasurable fun
tions on R
n then there is a r.i. quasi-Bana
h spa
e X∗ ofmeasurable fun
tions on R su
h that ‖f‖X = ‖f∗‖X∗ for all f ∈ X. Onesimply de�nes ‖g‖X∗ = ‖G‖X where G(x) = ωg(|x|n) with ω 
hosen so that

g and G are equimeasurable. It is a simple matter to verify that X∗ is aquasi-Bana
h spa
e.For a measurable set E, χE denotes the 
hara
teristi
 fun
tion of E, |E|is the Lebesgue measure of E and, for simpli
ity in our arguments, we saythat an operator T is sublinear if T (λf) = λTf and
∣∣∣T

( ∑

n∈N

fn

)∣∣∣ ≤
∑

n∈N

|Tfn|.If we only know that |T (f + g)| ≤ |Tf | + |Tg|, then we need to assumesome extra boundedness 
ondition on our operator T , su
h as the bounded-ness of T : L1 + L∞ → L0, or to use some standard density argument toobtain our 
on
lusions.2. From restri
ted weak type to strong type. We shall work in R
n,and Q will represent a 
ube with sides parallel to the axes. The results 
anbe extended in the natural way to T

N (identifying T
N with [0, 1)N ). In [4℄,the following de�nitions were introdu
ed:Definition 2.1. Given δ > 0, a fun
tion a ∈ L1(Rn) is 
alled a δ-atomif (i) T

Rn a(x) dx = 0,(ii) there exists a 
ube Q su
h that |Q| ≤ δ and supp a ⊂ Q.Definition 2.2.(a) A sublinear operator T , de�ned on L1 +L∞ and taking values in L0,is (ε, δ)-atomi
 if for every ε > 0 there exists δ > 0 satisfying
‖Ta‖L1+L∞ ≤ ε‖a‖1 for every δ-atom a.(1) (b) A sublinear operator T is (ε, δ)-atomi
 approximable if there exists asequen
e (Tn)n of (ε, δ)-atomi
 operators su
h that |TnχE | ≤ |TχE |for every measurable set E and for every f ∈ L1 su
h that ‖f‖∞ ≤ 1,and every t > 0,

(Tf)∗(t) ≤ lim
n

inf (Tnf)∗(t).



4 M. Carro et al.In parti
ular, any maximal operator of the form supj |Kj ∗f |, where Kj ∈
Lpj for some 1 ≤ pj < ∞, is (ε, δ)-atomi
 approximable (see [4℄ for moreexamples of this kind of operators). As we shall see in this paper, no operatorbounded from Lp into Lp with 0 < p < 1 is (ε, δ)-atomi
 approximable.Definition 2.3. Given an operator T and a quasi-Bana
h r.i. spa
e X,we de�ne the fundamental fun
tion of T with respe
t to X by

ϕX,T (r) = sup
|E|≤r

‖TχE‖X .Observe that if T is the identity operator, then ϕX,T is nothing but ϕX , theusual fundamental fun
tion of X.Definition 2.4. Given δ > 0, we say that Fδ is a δ-net if it is a 
olle
tionof open 
ubes of the following form:
Fδ = {Qj ; |Qj| = δ, Qj are pairwise disjoint, ⋃

Qj = R
n}.Theorem 2.1. Let X be a quasi-Bana
h r.i. spa
e and T a sublinear

(ε, δ)-atomi
 approximable operator. Then, for every positive fun
tion f ∈L1su
h that ‖f‖∞ ≤ 1,
‖Tf‖X ≤ ϕX,T (‖f‖1).Proof. In view of De�nition 2.2, it is enough to prove the result for an

(ε, δ)-atomi
 operator T .Given X, let X∗ be the spa
e of measurable fun
tions on (0,∞) su
h that
‖f‖X = ‖f∗‖X∗ . Let f ∈ L1 be a positive fun
tion su
h that ‖f‖∞ ≤ 1 and,given ε > 0, 
onsider a δ-net Fδ where δ is asso
iated to ε by the propertythat T is (ε, δ)-atomi
.Given Qi ∈ Fδ, let fi = fχQi . Then\

Rn

fi(x) dx ≤ |Qi|,

and hen
e we 
an take a 
ube Q̃i ⊂ Qi satisfying
|Q̃i| =

\
Rn

fi(x) dx =
\

Qi

f(x) dx.

Then it is 
lear that the fun
tion gi = fi − χ
Q̃i

is a δ-atom and
‖gi‖1 ≤

\
Qi

|f(x)| dx + |Q̃i| = 2
\

Qi

|f(x)| dx.

Now, f =
∑

i fi =
∑

i gi + χE , where E =
⋃

Q̃i. Then, by sublinearity,
|Tf | ≤

∑

i

|Tgi| + |TχE | ≡ G + |TχE |.



From restri
ted type to strong type estimates 5For �xed n > 1, we have
(Tf)∗(x)χ(1/n,n)(x)

≤ G∗((1/n2)x)χ(1/n,n)(x) + (TχE)∗((1 − 1/n2)x)χ(1/n,n)(x)

≡ Qn(x) + Rn(x).For x ∈ (1/n, n), we have 0 ≤ x − 1/n ≤ (1 − 1/n2)x, and hen
e
Rn(x) ≤ (TχE)∗(x − 1/n)χ(1/n,n)(x);it follows that R∗

n ≤ (TχE)∗. On the other hand,
Qn(x) ≤ G∗(1/n3)χ(1/n,n)(x)and

G∗(1/n3) =
( ∑

i

|Tgi|
)∗

(1/n3) ≤ n3

1/n3\
0

( ∑

i

|Tgi|
)∗

≤
∑

i

n3

1/n3\
0

(Tgi)
∗ ≤

∑

i

n3
1\
0

(Tgi)
∗

≤ n3
∑

i

‖Tgi‖L1+L∞ ≤ n3ε
∑

i

‖gi‖1 ≤ 2n3ε‖f‖1.Using these estimates for Rn and Qn we have
‖(Tf)∗χ(1/n,n)‖X∗ ≤ 2n2ε‖f‖1‖χ(1/n,n)‖X∗ + ‖TχE‖X .We let �rst ε → 0 and n → ∞ to get

‖Tf‖X ≤ ‖TχE‖X .Sin
e |E| =
∑

i |Q̃i| =
∑

i

T
Qi

f = ‖f‖1, the result follows.Also, as a 
onsequen
e of the previous remark we obtain the following:Proposition 2.1. Let X be a quasi-Bana
h r.i. spa
e and let T be anon-zero (ε, δ)-atomi
 approximable operator. Then ϕX,T is quasi-
on
ave.Proof. Clearly ϕX,T (r) is non-de
reasing. Suppose s > r. If |E| ≤ s then
‖(r/s)χE‖∞ ≤ 1 so

(1/s)‖TχE‖X ≤ (1/r)ϕX,T (‖(r/s)χE‖1) = (1/r)ϕX,T (r).Sin
e this holds for all su
h E, (1/r)ϕX,T (r) is non-in
reasing.Every quasi-
on
ave fun
tion is equivalent to a 
on
ave fun
tion so weshall assume from now on that D is a 
on
ave fun
tion with ϕX,T � D.Remark 2.1. From the above proposition, we see that if X is any quasi-Bana
h r.i. spa
e and 0 < p < 1, then no operator T mapping Lp to X is
(ε, δ)-atomi
 approximable. In parti
ular, 
onvolution operators on Lp withdis
rete measures with 
oe�
ients in ℓp are not (ε, δ)-atomi
 approximable.



6 M. Carro et al.Definition 2.5. Given a sequen
e spa
e S ⊆ ℓ1 and a 
on
ave fun
-tion D, we shall denote by D(S) the set of all measurable fun
tions f su
hthat
‖f‖D(S) = inf{‖(cnD(‖fn‖1))n‖S}is �nite. Here the in�mum extends over the set of all possible de
ompositions

f =
∑

n cnfn a.e. su
h that ‖fn‖∞ ≤ 1.It is an exer
ise to prove the following.Theorem 2.2. If D is 
on
ave then L1 ∩ L∞ ⊆ D(S). If , in addition,
s � D(s), then D(S) ⊆ L1.Let us now give some 
on
rete examples whi
h will be useful in whatfollows:Examples. (a) If S = ℓp with 0 < p ≤ 1, then taking the de
omposition

f =
∑

n∈Z

2nfn,where fn = 2−nfχ{2n−1≤|f |<2n}, we have
‖f‖D(S) �

( ∑

n∈Z

2npDp(λf (2n))
)1/p

�
(∞\

0

yp−1Dp(λf (y)) dy
)1/p

∼
(∞\

0

f∗(t)p dDp(t)
)1/p

= ‖f‖Λp(w),where λf is the distribution fun
tion of f and Λp(w) is the weighted Lorentzspa
e with weight w(t) = dDp(t), and hen
e we have proved that
Λp(dDp) ⊆ D(ℓp).Therefore, using the previous theorem, we obtain

Λp(dDp) + L1 ∩ L∞ ⊆ D(ℓp).At this point, and sin
e 0 < p ≤ 1, it will be good to know when thisse
ond spa
e Λp(dDp) +L1 ∩L∞ is stri
tly larger than Λp(dDp). Obviously,these two spa
es 
oin
ide if and only if L1 ∩L∞ ⊆ Λp(dDp). It follows fromTheorem 3.3 in [17℄ thatProposition 2.2. L1 ∩ L∞ ⊆ Λp(dDp) if and only if
∞\
0

(
max(1, y)

Dp(y)

)p/(p−1)

dDp(y) < ∞.(b) If S = ℓ log ℓ, and s � D(s), then, taking the de
omposition
f = f +

∑

n≥1

2nfn,



From restri
ted type to strong type estimates 7where f = fχ{|f |≤1} and fn are as before, we get
‖f‖D(S) � D(‖f‖1) +

(∞\
1

(log+ log+ y)D(λf (y)) dy
)
.From this, it follows using homogeneity that

L log log L(D) ⊆ D(S),where
‖f‖L log log L(D) =

∞\
0

f∗(t)(1 + log+ log+ f∗(t)) dD(t).In parti
ular, if D(s) = s(1 + log+(1/s)), then
L log log L(D) = L log L log log L.Now, in this 
on
rete 
ase, it was proved in [8℄, applying the ideas of [1℄,that we 
an improve the above result by taking the de
omposition

f = f0 +
∑

n≥1

22n
fn,

where f0 = fχ{|f |≤2} and fn = 2−2n
fχ{22n−1≤|f |<22n}. Using this de
ompo-sition, it 
an be proved that

L log L log log log L ⊆ D(S),and, in fa
t, it was proved in [8℄ that if D(s) ≥ s and D(s2) ≤ sD(s), then
L log log log L(D) ⊆ D(S).For our next purpose, we need the following 
on
ept whi
h was introdu
edin [21℄.Definition 2.6. The galb of a quasi-Bana
h spa
e X is de�ned by

Galb(X) =
{
(cn)n;

∑

n

cnfn ∈ X whenever ‖fn‖X ≤ 1
}
,endowed with the �norm� ‖c‖Galb(X) = sup‖fn‖X≤1 ‖

∑
n cnfn‖X .Now, sin
e the motivation of our work is to obtain a 
ertain type ofestimates for an operator T for whi
h a restri
ted estimate is known, on manyo

asions it will be enough to have a weak type estimate for the operator Tor even to know that Tf(x) < ∞ for a.e. x, for every f ∈ X, in order toapply some Bana
h 
ontinuity prin
iple. To this end, it will be enough toidentify 
ertain sets 
ontaining Galb(X).Definition 2.7. The weak galb of a quasi-Bana
h spa
e X is de�ned by

WGalb(X) =
{

(cn)n;
∑

n

cnfn ∈ MX whenever ‖fn‖X ≤ 1
}
,



8 M. Carro et al.endowed with the norm ‖c‖WGalb(X) = sup‖fn‖X≤1 ‖
∑

n cnfn‖MX
, where

MX is the maximal Mar
inkiewi
z spa
e de�ned by
MX = {f ; ‖f‖MX

= sup
t>0

f∗(t)ϕX(t) < ∞}.The �nite galb of X is de�ned by
FGalb(X) =

{
(cn)n;

∑

n

cnfn is �nite a.e. whenever ‖fn‖X ≤ 1
}
.It is trivial that

Galb(MX) = WGalb(MX)and
Galb(X) ⊆ WGalb(X) ⊆ FGalb(X).We shall see in Proposition 4.1 that the three 
on
epts are di�erent. Notethat the advantage of the �nite galb is that if two quasi-Bana
h spa
es Xand Y are su
h that X ⊆ Y 
ontinuously, then

FGalb(Y ) ⊆ FGalb(X).A �rst general and important fa
t is the following:Theorem 2.3. Let X be a quasi-Bana
h r.i. spa
e. Then,
Galb(X) ⊆ WGalb(X) ⊆ FGalb(X) ⊆ ℓ1 ∩ Lϕ−1

X
,(2)where

Lϕ−1
X

=
{
(cn)n;

∑

n

ϕ−1
X (|cn|) < ∞

}
.Proof. The embedding in ℓ1 is immediate. To show that FGalb(X)

⊆ Lϕ−1
X

we suppose that ∑
n ϕ−1

X (|cn|) diverges. It is a standard argumentto sele
t sets An of measure ϕ−1
X (|cn|) su
h that ∑

n χAn = ∞ on a setof positive measure. Set fn = (1/cn)χAn ; then ‖fn‖X = 1 and so (cn)n /∈
FGalb(X).Remark 2.2. Obviously Galb(X) = ℓ1 if and only if X is a Bana
hspa
e. If this is not the 
ase, we shall study 
onditions on our spa
es to havethe equality Galb(X) = Lϕ−1

X
∩ ℓ1.Our se
ond main result 
an now be formulated in the following way:Theorem 2.4. Let T be a sublinear (ε, δ)-atomi
 approximable opera-tor and let X be a quasi-Bana
h r.i. spa
e. De�ne ϕX,T (Galb(X)) as inDe�nition 2.5. Then:(a) T : ϕX,T (Galb(X)) → X is bounded.(b) T : ϕX,T (WGalb(X)) → MX is bounded.(
) For every f ∈ ϕX,T (FGalb(X)), Tf(x) < ∞ almost everywhere.



From restri
ted type to strong type estimates 9Proof. We shall only prove (a), sin
e the proofs of (b) and (
) are 
om-pletely similar.If f =
∑

n cnfn then by sublinearity
‖Tf‖X ≤ ‖cnTfn‖Galb(X).If we suppose that ‖fn‖∞ ≤ 1 for ea
h n then by Theorem 2.1,
‖Tfn‖X ≤ ϕX,T (‖fn‖1),and ‖Tf‖X ≤ ‖f‖ϕX,T (Galb(X)) follows by taking the in�mum over all su
hrepresentations of f .In parti
ular, if T is a sublinear (ε, δ)-atomi
 approximable operator, thefollowing 
orollaries follow from the examples given above.Corollary 2.1. If X is a Bana
h spa
e, then T : Λ1(dϕX,T ) → X isbounded.Corollary 2.2. If Galb(X) = ℓp with 0 < p < 1, then

T : Λp(dϕp
X,T ) + L1 ∩ L∞ → Xis bounded.Corollary 2.3. If Galb(X) ⊆ ℓ(log ℓ)α and s � ϕX,T (s), then

T : L(log log L)α(dϕX,T ) → Xis bounded. If , in addition, ϕX,T (s2) � sϕX,T (s), then
T : L(log log log L)α(dϕX,T ) → Xis bounded.Our next step will be to study the galb for the 
lass of weighted Lorentzspa
es.3. The galb of weighted Lorentz spa
es. The purpose of this se
tionis to obtain information about the galb of the spa
es Λq(w) for 0 < q < ∞and of the weak type spa
es Λq,∞(w). Hen
e, throughout this se
tion,

f =
∞∑

n=1

cnfn,where ‖fn‖X ≤ 1 and X = Λq(w) or X = Λq,∞(w). We shall use thefollowing formula for the de
reasing rearrangement of a sum of fun
tions(see [9℄):
f∗(3t) ≤

∑

n

cn

(
f∗

n(t) +
1

t

t\
ant

f∗
n(s)ds

)
,(3)where {an}n are any positive numbers su
h that ∑

n an = 1. It is easy tosee that (3) remains valid when the 
ondition ∑
n an = 1 is weakened to
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∑

n an ≤ 1. Re
all that if Λq(w) is quasi-Bana
h, then the primitive of theweight W (t) =
Tt
0 w satis�es the ∆2 
ondition, and hen
e the number 3 onthe left hand side of the above formula gives no problem at all.We shall also need some estimates for the Steklov operator on de
reasingfun
tions. This operator is de�ned, for 0 < a < 1, by

Saf(t) =
1

t

t\
at

f(s) ds.Lemma 3.1.
sup
f↓

(t−1
Tt
at f(s) ds)W (t)

supt>0 f(t)W (t)
= sup

t>0

(
1

t

t\
at

1

W (s)
ds

)
W (t).Proof. The proof follows trivially sin
e the largest fun
tion f with theproperty that supt>0 f(t)W (t) = 1 is 1/W .The meaning of the following two lemmas is that in estimating the normof the Steklov operator on Lorentz spa
es it is often su�
ient to test it onlyon 
hara
teristi
 fun
tions.Lemma 3.2.

sup
f↓

T∞
0 (t−1

Tt
at f(s) ds)w(t) dtT∞

0 f(t)w(t) dt
= sup

r>0

1

W (r)

r\
0

( s/a\
s

w(t)

t
dt

)
ds.Proof. This follows using Fubini and Theorem 2.12 of [10℄.Lemma 3.3. If q > 1, then

A := sup
f↓

(
T∞
0 (t−1

Tt
at f(s) ds)qw(t) dt)1/q

(
T∞
0 f(t)qw(t) dt)1/q

< ∞if and only if
B := sup

r

(
1

W (r)

r/a\
r

(r − at)q w(t)

tq
dt

)1/q

< ∞.(4)Moreover ,(a) B ≤ A � 1 + Bq,(b) if for some D > 1, W (s/a) ≤ DW (s) for all s > 0, then
(1 − a) + B � A � (1 − a) + B(log D)1/q′.From this , we 
an also 
on
lude that(
) (1 − a) + B � A � (1 − a) + B(log(B/(

√
a − a)))1/q′.The proof of this lemma will be postponed to the last se
tion, sin
e it issomewhat te
hni
al.



From restri
ted type to strong type estimates 113.1. Galb(Λq,∞(w)). Let us start with the 
ase of Λq,∞(w) de�ned by
‖f‖Λq,∞(w) = sup

t>0
f∗(t)W (t)1/q,and observe that Λq,∞(w) = Λ1,∞(wq), where wq(t) = W (t)1/q−1w(t), andhen
e, the parameter q is somehow super�uous. However, it will be importantfor us that, for every q > 1,

Λq,1(w) ⊆ Λq(w) ⊆ Λq,∞(w),where Λq,1(w) = Λ1(wq) with wq as before. Moreover, by real interpolation,
Λq(w) = (Λq,1(w), Λq,∞(w))1/q′,q.As a �rst 
onsequen
e of (2), we obtain the following result:Corollary 3.1. For every 0 < q < ∞,
Galb(Λq,∞(w)) ⊆ L(W 1/q)−1 ∩ ℓ1.Theorem 3.1. Let 0 < q < ∞ and given 0 < a < 1, let

H(a) = sup
t>0

(
1

t

t\
at

W (s)−1/q ds

)
W (t)1/q.If (cn)n ∈ ℓ1 and

inf∑
n an≤1

∑

n

cnH(an) < ∞,then (cn)n ∈ Galb(Λq,∞(w)).Proof. Using (3), we obtain
‖f‖Λq,∞(w) �

∑

n

cn‖fn‖Λq,∞(w) +
∑

n

cn sup
t>0

(
1

t

t\
ant

f∗
n(s) ds

)
W (t)1/q

for every positive sequen
e (an)n with ∑
an ≤ 1, and so, by Lemma 3.1,

‖f‖Λq,∞(w) �
∑

n

cn +
∑

n

cnH(an),from whi
h the result follows.Example. If w(t) = 1, then W (t) = t and H(a) = q(1−a(q−1)/q)/(q−1).In parti
ular, H(a) ≈ a(q−1)/q if q < 1, H(a) = log(1/a) if q = 1, and
H(a) ≈ 1 if q > 1.Remark 3.1. If H ∈ L∞, we obtain Galb(Λq,∞(w)) = ℓ1; of 
ourse, thisalso follows from the fa
t that H ∈ L∞ if and only if w ∈ Bq, in whi
h 
ase
Λq,∞(w) is a Bana
h spa
e (see [19℄).



12 M. Carro et al.Corollary 3.2. If for every t > 0 and every 0 < a < 1,
1

t

t\
at

W (s)−1/q ds � a

W (a)1/qW (t)1/q
,(5)then

Galb(Λq,∞(w)) = WGalb(Λq,∞(w)) = FGalb(Λq,∞(w)) = L(W 1/q)−1 ∩ ℓ1.Proof. The embedding FGalb(Λq,∞(w)) ⊆ L(W 1/q)−1 ∩ ℓ1 follows fromTheorem 2.3 and the opposite embedding follows from Theorem 3.1. Indeed,
ondition (5) reads H(a) � a/W (a), and if (cn)n ∈ L(W 1/q)−1 ∩ ℓ1, we knowthat (cn) tends to zero and hen
e we 
an assume that (W 1/q)−1(cn) ≤ 1 forevery n. Therefore,
∑

n

cnH((W 1/q)−1(cn)) �
∑

n

cn
(W 1/q)−1(cn)

cn
=

∑

n

(W 1/q)−1(cn) < ∞,and therefore (cn)n ∈ Galb(Λq,∞(w)) by Theorem 3.1.Corollary 3.3. If W (s)1/q/s is equivalent to a de
reasing fun
tion,then
ℓ log ℓ ⊆ Galb(Λq,∞(w)).Proof. Applying the trivial fa
t that H(a) ≤ log(1/a) and taking an =

cn, we obtain the result.Observe that if q = 1 and w = 1, we obtain the well-known fa
t that
ℓ log ℓ ⊆ Galb(L1,∞).3.2. Galb(Λq(w)) for 0 < q ≤ 1Theorem 3.2. For every 0 < q ≤ 1,

Galb(Λq(w)) ⊆ ℓq.Proof. Let α1 > 0 be small enough (if ne
essary) and 
hoose αk su
hthat
W

( k−1∑

j=1

αj

)
≤ 1

2
W (αk).

Let {Ak}N
k=1 be a 
olle
tion of disjoint sets su
h that αk = |Ak| and de�ne

βk = W (αk). Obviously βk is an in
reasing sequen
e.Let fk = β
−1/q
k χAk

, so that ‖fk‖Λq(w) = 1, and set
f =

N∑

k=1

ckfk.
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ted type to strong type estimates 13Assume, without loss of generality, that (ck)k is de
reasing, and hen
e also
β
−1/q
k ck is de
reasing. Let γ0 = 0 and γk =

∑k
j=1 αj . Then

f∗(t) = β
−1/q
k ckif γk−1 < t < γk, and therefore

∞\
0

f∗(t)qw(t) dt =
N∑

k=1

cq
kβ

−1
k

γk\
γk−1

w(t) dt

=

N∑

k=1

cq
k

W (αk)

γk\
γk−1

w(t) dt >
1

2

N∑

k=1

cq
k,from whi
h the result follows.Theorem 3.3. Let 0 < q ≤ 1. Then Galb(Λq(w)) = ℓq if and only if

W (t)/t is equivalent to a de
reasing fun
tion.Proof. If W (t)/t is equivalent to a de
reasing fun
tion, then it is known(see [6]) that Λ1(w) is a Bana
h spa
e, and sin
e
|f |q ≤

∑

n

cq
n|fn|q and ‖f‖q

Λq(w) = ‖f q‖Λ1(w),we obtain
‖f‖q

Λq(w)
≤

∑

n

cq
n‖f q

n‖Λ1(w) ≤
∑

n

cq
n;therefore ℓq ⊆ Galb(Λq(w)) and hen
e they 
oin
ide. To prove the 
onverse,we observe �rst that if Galb(Λq(w)) = ℓq, then

‖f‖q
Λq(w) ≤ inf

∑

n

‖fn‖q
Λq(w),where the in�mum extends over all possible de
ompositions f =

∑
n fn.Now, we use the same argument as in [6℄: let k ∈ N and s > 0 andset f = χ(0,2ks) and fj = χ(js,(j+1)s) with j = 0, . . . , 2k − 1. Then, sin
e

f =
∑2k−1

j=0 fj , we obtain
W (2ks) = ‖f‖q

Λq(w) �
2k−1∑

j=0

‖fj‖q
Λq(w) = 2kW (s);

that is, W (2ks) ≤ 2kW (s) and hen
e, if s < r and k is su
h that 2k−1s <
r < 2ks, then

W (r)

r
≤ W (2ks)

2k−1s
� 2kW (s)

2k−1s
� W (s)

s
,as we wanted to prove.



14 M. Carro et al.Remark 3.2. In parti
ular, if X = Lp,q with 0 < q < min(p, 1), were
over the result proved in [13℄.In general, if w does not satisfy the previous 
ondition we have the fol-lowing result:Theorem 3.4. Given 0 < a < 1, let
H(a) = sup

r>0

1

W (r)

r\
0

( s/a\
s

w(t)

t
dt

)
ds.If (cn)n ∈ ℓq and

inf∑
n an≤1

∑

n

cq
nH(an) < ∞,then (cn)n ∈ Galb(Λq(w)).Proof. Sin
e 0 < q ≤ 1, we have |f |q ≤ ∑

n cq
n|fn|q, and hen
e, using (3),we obtain

‖f‖q
Λq(w) �

∑

n

cq
n‖fn‖q

Λq(w) +
∑

n

cq
n

∞\
0

(
1

t

t\
ant

f∗
n(s)q ds

)
w(t) dtfor every positive sequen
e (an)n with ∑

an ≤ 1; so, by Lemma 3.2,
‖f‖Λq(w) �

∑

n

cq
n +

∑

n

cq
nH(an),from whi
h the result follows.As a 
orollary of (2) we obtain:Corollary 3.4.

Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)) ⊆ L(W 1/q)−1 ∩ ℓq.Corollary 3.5. If for every r > 0 and every 0 < a < 1,
r\
0

( s/a\
s

w(t)

t
dt

)
ds � aW (r)

W (a)
,(6)then

Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)) = L(W 1/q)−1 ∩ ℓq.Proof. Condition (6) reads H(a) � a/W (a), and hen
e the assertionfollows as in Corollary 3.2.Let us now assume that W is equivalent to a 
onvex fun
tion.Lemma 3.4. Let fn ≥ 0, and let gn ≥ 0 have disjoint supports and satisfy
f∗

n = g∗n for every n. If W is equivalent to a 
onvex fun
tion, then∥∥∥
∑

n

fn

∥∥∥
Λ1(w)

≤
∥∥∥

∑

n

gn

∥∥∥
Λ1(w)

.
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ted type to strong type estimates 15Proof. Let us start by proving that, under the above hypotheses,
∞\
x

(∑

n

fn

)∗
≤

∞\
x

( ∑

n

gn

)∗

for every x > 0. Sin
e ∑
n fn and ∑

n gn have the same integral, it is enoughto prove that
x\
0

( ∑

n

gn

)∗
≤

x\
0

( ∑

n

fn

)∗
.We have

x\
0

( ∑

n

gn

)∗
= sup

{ \
E

∑

n

gn; |E| ≤ x
}

= sup
{ ∑

n

\
En

gn;
∑

n

|En| ≤ x
}

= sup
{ ∑

n

xn\
0

g∗n;
∑

n

xn ≤ x
}

= sup
{∑

n

xn\
0

f∗
n;

∑

n

xn ≤ x
}

= sup
{ ∑

n

\
En

fn;
∑

n

|En| ≤ x
}

≤ sup
{ \

E

∑

n

fn; |E| ≤ x
}

=

x\
0

( ∑

n

fn

)∗
.Finally, sin
e W is equivalent to a 
onvex fun
tion, we 
an assume with-out loss of generality that w is an in
reasing fun
tion; hen
e, by the dis-tribution formula for in
reasing weights, there exists a fun
tion cw(y) su
hthat

∥∥∥
∑

n

fn

∥∥∥
Λ1(w)

=

∞\
0

∞\
cw(y)

(∑

n

fn

)∗
(t) dt dy

≤
∞\
0

∞\
cw(y)

(∑

n

gn

)∗
(t) dt dy =

∥∥∥
∑

n

gn

∥∥∥
Λ1(w)

.

Consequently, when 
omputing Galb(Λ1(w)) for an in
reasing weight, we
an assume that the fun
tions fn are disjointly supported. Also:Theorem 3.5. If W is a 
onvex fun
tion, then, for every 0 < q ≤ 1,
Galb(Λq(w)) = {(cn)n; (cq

n)n ∈ Galb(Λ1(w))}.Proof. Sin
e (
∑

n cnfn)q ≤
∑

n cq
nf q

n, it is 
lear that
{(cn)n; (cq

n)n ∈ Galb(Λ1(w))} ⊆ Galb(Λq(w)).For the 
onverse in
lusion we observe that if (cn)n ∈ Galb(Λq(w)), then∑
n cnfn ∈ Λq(w) for every (fn)n disjointly supported with ‖fn‖Λq(w) ≤ 1.



16 M. Carro et al.Sin
e, in this 
ase, ( ∑

n

cnfn

)q
=

∑

n

cq
nf q

n,we dedu
e that ∑
n cq

ngn ∈ Λ1(w) for every (gn)n disjointly supported with
‖gn‖Λ1(w) ≤ 1. Sin
e w is in
reasing, we 
on
lude that (cq

n)n ∈Galb(Λ1(w)).Theorem 3.6. Suppose that W is a 
onvex fun
tion, and , for 0 < a < 1,set
H(a) = sup

at≤r≤t

W (t)r

tW (r)
.If (cn)n ∈ ℓq and

inf∑
n an≤1

∑

n

cq
nH(an) < ∞,then (cn)n ∈ Galb(Λq(w)).Proof. By Theorem 3.5, it is enough to handle the 
ase q = 1, and sin
e

W is 
onvex, we 
an assume that the fn are disjointly supported. Hen
e, forevery positive sequen
e (an)n su
h that ∑
n an ≤ 1,

∥∥∥
∑

n

cnfn

∥∥∥
Λ1(w)

=

∞\
0

W
( ∑

n

λfn(y/cn)
)

dy =

∞\
0

W

(∑

n

an
λfn(y/cn)

an

)
dy

≤
∞\
0

∑

n

anW

(
λfn(y/cn)

an

)
dy ≤

∞\
0

∑

n

H(an)W (λfn(y/cn)) dy

≤
∑

n

cnH(an)

∞\
0

W (λfn(y)) dy ≤
∑

n

cnH(an),and taking the in�mum over all (an)n we obtain the result.3.3. Galb(Λq(w)) for q > 1Theorem 3.7. For every q > 1, Galb(Λq(w)) = ℓ1 if and only if w ∈Bq,that is, for every r > 0,
rq

∞\
r

w(t)

tq
dt �

r\
0

w(t) dt.Proof. This is a 
onsequen
e of the fa
t that for q > 1, Λq(w) is Bana
hif and only if w ∈ Bq (see [15℄).Theorem 3.8. Given 0 < a < 1, let
H(a) = sup

r

1

W (r)

r/a\
r

(r − at)q w(t)

tq
dt.
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ted type to strong type estimates 17If (cn)n ∈ ℓ1 and
inf∑

n an≤1

∑

n

cnH(an) < ∞,then (cn)n ∈ Galb(Λq(w)).Proof. Using (3), we obtain
‖f‖Λq(w) �

∑

n

cn‖fn‖Λq(w)

+
∑

n

cn sup
‖f‖Λq(w)=1

(∞\
0

(
1

t

t\
ant

f∗(s) ds

)q

w(t) dt

)1/q

for every positive sequen
e (an)n with ∑
an ≤ 1, so, by Lemma 3.3,

‖f‖Λq(w) �
∑

n

cn +
∑

n

cnH(an),from whi
h the result follows.Remark 3.3. In parti
ular, if we take Λq(w) = L1,q, whi
h means that
w(t) = tq−1, then

H(a) ∼ sup
r

1

rq

r/a\
r

(r − at)q dt

t
∼ log

1

a
,and hen
e ℓ log ℓ ⊆ Galb(L1,q). This estimate is not satisfa
tory sin
e it isknown that Galb(L1,q) = ℓ(log ℓ)1/q′ (see [18℄).However, if we use interpolation theory, we 
an improve the above resultas follows.Theorem 3.9. If W (t)1/q/t is equivalent to a de
reasing fun
tion, then

ℓ(log ℓ)1/q′ ⊆ Galb(Λq(w)).Proof. If W (t)1/q/t is equivalent to a de
reasing fun
tion, then Λ1(wq) isa Bana
h spa
e with wq(t) = W (t)1/q−1w(t), and 
onsequently Galb(Λ1(wq))
= ℓ1. On the other hand, by Corollary 3.3, ℓ log ℓ ⊆ Galb(Λ1,∞(wq)), andhen
e, using interpolation (see [5℄ and [11℄), we obtain the result.As a 
orollary of Theorem 3.8, we also obtain the following result.Corollary 3.6. If , for every 0 < a < 1 and every r > 0,

r/a\
r

(r − at)q w(t)

tq
dt ≤ W (r)a

W (a)1/q
,then

Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)) = L(W 1/q)−1 ∩ ℓ1.



18 M. Carro et al.3.4.Weak galb and �nite galb. The purpose of this subse
tion is to obtaininformation about the weak and �nite galbs of the spa
es Λq(w).Theorem 3.10. Given 0 < a < 1, let
H(a) =





sup
t

W (t)1/q

t

( t\
at

(
u − at

W (u)

)q′−1

du

)1/q′ if q > 1,
sup
t,r

W (t)1/q

t

(min(r, t) − at)+

W (r)1/q
if q ≤ 1.If (cn)n ∈ ℓ1 and

inf∑
n an≤1

∑

n

cnH(an) < ∞,then (cn)n ∈ WGalb(Λq(w)).Proof. Using (3), we obtain
‖f‖Λq,∞(w) �

∑

n

cn‖fn‖Λq(w)

+
∑

n

cn sup
t

W (t)1/q

t
sup

‖f‖Λq(w)=1

1

t

t\
ant

f∗(s) dsfor every positive sequen
e (an)n with ∑
an ≤ 1, and the result follows, inthe 
ase q > 1, from Sawyer's duality formula (see [15℄) and, if q ≤ 1, fromTheorem 2.12 of [10℄.Using a 
ompletely similar argument to that of the previous theorem, we
an prove the following result.Theorem 3.11. Given 0 < a < 1, let

H(a; t) =





( t\
at

(
u − at

W (u)

)q′−1

du

)1/q′ if q > 1,
sup

r

(min(r, t) − at)+

W (r)1/q
if q ≤ 1.If (cn)n ∈ ℓ1 and , for every t > 0,

inf∑
n an≤1

∑

n

cnH(an; t) < ∞,then (cn)n ∈ FGalb(Λq(w)).Sometimes, we 
an use the embedding properties of the weak and �nitegalbs in order to obtain some information about the galb, as in the following
orollary:
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ted type to strong type estimates 19Corollary 3.7. Let q ≥ 1. If W (s)/sq is equivalent to a bounded ,de
reasing fun
tion, then
(a) ℓ log ℓ = Galb(Λq,∞(w)) = WGalb(Λq,∞(w)) = FGalb(Λq,∞(w)),

(b) ℓ(log ℓ)1/q′ = Galb(Λq(w)) = WGalb(Λq(w)) = FGalb(Λq(w)).Proof. (a) By Corollary 3.3,
ℓ log ℓ ⊆ Galb(Λq,∞(w)) ⊆ WGalb(Λq,∞(w)) ⊆ FGalb(Λq,∞(w)).Now, sin
e W (s) � sq, we have L1,∞ ⊆ Λq,∞(w), and therefore

FGalb(Λq,∞(w)) ⊆ FGalb(L1,∞).Sin
e it is known that FGalb(L1,∞) = ℓ log ℓ (see [13℄), we obtain the result.(b) The proof of this part is 
ompletely similar sin
e, by Theorem 3.9,
ℓ(log ℓ)1/q′ ⊆ Galb(Λq(w));next sin
e W (s) � sq, we have L1,q ⊆ Λq(w); �nally, we use the fa
t that

FGalb(L1,q) = ℓ(log ℓ)1/q′ (see [18℄).4. Some examples and appli
ations. If we apply our result to the
lassi
al 
ase of Lp,q we obtain the following result:Corollary 4.1.
1) If q > 1 and p > 1, then Galb(Lp,q) = ℓ1.
2) If p = 1, then ℓ log ℓ = Galb(L1,∞).
3) If p < 1, then Galb(Lp,∞) = ℓp.
4) If 0 < q ≤ 1 and q ≤ p, then Galb(Lp,q) = ℓq.
5) If 0 < p ≤ 1 and p ≤ q ≤ ∞, then Galb(Lp,q) = ℓp.
6) If q > 1, then ℓ(log ℓ)1/q′ = Galb(L1,q).Proof. 1) is 
lear be
ause the spa
es are Bana
h spa
es, and 2) has al-ready been mentioned several times. 3) is 
onsequen
e of (5); 4) of The-orem 3.3; and 5) of Theorems 3.5 and 3.6 for the 
ase q ≤ 1, while for

q > 1, we have to pro
eed by interpolation sin
e we already know that
Galb(Lp,∞) = Galb(Lp,1) = ℓp. Finally, the embedding ℓ(log ℓ)1/q′ ⊂
Galb(L1,q) in 6) is a 
onsequen
e of Theorem 3.9, and for the 
onverse wehave to refer to [18℄.Another example:Corollary 4.2. If W (t) = t(1 + log+(1/t))−α with α > 0, then, forevery 0 < q ≤ 1,

ℓq(log ℓ)α = Galb(Λq(w)).Proof. This is a 
onsequen
e of Theorem 3.6 and (2), sin
e one 
an easily
he
k that, in this 
ase, H(a) � (1 + log+(1/a))α, and Lϕ−1
X

= ℓq(log ℓ)α.



20 M. Carro et al.If T is of restri
ted weak type (p, p) with 
onstant 1/(p− 1), as happenswith the Carleson operator given in the introdu
tion, then
(TχE)∗(t) ≤ |E|

t

(
1 + log+ t

|E|

)
≤ |E|

(
1 + log+ 1

|E|

)
1

t
(1 + log+ t),that is,

‖TχE‖X ≤ D(|E|),where X = Λ1,∞(w) with W (t) = t/(1+log+ t) and D(s) = s(1+log+ (1/s)).Also, when dealing with the bilinear Hilbert transform, the spa
e that ap-pears naturally is X = Λp,∞(w) with p = 2/3 and W (t) = t/(1 + log+ t)4/3(see [7℄). These examples motivate the study of the galb of the above spa
es.Corollary 4.3. If W (t) = t(1 + log+ t)−α with α > 0, then
Galb(Λq,∞(w)) =

{
ℓq for 0 < q < 1,
ℓ log ℓ for q = 1.Proof. This is a 
onsequen
e of (5).Finally, it is important to mention that, in general, Galb(X), WGalb(X)and FGalb(X) do not 
oin
ide, as is shown in the following proposition:Proposition 4.1. If 0 < q < p < 1, then

1) Galb(Lp,q(R) ∩ L1(R)) = ℓq,

2) WGalb(Lp,q(R) ∩ L1(R))) = ℓp,

3) FGalb(Lp,q(R) ∩ L1(R))) = ℓ1.Proof. 1) Re
all that Galb(Lp,q) = ℓq, while Galb(L1) = ℓ1. In parti
ular,if (cn)n is in ℓq and ‖fn‖Lp,q∩L1 ≤ 1, then
∥∥∥

∑

n

cnfn

∥∥∥
Lp,q

≤ c
(∑

n

|cn|q
)1/q

,

∥∥∥
∑

n

cnfn

∥∥∥
L1

≤ c
∑

n

|cn| ≤ c
(∑

n

|cn|q
)1/q

.

Hen
e ℓq ⊆ Galb(Lp,q ∩ L1). To prove the 
onverse in
lusion, given a posi-tive sequen
e (cn)n, 
hoose a stri
tly in
reasing sequen
e of integers kn ≥ 1so that 2−kn/p|cn| is de
reasing. Then 
hoose disjoint sets {An}n with
|An| = 2kn . Finally, let fn = |An|−1/pχAn , so that

‖fn‖Lp,q∩L1 = max{|An|−1/p‖χAn‖Lp,q , |An|−1/p‖χAn‖L1}
= max{1, |An|1−1/p} = 1.It is routine to 
al
ulate the rearrangement of the simple fun
tion ∑

n cnfn
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ted type to strong type estimates 21and, using the fa
t that |An| is rapidly in
reasing, to get
∥∥∥

∑

n

cnfn

∥∥∥
Lp,q

=
( ∑

n

(p/q)|cn|q|An|−q/p
(( n∑

j=1

|Aj |
)q/p

−
( n−1∑

j=1

|Aj |
)q/p))1/q

�
( ∑

|cn|q
)1/q

.We 
on
lude that if (cn)n ∈ Galb(Lp,q ∩ L1), then (cn)n ∈ ℓq.2) Let (cn)n ∈ ℓp and let ‖fn‖Lp,q∩L1 = 1. Sin
e ‖fn‖Lp,∞ � ‖fn‖Lp,q and
Galb(Lp,∞) = ℓp, we have

∥∥∥
∑

n

cnfn

∥∥∥
Lp,∞

�
( ∑

n

|cn|p
)1/p

.

Similarly, ‖fn‖L1,∞ � ‖fn‖L1 and sin
e Galb(L1,∞) = ℓ log ℓ,
∥∥∥

∑

n

cnfn

∥∥∥
L1,∞

� ‖(cn)n‖ℓ log ℓ �
( ∑

n

|cn|p
)1/p

.

Hen
e ℓp ⊆ WGalb(Lp,q ∩ L1). To prove the 
onverse in
lusion, given a�nite sequen
e (cn)n, 
hoose k and a sequen
e {An}n of disjoint sets with
|An| = k|cn|p ≥ 1. Let fn = |An|−1/pχAn , so that ‖fn‖Lp,q∩L1 = 1. Then
|∑n cnfn| = k−1/p on a set of measure ∑

n |An| = k
∑

n |cn|p. In parti
ular,the norm of ∑
n cnfn in Lp,∞ is (

∑
n |cn|p)1/p, and hen
e (cn)n ∈ ℓp.3) First observe that if (cn)n ∈ FGalb(Lp,q ∩ L1), then in parti
ular∑

n |cn| < ∞. To prove the 
onverse, observe that if ∑
n |cn| < ∞ and if

‖fn‖Lp,q∩L1 = 1, then ∑
n cnfn(x) 
onverges in L1 and therefore it is �nitealmost everywhere.

5. Proof of Lemma 3.3. (a) The inequality B ≤ A is trivial sin
e it isjust taking the supremum over all fun
tions of the form χ(0,r). To prove the
onverse, �x a de
reasing fun
tion f and an r > 0. Let rj = r/aj and write
∞\
0

(
1

t

t\
at

f

)q

w(t) dt ≤ 2q−1
∞∑

j=−∞
(Uj + Vj)

where
Uj =

rj+1\
rj

( t\
rj

f
)q w(t)

tq
dt and Vj =

rj+1\
rj

( rj\
at

f
)q w(t)

tq
dt.
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e f is de
reasing, for ea
h j we have
Uj = q

rj+1\
rj

t\
rj

( s\
rj

f
)q−1

f(s) ds
w(t)

tq
dt

≤ q

rj+1\
rj

t\
rj

(
s − rj

s − as

s\
as

f

)q−1

f(s) ds
w(t)

tq
dt

= q(1 − a)1−q

rj+1\
rj

t\
rj

(s − rj)
q−1

g(s)\
g(t)

dy ds
w(t)

tq
dt

+ q(1 − a)1−q

rj+1\
rj

t\
rj

(s − rj)
q−1 ds g(t)

w(t)

tq
dt

≡ (1 − a)1−qU
(1)
j + (1 − a)1−qU

(2)
jwhere g(s) = (s−1

Ts
as f)q−1f(s). Note that g is also de
reasing.Let λg denote the distribution fun
tion of g. To estimate U

(1)
j , we expandthe region of integration by observing that





rj < t < rj+1

rj < s < t
g(t) < y < g(s)



 ⇒





g(rj+1) ≤ y ≤ g(rj)
λg(y) ≤ t ≤ λg(y)/a

at ≤ s ≤ λg(y)



 .

Performing the inner (ds) integration and using the hypothesis (4) we seethat
U

(1)
j ≤

g(rj)\
g(rj+1)

λg(y)/a\
λg(y)

(λg(y) − at)q w(t)

tq
dt dy

≤ Bq

g(rj)\
g(rj+1)

( λg(y)\
0

w
)

dy.

The estimate for U
(2)
j is simpler,

U
(2)
j =

rj+1\
rj

(t − rj)
q ds g(t)

w(t)

tq
dt ≤

rj+1\
rj

gw.Now
∞∑

j=−∞
(U

(1)
j + U

(2)
j ) ≤ Bq

∞\
0

( λg(y)\
0

w
)

dy +

∞\
0

gw = (Bq + 1)

∞\
0

gw.
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ted type to strong type estimates 23The estimate for Vj begins similarly. With g as above,
Vj = q

rj+1\
rj

rj\
at

( s\
at

f
)q−1

f(s) ds
w(t)

tq
dt

≤ q

rj+1\
rj

rj\
at

(
s − at

s − as

s\
as

f

)q−1

f(s) ds
w(t)

tq
dt

= q(1 − a)1−q

rj+1\
rj

rj\
at

(s − at)q−1

g(s)\
g(rj)

dy ds
w(t)

tq
dt

+ q(1 − a)1−qg(rj)

rj+1\
rj

rj\
at

(s − at)q−1 ds
w(t)

tq
dt

≡ (1 − a)1−qV
(1)
j + (1 − a)1−qV

(2)
j .Inter
hange and expand the region of integration for V

(1)
j by observing that





rj < t < rj+1

at < s < rj

g(rj) < y < g(s)



 ⇒





g(rj) ≤ y ≤ g(rj−1)
λg(y) ≤ t ≤ λg(y)/a

at ≤ s ≤ λg(y)



 .

Performing the ds integration and using the hypothesis (4) yields
V

(1)
j ≤

g(rj−1)\
g(rj)

λg(y)/a\
λg(y)

(λg(y) − at)q w(t)

tq
dt dy ≤ Bq

g(rj−1)\
g(rj)

( λg(y)\
0

w
)

dy.

Thus,
∞∑

j=−∞
V

(1)
j ≤ Bq

∞\
0

( λg(y)\
0

w
)

dy = Bq
∞\
0

gw.

To estimate V
(2)
j we use the fa
t that g(rj) is a de
reasing sequen
e. Forea
h k > 1,

k−1∑

j=−∞

rj+1\
rj

(rj − at)q w(t)

tq
dt ≤ (1 − a)q

rk\
0

wand, by (4),
rk+1\
rk

(rk − at)q w(t)

tq
dt ≤ Bq

rk\
0

w.It follows that
k∑

j=−∞

rj+1\
rj

(rj − at)q w(t)

tq
dt ≤

k∑

j=−∞
((1 − a)q + Bq)

rj\
rj−1

w



24 M. Carro et al.for all k and, be
ause g(rj) is a de
reasing sequen
e,
∞∑

j=−∞
V

(2)
j ≤

∞∑

j=−∞
g(rj)((1 − a)q + Bq)

rj\
rj−1

w

≤ ((1 − a)q + Bq)

∞\
0

gw.

Combining the inequalities above, we get
∞\
0

(
1

t

t\
at

f

)q

w(t) dt � (1 + Bq)

∞\
0

gw

≤ (1+Bq)

(∞\
0

(
1

t

t\
at

f

)q

w(t) dt

)1/q′(∞\
0

f qw
)1/q

,

and we 
on
lude (by approximating f by integrable fun
tions if ne
essary)that A � 1 + Bq.To prove (b), we shall use some ideas of Stepanov and Ushakova [20, The-orem 3℄. For the 
onverse, we apply Theorem 3.1 of [16℄, although Theorem1 of [15℄ will also do. We have
A = sup

‖f‖Lq(w)≤1

f↓

(∞\
0

(
1

t

t\
at

f(s) ds

)q

w(t) dt

)1/q

= sup
‖f‖Lq(w)≤1

f↓

sup
‖g‖

Lq′ (w)
≤1

∞\
0

1

t

t\
at

f(s) ds g(t)w(t) dt

= sup
‖g‖

Lq′ (w)
≤1

sup
‖f‖Lq(w)≤1

f↓

∞\
0

f(s)

(
1

w(s)

s/a\
s

g(t)w(t)
dt

t

)
w(s) ds

≈ sup
‖g‖

Lq′ (w)
≤1

(∞\
0

(Tx
0 G(s)w(s) dsTx

0 w(s) ds
+

T∞
0 G(s)w(s) dsT∞

0 w(s) ds

)q′

w(x) dx

)1/q′

where G(s) = 1
w(s)

Ts/a
s g(t)w(t) dt

t . Now
x\
0

Gw =

x\
0

s/a\
s

g(t)w(t)
dt

t
ds =

x/a\
0

1

t

min(x,t)\
at

ds g(t)w(t) dt

= (1 − a)

x\
0

g(t)w(t) dt +

x/a\
x

(x/t − a)g(t)w(t) dt
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∞\
0

Gw =

∞\
0

1

w(s)

s/a\
s

g(t)w(t)
dt

t
w(s) ds

=

∞\
0

s/a\
s

g(t)w(t)
dt

t
ds = (1 − a)

∞\
0

gw.Therefore A ≈ A1 + A2 + A3 where
A1 = (1 − a) sup

‖g‖
Lq′ (w)

≤1

(∞\
0

(Tx
0 g(t)w(t) dtTx

0 w(t) dt

)q′

w(x) dx

)1/q′

,

A2 = (1 − a) sup
‖g‖

Lq′ (w)
≤1

(∞\
0

(T∞
0 g(t)w(t) dtT∞

0 w(t) dt

)q′

w(x) dx

)1/q′

,

A3 = sup
‖g‖

Lq′ (w)
≤1

(∞\
0

(Tx/a
x (x/t − a)g(t)w(t) dtTx

0 w(t) dt

)q′

w(x) dx

)1/q′

.The �rst two are easy. Hardy's inequality says that A1 = (1 − a)q andHölder's inequality yields A2 = 1−a. For A3 we use Theorem 4.4 of [12℄. Byrepla
ing x by s and g(t)w(t) by f(t)t we re
ognize A3 as the best 
onstantin the inequality
(∞\

0

( s/a\
s

(s − ay)f(y) dy
)q′( s\

0

w
)−q′

w(s) ds
)1/q′

≤ A3

(∞\
0

f(t)q′tq
′
w(t)1−q′ dt

)1/q′

.It is trivial to 
he
k that the so 
alled GHO 
ondition in [12℄ holds for thekernel k(s, y) = s − ay and so A3 ≈ max(A3,1, A3,2) where
A3,1 = sup

s≤x≤s/a

( x\
s

(t − s)q′
( t\

0

w
)−q′

w(t) dt
)1/q′( s/a\

x

t−qw(t) dt
)1/q

,

A3,2 = sup
s≤x≤s/a

( x\
s

( t\
0

w
)−q′

w(t) dt
)1/q′( s/a\

x

(s − at)qt−qw(t) dt
)1/q

.Sin
e
B = sup

r

(Tr/a
r (r − at)q w(t)

tq dt
)1/q

(
Tr
0 w(t) dt)1/q

,we have
A3,2 ≤ sup

s

(∞\
s

( t\
0

w
)−q′

w(t) dt
)1/q′( s/a\

s

(s − at)qw(t) dt
)1/q

� B.
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A3,1 = sup

s≤x≤s/a

( x\
s

( s/a\
x

(t − s)qy−qw(y) dy
)q′−1( t\

0

w
)−q′

w(t) dt
)1/q′

≤ sup
s≤x≤s/a

( x\
s

( t/a\
t

(t − ay)qy−qw(y) dy
)q′−1( t\

0

w
)−q′

w(t) dt
)1/q′

≤ B sup
s≤x≤s/a

( x\
s

( t\
0

w
)−1

w(t) dt
)1/q′

≤ B sup
s≤x≤s/a

(
log

(x\
0

w
)
− log

(s\
0

w
))1/q′

≤ B(log(D))1/q′.This 
ompletes the proof of (b).To prove (
), it is enough to show that
s/a\
0

w ≤ D

s\
0

w, s > 0,with D = (B/(
√

a − a))2q. Now, for any r > 0, we have r/a ≥ r/
√

a so
Bq

r\
0

w ≥
r/

√
a\

r

(r − at)qt−qw(t) dt ≥ (
√

a − a)q

r/
√

a\
0

w.Hen
e
s/a\
0

w ≤ (B/(
√

a − a))q

s/
√

a\
0

w ≤ (B/(
√

a − a))2q
s\
0

w.This 
ompletes the proof.
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