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(I)-envelopes of unit balls and
James’ characterization of reflexivity

by

Ondřej F. K. Kalenda (Praha)

Abstract. We study the (I)-envelopes of the unit balls of Banach spaces. We show, in
particular, that any nonreflexive space can be renormed in such a way that the (I)-envelope
of the unit ball is not the whole bidual unit ball. Further, we give a simpler proof of James’
characterization of reflexivity in the nonseparable case. We also study the spaces in which
the (I)-envelope of the unit ball adds nothing.

1. Introduction. The present paper is a continuation of [13] where the
(I)-envelopes of sets in Banach spaces were introduced and studied with the
aim of using the result of [8] to obtain an easier proof of James’ charac-
terization of weak compactness in nonseparable spaces. It was shown there
that an easy proof can be given in a large class of spaces. However, an
example was exhibited showing that the general situation is not so easy
([13, Example 4.1]).

In this paper we study the (I)-envelopes of the unit balls and in particu-
lar two extreme classes of spaces: those where the (I)-envelope adds nothing
(Section 4) and those where the (I)-envelope is as large as it can be (Sec-
tions 2 and 3). In Section 3 we give a simpler proof of James’ characterization
of reflexivity using recent results of [15].

Let us start by recalling the definition of the (I)-envelope and its basic
properties.

Let X be a Banach space and B ⊂ X∗. The (I)-envelope of B is defined
by the formula

(I)-env(B) =
⋂{

conv

∞⋃

n=1

conv Cn
w∗

‖·‖

: B =

∞⋃

n=1

Cn

}
.
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The motivation for this definition was the result [8, Theorem 2.3] stating
(in the above notation) that K = (I)-env(B) whenever K is a convex weak∗

compact set in X∗ and B a boundary of K (i.e., any element of X attains
its maximum on K at some point of B). We will deal with the (I)-envelopes
of closed convex sets in X considered canonically embedded into the bidual.
For this case we have the following characterization ([13, Lemma 2.3]).

Lemma 1.1. Let X be a Banach space, B ⊂ X a closed convex set and

G ∈ B
w∗

. Then the following assertions are equivalent.

(1) G /∈ (I)-env(B).
(2) There is a sequence of ξn ∈ BX∗ such that

sup
x∈B

lim sup
n→∞

ξn(x) < inf
n∈N

G(ξn).

(3) There is a sequence of ξn ∈ BX∗ such that

sup
x∈B

lim sup
n→∞

ξn(x) < lim inf
n→∞

G(ξn).

(4) There is a sequence of ξn ∈ BX∗ such that

sup
x∈B

lim sup
n→∞

ξn(x) < lim sup
n→∞

G(ξn).

Note that in all the conditions (2)–(4) we can replace the assumption
that ξn ∈ BX∗ by the assumption that the sequence ξn is bounded. As an
easy consequence of this lemma we obtain the following one.

Lemma 1.2. Let X be a Banach space. Then the (I)-envelope of X in

X∗∗ consists exactly of the weak∗ sequentially continuous elements of X∗∗.

Proof. Let ξn be a bounded sequence in X∗. Then

sup
x∈X

lim sup
n→∞

ξn(x) =

{
0 if ξn weak∗ converges to 0,

+∞ otherwise.

The statement now follows easily from Lemma 1.1.

2. Grothendieck spaces and reflexive spaces. A Banach space X is
a Grothendieck space if weak and weak∗ convergences of sequences coincide
in X∗. Clearly, any reflexive space is Grothendieck. There are also nonre-
flexive Grothendieck spaces: a classical example is the space ℓ∞ (a result of
Grothendieck [10], see also [4, Theorem VII.15]). Further examples can be
found for example in [1, 20, 2, 17].

It is easy to see that X is a Grothendieck space if and only if all elements
of X∗∗ are weak∗ sequentially continuous. Therefore the following theorem
is an immediate consequence of Lemma 1.2.

Theorem 2.1. A Banach space X is Grothendieck if and only if

(I)-env(X) = X∗∗.
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While this theorem is quite easy, the situation with the (I)-envelopes
of unit balls is more complicated. It is proved in [13, Example 4.1] that
the (I)-envelope of the unit ball of ℓ∞ is the whole bidual unit ball. It is
asked there whether the same holds for any Grothendieck space. The next
theorem shows that this is not the case. Namely, the only spaces for which
(I)-env(BX) = BX∗∗ for any equivalent norm are the reflexive ones.

Theorem 2.2. Let X be a nonreflexive Banach space. Then there is

an equivalent norm | · | on X such that the (I)-envelope of the unit ball of

(X, | · |) is a proper subset of the respective bidual unit ball.

Proof. If X is separable, then (I)-env(BX)=BX (see [13, Remark 1.1(2)]),
hence there is no need to renorm.

Suppose that X is nonseparable. Let Y ⊂ X be a separable subspace
which is not reflexive. (This is possible as reflexivity is separably determined,
see e.g. [7, Exercise 4.24].)

Choose some ξ ∈ SX∗ such that ξ|Y = 0 and find x0 ∈ X with ξ(x0) = 1.
Notice that ‖x0‖ ≥ 1. Set

B = {x ∈ X : ‖x − ξ(x)x0‖ ≤ 1 and |ξ(x)| + dist(x − ξ(x)x0, Y ) ≤ 1}.

Then B is clearly a closed absolutely convex set and it is easy to check that

1

2 + ‖x0‖
BX ⊂ B ⊂ ‖x0‖BX ,

hence B is the closed unit ball of an equivalent norm on X. We will show

that B
w∗

\ (I)-env(B) 6= ∅.

As Y ⊂ X, the bidual Y ∗∗ can be canonically identified with a subspace
of X∗∗, namely with the weak∗ closure of Y in X∗∗. Hence we can take some
F ∈ SY ∗∗ \ X. Let Z be the span of Y and x0. Then Z is separable and
F ∈ Z∗∗ \ Z, hence F |BZ∗

is not weak∗ sequentially continuous. It follows

that there are ξ̃n ∈ BZ∗ weak∗ converging to 0 and c > 0 such that F (ξ̃n) ≥ c

for each n ∈ N. By the Hahn–Banach theorem extend ξ̃n to ξn ∈ BX∗ .

Set G = x0 + F . Then G ∈ B
w∗

. Indeed, choose a net yν ∈ SY weak∗

converging to F . Then x0+yν weak∗ converges to G. Moreover, x0+yν ∈B as

ξ(x0 + yν) = 1,

‖x0 + yν − ξ(x0 + yν)x0‖ = ‖yν‖ ≤ 1,

dist(x0 + yν − ξ(x0 + yν)x0, Y ) = dist(yν , Y ) = 0.

Further,

lim inf
n→∞

G(ξ + ξn) = lim inf
n→∞

(ξ(x0) + ξn(x0) + F (ξ) + F (ξn))

= 1 + lim
n→∞

ξn(x0) + lim inf
n→∞

F (ξn) ≥ 1 + c.
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We have used here the facts that F (ξ) = 0 (as F ∈ Y
w∗

and ξ|Y = 0) and
that ξn(x0) → 0 (as x0 ∈ Z).

On the other hand, if x ∈ B and y ∈ Y is arbitrary, we have

lim sup
n→∞

(ξ + ξn)(x)

= ξ(x) + lim sup
n→∞

(ξn(x − ξ(x)x0 − y) + ξn(x0)ξ(x) + ξn(y))

= ξ(x) + lim sup
n→∞

ξn(x − ξ(x)x0 − y) + lim
n→∞

(ξn(x0)ξ(x) + ξn(y))

≤ ξ(x) + ‖x − ξ(x)x0 − y‖.

(We have used the fact that ξn(z) → 0 for all z ∈ Z.) As y ∈ Y is arbitrary,
we get

lim sup
n→∞

(ξ + ξn)(x) ≤ ξ(x) + dist(x − ξ(x)x0, Y ) ≤ 1

for all x ∈ B. Hence, by Lemma 1.1 the sequence ξ + ξn witnesses that G
does not belong to the (I)-envelope of B.

As a corollary we get the following example.

Example 2.3. There is an equivalent norm on ℓ∞ such that the (I)-
envelope of the corresponding unit ball is not the whole bidual unit ball.

We can also give an explicit description of an equivalent norm on ℓ∞
with the property described in the above example. Its unit ball is

{x ∈ ℓ∞ : ‖x‖∞ ≤ 1 and |x1| + lim sup
n→∞

|xn| ≤ 1}.

This example, together with [13, Example 4.1], shows that “(I)-env(BX)
= BX∗∗” is not an isomorphic property.

The following questions seems to be open.

Question 2.4. Let X be a Grothendieck space. Is there an equivalent

norm on X such that the (I)-envelope of the corresponding unit ball is the

whole bidual unit ball?

Question 2.5. Is there a nonreflexive Grothendieck space X such that

(I)-env(BX) = BX?

Of course, we cannot have positive answers to both questions. Using
[13, Example 4.1] it is easy to see that if Question 2.5 has a positive answer,
the corresponding space X cannot contain an isomorphic copy of ℓ∞. Hence
a natural candidate for such an example is the space from [11].

3. Towards an easy proof of James’ characterization of reflex-
ivity. In this section we discuss the possibility to give an easy proof of
the famous James theorem [12, Theorem 5] saying that a Banach space
X is reflexive provided any element of X∗ attains its norm at some point
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of BX . For separable spaces there are easy proofs: see e.g. [3, Theorem 3.2] or
[9, Theorem 5.7].

Up to our knowledge there is no easy proof of the general case. James’
original proof can be divided into two steps. Suppose X is not reflexive.
First, one can show that there is a sequence an in X such that

inf
n∈N

dist(span{ai : i < n}, conv{ai : i ≥ n}) > 0.

The second step is a construction of a functional not attaining its norm
starting from such a sequence. Recently in [15] a new proof appeared for the
second step in the general nonseparable case. Let us recall the basic steps
of that proof (for details see [15]).

We first introduce some notions used in [15]. Let xn be a sequence in a
Banach space. A sequence bn is a block sequence of xn if there is a sequence
Fn of pairwise disjoint finite subsets of N and a sequence λi of real numbers
such that bn =

∑
i∈Fn

λixi for each n ∈ N. If
∑

i∈Fn
|λi| = 1 for each n ∈ N,

then bn is called a normalized block sequence. If moreover λi ≥ 0 for all i,
then bn is a convex block sequence.

(1) If BX∗ is weak∗ convex block compact, i.e. any sequence in BX∗ has a
weak∗ convergent convex block sequence, then the second step of the proof of
the James theorem follows from the Simons inequality [21]. This is contained
in [15, Lemma 1 and Corollary 2].

(2) If BX∗ is not weak∗ sequentially compact but is weak∗ block com-

pact (i.e. any sequence in BX∗ has a weak∗ convergent normalized block
sequence), then the second step of the proof can be replaced by an applica-
tion of the Rosenthal ℓ1-theorem and the Simons inequality. This is proved
in [15, Section 2.2].

(3) If BX∗ is not weak∗ block compact, then X contains an asymptotically

isometric copy of ℓ1, i.e. there is sequence an in BX and a sequence of
numbers δn ∈ (0, 1) converging to 1 such that

∥∥∥
n∑

i=1

λiai

∥∥∥ ≥
n∑

i=1

δi|λi|

for each n ∈ N and each n-tuple λ1, . . . , λn of real numbers. This is
[15, Theorem 2].

(4) If X contains an asymptotically isometric copy of ℓ1, then there is
an element of X∗ which does not attain its norm. This is the content of [15,
Theorem 3].

We show here an argument replacing the first two steps. Moreover, our
argument proves not only the second step but yields a complete proof. The
key ingredient is the following proposition.
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Proposition 3.1. Let X be a Grothendieck space such that the dual

unit ball is weak∗ block compact. Then X is reflexive.

Proof. Suppose that X is not reflexive. Then BX∗ is not weakly compact
and hence it is not weakly sequentially compact by the Eberlein–Šmulian
theorem [7, Theorem 3.59]. By the Grothendieck property it follows that
BX∗ is not weak∗ sequentially compact. Let ξn be a sequence in BX∗ with-
out a weak∗ converging subsequence. By the Rosenthal ℓ1-theorem [18] there
is a subsequence of ξn equivalent to the standard basis of ℓ1. (Indeed, if ξn

has no such subsequence, it contains a weakly Cauchy subsequence. Fur-
ther, any weakly Cauchy sequence ζn in X∗ converges in (X∗∗∗, w∗) to
a point Ξ ∈ X∗∗∗. Then clearly ζn converges in (X∗, w∗) to Ξ|X , hence
is weak∗ convergent.) Hence we can suppose that the sequence ξn itself
is equivalent to the basis of ℓ1, i.e. there is some constant c > 0 such
that

∥∥∥
n∑

i=1

λiξi

∥∥∥ ≥ c
n∑

i=1

|λi|

for all n ∈ N and all n-tuples λ1, . . . , λn of real numbers. In particular the
space

Y = span{ξn : n ∈ N}

is isomorphic to ℓ1. We claim that ξn has no weak∗ convergent normalized
block sequence. Suppose that ζn is such a sequence. Then 1

2(ζ2n − ζ2n+1)
is a normalized block sequence of ξn weak∗ converging to 0, hence we can
without loss of generality suppose that ζn weak∗ converges to 0. (This easy
remark is made in [15, Section 1.2].)

Now, by the Grothendieck property ζn weakly converges to 0. As all ζn

belong to Y and Y is isomorphic to ℓ1, it follows from the Schur theorem
[7, Theorem 5.19] that ζn norm converges to 0. However, as ζn is a normalized
block sequence of ξn, we get ‖ζn‖ ≥ c for all n ∈ N. This is a contradiction
completing the proof.

This proposition enables us to give the following proof of the James
theorem.

A proof of James’ characterization of reflexivity. Let X be a Banach
space such that every element of X∗ attains its norm at some point of
BX . By [8, Theorem 2.3], the (I)-envelope of BX is the whole BX∗∗ . By
[16, Theorem 1.4] or [13, Theorem 3.4], X has the Grothendieck property.
Suppose X is not reflexive. By Proposition 3.1, BX∗ is not weak∗ block
compact. By [15, Theorem 2], X contains an asymptotically isometric copy
of ℓ1 and hence, by [15, Theorem 3], there is an element of X∗ not attaining
its norm. This completes the proof.
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The proof just given is quite short but uses a large number of nontrivial
results. Nonetheless, it seems to the author that this proof makes the James
theorem more accessible. However, if we want an easy proof, we should give
an easy proof of the fact that X contains an asymptotically isometric copy
of ℓ1 whenever X is a nonreflexive space with (I)-env(BX) = BX∗∗ . Let us
briefly discuss what would be needed for that.

In [15, Section 3] the following quantities are defined for any bounded
sequence ξn in X∗:

δ(ξn)n = sup
x∈BX

lim sup
n→∞

ξn(x),

ε(ξn)n = inf{δ(ζn)n : (ζn)n is a normalized block sequence of (ξn)n}.

The main part of the proof of [15, Theorem 2] is a construction of an asymp-
totically isometric copy of ℓ1 in X starting from a bounded sequence ξn in
X∗ satisfying

ε(ξn)n = δ(ξn)n > 0.

Such a sequence ξn can be constructed by the diagonal method ([15, Lem-
ma 3]) from any sequence ξ0

n such that δ(ζn)n > 0 for any normalized block
sequence ζn of ξ0

n.

Now, if (I)-env(BX) = BX∗∗ , then (by Lemma 1.1)

δ(ξn)n = sup
F∈BX∗∗

lim sup
n→∞

F (ξn)

for each bounded sequence ξn in X∗. Note that the right-hand side is zero
if and only if ξn weakly converges to 0.

Hence we would need an easy proof of the following fact.

Fact. Let X be a Banach space such that (I)-env(BX) = BX∗∗ and

BX∗ is weakly block compact. Then X is reflexive.

This fact follows from Rosenthal’s and Schur’s theorems. In fact, we have
the following characterization of spaces not containing ℓ1:

Proposition 3.2. A Banach space Y contains no isomorphic copy of

ℓ1 if and only if BY is weakly block compact.

Proof. Suppose that Y contains no isomorphic copy of ℓ1 and yn is a
sequence in BY . By the Rosenthal theorem [18] there is a subsequence ynk

which is weakly Cauchy. Now, 1
2(yn2k

−yn2k+1
) is a normalized block sequence

of yn weakly converging to 0. Hence BY is weakly block compact.

Conversely, let yn be a sequence in BY equivalent to the standard basis
of ℓ1. Let zn be a normalized block sequence of yn weakly converging to 0.
By the Schur theorem zn norm converges to 0, which is impossible for any
normalized block sequence of yn.
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Hence, the proof of the above Fact goes as follows: If BX∗ is weakly
block compact, X∗ contains no copy of ℓ1. Now, in this case BX∗ is weak∗

sequentially compact by the Rosenthal theorem. If, moreover, (I)-env(BX)
= BX∗∗ , we find that BX∗ is weakly sequentially compact and hence X is
reflexive.

This argument is essentially the same as the one given above. The author
does not know whether one can give an essentially simpler proof of the Fact.
Neither is it clear whether one could give a comparably simple proof of the
James characterization of weak compactness.

4. Spaces in which the (I)-envelope adds nothing. In this section
we study the other extreme—the Banach spaces X for which (I)-env(X) = X
or at least (I)-env(BX) = BX . As an immediate consequence of Lemma 1.2
we get the following theorem.

Theorem 4.1. Let X be a Banach space. Then (I)-env(X) = X if and

only if the only weak∗ sequentially continuous elements of X∗∗ are those

from X.

Note, that weak∗ continuous elements of X∗∗ belong to X by [7, The-
orem 3.16]. Hence the condition in the above theorem means that weak∗

sequential continuity of a linear function on X∗ implies its weak∗ continuity.
It is the case for example if (BX∗ , w∗) is angelic (cf. [13, Theorem 3.1]) or,
more generally, if (BX∗ , w∗) is sequential (i.e., sequentially closed sets are
closed). We will see below that these sufficient conditions are not necessary.

If (I)-env(X) = X, then (I)-env(B) = B for all closed convex subsets
B ⊂ X, in particular (I)-env(BX) = BX . It seems unclear whether the
converse is true, i.e. we have the following problem.

Question 4.2. Let X be a Banach space such that (I)-env(BX) = BX .

Is then (I)-env(X) = X?

Note that the answer is positive if BX∗ is weak∗ sequentially compact.
In this case any weak∗ sequentially continuous element of BX∗∗ belongs to
(I)-env(BX) (see [13, Proposition 2.4]), hence the positive answer follows
from Theorem 4.1. Below we show that the answer is also positive for ℓ1(Γ )
spaces. However, the general answer seems to be unknown (cf. also Ques-
tion 2.5).

We also note that if (I)-env(BX) = BX , then (I)-env(B) = B for each
bounded closed convex subset of X. Hence the class of spaces in which
(I)-env(BX) = BX is stable with respect to isomorphisms and subspaces.

Now we will consider the space X = ℓ1(Γ ) for a set Γ with the standard
norm. The dual X∗ is canonically identified with the space ℓ∞(Γ ) which
is isometric to the space C(βΓ ) of continuous functions on the Čech–Stone
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compactification of the discrete space Γ . The bidual X∗∗ is then, by the Riesz
theorem, identified with the space of all finite signed Radon measures on βΓ ,
which canonically correspond to finite signed finitely additive measures on
the set Γ . We will use the latter description (see [6, Corollary IV.5.3]).

We have the following characterization of the (I)-envelope of the unit
ball of ℓ1(Γ ).

Proposition 4.3. Let X = ℓ1(Γ ) and µ be a finite signed finitely addi-

tive measure on Γ with ‖µ‖ ≤ 1. The following are equivalent.

(i) µ is σ-additive.

(ii) µ is weak∗ sequentially continuous.

(iii) µ ∈ (I)-env(BX).

Proof. The implication (iii)⇒(ii) follows from Lemma 1.2, and (i)⇒(ii)
follows from the Lebesgue dominated convergence theorem.

(ii)⇒(i). Suppose that µ is not σ-additive. Then there is a sequence An

of pairwise disjoint sets such that

µ
( ⋃

n∈N

An

)
6=

∑

n∈N

µ(An).

Let fn be the characteristic function of A1 ∪ · · · ∪ An and f be the charac-
teristic function of

⋃
n∈N

An. Then fn → f in the weak∗ topology of ℓ∞(Γ )
but µ(fn) does not converge to µ(f).

(i)⇒(iii). As the (I)-envelope of BX is absolutely convex, it is enough
to prove the implication for probability measures. Suppose that µ is a σ-
additive probability on Γ . Let Bn ր BX . Set

An = {γ ∈ Γ : eγ ∈ Bn},

where {eγ : γ ∈ Γ} is the canonical basis of ℓ1(Γ ). Then An ր Γ and hence
µ(An) ր 1 (by σ-additivity of µ).

Let ε > 0 be arbitrary. There is some n such that µ(An) > 1 − ε/2. As

the set conv Bn
w∗

clearly contains all probabilities supported by An, we get

µn =
µ|An

µ(An)
∈ conv Bn

w∗

.

Further,

‖µ − µn‖ = µ(Γ \ An) + (1 − µ(An)) < ε/2 + ε/2 = ε.

As ε > 0 is arbitrary, we get

µ ∈
⋃

n∈N

conv Bn
w∗

‖·‖

.

As Bn ր BX are arbitrary, we get µ ∈ (I)-env(BX).

From the above proposition we derive the following theorem.
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Theorem 4.4. Let Γ be any set. The following are equivalent.

(a) No cardinal number at most equal to cardΓ is real-valued measurable.

(b) (I)-env(Bℓ1(Γ )) = Bℓ1(Γ ).

(c) (I)-env(ℓ1(Γ )) = ℓ1(Γ ).

Proof. The implication (c)⇒(b) is trivial.

(b)⇒(a). Suppose that there is some real-valued measurable cardinal
number at most equal to cardΓ . This means that there is a σ-additive
probability measure µ on Γ such that µ({γ}) = 0 for all γ ∈ Γ . By the
previous proposition µ ∈ (I)-env(Bℓ1(Γ )). Further, clearly µ /∈ ℓ1(Γ ).

(a)⇒(c). Suppose that µ ∈ (I)-env(ℓ1(Γ )) \ ℓ1(Γ ). By Lemma 1.2 we
see that µ is weak∗ sequentially continuous, and so by Proposition 4.3 the
measure µ/‖µ‖ (and hence also µ) is σ-additive. Set

ν =
∑

γ∈Γ

µ({γ})eγ .

Then ν ∈ ℓ1(Γ ) and hence µ− ν 6= 0. So µ− ν is a nonzero σ-additive finite
measure on Γ which is zero on singletons, hence there is some real-valued
measurable cardinal at most equal to cardΓ .

As a consequence we get the following example.

Example 4.5.

(a) Let X = ℓ1([0, ω1]). Then (I)-env(X) = X. In this case (BX∗ , w∗) is

not angelic (even not sequential).

(i) Under the continuum hypothesis BX∗ is not weak∗ sequentially

compact.

(ii) Under Martin’s axiom and negation of the continuum hypothesis

BX∗ is weak∗ sequentially compact.

(b) Let X = ℓ1([0, 1]). Then (BX∗ , w∗) is not weak∗ sequentially compact.

(i) If there is no real-valued measurable cardinal at most equal to the

continuum, then (I)-env(X) = X.

(ii) If there is a real-valued measurable cardinal at most equal to the

continuum, then (I)-env(BX) ) BX .

(c) If there are no real-valued measurable cardinals (for example under

V = L), then (I)-env(ℓ1(Γ )) = ℓ1(Γ ) for any set Γ .

Proof. (a) The cardinal ℵ1 is not real-valued measurable by [22, §1,
Satz (A)]. Therefore (I)-env(X) = X. The fact that BX∗ is not sequential
is easy: (BX∗ , w∗) is homeomorphic to [−1, 1][0,ω1] and the set

{x ∈ [−1, 1][0,ω1] : {γ : x(γ) 6= 0} is countable}
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is sequentially closed but not closed. Assertion (i) follows from the well-
known fact that {0, 1}[0,1] is not sequentially compact. Assertion (ii) follows
from the result of Malykhin and Shapirovskĭı [14] that under Martin’s ax-
iom all compact spaces of cardinality at most equal to the continuum are
sequentially compact.

(b) We use again the fact that {0, 1}[0,1] is not sequentially compact and
Theorem 4.4.

Assertion (c) follows from Theorem 4.4. The fact that under V = L
there are no real-valued measurable cardinals follows from [22, §2, Satz 3]
and [19].

5. Final remarks. All the results of this paper are formulated for real
spaces. However, they can be easily transferred to the complex case as well
using the method described in [13, Section 5] and the following observations:

• The unit balls constructed in Theorem 2.2 and Example 2.3 are also
absolutely convex in the complex case.

• James’ characterization of reflexivity of complex spaces follows easily
from the real version.

• Propositions 3.1 and 3.2 are true for complex spaces, as also are the
Rosenthal and Schur theorems. (This is easy for the Schur theorem,
and for the Rosenthal theorem it is proved in [5].)
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