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Time regularity and functions of the Volterra operator

by

Zoltán Léka (Beer Sheva and Budapest)

Abstract. Our aim is to prove that for any fixed 1/2 < α < 1 there exists a Hilbert
space contraction T such that σ(T ) = {1} and

‖Tn+1 − Tn‖ � n−α (n ≥ 1).

This answers Zemánek’s question on the time regularity property.

1. Introduction. Let T denote a bounded linear operator on a Banach
space X . One of the basic asymptotical properties of the discrete semigroup
(Tn)n≥0 is the time regularity property. That is, we are interested in esti-
mates that have the form

(1.1) ‖Tn+1 − Tn‖ ≤ const · n−α, n ∈ N, α > 0,

and lower estimates as well. The above property, known as the time regu-
larity of the operator T, readily implies the norm stability of the differences
Tn+1−Tn (n ≥ 1), which means that the spectral inclusion σ(T ) ⊆ D∪{1}
holds. The converse statement is a well-known result in operator theory. The
Esterle–Katznelson–Tzafriri theorem states that if T is a power-bounded op-
erator on X such that σ(T )⊆D∪ {1} then limn→∞ ‖Tn+1−Tn‖ = 0 ([6], [8]).
The time regularity and uniform stability of the differences Tn+1−Tn have
been considered by various authors over a long time. We refer the reader to
[3]–[6], [8], [14], [16], [23], and the references therein.

For any fixed 1/2 ≤ α ≤ 1, it is not difficult to construct an operator
T with a large spectrum, i.e., with 1 being a nonisolated spectrum point,
where (1.1) holds and the estimate is sharp (e.g. [16, Example 4.5.2] and
Remark 3.5 at the end of Section 3 below). Not long ago N. Dungey gave
a characterization of the time regularity property by making an analogous
estimation for the operator semigroup (e−t(I−T ))t≥0, and by applying the
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uniform boundedness of the semigroup e−z(I−T ) on special domains of the
complex plane (see [4]). Yu. Lyubich [10] and independently B. Nagy and
J. Zemánek [15] characterized the operators for which ‖Tn+1−Tn‖ = O(1/n)
by means of Ritt’s resolvent condition. However, Esterle’s result [6, Corollary
9.5] shows that the fastest decay of the differences Tn+1−Tn is just O(1/n)
whenever T 6= I and σ(T ) = {1}. Moreover, the authors of [7], [13] and [5]
were able to determine the sharp constant in Esterle’s result using different
methods.

In [24] Zemánek asked the following question on the time regularity
property. Let T be a bounded linear operator on a Banach space, with
single-point spectrum {1}. Suppose that

‖Tn+1 − Tn‖ ≤ const

n1/2+ε

for a fixed 0 < ε < 1/2 and all n ∈ N. Does it actually follow that

‖Tn+1 − Tn‖ ≤ const

n

for all n ∈ N?

To tackle this issue, one of the most natural ways to construct operators
with a single-point (or minimal) spectrum is to look at functions of the
Volterra integral operator in Lp[0, 1], 1 ≤ p ≤ ∞. We recall that V is
defined by

(V f)(x) =

x�

0

f(s) ds (0 ≤ x ≤ 1).

A detailed study of the operator I − V was made in [14], where Montes-
Rodŕıguez, Sánchez-Álvarez and Zemánek proved for instance that I − V is
power-bounded if and only if p = 2. Using the same technique, they were
also able to show that the exact order of decay of the consecutive powers of
I − V is 1/

√
n (up to constant factors) in L2[0, 1]; for their general result

in Lp, see [14, Theorem 2.5]. Quite recently Yu. Lyubich [12] remarked that
if φ is a holomorphic function around 0, φ(0) = 1 and φ 6≡ 1 then the exact
time regularity of φ(V ) is also 1/

√
n (up to constant factors) whenever

φ(V ) is power-bounded. However, the operator I − V α for 0 < α < 1 fails
to satisfy this condition, but it satisfies Ritt’s resolvent condition in any
Lp[0, 1] (see [11]), hence the time regularity is O(1/n) here.

In this paper our goal is to supply a negative answer to Zemánek’s ques-
tion in the case of Hilbert spaces. We shall construct Hilbert space contrac-
tions with any possible time regularity under the minimal spectral assump-
tion. Quite recently in [9], we gave a new proof of the regularity of differences
of (I − V )n in L2[0, 1]. Exploiting this method, we can construct operators
with various regularity conditions. Instead of using functional calculus for V,
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we shall consider holomorphic functions of I − 2V. In the next section we
determine the regularity properties of differences of powers of bounded holo-
morphic functions on the unit disk, and address the same problem in a factor
algebra as well. Once this is done, we have enough preliminary knowledge to
handle the problem in the operator algebra. As regards the time regularity of
bounded linear operators, (local) smoothness properties on the boundaries
of holomorphic functions turn out to be the major tool here. The operator
construction is provided in the last section.

2. Time regularity and holomorphic functions. First we shall
study differences of the powers (1 − f)n (n ≥ 1) of holomorphic functions.
The disk algebra A(D) is the algebra of holomorphic functions on the unit
open disk D which can be extended continuously to D, the closure of D. We
also address the question in H∞(D), the algebra of bounded, holomorphic
functions, and in the factor algebra H∞(D)/ψH∞(D), where ψ stands for
the singular inner function

ψ(z) := exp

(
−1 + z

1− z

)
on D. To give the operator construction in Section 3, the role of the Banach
algebra H∞/ψH∞ and the related estimates are crucial. In fact, the essential
part of the construction is based on function-theoretical estimates which has
nothing to do with operator theory. Applying an earlier result of Sarason
on the factor algebra, which provides a link to operator algebra, we shall
obtain analogous estimates for operators on Hilbert space. Actually, in the
disk algebra or in H∞(D) it is quite straightforward to produce functions
with various time regularity. However, to get analogous results in the factor
algebra as well, we will need a much more detailed analysis of the previous
cases.

For a continuous function f on [0, 2π], the continuity modulus of f is the
increasing function

ω(f ; t) := sup{|f(x)− f(y)| : |x− y| ≤ t and 0 ≤ x, y ≤ 2π}.
A Dini-continuous function is a continuous function whose continuity mod-
ulus ω(f ; t) satisfies the inequality

2π�

0

ω(f ; t)

t
dt <∞.

We say that a curve C in the complex plane is Dini-smooth if it has a
parametrization w(τ), 0 ≤ τ ≤ 2π, such that w′(τ) is Dini-continuous and
6= 0. Obviously, the definition does not depend on the parameter interval.
One can easily check that a C1,ε curve (i.e. w′ is Hölder continuous with



4 Z. Léka

exponent ε) is Dini-smooth. Conformal maps onto domains with a Dini-
smooth boundary have nice properties on the boundary, as the following
Kellogg–Warschawski theorem shows. The result has many general forms
and we refer the reader to [18, pp. 48–49] for the proof of each one.

Theorem 2.1 (Kellogg–Warschawski). Let f map D conformally onto
the inner domain of a Dini-smooth Jordan curve C. Then f ′ has a contin-
uous extension to D and

f(ζ)− f(z)

ζ − z
→ f ′(z) 6= 0 as ζ → z, ζ, z ∈ D.

This theorem is one of the major tools that we require in order to have
our operator construction in the regularity problem. Actually, we shall prove
that if the range of a function f ∈ A(D) has a C1,ε boundary satisfying a
few reasonable conditions, then the operator I − f(I − 2V ) in L2[0, 1] has
time regularity n−1/(1+ε) up to constant factors, that is,

‖I − f(I − 2V )‖2 � n−1/(1+ε).
The construction is based on a few preliminary lemmas. Here is the first
one.

Lemma 2.2. Let 0 < ε < 1. Then the closed curve

wε : t 7→ |t3/3− t|1+ε + i(t3/3− t)(1− t2)
is Dini-smooth on [−1, 1].

Proof. Since the function s 7→ |s|ε is ε-Hölder continuous on [−1, 1], a
straightforward calculation shows that w′ε 6= 0 is ε-Hölder continuous as
well. Hence wε is a C1,ε smooth curve, so it is Dini as well.

From now on we shall denote the inner domain of the Jordan curve wε
by Ωα, where α := 1/(1 + ε). Next we provide elements of A(D) ⊆ H∞(D)
with sharp regularity properties.

Lemma 2.3. For a fixed 1/2 < α < 1 and 0 < β ≤ 1/2, there exists a
function fα ∈ A(D) such that fα(1) = 0, |f ′α(1)| ≤ β, ‖fα‖∞ ≤ 2β,

0 < lim
θ→0

|fα(eiθ)|1/α

Re fα(eiθ)
<∞

and
‖(1− fα)nfα‖∞ � n−α (n ≥ 1).

Proof. From the Riemann mapping theorem and Carathéodory’s exten-
sion theorem, we can find a conformal map h from D onto Ωα such that
limz→1 h(z) = 0. Now we shall define a modification of h. For a sufficiently
small a > 0, we claim that the convex combination

fα(z) := (1− a)β
1− z

2
+ ah(z) (z ∈ D)
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satisfies the required conditions. Obviously, fα(1) = 0, 0 < |f ′α(1)| ≤ β
and ‖fα‖∞ ≤ 2β for small a because h and h′ are bounded on D from
Theorem 2.1.

Now we prove that fα has the required regularity property.

Since limz→1, |z|≤1 h(z) = 0 and ε = (1 − α)/α ∈ (0, 1), the definition of

the curve wε and the homeomorphic extension of h onto Ωα yield

(2.1) lim
θ→0

|h(eiθ)|1+ε

Reh(eiθ)
= lim

θ→0

|Imh(eiθ)|1+ε

Reh(eiθ)
= 1.

We shall see that fα has the same property, i.e. limθ→0 |fα(eiθ)|1+ε/Re fα(eiθ)
> 0. Set u(θ) = Imh(eiθ) and v(θ) = Reh(eiθ). Since u ∈ C1(D), an ele-
mentary reasoning shows that

lim
θ→0

u(θ)

2 sin(θ/2)
= lim

θ→0
u′(θ) = u′(0).

Moreover,

(2.2) lim
θ→0

v(θ)

|sin(θ/2)|1+ε
= |2u′(0)|1+ε > 0.

In fact, from (2.1) we get

lim
θ→0

(1 + ε)|u(θ)|εu′(θ)
v′(θ)

= 1,

hence v′(0) = 0. Then u′(0) 6= 0 because h′(0) = u′(0) − iv′(0) 6= 0 from
Theorem 2.1. On the other hand,

1 = lim
θ→0

|sin(θ/2)|1+ε

|u(θ)|1+ε
v(θ)

|sin(θ/2)|1+ε
=

1

|2u′(0)|1+ε
lim
θ→0

v(θ)

|sin(θ/2)|1+ε
,

which gives (2.2). Now, for small a > 0, we see that

lim
θ→0

|fα(eiθ)|1+ε

Re fα(eiθ)
= lim

θ→0

|(1− a)β cos(θ/2)− au(θ)(sin(θ/2))−1|1+ε

(1− a)β|sin(θ/2)|1−ε + av(θ)|sin(θ/2)|−1−ε

=
((1− a)β − 2au′(0))1+ε

a|2u′(0)|1+ε
=: M

exists and can be arbitrarily large.

Next we note that |1 − fα(z)| ≤ 1 (z ∈ D), and equality holds if and
only if z = 1. Indeed, fα(z) is a convex combination of h(z), β(1− z)/2, and
these two functions have these properties. Since fα(eiθ) → 0 as θ → 0, for
every sufficiently small θ we have |fα(eiθ)|2 < M−1|fα(eiθ)|1+ε. Hence, for
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any sufficiently small positive η and sufficiently large n,

‖(1− fα)nfα‖∞ = sup
|θ|≤η

|(1− fα(eiθ))nfα(eiθ)|

= sup
|θ|≤η

(
1−2

Re fα(eiθ)

|fα(eiθ)|1+ε
|fα(eiθ)|1+ε+ |fα(eiθ)|2

)n/2
|fα(eiθ)|

≤ sup
|θ|≤η

(1−M−1|fα(eiθ)|1+ε)n/2|fα(eiθ)|

≤ sup
0≤t≤1

(1−M−1t1+ε)n/2t < (2eMn−1)1/(1+ε).

In a similar way, for all sufficiently large n we get

‖(1− fα)nfα‖∞ ≥ sup
|θ|≤η

∣∣1− 2M−1|fα(eiθ)|1+ε
∣∣n/2|fα(eiθ)| ≥ 1

e1/M
1

nα
,

and the lemma follows.

Now we shall prove that the sequence {(1−fα)n}n in Lemma 2.3 has the
same time regularity in the factor algebra H∞/ψH∞ as in A(D) or H∞(D);
that is, the smoothness of fα at 1 determines the regularity in the factor
algebra as well. At this point we will utilize and develop our earlier method
presented in [9], which provides a geometric picture of the values of the
above function sequence. Intuitively speaking, we can exploit the fact that
1 is a singular point of the map ψ (the argument of ψ is changing rapidly),
and that |(1 − fα)nfα| can attain its maximum arbitrarily close to 1 if n
is sufficiently large. These observations make it possible to prove that no
nontrivial approximation of (1− fα)nfα over ψH∞ is possible, because the
argument of ψhn, for any 0 6= hn ∈ H∞, increases rapidly compared with
that of (1− fα)nfα.

Let Pr(θ) denote the Poisson kernel on the unit disk, and Qr(θ) its
harmonic conjugate:

Pr(θ) =
1− r2

1− 2r cos θ + r2
, Qr(θ) =

2r sin θ

1− 2r cos θ + r2
.

Then a simple calculation shows that the following properties hold.

Lemma 2.4. For any positive constant c,

(i) P1−t(
√
ct+O(t))→ 2/c as t ↓ 0;

(ii)
∂Q1−t
∂θ

∣∣∣∣
θ=
√
ct+O(t)

∼ − 2

ct
as t ↓ 0.

We recall that H∞(D) is the dual of L1(T)/H1
0 (D), where H1

0 (D) denotes
the elements of the Hardy space H1(D) which vanish at 0. For simplicity,
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we shall introduce a notation for the quantity from the previous lemma,

M := lim
θ→0

|fα(eiθ)|1/α

Re fα(eiθ)
.

We shall also use the upper estimate for every large n from the proof of
Lemma 2.3:

(2.3) ‖(1− fα)nfα‖∞ < (2eM/n)α.

Now we can prove the main statement of this section.

Theorem 2.5. In the factor algebra H∞/ψH∞, we have

M1n
−α ≤ ‖(1− fα)n+1 − (1− fα)n‖ ≤M2n

−α (n ≥ 1)

with positive constants M1 and M2.

Proof. The right inequality follows immediately from Lemma 2.3. For
the lower bound, we shall provide a simple geometric description of the
values of the difference (1− fα)n+1 − (1− fα)n on the set

In := {(1−K(M/n)2α)eiθ}, where θ ∈
[
Mα

nα
−M

2απ

n2α
,
Mα

nα
+
M2απ

n2α

]
=: Sn,

where the value of the constant K > 0 will be determined later. We claim
that ((1− fα)nfα)(In) lies in one half of an annulus Dn, for any sufficiently
large n. To verify this, first we shall estimate the modulus on In. Since
fα ∈ C1(D), for any z ∈ In we have

fα(z) = fα(exp(i(M/n)α)) + ν(z),

where |ν(z)| = O(n−2α). From the inequality |fα(eiθ)|2 < M−1|fα(eiθ)|1+ε,
if θ is sufficiently small, we find as in the proof of Lemma 2.3 that

|1− fα(exp(i(M/n)α))|2 < 1−M−1|fα(exp(i(M/n)α))|1+ε

for n large enough. Moreover, from Theorem 2.1 we note that |fα(eiθ)| ∼
|θf ′α(1)| if θ → 0. Then for any large n (recall that ε = (1− α)/α)

|(1− fα(z))nfα(z)| =
(
|1− fα(exp(i(M/n)α))|2

− 2 Re(1− fα(exp(i(M/n)α)))ν(z) + |ν(z)|2
)n/2|fα(z)|

<
(
1−M−1|fα(exp(i(M/n)α))|1+ε +O(n−2α)

)n/2|fα(z)|

∼
(

1−M−1 |M
αf ′α(1)|1+ε

n

)n/2
|fα(exp(i(M/n)α))|

∼ exp
(
−|f ′α(1)|1+ε/2

)
|f ′α(1)|Mαn−α =: C1n

−α.

In a similar way, for an appropriate δ > 0 and any z ∈ In we get

|1− fα(z)|2 > 1− 2(M−1 + δ)|fα(exp(i(M/n)α))|1+ε +O(n−2α)
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and

|(1− fα(z))nfα(z)| > 2
3 exp(−|f ′α(1)|1+ε)|f ′α(1)|Mαn−α =: C2n

−α.

Moreover, one can easily check that

max
z1,z2∈In

|arg[(1−fα(z1))
nfα(z1)]−arg[(1−fα(z2))

nfα(z2)]| ≤ O(n·n−2α+n−α)

which tends to 0 as n→∞. In fact, the above arguments readily imply that
there indeed exists a βα,n ∈ [−π, π] such that

(2.4)
((1−fα)nfα)(In) ⊆ Dn := {reiθ : |θ−βα,n| ≤ π/2 and C2n

−α ≤ r ≤ C1n
−α}

for any sufficiently large n.
Now we are going to calculate the regularity of the norm of the sequence

{(1 − fα)n+1 − (1 − fα)n}n in H∞(D)/ψH∞(D). From a standard weak-∗
compactness argument, there exist functions hn ∈ H∞ = (L1/H1

0 )∗ such
that ‖(1 − fα)nfα − ψhn‖∞ = ‖(1 − fα)nfα + ψH∞‖. Recall that ψhn is
the best approximation of the function (1 − fα)nfα over ψH∞, hence we
can assume for instance that .75‖(1 − fα)nfα‖∞ ≤ ‖ψhn‖∞ = ‖hn‖∞ ≤
1.25‖(1 − fα)nfα‖∞, as otherwise the proof is done. From now on we will
discuss two separate cases for every large n. The first is when hn has a
relatively large or small modulus on In, and in this case one can readily get
estimates for the norm in the factor algebra. The second case deals with the
remaining situation.

Case 1a. Let us assume that either

‖χIn · hn‖∞ ≥ (5e2K/4)‖χIn(1− fα)nfα‖∞ or

min
z∈In
|hn(z)| ≤ (3e2K/4) min

z∈In
|((1− fα)nfα)(z)|

where χIn denotes the characteristic function of In.
From Lemma 2.4(i), we have

|ψ(z)| = exp(−P1−K(M/n)2α(θ)) ∼ e−2K

uniformly for any z ∈ In. The assumption here and the inclusion (2.4) tell
us that we can pick a z′ in In such that

|((1− fα)nfα)(z′)− ψ(z′)hn(z′)| & e−2K |hn(z′)| − |((1− fα)nfα)(z′)|

∼ 1

4
‖χIn(1− fα)nfα‖∞ ≥

C2

4
n−α,

respectively

|((1− fα)nfα)(z′)− ψ(z′)hn(z′)| & 1

4
min
z∈In
|((1− fα)nfα)(z)| ≥ C2

4
n−α.

That is,

‖(1− fα)nfα − ψH∞‖ ≥
C2

4
n−α.
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Case 1b. Let us assume that

‖χIn · hn‖∞ ≤ (3e2K/4)‖χIn(1− fα)nfα‖∞ or

min
z∈In
|hn(z)| ≥ (5e2K/4) min

z∈In
|((1− fα)nfα)(z)|.

As in Case 1a we can get

‖(1− fα)nfα − ψH∞‖ ≥
C2

4
n−α.

Case 2. In this remaining case, we see from the definition of Dn that(
min
z∈In
|hn(z)|

)−1
‖χInhn‖∞ <

5C1

3C2
=

5

2
exp(|f ′α(1)|1+ε/2).

Next, let us estimate the derivative of arg hn on In. We recall that if z = reiθ,

d

dθ
arg hn(z) = Re

[
z
h′n(z)

hn(z)

]
.

Now let γ denote a positively oriented circle around any z0 ∈ In with radius
r = .75K(M/n)2α. From Cauchy’s integral formula, our assumptions, the
inequality (2.3), the inclusion (2.4) and the inequality |f ′α(1)| ≤ 1/2 in
Lemma 2.3 it follows that∣∣∣∣ ddθ arg hn(z0)

∣∣∣∣ ≤ (min
z∈In
|hn(z)|

)−1 1

2π

∣∣∣∣�
γ

hn(z)

(z − z0)2
dz

∣∣∣∣
≤
(

min
z∈In
|hn(z)|

)−1
max
z∈In
|hn(z)|r−1

≤ 4

3

(
min
z∈In
|hn(z)|

)−1
‖(1− fα)nfα‖∞r−1

<
4(2eM)α

3C2

(
min
z∈In
|hn(z)|

)−1
‖χIn(1− fα)nfα‖∞r−1

<
32e2

3e2K |f ′α(1)|

(
min
z∈In
|hn(z)|

)−1
max
z∈In
|hn(z)|r−1

<
320e2M−2α

9Ke2K |f ′α(1)|
exp(|f ′α(1)|1+ε/2)n2α.

Now let us choose K such that the coefficient of (n/M)2α above is 1. More-
over, for the phase of the singular inner function ψ, we have

arg

[
exp

(
−1 + reiθ

1− reiθ

)]
= −Qr(θ),

and Lemma 2.4(ii) tells us that

− d

dθ
Q1−K(M/n)2α(θ) ∼ 2(n/M)2α if θ ∈ Sn and n→∞.
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It then follows that the function

γn : θ 7→ arg[ψ((1− n−2α)eiθ)hn((1− n−2α)eiθ)]

is strictly increasing on the interval Sn. Actually, the increment of γn is
asymptotically greater than

2πM2α

n2α
γ′n(ξ) ≥ 2πM2α

n2α

(
2n2α

M2α
− n2α

M2α

)
= 2π,

for some ξ ∈ Sn, relying on the condition on K. Hence we infer that the
graph of ψ(z)hn(z), z ∈ In, meets the line sn : r 7→ rei(βα,n+π), r ≥ 0. This
gives a lower bound for the norms of (1− fα)nfα in H∞/ψH∞:

‖(1− fα)nfα − ψhn‖∞ ≥ sup
z∈In
|((1− fα)nfα)(z)− ψ(z)hn(z)|

≥ dist(((1− fα)nfα)(In), sn)

≥ dist(Dn, sn) = C2/n
α.

We conclude that

‖(1− fα)n+1 − (1− fα)n + ψH∞‖ ≥ C2

4nα

for any sufficiently large n, which is what we intended to show.

3. Time regularity of the operators I − f(I − 2V ). We recall that
the shift operator is the operator U on L2(T) defined by (Uf)(z) = zf(z),
and ψ is the singular inner function

ψ(z) = exp

(
−1 + z

1− z

)
on D. The factor algebra H∞/ψH∞ is closely related to holomorphic func-
tions of the compressed shift operator on a proper subspace. In fact, let Pψ
denote the orthogonal projection from H2(D) onto H2(D)	ψH2(D), and let
T stand for the compression of U into PψH

2(D), that is, T := PψUPψ. A nat-
ural boundedH∞-calculus of T arises from the definition φ(T ) := Pψφ(U)Pψ
for φ ∈ H∞(D) (see [20], [21]). From Sarason’s theorem we know that the al-
gebra H∞(T ) is actually isometrically isomorphic to the algebra H∞/ψH∞

[20, Proposition 2.1]. Sarason also proved that (I + V )−1 is unitarily equiv-
alent to the operator (T + I)/2 [19, Theorem 1]. Moreover, from Pedersen’s
similarity relation we have D−1(I + V )−1D = I − V, where D denotes the
multiplication operator (Df)(x) = e−xf(x) on L2[0, 1]. Hence the preceding
considerations tell us that I − 2V is similar to the contraction T. We note
that T is actually the Sz.-Nagy–Foiaş function model of the Cayley trans-
form (I−V )(I+V )−1 (see [17, 1.4.12 Theorem]) and the latter is similar to
I−2V [23, p. 61]. Now let J : L2[0, 1]→ H2	ψH2 denote the bounded linear
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bijection for which J−1TJ = I−2V. The similarity between the two also en-
ables us to define an H∞-calculus for I−2V , namely φ(I−2V ) := J−1φ(T )J
for φ ∈ H∞(D). We also immediately see that σ(T ) = {1}.

Now let us choose a function fα ∈ A(D) whose existence is guaranteed by
Lemma 2.3 (with a fixed β). One can also assume that (1−fα)(D) ⊆ D, hence
I − fα(T ) is a contraction; that relies on von Neumann’s inequality. Then
we arrive at the main theorem of this section, which proves the existence of
contractions with a small spectrum and various time regularity.

Theorem 3.1. Fix an 1/2 < α < 1. Then there exist positive constants
M1,M2 such that

M1n
−α ≤ ‖(I − fα(T ))n+1 − (I − fα(T ))n‖ ≤M2n

−α

and σ(fα(T )) = {0}.
Proof. To get the upper bound, we note that

‖(I − fα(T ))n+1 − (I − fα(T ))n‖ ≤ ‖(1− fα)n+1 − (1− fα)n‖∞ ≤M2n
−α

from Lemma 2.3. To see that the estimate is indeed sharp, we recall that

‖(I−fα(T ))n+1−(I−fα(T ))n‖ = ‖(1−fα)n+1−(1−fα)n+ψH∞‖ ≥M1n
−α,

relying on [20, Proposition 2.1] and Theorem 2.5.
Let us now prove that the spectrum of I − fα(T ) is minimal. Obviously,

fα(T ) can be approximated by pn(T ) in the operator norm topology, where
the pn are polynomials converging uniformly to fα on D. We note that the
spectrum function (as a compact set-valued function) is upper semicontin-
uous (see e.g. [2, Theorem 3.4.2]). Here σ(T ) = {1} and fα(1) = 0, hence
σ(fα(T )) = {0}, that is, σ(I − fα(T )) = {1}.

We remark here that Lemma 2.3 with small β guarantees the existence
of fα(T ) with small norm from von Neumann’s inequality. Actually, The-
orem 3.1 gives that one can find operators with one-point spectrum and
various time regularity as quasinilpotent perturbations of the identity. The
discussion prior to the above theorem leads to the following corollary.

Corollary 3.2. Fix 1/2 < α < 1. Let V denote the Volterra integral
operator on L2[0, 1]. Then there exist positive constants M1,M2 such that

M1n
−α ≤ ‖(I − fα(I − 2V ))n+1 − (I − fα(I − 2V ))n‖2 ≤M2n

−α.

Remark 3.3. We note that the regularity of f ∈ A(D) at 1 seems to
be essential for the time regularity of the operator I − f(I − 2V ). In fact,
if we choose any 0 6≡ f ∈ A(D) such that f has a holomorphic extension
around 1 and f(1) = 0, we can apply Lyubich’s result [12, Theorem 1.3] and
the remarks thereafter to show that

‖(I − f(I − 2V ))n+1 − (I − f(I − 2V ))n‖ � n−1/2
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whenever I−f(I−2V ) is power-bounded. (Indeed, one can readily see that
f(I − 2V ) agrees with the Riesz–Dunford operator

1

2π

�

γ

f(z)R(z, I − 2V ) dz,

where γ is any positively oriented circle around 1 and R(z, I − 2V ) denotes
the resolvent of I − 2V at z. By the change of variable z 7→ −2z + 1, we
get f(I − 2V ) = f1(V ), where f1(z) := f(−2z + 1), which is holomorphic
around 0.) It would be interesting to know whether the time regularity
remains the same if f has only a C2 boundary at 1 (with a few reasonable
conditions).

Remark 3.4. We remark that now one can construct operators with
minimal spectrum which are not power-bounded but have various time reg-
ularity. In fact, fix an α ∈ (1/2, 1) and let us choose a contraction T in
L2[0, 1] such that σ(T ) = {1} and ‖Tn+1 − Tn‖ � n−α. Let us consider the
Tomilov–Zemánek matrix T of T on L2[0, 1]⊕ L2[0, 1] ([22])

T =

(
T T − I
0 T

)
.

Then straightforward calculations show that σ(T ) = {1} and

T n+1 − T n =

(
Tn+1 − Tn nTn−1(T − I)2 + Tn(T − I)

0 Tn+1 − Tn

)
(see [22, Lemma 2.1]). Hence ‖T n+1 − T n‖ = O(n−2α+1), where 2α − 1 ∈
(0, 1), but ‖T n‖ ≥ const·(n−1)1−α. However, it is an open question whether
there exists an operator with one-point spectrum and unbounded powers
such that the norms of the differences of consecutive powers have order 1/n.
If one allows the spectrum to be large, the reader can see [7] for such an
example.

Remark 3.5. Lastly, we note that one can easily construct operators
with a given time regularity if one allows the spectrum to be large. We refer
the reader to [4] and [16] for some examples. Using the geometric properties
of Ωα from Section 2, we can provide the following simple construction. Let
L2
a(Ωα) denote the Bergman space over the closure of Ωα. The operator Mz

is the usual multiplication operator f 7→ z · f on L2
a(Ωα) and σ(Mz) = Ωα.

Then the multiplier norms (see e.g. [1, p. 21]) satisfy

‖(I −Mz)
n+1 − (I −Mz)

n‖ = ‖(I −Mz)
nMz‖ = ‖M(1−z)nz‖

= sup
z∈∂Ωα

|1− z|n|z| � n−α,

following the line of reasoning of Lemma 2.3.
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