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Sufficient conditions for the spectrality of self-affine
measures with prime determinant

by

Jian-Lin Li (Xi’an)

Abstract. Let µM,D be a self-affine measure associated with an expanding matrix
M and a finite digit set D. We study the spectrality of µM,D when |det(M)| = |D| = p
is a prime. We obtain several new sufficient conditions on M and D for µM,D to be a
spectral measure with lattice spectrum. As an application, we present some properties of
the digit sets of integral self-affine tiles, which are connected with a conjecture of Lagarias
and Wang.

1. Introduction. Let M ∈Mn(Z) be an expanding integer matrix, and
D ⊂ Zn be a finite digit set of cardinality |D|. In the case when |det(M)| =
|D| = p is a prime, we investigate the spectrality of the self-affine measure
µM,D as well as its application to the tile digit set D. It is known that the
self-affine measure µ := µM,D is the unique probability measure satisfying

µ =
1

|D|
∑
d∈D

µ ◦ φ−1d ,

and is supported on the compact set T ⊂ Rn, where T := T (M,D) is
the attractor (or invariant set) of the affine iterated function system (IFS)
{φd(x) = M−1(x + d)}d∈D. This is the unique compact set satisfying T =⋃
d∈D φd(T ). The self-affine measure µM,D is called spectral if there exists

a subset Λ ⊂ Rn such that E(Λ) := {eλ(x) = e2πi〈λ,x〉 : λ ∈ Λ} forms an
orthogonal basis (Fourier basis) for L2(µM,D). The set Λ is then called a
spectrum for µM,D; we also say that (µM,D, Λ) is a spectral pair. A spectral
measure is a natural generalization of the spectral set. The notion of spectral
set was introduced by Fuglede [5], whose famous spectrum-tiling conjecture
has attracted much interest, although no desired result in higher dimensions
has been obtained. In most cases, it is difficult to establish the spectrum-
tiling relation. So the spectrality of the self-affine measure µM,D becomes of
considerable interest (see [2], [3], [4], [15] and the references cited therein).
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Here we consider the following question: Under what conditions is µM,D

a spectral measure?
The spectrality of µM,D is directly connected with the Fourier transform

µ̂M,D(ξ) :=
�
e2πi〈x,ξ〉 dµM,D(x) =

∞∏
j=1

mD(M∗−jξ) (ξ ∈ Rn)

and its zero set Z(µ̂M,D) = {ξ ∈ Rn : µ̂M,D(ξ) = 0}, where

mD(x) =
1

|D|
∑
d∈D

e2πi〈d,x〉 (x ∈ Rn).

Let Θ0 = {x ∈ Rn : mD(x) = 0}. Then Z(µ̂M,D) =
⋃∞
j=1M

∗jΘ0, where M∗

denotes the transposed conjugate matrix of M , in fact M∗ = M t.
When dealing with the spectrality of a self-affine measure, the notion of

compatible pair plays an important role. Dutkay and Jorgensen [2, Conjec-
ture 2.5], [4, Conjecture 1.1] (see also [3, Problem 1]) conjectured that for
an expanding integer matrix M ∈Mn(Z) and a finite digit set D ⊂ Zn with
0 ∈ D, if there exists a subset S ⊂ Zn with 0 ∈ S such that (M−1D,S)
is a compatible pair (or (M,D,S) is a Hadamard triple), then µM,D is a
spectral measure. This conjecture is proved in some special cases. It should
be pointed out that in higher dimensions (n ≥ 2), there are many spec-
tral measures that cannot be obtained from a compatible pair. Besides the
condition of compatible pair, there are a few other conditions guarantee-
ing that µM,D is a spectral measure. For example, in the special case when
|det(M)| = |D| = p is a prime, the author [15] obtained the following con-
ditions for µM,D to be a spectral measure with lattice spectrum.

Theorem A. Let M ∈Mn(Z) be an expanding matrix such that |det(M)|
= p is a prime and one of the following three conditions holds:

(a) pZn 6⊆M2(Zn);
(b) p(Zn \M(Zn)) ⊆M(Zn \M(Zn));
(c) pZ2 6= M2(Z2) in the case when n = 2.

Let D ⊂ Zn be a finite digit set of cardinality |D| = |det(M)| with 0 ∈ D. If
Z(µ̂M,D)∩Zn 6= ∅ or if there are two points s1, s2 ∈ Rn with s1−s2 ∈ Zn such
that the exponential functions es1(x), es2(x) are orthogonal in L2(µM,D),

then there exists r ∈ N0 = {0, 1, 2, . . .} such that D = M rD̃, where D̃ is
a complete set of coset representatives of Zn/M(Zn), and hence µM,D is a
spectral measure with lattice spectrum.

This gives several sufficient conditions, different from the condition of
compatible pair, for a self-affine measure to be a spectral measure with
lattice spectrum. In the present paper we further the above research by pro-
viding some new sufficient conditions for µM,D to be a spectral measure with
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lattice spectrum. This constitutes the content of Section 2. As an applica-
tion, we obtain in Section 3 some properties of the digit set D of an integral
self-affine tile T (M,D) with prime determinant det(M). These properties
are closely connected with a conjecture of Lagarias and Wang.

2. Sufficient conditions for spectrality. The first main result on the
spectrality of µM,D with prime determinant det(M) is the following.

Theorem 2.1. Let M ∈Mn(Z) be an expanding matrix such that |det(M)|
= p is a prime and one of the following three conditions holds:

(d) pZn 6⊆M∗2(Zn);
(e) p(Zn \M∗(Zn)) ⊆M∗(Zn \M∗(Zn));
(f) pZ2 6= M∗2(Z2) in the case when n = 2.

If D ⊂ Zn is a finite digit set of cardinality |D| = |det(M)| with 0 ∈ D such
that Z(µ̂M,D)∩Zn 6= ∅, then there exists r ∈ N0 such that D = M rD̃, where

D̃ is a complete set of coset representatives of Zn/M(Zn), and hence µM,D

is a spectral measure with lattice spectrum.

Note that for a non-singular matrix M ∈ Mn(R), the condition pZn ⊆
M2(Zn) is equivalent to pM−2(Zn) ⊆ Zn, which implies A := pM−2 ∈
Mn(Z), equivalently, A∗ = pM∗−2 ∈ Mn(Z). So, A∗(Zn) ⊆ Zn or pZn ⊆
M∗2(Zn). This shows that pZn ⊆M2(Zn) is equivalent to pZn ⊆M∗2(Zn),
that is, (d) is equivalent to (a). In the same way, pZn = M2(Zn) is equivalent
to pM−2(Zn) = Zn, which implies A := pM−2 ∈ Mn(Z) is a unimodular
matrix (i.e. A,A−1 ∈ Mn(Z)), equivalently, A∗ = pM∗−2 ∈ Mn(Z) is also a
unimodular matrix. So, A∗(Zn) = Zn or pZn = M∗2(Zn). This shows that
pZn = M2(Zn) and pZn = M∗2(Zn) are equivalent, that is, (f) and (c) are
equivalent.

In general, M∗(Zn) 6= M(Zn), and we cannot expect that the measures
µM,D and µM∗,D have the same spectrality. There exists an expanding ma-
trix M ∈Mn(Z) and a finite digit set D ⊂ Zn such that µM,D is a spectral
measure but µM∗,D is not (see [14, Remark 3.8(ii)]). Even so, we modify
the method of [15] to give a complete proof of Theorem 2.1. Moreover, the
method below leads to another new sufficient condition for µM,D to be a
spectral measure with lattice spectrum.

Proof of Theorem 2.1. We first write D = M rD̃ and D̃ = {d0 = 0,
d1, . . . , dp−1} ⊂ Zn, where D̃ 6⊂ M(Zn) and r ≥ 0 is an integer (see [15,
Lemma 1]). Let l ∈ Z(µ̂M,D)∩Zn. From µ̂M,D(0) = 1, we have l ∈ Zn \ {0}.
Since M∗(Zn) ⊂ Zn, we divide the proof into two cases: l 6∈ M∗(Zn) and
l ∈M∗(Zn).



76 J.-L. Li

Case 1: l 6∈M∗(Zn). It follows from l ∈ Z(µ̂M,D) that

0 = µ̂M,D(l) =
∞∏
j=1

mD(M∗−jl) =
∞∏
j=1

mD̃(M∗(r−j)l)(2.1)

=
∞∏
j=1

mD̃(M∗−jl).

So, there exists a positive integer k := k(l) such that mD̃(M∗−kl) = 0. Let
M † = pM−1. Then M † ∈Mn(Z) and

(2.2)

p−1∑
j=0

e2πi〈(M
†)kdj ,l〉/pk = 0,

which yields the following relation:

(2.3) {0, 〈(M †)kd1, l〉, . . . , 〈(M †)kdp−1, l〉}
≡ {0, pk−1, 2pk−1, . . . , (p− 1)pk−1} (mod pk).

See [15, Lemma 2]. Since l ∈ Zn\M∗(Zn), we have (M †)∗l ∈ (M †)∗(Zn)\pZn,
hence there exists some w ∈ Zn \ {0} such that

(2.4) p - 〈(M †)∗l, w〉.
For any integer h with |h| = 1, . . . , p− 1, (2.4) gives

(2.5) p - 〈(M †)∗hl, w〉 and p - 〈l,M †hw〉,
which yields hl 6∈M∗(Zn) and hw 6∈M(Zn). This shows that

{0, l, 2l, . . . , (p− 1)l}
is a complete set of coset representatives of Zn/M∗(Zn), and

{0, w, 2w, . . . , (p− 1)w}
is a complete set of coset representatives of Zn/M(Zn). So, each λ ∈ Zn has
a unique representation

(2.6) λ = jl +M∗β for some 0 ≤ j ≤ p− 1 and β ∈ Zn.
Also (M †)∗l ∈ Zn has the form

(2.7) (M †)∗l = j0l +M∗γ for some 0 ≤ j0 ≤ p− 1 and γ ∈ Zn.
Claim 1. Each of the assumptions (d)–(f) guarantees that j0 6= 0 in

(2.7).

Proof of Claim 1. If j0 = 0 in (2.7), then

(2.8) (M †)∗l = M∗γ for some γ ∈ Zn.
It follows from (2.6) and (2.8) that for each λ ∈ Zn,

(M †)∗λ = j(M †)∗l + pβ = M∗(jγ + (M †)∗β) ∈M∗(Zn).
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This shows

(2.9) (M †)∗(Zn) ⊆M∗(Zn) or pZn ⊆M∗2(Zn),

so (d) does not hold.
The condition (e) is equivalent to

(M †)∗(Zn \M∗(Zn)) ⊆ Zn \M∗(Zn).

From l ∈ Zn \M∗(Zn), we have (M †)∗l ∈ Zn \M∗(Zn). Since {0, l, 2l, . . . ,
(p− 1)l} is a complete set of coset representatives of Zn/M∗(Zn), we know
that the p sets

M∗(Zn), l +M∗(Zn), 2l +M∗(Zn), . . . , (p− 1)l +M∗(Zn)

are mutually disjoint and

Zn = M∗(Zn) ∪ (l +M∗(Zn)) ∪ (2l +M∗(Zn)) ∪ · · · ∪ ((p− 1)l +M∗(Zn)).

Then

(M †)∗l∈Zn\M∗(Zn)=(l+M∗(Zn))∪(2l+M∗(Zn))∪· · ·∪((p−1)l+M∗(Zn)).

This guarantees that j0 6= 0 in (2.7).
For the condition (f), we know, from (2.4) and (2.8), that

(2.10) p - 〈M∗γ,w〉 and p - 〈M∗hγ,w〉,
which yields hγ 6∈ (M †)∗(Z2) for any integer h with |h| = 1, . . . , p − 1. In
the case when n = 2, this shows that {0, γ, 2γ, . . . , (p − 1)γ} is a complete
set of coset representatives of Z2/(M †)∗(Z2). So, each λ̃ ∈ Z2 has a unique
representation

(2.11) λ̃ = j̃γ + (M †)∗β̃ for some 0 ≤ j̃ ≤ p− 1 and β̃ ∈ Z2.

Also M∗γ ∈ Z2 has the form

(2.12) M∗γ = j̃0γ + (M †)∗η̃ for some 0 ≤ j̃0 ≤ p− 1 and η̃ ∈ Z2.

(i) If j̃0 = 0 in (2.12), we see from (2.11) and (2.12) that for each λ̃ ∈ Z2,

(2.13) M∗λ̃ = j̃M∗γ + pβ̃ = (M †)∗(j̃η̃ +M∗β̃) ∈ (M †)∗(Z2).

This shows

(2.14) M∗(Z2) ⊆ (M †)∗(Z2) or M∗2(Z2) ⊆ pZ2.

From (2.9) and (2.14), we get pZ2 = M∗2(Z2), a contradiction of (f).
(ii) If j̃0 6= 0 in (2.12), we see from (2.8) and (2.12) that

(2.15) (M †)∗l = j̃0γ + (M †)∗η̃.

If we multiply both sides of (2.15) by M∗, we obtain

(2.16) pl = j̃0M
∗γ + pη̃, where 0 < j̃0 ≤ p− 1,

so, p |M∗γ, a contradiction of (2.10). This completes the proof of Claim 1.

From [15, Claim 2], we also have the following.
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Claim 2. There exists dq0 ∈ D̃ (1 ≤ q0 ≤ p− 1) such that

(2.17) dq0 = jq0w +Mβq0 for some 1 ≤ jq0 ≤ p− 1 and βq0 ∈ Zn.

Secondly, it follows from (2.7) and Claim 1 that for any positive integer
σ ∈ N,

(2.18) (M †)∗σl = (j0)
σl +M∗γσ

for some 0 < j0 ≤ p − 1 and γσ ∈ Zn. Combining this with (2.17), we see
that for any positive integer σ ∈ N,

〈(M †)σdq0 , l〉 = 〈dq0 , (M †)∗σl〉(2.19)

= jq0j
σ−1
0 〈w, (M †)∗l〉+ jσ−10 p〈βq0 , l〉+ p〈dq0 , γσ−1〉

≡ jq0jσ−10 〈(M †)∗l, w〉 (mod p)

6≡ 0 (mod p) (by (2.4)),

where γ0 = 0.

Next, comparing (2.3) and (2.19), we find that k = k(l) = 1 and (2.3)
becomes

(2.20) {0, 〈M †d1, l〉, . . . , 〈M †dp−1, l〉} ≡ {0, 1, 2, . . . , (p− 1)} (mod p).

In this case, if di1 − di2 = Mλ for some λ ∈ Zn and di1 , di2 ∈ D̃, then
〈M †(di1 − di2), l〉 = p〈λ, l〉 ∈ pZ contradicts (2.20). Thus, D̃ is a complete
set of coset representatives of Zn/M(Zn).

Case 2: l ∈M∗(Zn). From (M∗)σ(Zn) ⊆ (M∗)σ−1(Zn)(σ = 1, 2, . . .) and⋂∞
σ=1(M

∗)σ(Zn) = {0}, we know that there exists a non-negative integer γ̃

and l̃ ∈ Zn \ {0} such that l = (M∗)γ̃ l̃ and l̃ 6∈ M∗(Zn). Then (2.1) can be
written as 0 =

∏∞
j=1mD̃(M∗−j l̃). So, applying Case 1 to l̃ in place of l, we

conclude that D̃ is a complete set of coset representatives of Zn/M(Zn).

Thus, we have proved that D̃ is always a complete set of coset repre-
sentatives of Zn/M(Zn). This implies that µM,D̃ is a spectral measure with
some lattice spectrum Γ∗, and therefore µM,D is a spectral measure with
lattice spectrum (M∗)−rΓ∗. The proof of Theorem 2.1 is complete.

Remark 2.2. (i) It should be pointed out that for an expanding matrix
M ∈Mn(Z) such that |det(M)| = p is a prime, none of the conditions (a)–(f)
in Theorem A and in Theorem 2.1 can be omitted. For example, consider
the expanding integer matrix M ∈M2(Z) and the digit set D given by

(2.21) M =

[
0 1

3 0

]
and D =

{(
0

0

)
,

(
1

0

)
,

(
0

1

)}
.

Then pZ2 = M∗2(Z2) and the conditions (a)–(f) are not satisfied. For this
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pair (M,D), Θ0 = {x ∈ Rn : mD(x) = 0} equals{(
1/3 + k1

2/3 + k2

)
: k1, k2 ∈ Z

}
∪
{(

2/3 + k̃1

1/3 + k̃2

)
: k̃1, k̃2 ∈ Z

}
,

and Z(µ̂M,D) =
⋃∞
j=1M

∗jΘ0 = (
⋃∞
j=1M

∗2jΘ0) ∪ (
⋃∞
j=0M

∗(2j+1)Θ0) equals

(2.22) Z(µ̂M,D) =
( ∞⋃
j=1

3jΘ0

)
∪
( ∞⋃
j=0

[
0 3

1 0

]
(3jΘ0)

)
.

Hence Z(µ̂M,D) ∩ Zn 6= ∅. But there is no r ∈ N0 such that D = M rD̃ and

D̃ is a complete set of coset representatives of Zn/M(Zn).
(ii) In the plane R2, let M ∈ M2(Z) be an expanding matrix such that

|det(M)| = p ≥ 3 is a prime. If Trace(M) = 0, then pZ2 = M∗2(Z2).
Conversely, if pZ2 = M∗2(Z2), we first have Trace(M) = pρ for some
ρ ∈ Z; then, the expansivity of M ∈M2(Z) yields the conclusion that (a) if
det(M) = −p, then Trace(M) = 0; (b) if det(M) = p, then Trace(M) = 0 or
Trace(M) = ±p. This gives a relation between the condition pZ2 = M∗2(Z2)
and Trace(M). To prove these assertions, we let

M =

[
a b

c d

]
, M2 =

[
a2 + bc b(a+ d)

c(a+ d) d2 + bc

]
, e1 =

(
1

0

)
, e2 =

(
0

1

)
.

Then pZ2 = M∗2(Z2) implies that M∗2e1,M
∗2e2 ∈ pZ2, that is, there exist

l1, l2, l3, l4 ∈ Z such that

a2 + bc = l1p, b(a+ d) = l2p, c(a+ d) = l3p, d2 + bc = l4p.

This shows p | (a + d) (otherwise, p | b and p | c, which yields p | a and p | d,
so p | (a + d), a contradiction). Hence Trace(M) = a + d = pρ for some
ρ ∈ Z. Next, det(λI −M) = λ2−Trace(M)λ+ det(M) = λ2− pρλ± p. The
expansivity of M ∈M2(Z) yields

|pρ+
√
p2ρ2 ∓ 4p| > 2 and |pρ−

√
p2ρ2 ∓ 4p| > 2,

which shows that (a) if det(M) = −p (p ≥ 3 is a prime), then ρ = 0; (b) if
det(M) = p (p ≥ 3 is a prime), then ρ = 0 or ρ = ±1.

(iii) For any expanding matrix M ∈ Mn(Z) with |det(M)| = 2 and for
any two-element digit set D ⊂ Zn, µM,D is always a spectral measure with
lattice spectrum. So, when |det(M)| = |D| = p, we may always assume
that p ≥ 3. Also, the conditions (a), (b), (d), (e) are always satisfied in the
one-dimensional case (n = 1).

In the following discussion, we may assume that |det(M)| = |D| =
p ≥ 3 and n ≥ 2. It is well-known that if x ∈ R is a root of an equa-
tion xn + c1x

n−1 + · · · + cn−1x + cn = 0 with integral coefficients of which
the first is unity, then x is either integral or irrational. So, if M ∈ Mn(Z)
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is an expanding matrix such that |det(M)| = p is a prime, then for each
j0 ∈ {1, . . . , p − 1}, the matrix pIn − j0M

∗ is invertible. Based on these
simple facts, the above method leads to the following more general result.

Theorem 2.3. Let M ∈Mn(Z) be an expanding matrix such that |det(M)|
= p ≥ 3 is a prime and n ≥ 2. If D ⊂ Zn is a finite digit set of cardinality
|D| = |det(M)| with 0 ∈ D such that

(2.23)
( p−1⋃
j0=1

(pIn − j0M∗)−1M∗(k+2)(Zn)
)
∩ Z(µ̂M,D)

∩ (M∗k(Zn) \M∗(k+1)(Zn)) 6= ∅

for some k ∈ N0, then there exists r ∈ N0 such that D = M rD̃, where D̃ is
a complete set of coset representatives of Zn/M(Zn), and hence µM,D is a
spectral measure with lattice spectrum.

Proof. From (2.23), we can choose a non-zero integer l such that

(2.24) l ∈ Z(µ̂M,D) ∩ (M∗k(Zn) \M∗(k+1)(Zn))

and

(2.25) l ∈
p−1⋃
j0=1

(pIn − j0M∗)−1M∗(k+2)(Zn).

(i) When k = 0, we see from (2.24) that 0 = µ̂M,D(l) and l ∈ Zn\M∗(Zn).
Thus, (2.1)–(2.7) hold as in Case 1 above. At the same time, by (2.25), there
exists ĵ0 ∈ {1, . . . , p−1} such that l ∈ (pIn−ĵ0M∗)−1M∗2(Zn). Furthermore,
there exists γ̂ ∈ Zn such that l = (pIn − ĵ0M∗)−1M∗2γ̂, equivalently,

(2.26) (M †)∗l = ĵ0l +M∗γ̂ for some 1 ≤ ĵ0 ≤ p− 1 and γ̂ ∈ Zn.

By considering (2.26) instead of (2.7), we obtain the desired conclusion from
the above proof of Theorem 2.1.

(ii) When k 6= 0, we let l = M∗k l̂; it follows from (2.24) that 0 =

µ̂M,D(l) = µ̂M,D(M∗k l̂) = µ̂M,D(l̂) and l̂ ∈ Zn \M∗(Zn). Then l satisfies

(2.25) with k 6= 0 if and only if l̂ satisfies (2.25) with k = 0. So, applying

case (i) to l̂ in place of l, we get the desired conclusion.

Remark 2.4. (i) Observe that

(pIn − j0M∗)−1M∗(k+2) = M∗(k+2)(pIn − j0M∗)−1,
and let q := |det(pIn − j0M∗)|. Then

(2.27) (pIn − j0M∗)−1M∗(k+2)(qZn) = M∗(k+2)(pIn − j0M∗)−1(qZn)

= M∗(k+2)(pIn − j0M∗)†(Zn) ⊆M∗(k+2)(Zn) ⊆M∗k(Zn),
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and for each k ∈ N0, M
∗k(Zn)∩(pIn−j0M∗)−1M∗(k+2)(Zn) 6= ∅. The above

condition (2.23) cannot be replaced by

(2.28)
( p−1⋃
j0=1

(pIn − j0M∗)−1M∗(k+2)(Zn)
)
∩ Z(µ̂M,D) ∩M∗k(Zn) 6= ∅

for some k ∈ N0. For example, consider the pair (M,D) given by (2.21);
then we have

(2.29)

p−1⋃
j0=1

(pIn − j0M∗)−1M∗2(Zn) =

[
3/2 3/2

1/2 3/2

]
(Z2) ∪

[
−3 −6

−2 −3

]
(Z2).

Combining this with (2.22), we see that

(2.30)

(
3

2

)
∈
( p−1⋃
j0=1

(pIn − j0M∗)−1M∗2(Zn)
)
∩ Z(µ̂M,D) ∩ Zn,

and (2.28) holds with k = 0, but there is no r ∈ N0 such that D = M rD̃
and D̃ is a complete set of coset representatives of Zn/M(Zn).

(ii) (2.23) implies the condition Z(µ̂M,D) ∩ Zn 6= ∅, which plays an im-
portant role in this section. For this single condition, we have the following
conclusion.

Proposition 2.5. For an expanding matrix M ∈ Mn(Z) and a finite
digit set D ⊂ Zn, if Z(µ̂M,D)∩Zn 6= ∅ or if there are two points s1, s2 ∈ Rn
with s1 − s2 ∈ Zn such that the exponential functions es1(x), es2(x) are
orthogonal in L2(µM,D), then there are infinite families of orthogonal expo-
nentials E(Λ) in L2(µM,D) with Λ ⊆ Zn.

In fact, let l = s1 − s2 ∈ Z(µ̂M,D) ∩ Zn. Then there exists a positive
integer k := k(l) such that mD(M∗−kl) = 0. From the tiling property Rn =
[0, 1)n + Zn, we write M∗−kl = α̂ + α̃, where α̂ ∈ [0, 1)n and α̃ ∈ Zn. Then
mD(α̂+ α̃) = mD(α̂) = 0, i.e., α̂ ∈ Z := {x ∈ [0, 1)n : mD(x) = 0}. For each
integer σ ≥ k = k(l), we have

M∗σα̂ = M∗σ(M∗−kl − α̃) = M∗(σ−k)l −M∗σα̃ ∈ Zn,
which yields the desired result from [13, Theorem 2].

Furthermore, for an expanding matrix M ∈Mn(Z) and a finite digit set
D ⊂ Zn, let |det(M)| = m = pb11 · · · pbrr be the standard prime factorization,
where p1 < · · · < pr are prime numbers and bj > 0. Denote by W (m)
the set of non-negative integer combinations of p1, . . . , pr. If |D| 6∈ W (m),
then (i) Z(µ̂M,D) ∩ Zn = ∅; (ii) there is no finite subset S ⊂ Zn such that
(M−1D,S) is a compatible pair; (iii) there are no points s1, s2 ∈ Rn with
s1−s2 ∈ Zn such that the exponential functions es1(x), es2(x) are orthogonal
in L2(µM,D) (see [12, Section 3]).
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3. Application to tile digit sets. Let M ∈ Mn(Z) be an expanding
matrix, and D ⊂ Zn be a finite digit set of cardinality |D| = |det(M)|
with 0 ∈ D. For most pairs (M,D), the set T (M,D) has Lebesgue measure
µL(T (M,D)) = 0.

For example, consider the pair (M,D) given by (2.21). Then the attractor
T = T (M,D) satisfies M(T ) = T+D, which yields M2(T ) = T+D+M(D).
From (2.21), the set D + M(D) contains eight elements. By taking the
Lebesgue measure, we have

9µL(T ) = µL(M2(T )) = µL(T +D +M(D)) ≤ 8µL(T ),

and hence µL(T ) = 0.

If µL(T (M,D)) > 0, we call T (M,D) an integral self-affine tile and the
corresponding D a tile digit set (with respect to M). Associated with the
pair (M,D) is the smallest M -invariant sublattice of Zn containing D, which
is denoted by Z[M,D]. If Z[M,D] = Zn, we call the digit set D primitive
(with respect to M). It should be pointed out that Z[M,D] 6⊆ M(Zn) is
equivalent to D 6⊆M(Zn).

It is known that most of the measure and tiling questions on T (M,D)
can be reduced to the case of primitive tiles. More precisely, Lagarias and
Wang provide the following useful fact (see [9], [10, Theorem 1.2]).

Proposition 3.1. If the columns of a matrix B ∈ Mn(Z) form a basis
of Z[M,D], that is, Z[M,D] = B(Zn), then there exists a matrix

M̃ := B−1MB ∈Mn(Z)

and a digit set

D̃ := B−1D ⊂ Zn

such that Z[M̃, D̃]=Zn, 0 ∈ D̃, and T (M,D) = B(T (M̃, D̃)).

With the same notation as in Proposition 3.1, we follow the terminology
of [9], and say that D is a standard digit set (with respect to M) if D̃ is a
complete set of coset representatives of Zn/M̃(Zn). Here we note that the
technique from Proposition 3.1 has its limitations. It is unsuitable for those
pairs (M,D) where Z[M,D] is not a full rank lattice. On the other hand,
for a given expanding matrix M̃ ∈Mn(Z), it is not always possible to find a
digit set D̃ primitive with respect to M̃ (see example in [11, pp. 192–193]).
Hence the above technique cannot be applied to such expanding matrices.
However, for an expanding matrix M ∈Mn(Z) and a finite digit set D ⊂ Zn,
there always exists r ∈ N0 and a finite subset D̃ ⊂ Zn such that

(3.1) D = M rD̃ and D̃ 6⊆M(Zn).

See [15, Lemma 1], [11, p. 189]. Also, for the digit sets in (3.1), we have
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T (M,D) = M r(T (M, D̃)) and

(3.2) µL(T (M,D)) = (|det(M)|)rµL(T (M, D̃)).

This shows that D is a tile digit set if and only if D̃ is. Therefore, we
may always assume that the digit set D in the IFS {φd(x)}d∈D satisfies the
condition D 6⊆M(Zn).

For the digit sets of integral self-affine tiles with prime determinant,
Kenyon [7] proved the following.

Theorem 3.2. Let p be a prime and D ⊂ Z be a primitive digit set with
|D| = |p|. Then T (p,D) is an integral self-affine tile if and only if D is a
complete set of residues modulo p.

This result has been generalized by Lagarias and Wang [9, Theorem 4.1],
[16, Theorem 4.2] to show that nonstandard digit sets do not exist for many
M such that |det(M)| = p is a prime. In fact, they stated the following.

Theorem 3.3 ([9, Theorem 4.1]). Let M ∈ Mn(Z) be expanding such
that |det(M)| = p is a prime and pZn 6⊆ M2(Zn). If D ⊂ Zn is a digit set
with |D| = p, then µL(T (M,D)) > 0 if and only if D is a standard digit set.

Lagarias and Wang also formulated the following conjecture in [9]:

Conjecture 1. The condition pZn 6⊆M2(Zn) in Theorem 3.3 is redun-
dant.

Some partial results concerning this conjecture can be found in [8] and [6].
Since pZn 6⊆ M2(Zn) is equivalent to pB−1(Zn) 6⊆ M̃2(B−1(Zn)), which is
not of the form pZn 6⊆ M̃2(Zn), the author [11] observed that there is a gap
in the proof of Theorem 3.3 in [9]. The proof there essentially yields the
following.

Theorem 3.4 ([16, Theorem 4.2]). Let M ∈ Mn(Z) be expanding such
that |det(M)| = p is a prime and pZn 6⊆ M2(Zn). Let D ⊂ Zn with |D| =
|det(M)| be primitive. Then µL(T (M,D)) > 0 if and only if D is a complete
set of coset representatives of Zn/M(Zn).

Since the sufficiency of the theorems above was proved by Bandt [1]
under a much weaker condition, one often concentrates on the necessity
of the theorems in higher dimensions (see [9, p. 174]), especially on the
above Conjecture 1. Based on previous research, the author [11] extended
Theorems 3.2, 3.3 and 3.4, giving in particular a complete proof of Theorem
3.3. As an application of Section 2, we present the following more general
result on the digit sets of integral self-affine tiles with prime determinant.

Theorem 3.5. Let M ∈Mn(Z) be expanding such that |det(M)| = p is
a prime and one of the conditions (a)–(f) holds. Suppose that D ⊂ Zn is a
tile digit set with respect to M , and 0 ∈ D. Then:
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(i) If Z[M,D] 6⊆ M(Zn), then D is a complete set of coset representa-
tives of Zn/M(Zn).

(ii) If Z[M,D] ⊆M(Zn), then there exists a positive integer r ∈ N such
that D = M rD̃ and D̃ is a complete set of coset representatives of
Zn/M(Zn).

Proof. We first write D = M r̃D̃, where D̃ ⊂ Zn, D̃ 6⊂M(Zn) and r̃ ≥ 0
is an integer. The property that D̃ is a tile digit set implies

(3.3) Zn \ {0} ⊆ Z(µ̂M,D̃).

See [9, Theorem 2.1], [12, p. 636]. This gives

(3.4) Z(µ̂M,D̃) ∩ (Zn \M∗(Zn)) = Zn \M∗(Zn) 6= ∅.
Since the cases p = 2 and n = 1 are trivial, we may assume that p ≥ 3 and
n ≥ 2 in the following discussion.

If |det(M)| = p is a prime and one of the conditions (d)–(f) holds, then
the method in Section 2 yields

(3.5) Zn \M∗(Zn) ⊆
p−1⋃
j0=1

(pIn − j0M∗)−1M∗2(Zn).

It follows from (3.4) and (3.5) that (2.23) holds for k = 0. Hence, from
Theorem 2.3, there exists r ∈ N0 such that D = M rD̃ and D̃ is a complete
set of coset representatives of Zn/M(Zn).

If |det(M)| = p is a prime and one of the conditions (a)–(c) holds,
it follows from (3.4) and the method of [15] that one can take any l ∈
Z(µ̂M,D̃) ∩ (Zn \M∗(Zn)) to conclude that there exists r ∈ N0 such that

D = M rD̃ and D̃ is a complete set of coset representatives of Zn/M(Zn).

The case r = 0 in D = M rD̃ corresponds to the conclusion (i), while the
case r ≥ 1 in D = M rD̃ corresponds to (ii).

To end the paper, we point out that: (i) in order to prove Conjecture 1,
one only needs to consider the case where all the following conditions:

(a′) pZn ⊆M2(Zn);
(b′) p(Zn \M(Zn)) 6⊆M(Zn \M(Zn));
(c′) pZ2 = M2(Z2) in the case when n = 2;
(d′) pZn ⊆M∗2(Zn);
(e′) p(Zn \M∗(Zn)) 6⊆M∗(Zn \M∗(Zn));
(f ′) pZ2 = M∗2(Z2) in the case when n = 2

are satisfied for an expanding matrix M ∈ Mn(Z) with prime determinant
|det(M)| = p; (ii) the conclusion of Theorem 3.5 also implies that T (M,D) is
a spectral set with lattice spectrum. This gives some sufficient conditions for
an integral self-affine tile T (M,D) to be a spectral set (see the open problem
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of [12, p. 636]); (iii) for the integer case: M ∈Mn(Z) and D ⊂ Zn, we know
that µL(T (M,D)) > 0 if and only if Zn \ {0} ⊆ Z(µ̂M,D) (see [9, Theorem
2.1]). The differences between the question considered in Section 2 and the
question considered in Section 3 lie mainly in the differences between the
condition Z(µ̂M,D)∩Zn 6= ∅ and Zn\{0} ⊆ Z(µ̂M,D). Since the latter condi-
tion is much stronger, the method here shows that the results obtained under
the condition Z(µ̂M,D)∩Zn 6= ∅ can be applied to characterize tile digit sets.
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