Pointwise multipliers on martingale Campanato spaces

by
Eifchi Nakai (Mito) and Gaku Sadasue (Kashiwara)

Abstract

We introduce generalized Campanato spaces $\mathcal{L}_{p, \phi}$ on a probability space (Ω, \mathcal{F}, P), where $p \in[1, \infty)$ and $\phi:(0,1] \rightarrow(0, \infty)$. If $p=1$ and $\phi \equiv 1$, then $\mathcal{L}_{p, \phi}=$ BMO. We give a characterization of the set of all pointwise multipliers on $\mathcal{L}_{p, \phi}$.

1. Introduction. We consider a probability space (Ω, \mathcal{F}, P) such that $\mathcal{F}=\sigma\left(\bigcup_{n} \mathcal{F}_{n}\right)$, where $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is a nondecreasing sequence of sub- σ-algebras of \mathcal{F}. For the sake of simplicity, let $\mathcal{F}_{-1}=\mathcal{F}_{0}$. We suppose that every σ-algebra \mathcal{F}_{n} is generated by a countable collection of atoms, where $B \in \mathcal{F}_{n}$ is called an atom (more precisely an $\left(\mathcal{F}_{n}, P\right)$-atom), if any $A \subset B$ with $A \in \mathcal{F}_{n}$ satisfies $P(A)=P(B)$ or $P(A)=0$. Denote by $A\left(\mathcal{F}_{n}\right)$ the set of all atoms in \mathcal{F}_{n}. The expectation operator and the conditional expectation operators relative to \mathcal{F}_{n} are denoted by E and E_{n}, respectively.

Let \mathcal{X} be a normed space of \mathcal{F}-measurable functions. We say that an \mathcal{F}-measurable function g is a pointwise multiplier on \mathcal{X} if the pointwise product $f g$ is in \mathcal{X} for any $f \in \mathcal{X}$. We denote by $\operatorname{PWM}(\mathcal{X})$ the set of all pointwise multipliers on \mathcal{X}. If \mathcal{X} is a Banach space, then every $g \in \operatorname{PWM}(\mathcal{X})$ is a bounded operator on \mathcal{X} whenever \mathcal{X} has the following property

$$
\begin{equation*}
f_{n} \rightarrow f \text { in } \mathcal{X}(n \rightarrow \infty) \Rightarrow \exists\{n(j)\}: f_{n(j)} \rightarrow f \text { a.s. }(j \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

Actually, from (1.1) we see that g is a closed operator. Therefore, g is a bounded operator by the closed graph theorem.

It is known that $\operatorname{PWM}\left(L_{p}\right)=L_{\infty}$ for $p \in(0, \infty]$. More generally, if \mathcal{X} is a (quasi) Banach function space, then $\operatorname{PWM}(\mathcal{X})=L_{\infty}$ (see [4, 7]). For Banach function spaces, see Kikuchi [2].

In this paper we consider pointwise multipliers on generalized Campanato spaces which are not Banach function spaces in general. We always assume that $\mathcal{F}_{0}=\{\emptyset, \Omega\}$, that is, the operator E_{0} coincides with E. Then we introduce generalized Campanato spaces $\mathcal{L}_{p, \phi}$ and $\mathcal{L}_{p, \phi}^{\natural}$ as follows:

[^0]Definition 1.1. Let $p \in[1, \infty)$ and ϕ be a function from $(0,1]$ to $(0, \infty)$. For $f \in L_{1}$, let

$$
\begin{align*}
& \|f\|_{\mathcal{L}_{p, \phi}}=\sup _{n \geq 0} \sup _{B \in A\left(\mathcal{F}_{n}\right)} \frac{1}{\phi(P(B))}\left(\frac{1}{P(B)} \int_{B}\left|f-E_{n} f\right|^{p} d P\right)^{1 / p}, \tag{1.2}\\
& \|f\|_{\mathcal{L}_{p, \phi}^{\natural}}=\|f\|_{\mathcal{L}_{p, \phi}}+|E f| . \tag{1.3}
\end{align*}
$$

Define

$$
\mathcal{L}_{p, \phi}=\left\{f \in L_{1}:\|f\|_{\mathcal{L}_{p, \phi}}<\infty\right\} \quad \text { and } \quad \mathcal{L}_{p, \phi}^{\natural}=\left\{f \in L_{1}:\|f\|_{\mathcal{L}_{p, \phi}^{\natural}}<\infty\right\} .
$$

If $\phi(r)=r^{\lambda}, \lambda \in(-\infty, \infty)$, we simply denote $\mathcal{L}_{p, \phi}$ and $\mathcal{L}_{p, \phi}^{\natural}$ by $\mathcal{L}_{p, \lambda}$ and $\mathcal{L}_{p, \lambda}^{\natural}$, respectively; the latter spaces were introduced in [9].

Note that $\mathcal{L}_{p, \phi}$ and $\mathcal{L}_{p, \phi}^{\natural}$ coincide as sets of measurable functions. We see that $\mathcal{L}_{p, \phi}=\left(\mathcal{L}_{p, \phi},\|\cdot\|_{\mathcal{L}_{p, \phi}}\right)$ is a seminormed space and $\mathcal{L}_{p, \phi}^{\natural}=\left(\mathcal{L}_{p, \phi}^{\natural},\|\cdot\|_{\mathcal{L}_{p, \phi}^{\natural}}\right)$ is a normed space. Moreover, $\mathcal{L}_{p, \phi}^{\natural}$ is a Banach space, but it is not a Banach function space in general. It is easy to see that $\mathcal{L}_{p, \phi}^{\natural}$ has the property (1.1), since

$$
\|f\|_{L_{1}} \leq E[|f-E f|]+|E f| \leq \max (1, \phi(1))\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} .
$$

For $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$, let

$$
\|g\|_{\mathrm{Op}}=\sup _{f \neq 0} \frac{\|f g\|_{\mathcal{L}_{p, \phi}^{\natural}}}{\|f\|_{\mathcal{L}_{p, \phi}^{\natural}}} .
$$

We also define BMO and $\operatorname{Lip}_{\alpha}$ as follows:
Definition 1.2. For $\phi \equiv 1$, denote $\mathcal{L}_{1, \phi}$ and $\mathcal{L}_{1, \phi}^{\natural}$ by BMO and BMO^{\natural}, respectively. For $\phi(r)=r^{\alpha}, \alpha>0$, denote $\mathcal{L}_{1, \phi}$ and $\mathcal{L}_{1, \phi}^{\natural}$ by $\operatorname{Lip}_{\alpha}$ and $\operatorname{Lip}_{\alpha}^{\natural}$, respectively.

Let

$$
L_{1,0}=\left\{f \in L_{1}: E f=0\right\} .
$$

Then BMO $\cap L_{1,0}=\mathrm{BMO}^{\natural} \cap L_{1,0}$ and $\operatorname{Lip}_{\alpha} \cap L_{1,0}=\operatorname{Lip}_{\alpha}^{\natural} \cap L_{1,0}$. These spaces coincide respectively with BMO and $\operatorname{Lip}_{\alpha}$ defined by Weisz [12, 13], under the assumption that every σ-algebra \mathcal{F}_{n} is generated by a countable collection of atoms, see 9 for details.

We say $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular if there exists $R \geq 2$ such that

$$
\begin{equation*}
f_{n} \leq R f_{n-1} \quad \text { for all nonnegative martingales } f=\left(f_{n}\right)_{n \geq 0} . \tag{1.4}
\end{equation*}
$$

A function $\theta:(0,1] \rightarrow(0, \infty)$ is said to satisfy the doubling condition if
there exists a constant $C>0$ such that

$$
\frac{1}{C} \leq \frac{\theta(r)}{\theta(s)} \leq C \quad \text { for all } r, s \in(0,1] \text { with } 1 / 2 \leq r / s \leq 2
$$

A function $\theta:(0,1] \rightarrow(0, \infty)$ is said to be almost increasing (resp. almost decreasing) if there exists a constant $C>0$ such that

$$
\theta(r) \leq C \theta(s) \quad(\text { resp. } \theta(r) \geq C \theta(s)) \quad \text { for } 0<r \leq s \leq 1
$$

Our main result is the following:
Theorem 1.3. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, $\mathcal{F}_{0}=\{\emptyset, \Omega\}, p \in[1, \infty)$ and $\phi:(0,1] \rightarrow(0, \infty)$. Assume that ϕ satisfies the doubling condition and that

$$
\begin{equation*}
\int_{0}^{r} \phi(t)^{p} d t \leq \operatorname{Cr} \phi(r)^{p} \quad \text { for all } r \in(0,1] \tag{1.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\phi_{*}(r)=1+\int_{r}^{1} \frac{\phi(t)}{t} d t \tag{1.6}
\end{equation*}
$$

Then

$$
\operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)=\mathcal{L}_{p, \phi / \phi_{*}} \cap L_{\infty} .
$$

Moreover, for $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$, $\|g\|_{\mathrm{Op}}$ is equivalent to $\|g\|_{\mathcal{L}_{p, \phi / \phi_{*}}}+\|g\|_{L_{\infty}}$.
See [1, 6, 10, 11, 14] for pointwise multipliers on BMO and Campanato spaces defined on the Euclidean space. Our basic idea comes from [1, 10].

REMARK 1.4. (i) If ϕ satisfies the doubling condition and (1.5), then $r \phi(r)^{p}$ is almost increasing.
(ii) If ϕ is almost increasing, then so is ϕ / ϕ_{*}.
(iii) Let

$$
\begin{equation*}
\|f\|_{\mathcal{L}_{p, \phi, \mathcal{F}}}=\sup _{n \geq 0} \sup _{A \in \mathcal{F}_{n}} \frac{1}{\phi(P(A))}\left(\frac{1}{P(A)} \int_{A}\left|f-E_{n} f\right|^{p} d P\right)^{1 / p} \tag{1.7}
\end{equation*}
$$

Then $\|f\|_{\mathcal{L}_{p, \phi}} \leq\|f\|_{\mathcal{L}_{p, \phi, \mathcal{F}}}$ by the definitions. If ϕ is almost increasing, then $\|f\|_{\mathcal{L}_{p, \phi}}$ and $\|f\|_{\mathcal{L}_{p, \phi, \mathcal{F}}}$ are equivalent. Actually, for any $A \in \mathcal{F}_{n}$, there exists a sequence of atoms $B_{\ell} \in A\left(\mathcal{F}_{n}\right), \ell=1,2, \ldots$, such that $A=\bigcup_{\ell} B_{\ell}$ and $P(A)=\sum_{\ell} P\left(B_{\ell}\right)$. Then

$$
\begin{aligned}
\int_{A}\left|f-E_{n} f\right|^{p} d P & =\sum_{\ell} \int_{B_{\ell}}\left|f-E_{n} f\right|^{p} d P \leq \sum_{\ell} \phi\left(P\left(B_{\ell}\right)\right)^{p} P\left(B_{\ell}\right)\|f\|_{\mathcal{L}_{p, \phi}}^{p} \\
& \leq C^{p} \phi(P(A))^{p} P(A)\|f\|_{\mathcal{L}_{p, \phi}}^{p}
\end{aligned}
$$

This shows $\|f\|_{\mathcal{L}_{p, \phi, \mathcal{F}}} \leq C\|f\|_{\mathcal{L}_{p, \phi}}$. If ϕ is not almost increasing, then $\|f\|_{\mathcal{L}_{p, \phi}}$ is not equivalent to $\|f\|_{\mathcal{L}_{p, \phi, \mathcal{F}}}$ in general (see [9]). The norm 1.7) was introduced in [5] for general $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$.

Theorem 1.3 has the following two immediate corollaries:
Corollary 1.5. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular and $\mathcal{F}_{0}=\{\emptyset, \Omega\}$. Then

$$
\operatorname{PWM}\left(\mathrm{BMO}^{\natural}\right)=\mathcal{L}_{1, \psi} \cap L_{\infty},
$$

where $\psi(r)=1 / \log (e / r)$. Moreover, for $g \in \operatorname{PWM}\left(\mathrm{BMO}^{\natural}\right),\|g\|_{\text {Op }}$ is equivalent to $\|g\|_{\mathcal{L}_{1, \psi}}+\|g\|_{L_{\infty}}$.

Corollary 1.6. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\alpha>0$. Then

$$
\operatorname{PWM}\left(\operatorname{Lip}_{\alpha}^{\natural}\right)=\operatorname{Lip}_{\alpha} \cap L_{\infty} .
$$

Moreover, for $g \in \mathrm{PWM}\left(\operatorname{Lip}_{\alpha}^{\natural}\right),\|g\|_{\mathrm{Op}}$ is equivalent to $\|g\|_{\operatorname{Lip}_{\alpha}}+\|g\|_{L_{\infty}}$.
Example 1.7. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}, p$ and ϕ satisfy the assumptions of Theorem 1.3. For a sequence

$$
B_{0} \supset B_{1} \supset \cdots, \quad B_{n} \in A\left(\mathcal{F}_{n}\right),
$$

let

$$
\begin{equation*}
g=\sin h, \quad \text { where } \quad h=\sum_{n=1}^{\infty} \frac{\phi\left(P\left(B_{n}\right)\right)}{\phi_{*}\left(P\left(B_{n}\right)\right)}\left(\frac{P\left(B_{n-1}\right)}{P\left(B_{n}\right)} \chi_{B_{n}}-\chi_{B_{n-1}}\right) . \tag{1.8}
\end{equation*}
$$

Then h is in $\mathcal{L}_{p, \phi / \phi_{*}}$ (see Lemma 2.4 and Remark 2.5). Hence $g \in \mathcal{L}_{p, \phi / \phi_{*}} \cap$ L_{∞}, since $\sin \theta$ is Lipschitz continuous (see Remark 2.7). That is, $g \in$ $\operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$. If $\phi \equiv 1$, then $\phi(r) / \phi_{*}(r)=1 / \log (e / r)$ and $g \in \operatorname{PWM}\left(\mathrm{BMO}^{\natural}\right)$.

Example 1.8. The following function satisfies the doubling condition and the property (1.5):

$$
\phi(r)=r^{\alpha}(\log (e / r))^{-\beta} \quad(\alpha \in(-1 / p, \infty), \beta \in(-\infty, \infty))
$$

If $\alpha \in(-1 / p, 0)$ and $\beta \in(-\infty, \infty)$, then $\phi_{*} \sim \phi$, that is, there exists a positive constant C such that $C^{-1} \phi(r) \leq \phi_{*}(r) \leq C \phi(r)$ for all $r \in(0,1]$. In general, under the assumptions of Theorem 1.3, if $\phi_{*} \sim \phi$, then $\mathcal{L}_{1, \phi / \phi_{*}}=$ BMO and so

$$
\operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)=\mathrm{BMO} \cap L_{\infty}=L_{\infty} .
$$

If $\alpha \in[0, \infty)$ and $\beta \in(-\infty, \infty)$, then $\phi_{*} \nsim \phi$ and $\phi(r) / \phi_{*}(r) \rightarrow 0$ as $r \rightarrow 0$. In this case $\mathcal{L}_{1, \phi / \phi_{*}} \cap L_{\infty} \neq L_{\infty}$ in general (see also Remark 2.6). In particular, if $\alpha=0$ and $\beta \in(1, \infty)$, or if $\alpha \in(0, \infty)$ and $\beta \in(-\infty, \infty)$, then $\phi_{*} \sim 1$. In general, under the assumption of Theorem 1.3, if $\phi_{*} \sim 1$, then $\mathcal{L}_{1, \phi / \phi_{*}}=\mathcal{L}_{1, \phi} \subset L_{\infty}$ by Lemma 2.2 below, and so

$$
\operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)=\mathcal{L}_{1, \phi} \cap L_{\infty}=\mathcal{L}_{1, \phi}^{\natural} .
$$

Moreover, if ϕ is almost increasing, then we can use the John-Nirenberg type inequality of [5, Theorem 2.9], that is,

$$
\operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)=\mathcal{L}_{p, \phi}^{\natural} .
$$

We can also take the function

$$
\phi(r)=r^{\alpha}(\log (e / r))^{-\beta}(\log \log (e / r))^{-\gamma} \quad(\alpha \in(-1 / p, \infty), \beta, \gamma \in(-\infty, \infty)),
$$ and so on.

Next, a martingale $\left(f_{n}\right)_{n \geq 0}$ relative to $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$, is said to be $\mathcal{L}_{p, \lambda^{-}}$ bounded if $f_{n} \in \mathcal{L}_{p, \lambda}(n \geq 0)$ and $\sup _{n \geq 0}\left\|f_{n}\right\|_{\mathcal{L}_{p, \lambda}}<\infty$. Similarly, $\left(f_{n}\right)_{n \geq 0}$ is said to be $\mathcal{L}_{p, \lambda}^{\natural}$ bounded if $f_{n} \in \mathcal{L}_{p, \lambda}^{\natural}(n \geq 0)$ and $\sup _{n \geq 0}\left\|f_{n}\right\|_{\mathcal{L}_{p, \lambda}^{\natural}}<\infty$. For martingale theory, see [3] for example.

Let

$$
\begin{aligned}
& \mathcal{L}_{p, \phi}\left(\mathcal{F}_{n}\right)=\left\{f \in L_{1}: f \text { is } \mathcal{F}_{n} \text {-measurable and }\|f\|_{\mathcal{L}_{p, \phi}}<\infty\right\}, \\
& \mathcal{L}_{p, \phi}^{\natural}\left(\mathcal{F}_{n}\right)=\left\{f \in L_{1}: f \text { is } \mathcal{F}_{n} \text {-measurable and }\|f\|_{\mathcal{L}_{p, \phi}^{\natural}}<\infty\right\} .
\end{aligned}
$$

Then we have the following:
Theorem 1.9. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, $\mathcal{F}_{0}=\{\emptyset, \Omega\}, p \in[1, \infty)$ and $\phi:(0,1] \rightarrow(0, \infty)$. Assume that ϕ satisfies the doubling condition and (1.5). Let $g \in L_{1}$ and $\left(g_{n}\right)_{n \geq 0}$ be its corresponding martingale with $g_{n}=E_{n} g$ $(n \geq 0)$. If $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$, then $g_{n} \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\left(\mathcal{F}_{n}\right)\right)$. Conversely, if $g_{n} \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\left(\mathcal{F}_{n}\right)\right)$ and $\sup _{n \geq 0}\left\|g_{n}\right\|_{\mathrm{Op}}<\infty$, then $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$.

In Section 2 we establish several lemmas in order to prove Theorem 1.3 in Section 3. We prove Theorem 1.9 in Section 4.

To end this section, we make some conventions. Throughout this paper, we always use C to denote a positive constant that is independent of the main parameters involved but whose value may differ from line to line. Constants with subscripts, such as C_{p}, depend on the subscripts. If $f \leq C g$, we write $f \lesssim g$ or $g \gtrsim f$; and if $f \lesssim g \lesssim f$, we write $f \sim g$.
2. Lemmas. To prove Theorem 1.3 we need several lemmas. The first was proved in [9].

Lemma 2.1 ([9, Lemma 3.3]). Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular. Then every sequence

$$
B_{0} \supset B_{1} \supset \cdots, \quad B_{n} \in A\left(\mathcal{F}_{n}\right)
$$

has the following property: for each $n \geq 1$,

$$
B_{n}=B_{n-1} \quad \text { or } \quad(1+1 / R) P\left(B_{n}\right) \leq P\left(B_{n-1}\right) \leq R P\left(B_{n}\right)
$$

where R is the constant in (1.4).
For a function $f \in L_{1}$ and an atom $B \in A\left(\mathcal{F}_{n}\right)$, let

$$
f_{B}=\frac{1}{P(B)} \int_{B} f d P
$$

For a function $\phi:(0,1] \rightarrow(0, \infty)$, let ϕ_{*} be defined by 1.6 . If ϕ satisfies the doubling condition, then $\phi(r) \leq C \phi_{*}(r)$ for all $r \in(0,1]$.

Lemma 2.2. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, $\mathcal{F}_{0}=\{\emptyset, \Omega\}, p \in[1, \infty)$ and $\phi:$ $(0,1] \rightarrow(0, \infty)$. Assume that ϕ satisfies the doubling condition. For $f \in \mathcal{L}_{p, \phi}^{\natural}$ and $B \in \bigcup_{n \geq 0} A\left(\mathcal{F}_{n}\right)$,

$$
\begin{equation*}
\left|f_{B}\right| \leq C \phi_{*}(P(B))\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} . \tag{2.1}
\end{equation*}
$$

Proof. By Lemma 2.1, we can choose $B_{k_{j}} \in A\left(\mathcal{F}_{k_{j}}\right)$ with $0=k_{0}<k_{1}<$ $\cdots<k_{m} \leq n$ such that $B_{k_{0}} \supset B_{k_{1}} \supset \cdots \supset B_{k_{m}}=B$ and $(1+1 / R) P\left(B_{k_{j}}\right) \leq$ $P\left(B_{k_{j-1}}\right) \leq R P\left(B_{k_{j}}\right)$. Then

$$
\begin{aligned}
\left|f_{B_{k_{j}}}-f_{B_{k_{j-1}}}\right| & =\left|\frac{1}{P\left(B_{k_{j}}\right)} \int_{B_{k_{j}}} f(\omega) d P-\frac{1}{P\left(B_{k_{j-1}}\right)} \int_{B_{k_{j-1}}} f(\omega) d P\right| \\
& =\left|\frac{1}{P\left(B_{k_{j}}\right)} \int_{B_{k_{j}}}\left[f-E_{k_{j-1}} f\right](\omega) d P\right| \\
& \leq\left(\frac{1}{P\left(B_{k_{j}}\right)} \int_{B_{k_{j}}}\left|f-E_{k_{j-1}} f\right|^{p} d P\right)^{1 / p} \\
& \lesssim\left(\frac{1}{P\left(B_{k_{j-1}}\right)} \int_{B_{k_{j-1}}}\left|f-E_{k_{j-1}} f\right|^{p} d P\right)^{1 / p} \\
& \leq \phi\left(P\left(B_{k_{j-1}}\right)\right)\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} .
\end{aligned}
$$

Since ϕ satisfies the doubling condition,

$$
\begin{aligned}
\left|f_{B}-f_{B_{0}}\right| & \leq \sum_{j=1}^{m}\left|f_{B_{k_{j}}}-f_{B_{k_{j-1}}}\right| \lesssim \sum_{j=1}^{m} \phi\left(P\left(B_{k_{j-1}}\right)\right)\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \\
& \lesssim \sum_{j=1}^{m} \int_{P\left(B_{k_{j}}\right)}^{P\left(B_{k_{j-1}}\right)} \frac{\phi(t)}{t} d t\|f\|_{\mathcal{L}_{p, \phi}^{\natural}}=\int_{P(B)}^{1} \frac{\phi(t)}{t} d t\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \\
& =\left\{\phi_{*}(P(B))-1\right\}\|f\|_{\mathcal{L}_{p, \phi}^{\natural} .} .
\end{aligned}
$$

On the other hand,

$$
\left|f_{B_{0}}\right|=|E f| \leq\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} .
$$

Therefore, we have (2.1).
Lemma 2.3. Let $\mathcal{F}_{0}=\{\emptyset, \Omega\}, p \in[1, \infty)$ and $\phi:(0,1] \rightarrow(0, \infty)$. Assume that $r \phi(r)^{p}$ is almost increasing. For any atom $B \in \bigcup_{n>0} A\left(\mathcal{F}_{n}\right)$, the characteristic function χ_{B} is in $\mathcal{L}_{p, \phi}^{\natural}$ and there exists a positive constant C, independent of B, such that

$$
\begin{equation*}
\left\|\chi_{B}\right\|_{\mathcal{L}_{p, \phi}^{\natural}} \leq C / \phi(P(B)) . \tag{2.2}
\end{equation*}
$$

Proof. Let $B \in A\left(\mathcal{F}_{n}\right)$ and $B^{\prime} \in A\left(\mathcal{F}_{k}\right)$. Let $B_{j} \in A\left(\mathcal{F}_{j}\right), 0 \leq j \leq n$, be such that $B_{0} \supset B_{1} \supset \cdots \supset B_{n}=B$.

If $k \geq n$, then $\chi_{B}-E_{k} \chi_{B}=0$ and

$$
\int_{B^{\prime}}\left|\chi_{B}-E_{k} \chi_{B}\right|^{p} d P=0 .
$$

If $k<n$ and $B^{\prime} \neq B_{k}$, then $B^{\prime} \cap B_{k}=\emptyset$ and

$$
\int_{B^{\prime}}\left|\chi_{B}-E_{k} \chi_{B}\right|^{p} d P=0 .
$$

Hence, we have

$$
\left\|\chi_{B}\right\|_{\mathcal{L}_{p, \phi}}=\sup _{k<n} \frac{1}{\phi\left(P\left(B_{k}\right)\right)}\left(\frac{1}{P\left(B_{k}\right)} \int_{B_{k}}\left|\chi_{B}-E_{k} \chi_{B}\right|^{p} d P\right)^{1 / p} .
$$

For $k<n$, since $r \phi(r)^{p}$ is almost increasing,

$$
\begin{aligned}
& \frac{1}{\phi\left(P\left(B_{k}\right)\right)^{p}} \frac{1}{P\left(B_{k}\right)} \int_{B_{k}}\left|\chi_{B}-E_{k} \chi_{B}\right|^{p} d P \\
&= \frac{1}{\phi\left(P\left(B_{k}\right)\right)^{p} P\left(B_{k}\right)} \\
& \times\left\{P\left(B_{n}\right)\left(1-\frac{P\left(B_{n}\right)}{P\left(B_{k}\right)}\right)^{p}+\left(P\left(B_{k}\right)-P\left(B_{n}\right)\right)\left(\frac{P\left(B_{n}\right)}{P\left(B_{k}\right)}\right)^{p}\right\} \\
& \lesssim \frac{1}{\phi\left(P\left(B_{n}\right)\right)^{p} P\left(B_{n}\right)} \\
& \times\left\{P\left(B_{n}\right)\left(1-\frac{P\left(B_{n}\right)}{P\left(B_{k}\right)}\right)^{p}+\left(P\left(B_{k}\right)-P\left(B_{n}\right)\right)\left(\frac{P\left(B_{n}\right)}{P\left(B_{k}\right)}\right)^{p}\right\} \\
&= \frac{1}{\phi\left(P\left(B_{n}\right)\right)^{p}}\left\{\left(1-\frac{P\left(B_{n}\right)}{P\left(B_{k}\right)}\right)^{p}+\left(1-\frac{P\left(B_{n}\right)}{P\left(B_{k}\right)}\right)\left(\frac{P\left(B_{n}\right)}{P\left(B_{k}\right)}\right)^{p-1}\right\} \\
& \lesssim \frac{1}{\phi\left(P\left(B_{n}\right)\right)^{p}}=\frac{1}{\phi(P(B))^{p}} .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\left\|\chi_{B}\right\|_{\mathcal{L}_{p, \phi}} \lesssim 1 / \phi(P(B)) . \tag{2.3}
\end{equation*}
$$

On the other hand, since $r \phi(r)^{p}$ is almost increasing,

$$
\begin{equation*}
\left|E \chi_{B}\right|=P(B) \leq P(B)^{1 / p} \lesssim 1 / \phi(P(B)) . \tag{2.4}
\end{equation*}
$$

Combining (2.3) and (2.4), we have (2.2).
Lemma 2.4. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, $\mathcal{F}_{0}=\{\emptyset, \Omega\}, p \in[1, \infty)$ and $\phi:$ $(0,1] \rightarrow(0, \infty)$. Assume that ϕ satisfies the doubling condition and (1.5).
For a sequence

$$
B_{0} \supset B_{1} \supset \cdots, \quad B_{n} \in A\left(\mathcal{F}_{n}\right),
$$

let

$$
f_{0}=\chi_{B_{0}}, \quad u_{k}=\phi\left(P\left(B_{k}\right)\right)\left(\frac{P\left(B_{k-1}\right)}{P\left(B_{k}\right)} \chi_{B_{k}}-\chi_{B_{k-1}}\right)
$$

and let

$$
\begin{equation*}
f_{n}=f_{0}+\sum_{k=1}^{n} u_{k} \tag{2.5}
\end{equation*}
$$

Then $\left(f_{n}\right)_{n \geq 0}$ is a martingale and is $\mathcal{L}_{p, \phi}^{\natural}$-bounded. The sum $f \equiv f_{0}+$ $\sum_{k=1}^{\infty} u_{k}$ converges a.s. and in L_{p}, and $E_{n} f=f_{n}$ for $n \geq 0$. Moreover, there exist positive constants C_{1} and C_{2}, independent of the sequence of atoms, such that

$$
\begin{equation*}
\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \leq C_{1} \quad \text { and } \quad\left|f_{B_{n}}\right| \geq C_{2} \phi_{*}\left(P\left(B_{n}\right)\right), \quad n \geq 0 \tag{2.6}
\end{equation*}
$$

Proof. Since $E_{n}\left[u_{k}\right]=0$ for $k>n,\left(f_{n}\right)_{n \geq 0}$ is a martingale. We show that the sum $f_{0}+\sum_{k=1}^{\infty} u_{k}$ converges in L_{p}. If $\lim _{k \rightarrow \infty} P\left(B_{k}\right)>0$ then the convergence is clear because there exists m such that $B_{m}=B_{n}$ for all $n \geq m$. So assume that $\lim _{k \rightarrow \infty} P\left(B_{k}\right)=0$. By Lemma 2.1, we can take a sequence of integers $0=k_{0}<k_{1}<\cdots$ that satisfies

$$
\begin{equation*}
(1+1 / R) P\left(B_{k_{j}}\right) \leq P\left(B_{k_{j-1}}\right) \leq R P\left(B_{k_{j}}\right) \tag{2.7}
\end{equation*}
$$

and $B_{k_{j-1}}=B_{k}$ if $k_{j-1} \leq k<k_{j}$. In this case we can write

$$
f_{n}=\chi_{B_{0}}+\sum_{1 \leq k_{j} \leq n} \phi\left(P\left(B_{k_{j}}\right)\right)\left(\frac{P\left(B_{\left.k_{j-1}\right)}\right)}{P\left(B_{k_{j}}\right)} \chi_{B_{k_{j}}}-\chi_{B_{k_{j-1}}}\right)
$$

Note that, by Remark 1.4 and [8, Lemma 7.1], the doubling condition and (1.5) imply

$$
\begin{equation*}
\int_{0}^{r} \phi(t) t^{1 / p-1} d t \leq C_{p} \phi(r) r^{1 / p} \quad \text { for all } r \in(0,1] \tag{2.8}
\end{equation*}
$$

Using the doubling condition and (2.8), we have

$$
\begin{align*}
& \sum_{k_{j}>n} \phi\left(P\left(B_{k_{j}}\right)\right)\left\|\frac{P\left(B_{\left.k_{j-1}\right)}\right.}{P\left(B_{k_{j}}\right)} \chi_{B_{k_{j}}}-\chi_{B_{k_{j-1}}}\right\|_{L_{p}} \tag{2.9}\\
& \quad \leq \sum_{k_{j}>n} \phi\left(P\left(B_{k_{j}}\right)\right)\left(R\left\|\chi_{B_{k_{j}}}\right\|_{L_{p}}+\left\|\chi_{B_{k_{j-1}}}\right\|_{L_{p}}\right) \\
& \quad \leq 2 R \sum_{k_{j}>n} \phi\left(P\left(B_{k_{j}}\right)\right) P\left(B_{k_{j}}\right)^{1 / p} \leq C \sum_{k_{j}>n} \int_{P\left(B_{k_{j}}\right)}^{P\left(B_{k_{j-1}}\right)} \phi(t) t^{1 / p-1} d t \\
& \quad \leq C \int_{0}^{P\left(B_{n}\right)} \phi(t) t^{1 / p-1} d t \leq C C_{p} \phi\left(P\left(B_{n}\right)\right) P\left(B_{n}\right)^{1 / p}
\end{align*}
$$

We can deduce from (2.9) that $f \equiv f_{0}+\sum_{k=1}^{\infty} u_{k}$ converges in L_{p}. By the martingale convergence theorem, $f_{0}+\sum_{k=1}^{\infty} u_{k}$ also converges almost surely. Moreover, $E_{n} f=f_{n}$ and

$$
\begin{equation*}
\left(\frac{1}{P\left(B_{n}\right)} \int_{B_{n}}\left|f-E_{n} f\right|^{p} d P\right)^{1 / p} \leq C C_{p} \phi\left(P\left(B_{n}\right)\right) \tag{2.10}
\end{equation*}
$$

For $B^{\prime} \in A\left(\mathcal{F}_{n}\right)$, we have

$$
\left(f-E_{n} f\right) \chi_{B^{\prime}}= \begin{cases}f-E_{n} f & \left(B^{\prime}=B_{n}\right) \tag{2.11}\\ 0 & \left(B^{\prime} \neq B_{n}\right)\end{cases}
$$

Combining (2.10) and 2.11), we have $\|f\|_{\mathcal{L}_{p, \phi}} \leq C$ where C is a positive constant independent of the sequence of atoms. Moreover, since $B_{0}=\Omega$,

$$
|E f|=\left|f_{0}\right|=1
$$

Therefore, $\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \leq C_{1}$ where C_{1} is a positive constant independent of the sequence of atoms.

We now show $\left|f_{B_{n}}\right| \geq C_{2} \phi_{*}\left(P\left(B_{n}\right)\right)$. On the atom B_{n}, we have

$$
f_{n}=1+\sum_{1 \leq k_{j} \leq n} \phi\left(P\left(B_{k_{j}}\right)\right)\left(\frac{P\left(B_{k_{j-1}}\right)}{P\left(B_{k_{j}}\right)}-1\right) \geq 1+\frac{1}{R} \sum_{1 \leq k_{j} \leq n} \phi\left(P\left(B_{k_{j}}\right)\right)
$$

Therefore,

$$
\begin{aligned}
\left|f_{B_{n}}\right| & =\left|\frac{1}{P\left(B_{n}\right)} \int_{B_{n}} f_{n} d P\right| \\
& \geq 1+\frac{1}{R} \sum_{1 \leq k_{j} \leq n} \phi\left(P\left(B_{k_{j}}\right)\right) \sim 1+\sum_{1 \leq k_{j} \leq n} \int_{P\left(B_{k_{j}}\right)}^{P\left(B_{k_{j-1}}\right)} \frac{\phi(t)}{t} d t \\
& =1+\int_{P\left(B_{n}\right)}^{1} \frac{\phi(t)}{t} d t=\phi_{*}\left(P\left(B_{n}\right)\right) .
\end{aligned}
$$

That is, $\left|f_{B_{n}}\right| \geq C_{2} \phi_{*}\left(P\left(B_{n}\right)\right)$ where C_{2} is a positive constant independent of the sequence of atoms.

Remark 2.5. From the proof of Lemma 2.4 we see that, for

$$
\begin{equation*}
h=\sum_{k=1}^{\infty} u_{k}, \quad h_{0}=0, \quad h_{n}=\sum_{k=1}^{n} u_{k} \quad(n \geq 1) \tag{2.12}
\end{equation*}
$$

h is in $\mathcal{L}_{p, \phi}$ and $\left(h_{n}\right)_{n \geq 0}$ is its corresponding martingale with $h_{n}=E_{n} h$ $(n \geq 0)$.

Remark 2.6. Let (Ω, \mathcal{F}, P) be as follows:
$\Omega=[0,1), \quad A\left(\mathcal{F}_{n}\right)=\left\{I_{n, j}=\left[j 2^{-n},(j+1) 2^{-n}\right): j=0,1, \ldots, 2^{n}-1\right\}$,
$\mathcal{F}_{n}=\sigma\left(A\left(\mathcal{F}_{n}\right)\right), \quad \mathcal{F}=\sigma\left(\bigcup_{n} \mathcal{F}_{n}\right), \quad P=$ the Lebesgue measure.
If $\phi(r)=1 / \log (e / r)$, then h in (2.12) is unbounded. Actually,

$$
u_{k}=\frac{1}{1+k \log 2}\left(2 \chi_{B_{k}}-\chi_{B_{k-1}}\right),
$$

and

$$
h=\sum_{k=1}^{n} \frac{1}{1+k \log 2}-\frac{1}{1+(n+1) \log 2} \quad \text { on } B_{n} \backslash B_{n+1} .
$$

Remark 2.7. If $F: \mathbb{C} \rightarrow \mathbb{C}$ is Lipschitz continuous, that is,

$$
\left|F\left(z_{1}\right)-F\left(z_{2}\right)\right| \leq C\left|z_{1}-z_{2}\right|, \quad z_{1}, z_{2} \in \mathbb{C}
$$

then, for $B \in \mathcal{F}_{n}$,

$$
\int_{B}\left|F(f)-E_{n}[F(f)]\right| d P \leq 2 C \int_{B}\left|f-E_{n} f\right| d P .
$$

Actually,

$$
\begin{aligned}
& \int_{B}\left|F(f)-E_{n}[F(f)]\right| d P \\
& \leq \int_{B}\left|F(f)-F\left(E_{n} f\right)\right| d P+\int_{B}\left|F\left(E_{n} f\right)-E_{n}[F(f)]\right| d P \\
&=\int_{B}\left|F(f)-F\left(E_{n} f\right)\right| d P+\int_{B}\left|E_{n}\left[F\left(E_{n} f\right)-F(f)\right]\right| d P \\
& \leq 2 \int_{B}\left|F(f)-F\left(E_{n} f\right)\right| d P \leq 2 C \int_{B}\left|f-E_{n} f\right| d P .
\end{aligned}
$$

Lemma 2.8. Let $p \in[1, \infty)$ and $\phi:(0,1] \rightarrow(0, \infty)$. Suppose $f \in \mathcal{L}_{p, \phi}$ and $g \in L_{\infty}$. Then $f g \in \mathcal{L}_{p, \phi}$ if and only if

$$
\begin{equation*}
F(f, g):=\sup _{n \geq 0} \sup _{B \in A\left(\mathcal{F}_{n}\right)} \frac{\left|f_{B}\right|}{\phi(P(B))}\left(\frac{1}{P(B)} \int_{B}\left|g-E_{n} g\right|^{p} d P\right)^{1 / p}<\infty . \tag{2.13}
\end{equation*}
$$

In this case,

$$
\begin{equation*}
\left|F(f, g)-\|f g\|_{\mathcal{L}_{p, \phi}}\right| \leq 2\|f\|_{\mathcal{L}_{p, \phi}}\|g\|_{L_{\infty}} . \tag{2.14}
\end{equation*}
$$

Proof. Let $f \in \mathcal{L}_{p, \phi}$ and $g \in L_{\infty}$. Let $B \in A\left(\mathcal{F}_{n}\right)$. Since $E_{n} f=f_{B}$ on B, we can use the same method as in [6, Lemma 3.5] to obtain

$$
\begin{align*}
& \left|\left(\frac{1}{P(B)} \int_{B}\left|f g-E_{n}[f g]\right|^{p} d P\right)^{1 / p}-\left|f_{B}\right|\left(\frac{1}{P(B)} \int_{B}\left|g-E_{n} g\right|^{p} d P\right)^{1 / p}\right| \tag{2.15}\\
& \quad \leq 2\left(\frac{1}{P(B)} \int_{B}\left|\left(f-E_{n} f\right) g\right|^{p} d P\right)^{1 / p} \leq 2 \phi(P(B))\|f\|_{\mathcal{L}_{p, \phi}}\|g\|_{L_{\infty}}
\end{align*}
$$

Therefore, $f g \in \mathcal{L}_{p, \phi}$ if and only if $F(f, g)<\infty$. In this case, we can deduce (2.14) from 2.15.

Lemma 2.9. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, $\mathcal{F}_{0}=\{\emptyset, \Omega\}, p \in[1, \infty)$ and $\phi:$ $(0,1] \rightarrow(0, \infty)$. Assume that $r \phi(r)^{p}$ is almost increasing and that ϕ satisfies the doubling condition. If $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$, then $g \in L_{\infty}$ and $\|g\|_{L_{\infty}} \leq$ $C\|g\|_{\text {Op }}$ for some positive constant C independent of g.

Proof. Let $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$. Since the constant function 1 is in $\mathcal{L}_{p, \phi}^{\natural}$, the pointwise product $g=g \cdot 1$ is in $\mathcal{L}_{p, \phi}^{\natural}$, which implies $g \in L_{1}$. Then $E[|g|] \leq E[|g-E g|]+|E g| \leq \max (1, \phi(1))\|g\|_{\mathcal{L}_{p, \phi}^{\natural}} \lesssim\|g\|_{\mathrm{Op}}\|1\|_{\mathcal{L}_{p, \phi}^{\natural}}=\|g\|_{\mathrm{Op}}$. Since $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular, we also have $E_{n} g \in L_{\infty}$:

$$
E_{n}[|g|] \leq R E_{n-1}[|g|] \leq \cdots \leq R^{n} E_{0}[|g|]=R^{n} E[|g|]
$$

Next we shall show that there exists a positive constant C such that $\|g\|_{L_{\infty}} \leq C\|g\|_{\mathrm{Op}}$. Then we will have the conclusion. Let $B \in A\left(\mathcal{F}_{n}\right)$ such that $\left|g_{B}\right| \geq\left\|E_{n} g\right\|_{L_{\infty}} / 2$. By Lemma 2.1 there exists $B^{\prime} \in A\left(\mathcal{F}_{n^{\prime}}\right)$ with $B \subset B^{\prime}$ such that $(1+1 / R) P(B) \leq P\left(B^{\prime}\right) \leq R P(B)$. Then

$$
\begin{aligned}
\left\|g \chi_{B}\right\|_{\mathcal{L}_{p, \phi}^{\natural}} & \geq \frac{1}{\phi\left(P\left(B^{\prime}\right)\right)}\left(\frac{1}{P\left(B^{\prime}\right)} \int_{B^{\prime}}\left|g \chi_{B}-E_{n^{\prime}}\left[g \chi_{B}\right]\right|^{p} d P\right)^{1 / p} \\
& \geq \frac{1}{\phi\left(P\left(B^{\prime}\right)\right)}\left(\frac{1}{P\left(B^{\prime}\right)} \int_{B^{\prime} \backslash B}\left|g \chi_{B}-E_{n^{\prime}}\left[g \chi_{B}\right]\right|^{p} d P\right)^{1 / p} \\
& =\frac{1}{\phi\left(P\left(B^{\prime}\right)\right)}\left(\frac{1}{P\left(B^{\prime}\right)} \int_{B^{\prime} \backslash B}\left|E_{n^{\prime}}\left[\left[E_{n} g\right] \chi_{B}\right]\right|^{p} d P\right)^{1 / p}
\end{aligned}
$$

Since $\left|\left[E_{n} g\right] \chi_{B}\right|=\left|g_{B} \chi_{B}\right| \geq\left\|E_{n} g\right\|_{L_{\infty} \chi_{B} / 2 \text {, we have }}$

$$
\int_{B^{\prime} \backslash B}\left|E_{n^{\prime}}\left[\left[E_{n} g\right] \chi_{B}\right]\right|^{p} d P \geq\left(\frac{\left\|E_{n} g\right\|_{L_{\infty}}}{2}\right)^{p}\left(\frac{P(B)}{P\left(B^{\prime}\right)}\right)^{p} P\left(B^{\prime} \backslash B\right)
$$

Hence,

$$
\begin{equation*}
\left\|g \chi_{B}\right\|_{\mathcal{L}_{p, \phi}^{\natural}} \geq \frac{\left\|E_{n} g\right\|_{L_{\infty}}}{2 R(R+1)^{1 / p} \phi\left(P\left(B^{\prime}\right)\right)} . \tag{2.16}
\end{equation*}
$$

Using (2.16), Lemma 2.3 and the doubling condition on ϕ, we have

$$
\begin{aligned}
\left\|E_{n} g\right\|_{L_{\infty}} & \leq 2 R(R+1)^{1 / p} \phi\left(P\left(B^{\prime}\right)\right)\left\|g \chi_{B}\right\|_{\mathcal{L}_{p, \phi}^{\natural}} \\
& \lesssim\|g\|_{\mathrm{Op}} \frac{\phi\left(P\left(B^{\prime}\right)\right)}{\phi(P(B))} \lesssim\|g\|_{\mathrm{Op}} .
\end{aligned}
$$

Therefore,

$$
\|g\|_{L_{\infty}}=\sup _{n \geq 0}\left\|E_{n} g\right\|_{L_{\infty}} \leq C\|g\|_{\mathrm{Op}}
$$

3. Proof of Theorem $\mathbf{1 . 3}$. We first show that
(3.1) $\quad \mathcal{L}_{p, \phi / \phi_{*}} \cap L_{\infty} \subset \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right) \quad$ and $\quad\|g\|_{\mathrm{Op}} \leq C\left(\|g\|_{\mathcal{L}_{p, \phi / \phi_{*}}}+\|g\|_{L_{\infty}}\right)$.

Let $g \in \mathcal{L}_{p, \phi / \phi_{*}} \cap L_{\infty}$ and $f \in \mathcal{L}_{p, \phi}^{\natural}$. Let $F(f, g)$ be as in Lemma 2.8. Then, by the definition of $F(f, g)$ and Lemma 2.2 ,

$$
F(f, g) \leq C\|f\|_{\mathcal{L}_{p, \phi}^{\natural}}\|g\|_{\mathcal{L}_{p, \phi / \phi_{*}}}<\infty .
$$

Therefore, by Lemma 2.8, we have $f g \in \mathcal{L}_{p, \phi}$ and

$$
\begin{equation*}
\|f g\|_{\mathcal{L}_{p, \phi}} \leq C\|f\|_{\mathcal{L}_{p, \phi}^{\natural}}\|g\|_{\mathcal{L}_{p, \phi / \phi_{*}}}+2\|f\|_{\mathcal{L}_{p, \phi}}\|g\|_{L_{\infty}} . \tag{3.2}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
|E[f g]| \leq\|g\|_{L_{\infty}} E[|f|] \leq\|g\|_{L_{\infty}} \max (1, \phi(1))\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \tag{3.3}
\end{equation*}
$$

Combining (3.2) and (3.3), we obtain (3.1).
We now show the converse, that is,
(3.4) $\quad \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right) \subset \mathcal{L}_{p, \phi / \phi_{*}} \cap L_{\infty} \quad$ and $\quad\|g\|_{\mathcal{L}_{p, \phi / \phi_{*}}}+\|g\|_{L_{\infty}} \leq C\|g\|_{\mathrm{Op}}$.

Let $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$. By Lemma 2.9, we have $g \in L_{\infty}$ and $\|g\|_{L_{\infty}} \leq C\|g\|_{\mathrm{Op}}$. Let $B \in A\left(\mathcal{F}_{n}\right)$. We take $B_{j} \in A\left(\overline{\mathcal{F}_{j}}\right)$ with $B_{n}=B$ such that $B_{0} \supset B_{1} \supset \cdots$. Let f be the function described in Lemma 2.4. Then, combining Lemmas 2.4 and 2.8, we obtain

$$
\begin{aligned}
& \frac{C_{2} \phi_{*}(P(B))}{\phi(P(B))}\left(\frac{1}{P(B)} \int_{B}\left|g-E_{n} g\right|^{p} d P\right)^{1 / p} \\
& \quad \leq \frac{\left|f_{B}\right|}{\phi(P(B))}\left(\frac{1}{P(B)} \int_{B}\left|g-E_{n} g\right|^{p} d P\right)^{1 / p} \leq F(f, g) \\
& \quad \leq\|f g\|_{\mathcal{L}_{p, \phi}}+2\|g\|_{L_{\infty}}\|f\|_{\mathcal{L}_{p, \phi}} \leq\|g\|_{\mathrm{Op}}\|f\|_{\mathcal{L}_{p, \phi}^{\natural}}+2 C\|g\|_{\mathrm{Op}}\|f\|_{\mathcal{L}_{p, \phi}} \\
& \quad \lesssim\|g\|_{\mathrm{Op}}\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \leq C_{1}\|g\|_{\mathrm{Op}} .
\end{aligned}
$$

Therefore, we have (3.4).
4. Proof of Theorem 1.9. To prove Theorem 1.9 we use the following proposition. It can be shown in the same way as [9, Proposition 2.2] which deals with the case $\phi(r)=r^{\lambda}, \lambda \in(-\infty, \infty)$.

Proposition 4.1. Let $1 \leq p<\infty$ and $\phi:(0,1] \rightarrow(0, \infty)$. Let $f \in L_{1}$ and $\left(f_{n}\right)_{n \geq 0}$ be its corresponding martingale with $f_{n}=E_{n} f(n \geq 0)$.
(i) If $f \in \mathcal{L}_{p, \phi}$, then $\left(f_{n}\right)_{n \geq 0}$ is $\mathcal{L}_{p, \phi}$-bounded and

$$
\|f\|_{\mathcal{L}_{p, \phi}} \geq \sup _{n \geq 0}\left\|f_{n}\right\|_{\mathcal{L}_{p, \phi}}
$$

Conversely, if $\left(f_{n}\right)_{n \geq 0}$ is $\mathcal{L}_{p, \phi}$-bounded, then $f \in \mathcal{L}_{p, \phi}$ and

$$
\|f\|_{\mathcal{L}_{p, \phi}} \leq \sup _{n \geq 0}\left\|f_{n}\right\|_{\mathcal{L}_{p, \phi}}
$$

(ii) If $f \in \mathcal{L}_{p, \phi}^{\natural}$, then $\left(f_{n}\right)_{n \geq 0}$ is $\mathcal{L}_{p, \phi}^{\natural}$-bounded and

$$
\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \geq \sup _{n \geq 0}\left\|f_{n}\right\|_{\mathcal{L}_{p, \phi}^{\natural}} .
$$

Conversely, if $\left(f_{n}\right)_{n \geq 0}$ is $\mathcal{L}_{p, \phi}^{\natural}$-bounded, then $f \in \mathcal{L}_{p, \phi}^{\natural}$ and

$$
\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} \leq \sup _{n \geq 0}\left\|f_{n}\right\|_{\mathcal{L}_{p, \phi}^{\natural}} .
$$

REMARK 4.2. In general, for $f \in \mathcal{L}_{p, \phi} \cap L_{1,0}$ (resp. $f \in \mathcal{L}_{p, \phi}^{\natural}$), its corresponding martingale $\left(f_{n}\right)_{n \geq 0}$ with $f_{n}=E_{n} f$ does not always converge to f in $\mathcal{L}_{p, \phi}$ (resp. $\mathcal{L}_{p, \phi}^{\natural}$). See [9, Remark 3.7] for the case $\phi(r)=r^{\lambda}$.

Proof of Theorem 1.9. Let $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$ and $f \in \mathcal{L}_{p, \phi}^{\natural}\left(\mathcal{F}_{n}\right)$. Then, using Proposition 4.1, we have

$$
\left\|E_{n}[g] f\right\|_{\mathcal{L}_{p, \phi}^{\natural}}=\left\|E_{n}[g f]\right\|_{\mathcal{L}_{p, \phi}^{\natural}} \leq\|g f\|_{\mathcal{L}_{p, \phi}^{\natural}} \leq\|g\|_{\mathrm{Op}}\|f\|_{\mathcal{L}_{p, \phi}^{\natural}} .
$$

Therefore, $E_{n} g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\left(\mathcal{F}_{n}\right)\right)$.
Conversely, assume $E_{n} g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\left(\mathcal{F}_{n}\right)\right)$ and $\sup _{n \geq 0}\left\|E_{n} g\right\|_{\mathrm{Op}}<\infty$. Then, using Proposition 4.1 and Theorem 1.3, we have
$\|g\|_{\mathcal{L}_{p, \phi / \phi_{*}}}+\|g\|_{L_{\infty}} \leq \sup _{n \geq 0}\left\|E_{n} g\right\|_{\mathcal{L}_{p, \phi / \phi_{*}}}+\sup _{n \geq 0}\left\|E_{n} g\right\|_{L_{\infty}} \lesssim \sup _{n \geq 0}\left\|E_{n} g\right\|_{\mathrm{Op}}<\infty$.
Using Theorem 1.3 again, we obtain $g \in \operatorname{PWM}\left(\mathcal{L}_{p, \phi}^{\natural}\right)$.
Acknowledgements. The authors would like to thank the referees for their careful reading and useful comments. The first author was supported by Grant-in-Aid for Scientific Research (C), No. 24540159, Japan Society for the Promotion of Science. The second author was supported by Grant-in-Aid for Scientific Research (C), No. 24540171, Japan Society for the Promotion of Science.

References

[1] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196.
[2] M. Kikuchi, On some inequalities for Doob decompositions in Banach function spaces, Math. Z. 265 (2010), 865-887.
[3] R. L. Long, Martingale Spaces and Inequalities, Peking Univ. Press, Beijing, 1993.
[4] L. Maligranda and L. E. Persson, Generalized duality of some Banach function spaces, Indag. Math. 51 (1989), 323-338.
[5] T. Miyamoto, E. Nakai and G. Sadasue, Martingale Orlicz-Hardy spaces, Math. Nachr. 285 (2012), 670-686.
[6] E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 (1993), 105-119.
[7] E. Nakai, Pointwise multipliers, Mem. Akashi College of Technology 37 (1995), 85-94.
[8] E. Nakai, A generalization of Hardy spaces H^{p} by using atoms, Acta Math. Sinica (English Ser.) 24 (2008), 1243-1268.
[9] E. Nakai and G. Sadasue, Martingale Morrey-Campanato spaces and fractional integrals, J. Funct. Spaces Appl. 2012, art. ID 673929, 29 pp.
[10] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Japan 37 (1985), 207-218.
[11] D. A. Stegenga, Bounded Toeplitz operators on H^{1} and applications of the duality between H^{1} and the functions of bounded mean oscillation, Amer. J. Math. 98 (1976), 573-589.
[12] F. Weisz, Martingale Hardy spaces for $0<p \leq 1$. Probab. Theory Related Fields 84 (1990), 361-376.
[13] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
[14] K. Yabuta, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 117 (1993), 737-744.

Eiichi Nakai
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
E-mail: enakai@mx.ibaraki.ac.jp

Gaku Sadasue
Department of Mathematics
Osaka Kyoiku University
Kashiwara, Osaka 582-8582, Japan
E-mail: sadasue@cc.osaka-kyoiku.ac.jp

Received April 18, 2013

[^0]: 2010 Mathematics Subject Classification: Primary 60G46; Secondary 46E30, 42B35.
 Key words and phrases: martingale, pointwise multiplier, Campanato space, bounded mean oscillation.

