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Pointwise multipliers on martingale Campanato spaces

by

Eiichi Nakai (Mito) and Gaku Sadasue (Kashiwara)

Abstract. We introduce generalized Campanato spaces Lp,φ on a probability space
(Ω,F , P ), where p ∈ [1,∞) and φ : (0, 1]→ (0,∞). If p = 1 and φ ≡ 1, then Lp,φ = BMO.
We give a characterization of the set of all pointwise multipliers on Lp,φ.

1. Introduction. We consider a probability space (Ω,F , P ) such that
F = σ(

⋃
nFn), where {Fn}n≥0 is a nondecreasing sequence of sub-σ-alge-

bras of F . For the sake of simplicity, let F−1 = F0. We suppose that every
σ-algebra Fn is generated by a countable collection of atoms, where B ∈ Fn
is called an atom (more precisely an (Fn, P )-atom), if any A ⊂ B with
A ∈ Fn satisfies P (A) = P (B) or P (A) = 0. Denote by A(Fn) the set of
all atoms in Fn. The expectation operator and the conditional expectation
operators relative to Fn are denoted by E and En, respectively.

Let X be a normed space of F-measurable functions. We say that an
F-measurable function g is a pointwise multiplier on X if the pointwise
product fg is in X for any f ∈ X . We denote by PWM(X ) the set of all
pointwise multipliers on X . If X is a Banach space, then every g ∈ PWM(X )
is a bounded operator on X whenever X has the following property

(1.1) fn → f in X (n→∞) ⇒ ∃{n(j)} : fn(j) → f a.s. (j →∞).

Actually, from (1.1) we see that g is a closed operator. Therefore, g is a
bounded operator by the closed graph theorem.

It is known that PWM(Lp) = L∞ for p ∈ (0,∞]. More generally, if X
is a (quasi) Banach function space, then PWM(X ) = L∞ (see [4, 7]). For
Banach function spaces, see Kikuchi [2].

In this paper we consider pointwise multipliers on generalized Cam-
panato spaces which are not Banach function spaces in general. We always
assume that F0 = {∅, Ω}, that is, the operator E0 coincides with E. Then

we introduce generalized Campanato spaces Lp,φ and L\p,φ as follows:
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Definition 1.1. Let p ∈ [1,∞) and φ be a function from (0, 1] to (0,∞).
For f ∈ L1, let

‖f‖Lp,φ = sup
n≥0

sup
B∈A(Fn)

1

φ(P (B))

(
1

P (B)

�

B

|f − Enf |p dP
)1/p

,(1.2)

‖f‖L\p,φ = ‖f‖Lp,φ + |Ef |.(1.3)

Define

Lp,φ = {f ∈ L1 : ‖f‖Lp,φ <∞} and L\p,φ = {f ∈ L1 : ‖f‖L\p,φ <∞}.

If φ(r) = rλ, λ ∈ (−∞,∞), we simply denote Lp,φ and L\p,φ by Lp,λ and

L\p,λ, respectively; the latter spaces were introduced in [9].

Note that Lp,φ and L\p,φ coincide as sets of measurable functions. We see

that Lp,φ = (Lp,φ, ‖ · ‖Lp,φ) is a seminormed space and L\p,φ = (L\p,φ, ‖ · ‖L\p,φ)

is a normed space. Moreover, L\p,φ is a Banach space, but it is not a Banach

function space in general. It is easy to see that L\p,φ has the property (1.1),
since

‖f‖L1 ≤ E[|f − Ef |] + |Ef | ≤ max(1, φ(1))‖f‖L\p,φ .

For g ∈ PWM(L\p,φ), let

‖g‖Op = sup
f 6≡0

‖fg‖L\p,φ
‖f‖L\p,φ

.

We also define BMO and Lipα as follows:

Definition 1.2. For φ ≡ 1, denote L1,φ and L\1,φ by BMO and BMO\,

respectively. For φ(r) = rα, α > 0, denote L1,φ and L\1,φ by Lipα and Lip\α,
respectively.

Let

L1,0 = {f ∈ L1 : Ef = 0}.

Then BMO ∩ L1,0 = BMO\ ∩ L1,0 and Lipα ∩ L1,0 = Lip\α ∩ L1,0. These
spaces coincide respectively with BMO and Lipα defined by Weisz [12, 13],
under the assumption that every σ-algebra Fn is generated by a countable
collection of atoms, see [9] for details.

We say {Fn}n≥0 is regular if there exists R ≥ 2 such that

(1.4) fn ≤ Rfn−1 for all nonnegative martingales f = (fn)n≥0.

A function θ : (0, 1] → (0,∞) is said to satisfy the doubling condition if
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there exists a constant C > 0 such that

1

C
≤ θ(r)

θ(s)
≤ C for all r, s ∈ (0, 1] with 1/2 ≤ r/s ≤ 2.

A function θ : (0, 1] → (0,∞) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C > 0 such that

θ(r) ≤ Cθ(s) (resp. θ(r) ≥ Cθ(s)) for 0 < r ≤ s ≤ 1.

Our main result is the following:

Theorem 1.3. Let {Fn}n≥0 be regular, F0 = {∅, Ω}, p ∈ [1,∞) and
φ : (0, 1]→ (0,∞). Assume that φ satisfies the doubling condition and that

(1.5)

r�

0

φ(t)p dt ≤ Crφ(r)p for all r ∈ (0, 1].

Let

(1.6) φ∗(r) = 1 +

1�

r

φ(t)

t
dt.

Then
PWM(L\p,φ) = Lp,φ/φ∗ ∩ L∞.

Moreover, for g ∈ PWM(L\p,φ), ‖g‖Op is equivalent to ‖g‖Lp,φ/φ∗ + ‖g‖L∞.

See [1, 6, 10, 11, 14] for pointwise multipliers on BMO and Campanato
spaces defined on the Euclidean space. Our basic idea comes from [1, 10].

Remark 1.4. (i) If φ satisfies the doubling condition and (1.5), then
rφ(r)p is almost increasing.

(ii) If φ is almost increasing, then so is φ/φ∗.
(iii) Let

(1.7) ‖f‖Lp,φ,F = sup
n≥0

sup
A∈Fn

1

φ(P (A))

(
1

P (A)

�

A

|f − Enf |p dP
)1/p

.

Then ‖f‖Lp,φ ≤ ‖f‖Lp,φ,F by the definitions. If φ is almost increasing, then
‖f‖Lp,φ and ‖f‖Lp,φ,F are equivalent. Actually, for any A ∈ Fn, there exists
a sequence of atoms B` ∈ A(Fn), ` = 1, 2, . . . , such that A =

⋃
`B` and

P (A) =
∑

` P (B`). Then
�

A

|f − Enf |p dP =
∑
`

�

B`

|f − Enf |p dP ≤
∑
`

φ(P (B`))
pP (B`)‖f‖pLp,φ

≤ Cpφ(P (A))pP (A)‖f‖pLp,φ .

This shows ‖f‖Lp,φ,F ≤ C‖f‖Lp,φ . If φ is not almost increasing, then ‖f‖Lp,φ
is not equivalent to ‖f‖Lp,φ,F in general (see [9]). The norm (1.7) was intro-

duced in [5] for general {Fn}n≥0.
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Theorem 1.3 has the following two immediate corollaries:

Corollary 1.5. Let {Fn}n≥0 be regular and F0 = {∅, Ω}. Then

PWM(BMO\) = L1,ψ ∩ L∞,

where ψ(r) = 1/log(e/r). Moreover, for g ∈ PWM(BMO\), ‖g‖Op is equiv-
alent to ‖g‖L1,ψ + ‖g‖L∞.

Corollary 1.6. Let {Fn}n≥0 be regular, F0 = {∅, Ω} and α > 0. Then

PWM(Lip\α) = Lipα ∩ L∞.
Moreover, for g ∈ PWM(Lip\α), ‖g‖Op is equivalent to ‖g‖Lipα + ‖g‖L∞.

Example 1.7. Let {Fn}n≥0, p and φ satisfy the assumptions of Theo-
rem 1.3. For a sequence

B0 ⊃ B1 ⊃ · · · , Bn ∈ A(Fn),

let

(1.8) g = sinh, where h =

∞∑
n=1

φ(P (Bn))

φ∗(P (Bn))

(
P (Bn−1)

P (Bn)
χBn − χBn−1

)
.

Then h is in Lp,φ/φ∗ (see Lemma 2.4 and Remark 2.5). Hence g ∈ Lp,φ/φ∗ ∩
L∞, since sin θ is Lipschitz continuous (see Remark 2.7). That is, g ∈
PWM(L\p,φ). If φ ≡ 1, then φ(r)/φ∗(r) = 1/log(e/r) and g ∈ PWM(BMO\).

Example 1.8. The following function satisfies the doubling condition
and the property (1.5):

φ(r) = rα(log(e/r))−β (α ∈ (−1/p,∞), β ∈ (−∞,∞)).

If α ∈ (−1/p, 0) and β ∈ (−∞,∞), then φ∗ ∼ φ, that is, there exists a
positive constant C such that C−1φ(r) ≤ φ∗(r) ≤ Cφ(r) for all r ∈ (0, 1]. In
general, under the assumptions of Theorem 1.3, if φ∗ ∼ φ, then L1,φ/φ∗ =
BMO and so

PWM(L\p,φ) = BMO ∩ L∞ = L∞.

If α ∈ [0,∞) and β ∈ (−∞,∞), then φ∗ � φ and φ(r)/φ∗(r) → 0 as
r → 0. In this case L1,φ/φ∗ ∩ L∞ 6= L∞ in general (see also Remark 2.6). In
particular, if α = 0 and β ∈ (1,∞), or if α ∈ (0,∞) and β ∈ (−∞,∞), then
φ∗ ∼ 1. In general, under the assumption of Theorem 1.3, if φ∗ ∼ 1, then
L1,φ/φ∗ = L1,φ ⊂ L∞ by Lemma 2.2 below, and so

PWM(L\p,φ) = L1,φ ∩ L∞ = L\1,φ.
Moreover, if φ is almost increasing, then we can use the John–Nirenberg
type inequality of [5, Theorem 2.9], that is,

PWM(L\p,φ) = L\p,φ.
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We can also take the function

φ(r) = rα(log(e/r))−β(log log(e/r))−γ (α ∈ (−1/p,∞), β, γ ∈ (−∞,∞)),

and so on.

Next, a martingale (fn)n≥0 relative to {Fn}n≥0, is said to be Lp,λ-
bounded if fn ∈ Lp,λ (n ≥ 0) and supn≥0 ‖fn‖Lp,λ <∞. Similarly, (fn)n≥0 is

said to be L\p,λ-bounded if fn ∈ L\p,λ (n ≥ 0) and supn≥0 ‖fn‖L\p,λ < ∞. For

martingale theory, see [3] for example.
Let
Lp,φ(Fn) = {f ∈ L1 : f is Fn-measurable and ‖f‖Lp,φ <∞},

L\p,φ(Fn) = {f ∈ L1 : f is Fn-measurable and ‖f‖L\p,φ <∞}.

Then we have the following:

Theorem 1.9. Let {Fn}n≥0 be regular, F0 = {∅, Ω}, p ∈ [1,∞) and
φ : (0, 1]→ (0,∞). Assume that φ satisfies the doubling condition and (1.5).
Let g ∈ L1 and (gn)n≥0 be its corresponding martingale with gn = Eng

(n ≥ 0). If g ∈ PWM(L\p,φ), then gn ∈ PWM(L\p,φ(Fn)). Conversely, if

gn ∈ PWM(L\p,φ(Fn)) and supn≥0 ‖gn‖Op <∞, then g ∈ PWM(L\p,φ).

In Section 2 we establish several lemmas in order to prove Theorem 1.3
in Section 3. We prove Theorem 1.9 in Section 4.

To end this section, we make some conventions. Throughout this paper,
we always use C to denote a positive constant that is independent of the
main parameters involved but whose value may differ from line to line.
Constants with subscripts, such as Cp, depend on the subscripts. If f ≤ Cg,
we write f . g or g & f ; and if f . g . f , we write f ∼ g.

2. Lemmas. To prove Theorem 1.3 we need several lemmas. The first
was proved in [9].

Lemma 2.1 ([9, Lemma 3.3]). Let {Fn}n≥0 be regular. Then every se-
quence

B0 ⊃ B1 ⊃ · · · , Bn ∈ A(Fn),

has the following property: for each n ≥ 1,

Bn = Bn−1 or (1 + 1/R)P (Bn) ≤ P (Bn−1) ≤ RP (Bn),

where R is the constant in (1.4).

For a function f ∈ L1 and an atom B ∈ A(Fn), let

fB =
1

P (B)

�

B

f dP.

For a function φ : (0, 1] → (0,∞), let φ∗ be defined by (1.6). If φ satisfies
the doubling condition, then φ(r) ≤ Cφ∗(r) for all r ∈ (0, 1].
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Lemma 2.2. Let {Fn}n≥0 be regular, F0 = {∅, Ω}, p ∈ [1,∞) and φ :

(0, 1]→ (0,∞). Assume that φ satisfies the doubling condition. For f ∈ L\p,φ
and B ∈

⋃
n≥0A(Fn),

(2.1) |fB| ≤ Cφ∗(P (B))‖f‖L\p,φ .

Proof. By Lemma 2.1, we can choose Bkj ∈ A(Fkj ) with 0 = k0 < k1 <
· · · < km ≤ n such that Bk0 ⊃ Bk1 ⊃ · · · ⊃ Bkm = B and (1+1/R)P (Bkj ) ≤
P (Bkj−1

) ≤ RP (Bkj ). Then

|fBkj − fBkj−1
| =

∣∣∣∣ 1

P (Bkj )

�

Bkj

f(ω) dP − 1

P (Bkj−1
)

�

Bkj−1

f(ω) dP

∣∣∣∣
=

∣∣∣∣ 1

P (Bkj )

�

Bkj

[f − Ekj−1
f ](ω) dP

∣∣∣∣
≤
(

1

P (Bkj )

�

Bkj

|f − Ekj−1
f |p dP

)1/p

.

(
1

P (Bkj−1
)

�

Bkj−1

|f − Ekj−1
f |p dP

)1/p

≤ φ(P (Bkj−1
)) ‖f‖L\p,φ .

Since φ satisfies the doubling condition,

|fB − fB0 | ≤
m∑
j=1

|fBkj − fBkj−1
| .

m∑
j=1

φ(P (Bkj−1
))‖f‖L\p,φ

.
m∑
j=1

P (Bkj−1
)�

P (Bkj )

φ(t)

t
dt ‖f‖L\p,φ =

1�

P (B)

φ(t)

t
dt ‖f‖L\p,φ

= {φ∗(P (B))− 1} ‖f‖L\p,φ .

On the other hand,

|fB0 | = |Ef | ≤ ‖f‖L\p,φ .

Therefore, we have (2.1).

Lemma 2.3. Let F0 = {∅, Ω}, p ∈ [1,∞) and φ : (0, 1] → (0,∞). As-
sume that rφ(r)p is almost increasing. For any atom B ∈

⋃
n≥0A(Fn), the

characteristic function χB is in L\p,φ and there exists a positive constant C,
independent of B, such that

(2.2) ‖χB‖L\p,φ ≤ C/φ(P (B)).
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Proof. Let B ∈ A(Fn) and B′ ∈ A(Fk). Let Bj ∈ A(Fj), 0 ≤ j ≤ n, be
such that B0 ⊃ B1 ⊃ · · · ⊃ Bn = B.

If k ≥ n, then χB − EkχB = 0 and�

B′

|χB − EkχB|p dP = 0.

If k < n and B′ 6= Bk, then B′ ∩Bk = ∅ and�

B′

|χB − EkχB|p dP = 0.

Hence, we have

‖χB‖Lp,φ = sup
k<n

1

φ(P (Bk))

(
1

P (Bk)

�

Bk

|χB − EkχB|p dP
)1/p

.

For k < n, since rφ(r)p is almost increasing,

1

φ(P (Bk))p
1

P (Bk)

�

Bk

|χB − EkχB|p dP

=
1

φ(P (Bk))pP (Bk)

×
{
P (Bn)

(
1− P (Bn)

P (Bk)

)p
+ (P (Bk)− P (Bn))

(
P (Bn)

P (Bk)

)p}
.

1

φ(P (Bn))pP (Bn)

×
{
P (Bn)

(
1− P (Bn)

P (Bk)

)p
+ (P (Bk)− P (Bn))

(
P (Bn)

P (Bk)

)p}
=

1

φ(P (Bn))p

{(
1− P (Bn)

P (Bk)

)p
+

(
1− P (Bn)

P (Bk)

)(
P (Bn)

P (Bk)

)p−1}
.

1

φ(P (Bn))p
=

1

φ(P (B))p
.

Therefore, we have

(2.3) ‖χB‖Lp,φ . 1/φ(P (B)).

On the other hand, since rφ(r)p is almost increasing,

(2.4) |EχB| = P (B) ≤ P (B)1/p . 1/φ(P (B)).

Combining (2.3) and (2.4), we have (2.2).

Lemma 2.4. Let {Fn}n≥0 be regular, F0 = {∅, Ω}, p ∈ [1,∞) and φ :
(0, 1] → (0,∞). Assume that φ satisfies the doubling condition and (1.5).
For a sequence

B0 ⊃ B1 ⊃ · · · , Bn ∈ A(Fn),



94 E. Nakai and G. Sadasue

let

f0 = χB0 , uk = φ(P (Bk))

(
P (Bk−1)

P (Bk)
χBk − χBk−1

)
,

and let

(2.5) fn = f0 +
n∑
k=1

uk.

Then (fn)n≥0 is a martingale and is L\p,φ-bounded. The sum f ≡ f0 +∑∞
k=1 uk converges a.s. and in Lp, and Enf = fn for n ≥ 0. Moreover,

there exist positive constants C1 and C2, independent of the sequence of
atoms, such that

(2.6) ‖f‖L\p,φ ≤ C1 and |fBn | ≥ C2φ∗(P (Bn)), n ≥ 0.

Proof. Since En[uk] = 0 for k > n, (fn)n≥0 is a martingale. We show
that the sum f0 +

∑∞
k=1 uk converges in Lp. If limk→∞ P (Bk) > 0 then

the convergence is clear because there exists m such that Bm = Bn for all
n ≥ m. So assume that limk→∞ P (Bk) = 0. By Lemma 2.1, we can take a
sequence of integers 0 = k0 < k1 < · · · that satisfies

(2.7) (1 + 1/R)P (Bkj ) ≤ P (Bkj−1
) ≤ RP (Bkj ),

and Bkj−1
= Bk if kj−1 ≤ k < kj . In this case we can write

fn = χB0 +
∑

1≤kj≤n
φ(P (Bkj ))

(
P (Bkj−1)

P (Bkj )
χBkj − χBkj−1

)
.

Note that, by Remark 1.4 and [8, Lemma 7.1], the doubling condition and
(1.5) imply

(2.8)

r�

0

φ(t)t1/p−1 dt ≤ Cpφ(r)r1/p for all r ∈ (0, 1].

Using the doubling condition and (2.8), we have

(2.9)
∑
kj>n

φ(P (Bkj ))

∥∥∥∥P (Bkj−1)

P (Bkj )
χBkj − χBkj−1

∥∥∥∥
Lp

≤
∑
kj>n

φ(P (Bkj ))(R‖χBkj ‖Lp + ‖χBkj−1
‖Lp)

≤ 2R
∑
kj>n

φ(P (Bkj ))P (Bkj )
1/p ≤ C

∑
kj>n

P (Bkj−1
)�

P (Bkj )

φ(t)t1/p−1 dt

≤ C
P (Bn)�

0

φ(t)t1/p−1 dt ≤ CCpφ(P (Bn))P (Bn)1/p.
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We can deduce from (2.9) that f ≡ f0 +
∑∞

k=1 uk converges in Lp. By the
martingale convergence theorem, f0 +

∑∞
k=1 uk also converges almost surely.

Moreover, Enf = fn and

(2.10)

(
1

P (Bn)

�

Bn

|f − Enf |p dP
)1/p

≤ CCpφ(P (Bn)).

For B′ ∈ A(Fn), we have

(2.11) (f − Enf)χB′ =

{
f − Enf (B′ = Bn),

0 (B′ 6= Bn).

Combining (2.10) and (2.11), we have ‖f‖Lp,φ ≤ C where C is a positive
constant independent of the sequence of atoms. Moreover, since B0 = Ω,

|Ef | = |f0| = 1.

Therefore, ‖f‖L\p,φ ≤ C1 where C1 is a positive constant independent of the

sequence of atoms.

We now show |fBn | ≥ C2φ∗(P (Bn)). On the atom Bn, we have

fn = 1 +
∑

1≤kj≤n
φ(P (Bkj ))

(
P (Bkj−1

)

P (Bkj )
− 1

)
≥ 1 +

1

R

∑
1≤kj≤n

φ(P (Bkj )).

Therefore,

|fBn | =
∣∣∣∣ 1

P (Bn)

�

Bn

fn dP

∣∣∣∣
≥ 1 +

1

R

∑
1≤kj≤n

φ(P (Bkj )) ∼ 1 +
∑

1≤kj≤n

P (Bkj−1
)�

P (Bkj )

φ(t)

t
dt

= 1 +

1�

P (Bn)

φ(t)

t
dt = φ∗(P (Bn)).

That is, |fBn | ≥ C2φ∗(P (Bn)) where C2 is a positive constant independent
of the sequence of atoms.

Remark 2.5. From the proof of Lemma 2.4 we see that, for

(2.12) h =

∞∑
k=1

uk, h0 = 0, hn =

n∑
k=1

uk (n ≥ 1),

h is in Lp,φ and (hn)n≥0 is its corresponding martingale with hn = Enh
(n ≥ 0).
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Remark 2.6. Let (Ω,F , P ) be as follows:

Ω = [0, 1), A(Fn) = {In,j = [j2−n, (j + 1)2−n) : j = 0, 1, . . . , 2n − 1},

Fn = σ(A(Fn)), F = σ
(⋃
n

Fn
)
, P = the Lebesgue measure.

If φ(r) = 1/log(e/r), then h in (2.12) is unbounded. Actually,

uk =
1

1 + k log 2
(2χBk − χBk−1

),

and

h =
n∑
k=1

1

1 + k log 2
− 1

1 + (n+ 1) log 2
on Bn \Bn+1.

Remark 2.7. If F : C→ C is Lipschitz continuous, that is,

|F (z1)− F (z2)| ≤ C|z1 − z2|, z1, z2 ∈ C,

then, for B ∈ Fn,
�

B

|F (f)− En[F (f)]| dP ≤ 2C
�

B

|f − Enf | dP.

Actually,
�

B

|F (f)− En[F (f)]| dP

≤
�

B

|F (f)− F (Enf)| dP +
�

B

|F (Enf)− En[F (f)]| dP

=
�

B

|F (f)− F (Enf)| dP +
�

B

|En[F (Enf)− F (f)]| dP

≤ 2
�

B

|F (f)− F (Enf)| dP ≤ 2C
�

B

|f − Enf | dP.

Lemma 2.8. Let p ∈ [1,∞) and φ : (0, 1] → (0,∞). Suppose f ∈ Lp,φ
and g ∈ L∞. Then fg ∈ Lp,φ if and only if

(2.13) F (f, g) := sup
n≥0

sup
B∈A(Fn)

|fB|
φ(P (B))

(
1

P (B)

�

B

|g − Eng|p dP
)1/p

<∞.

In this case,

(2.14)
∣∣F (f, g)− ‖fg‖Lp,φ

∣∣ ≤ 2‖f‖Lp,φ‖g‖L∞ .

Proof. Let f ∈ Lp,φ and g ∈ L∞. Let B ∈ A(Fn). Since Enf = fB on B,
we can use the same method as in [6, Lemma 3.5] to obtain
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(2.15)

∣∣∣∣( 1

P (B)

�

B

|fg − En[fg]|p dP
)1/p
− |fB|

(
1

P (B)

�

B

|g − Eng|p dP
)1/p∣∣∣∣

≤ 2

(
1

P (B)

�

B

|(f − Enf)g|p dP
)1/p

≤ 2φ(P (B))‖f‖Lp,φ‖g‖L∞ .

Therefore, fg ∈ Lp,φ if and only if F (f, g) <∞. In this case, we can deduce
(2.14) from (2.15).

Lemma 2.9. Let {Fn}n≥0 be regular, F0 = {∅, Ω}, p ∈ [1,∞) and φ :
(0, 1]→ (0,∞). Assume that rφ(r)p is almost increasing and that φ satisfies

the doubling condition. If g ∈ PWM(L\p,φ), then g ∈ L∞ and ‖g‖L∞ ≤
C‖g‖Op for some positive constant C independent of g.

Proof. Let g ∈ PWM(L\p,φ). Since the constant function 1 is in L\p,φ, the

pointwise product g = g · 1 is in L\p,φ, which implies g ∈ L1. Then

E[|g|] ≤ E[|g −Eg|] + |Eg| ≤ max(1, φ(1))‖g‖L\p,φ . ‖g‖Op‖1‖L\p,φ = ‖g‖Op.

Since {Fn}n≥0 is regular, we also have Eng ∈ L∞:

En[|g|] ≤ REn−1[|g|] ≤ · · · ≤ RnE0[|g|] = RnE[|g|].

Next we shall show that there exists a positive constant C such that
‖g‖L∞ ≤ C‖g‖Op. Then we will have the conclusion. Let B ∈ A(Fn) such
that |gB| ≥ ‖Eng‖L∞/2. By Lemma 2.1 there exists B′ ∈ A(Fn′) with
B ⊂ B′ such that (1 + 1/R)P (B) ≤ P (B′) ≤ RP (B). Then

‖gχB‖L\p,φ ≥
1

φ(P (B′))

(
1

P (B′)

�

B′

|gχB − En′ [gχB]|p dP
)1/p

≥ 1

φ(P (B′))

(
1

P (B′)

�

B′\B

|gχB − En′ [gχB]|p dP
)1/p

=
1

φ(P (B′))

(
1

P (B′)

�

B′\B

∣∣En′ [[Eng]χB]
∣∣p dP)1/p

.

Since |[Eng]χB| = |gBχB| ≥ ‖Eng‖L∞χB/2, we have

�

B′\B

∣∣En′ [[Eng]χB]
∣∣p dP ≥ (‖Eng‖L∞

2

)p( P (B)

P (B′)

)p
P (B′ \B).

Hence,

(2.16) ‖gχB‖L\p,φ ≥
‖Eng‖L∞

2R(R+ 1)1/pφ(P (B′))
.
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Using (2.16), Lemma 2.3 and the doubling condition on φ, we have

‖Eng‖L∞ ≤ 2R(R+ 1)1/pφ(P (B′))‖gχB‖L\p,φ

. ‖g‖Op
φ(P (B′))

φ(P (B))
. ‖g‖Op.

Therefore,

‖g‖L∞ = sup
n≥0
‖Eng‖L∞ ≤ C‖g‖Op.

3. Proof of Theorem 1.3. We first show that

(3.1) Lp,φ/φ∗ ∩L∞ ⊂ PWM(L\p,φ) and ‖g‖Op ≤ C(‖g‖Lp,φ/φ∗ + ‖g‖L∞).

Let g ∈ Lp,φ/φ∗ ∩ L∞ and f ∈ L\p,φ. Let F (f, g) be as in Lemma 2.8. Then,

by the definition of F (f, g) and Lemma 2.2,

F (f, g) ≤ C‖f‖L\p,φ‖g‖Lp,φ/φ∗ <∞.

Therefore, by Lemma 2.8, we have fg ∈ Lp,φ and

(3.2) ‖fg‖Lp,φ ≤ C‖f‖L\p,φ‖g‖Lp,φ/φ∗ + 2‖f‖Lp,φ‖g‖L∞ .

On the other hand,

(3.3) |E[fg]| ≤ ‖g‖L∞E[|f |] ≤ ‖g‖L∞ max(1, φ(1))‖f‖L\p,φ .

Combining (3.2) and (3.3), we obtain (3.1).

We now show the converse, that is,

(3.4) PWM(L\p,φ) ⊂ Lp,φ/φ∗ ∩ L∞ and ‖g‖Lp,φ/φ∗ + ‖g‖L∞ ≤ C‖g‖Op.

Let g ∈ PWM(L\p,φ). By Lemma 2.9, we have g ∈ L∞ and ‖g‖L∞ ≤ C‖g‖Op.

Let B ∈ A(Fn). We take Bj ∈ A(Fj) with Bn = B such that B0 ⊃ B1 ⊃ · · · .
Let f be the function described in Lemma 2.4. Then, combining Lemmas 2.4
and 2.8, we obtain

C2φ∗(P (B))

φ(P (B))

(
1

P (B)

�

B

|g − Eng|p dP
)1/p

≤ |fB|
φ(P (B))

(
1

P (B)

�

B

|g − Eng|p dP
)1/p

≤ F (f, g)

≤ ‖fg‖Lp,φ + 2‖g‖L∞‖f‖Lp,φ ≤ ‖g‖Op‖f‖L\p,φ + 2C‖g‖Op‖f‖Lp,φ
. ‖g‖Op‖f‖L\p,φ ≤ C1‖g‖Op.

Therefore, we have (3.4).
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4. Proof of Theorem 1.9. To prove Theorem 1.9 we use the following
proposition. It can be shown in the same way as [9, Proposition 2.2] which
deals with the case φ(r) = rλ, λ ∈ (−∞,∞).

Proposition 4.1. Let 1 ≤ p < ∞ and φ : (0, 1] → (0,∞). Let f ∈ L1

and (fn)n≥0 be its corresponding martingale with fn = Enf (n ≥ 0).

(i) If f ∈ Lp,φ, then (fn)n≥0 is Lp,φ-bounded and

‖f‖Lp,φ ≥ sup
n≥0
‖fn‖Lp,φ .

Conversely, if (fn)n≥0 is Lp,φ-bounded, then f ∈ Lp,φ and

‖f‖Lp,φ ≤ sup
n≥0
‖fn‖Lp,φ .

(ii) If f ∈ L\p,φ, then (fn)n≥0 is L\p,φ-bounded and

‖f‖L\p,φ ≥ sup
n≥0
‖fn‖L\p,φ .

Conversely, if (fn)n≥0 is L\p,φ-bounded, then f ∈ L\p,φ and

‖f‖L\p,φ ≤ sup
n≥0
‖fn‖L\p,φ .

Remark 4.2. In general, for f ∈ Lp,φ ∩ L1,0 (resp. f ∈ L\p,φ), its corre-

sponding martingale (fn)n≥0 with fn = Enf does not always converge to f

in Lp,φ (resp. L\p,φ). See [9, Remark 3.7] for the case φ(r) = rλ.

Proof of Theorem 1.9. Let g ∈ PWM(L\p,φ) and f ∈ L\p,φ(Fn). Then,
using Proposition 4.1, we have

‖En[g]f‖L\p,φ = ‖En[gf ]‖L\p,φ ≤ ‖gf‖L\p,φ ≤ ‖g‖Op‖f‖L\p,φ .

Therefore, Eng ∈ PWM(L\p,φ(Fn)).

Conversely, assume Eng ∈ PWM(L\p,φ(Fn)) and supn≥0 ‖Eng‖Op < ∞.
Then, using Proposition 4.1 and Theorem 1.3, we have

‖g‖Lp,φ/φ∗ +‖g‖L∞ ≤ sup
n≥0
‖Eng‖Lp,φ/φ∗ +sup

n≥0
‖Eng‖L∞ . sup

n≥0
‖Eng‖Op <∞.

Using Theorem 1.3 again, we obtain g ∈ PWM(L\p,φ).
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