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Calderón–Zygmund operators acting on generalized
Carleson measure spaces

by

Chin-Cheng Lin (Chung-Li) and Kunchuan Wang (Hua-Lien)

Abstract. We study Calderón–Zygmund operators acting on generalized Carleson
measure spaces CMOα,q

r and show a necessary and sufficient condition for their bounded-
ness. The spaces CMOα,q

r are a generalization of BMO, and can be regarded as the duals
of homogeneous Triebel–Lizorkin spaces as well.

1. Introduction. To generalize the Hilbert transform and Riesz trans-
forms, Calderón and Zygmund [3, 4] developed a class of singular integral
operators which are convolution operators. The L2-boundedness of such op-
erators follows from the Plancherel theorem. It is well known that Calderón–
Zygmund convolution operators are bounded on Lp for 1 < p < ∞, on
Hardy spaces Hp for 0 < p ≤ 1, and on BMO as well. However, for non-
convolution operators such as the Calderón commutators, the Cauchy in-
tegral on Lipschitz curves, the double layer potential on Lipschitz surfaces,
the multilinear operators of Coifman and Meyer, new methods have to be
developed to obtain L2 estimates. The remarkable T1 theorem given by
David and Journé [7] provides a general criterion for the L2-boundedness of
these generalized singular integral operators (cf. [1, 2, 5, 6]). In recent years,
the boundedness of Calderón–Zygmund operators on other function spaces
such as Hardy spaces, Sobolev spaces, Besov spaces, and Triebel–Lizorkin
spaces has been obtained by many authors; see [9, 13, 14, 21, 24, 26] for
example.

The purpose of this article is to study the theory of Calderón–Zygmund
on generalized Carleson measure spaces CMOα,q

r which are a generalization
of BMO. We begin by recalling some basic results about Calderón–Zygmund
operator theory. As usual, we denote by D the set of C∞ functions with
compact support.
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We say that T is a singular integral operator, denoted by T ∈ SIO(ε), if
T is a continuous linear operator from D(Rn) into its dual associated to a
kernel K(x, y), a continuous function defined on Rn×Rn\{x = y}, satisfying
the following conditions: there exist constants C > 0 and 0 < ε ≤ 1 such
that

|K(x, y)| ≤ C|x− y|−n for all x 6= y,(1.1)

|K(x, y)−K(x′, y)| ≤ C|x− x′|ε|x− y|−n−ε(1.2)

for all x, x′ and y in Rn with |x− x′| ≤ |x− y|/2, and

|K(x, y)−K(x, y′)| ≤ C|y − y′|ε|x− y|−n−ε(1.3)

for all y, y′ and x in Rn with |y − y′| ≤ |x− y|/2. Moreover, the operator T
can be represented by

〈Tf, g〉 =
�

Rn

�

Rn
K(x, y)f(y)g(x) dy dx

for all f, g ∈ D(Rn) with supp(f)∩supp(g) = ∅. We say that T is a Calderón–
Zygmund operator, denoted by T ∈ CZO(ε), if T ∈ SIO(ε) and is bounded
on L2.

Let Cη0 denote the space of continuous functions f with compact support
such that

‖f‖η := sup
x 6=y

|f(x)− f(y)|
|x− y|η

<∞.

Let T : Cη0 → (Cη0 )′, η > 0, be a continuous linear operator. We say that T
has the weak boundedness property, denoted by T ∈WBP, if, for each η > 0,
there is a constant C > 0 such that, for all cubes Q with diameter at most
t > 0 and all f, g ∈ Cη0 supported in Q,

|〈Tf, g〉| ≤ Ctn+2η‖f‖η‖g‖η.

Next we recall the definitions of homogeneous Triebel–Lizorkin spaces
Ḟα,qp . We say that a cube Q ⊆ Rn is dyadic if Q = Qjk is defined by
{x = (x1, . . . , xn) ∈ Rn : 2−jki ≤ xi < 2−j(ki + 1), i = 1, . . . , n} for some
j ∈ Z and k = (k1, . . . , kn) ∈ Zn. Denote by `(Q) = 2−j the side length of Q
and xQ = 2−jk the “lower left corner” of Q when Q = Qjk. We use supQ and∑

Q for the supremum and summation over all dyadic cubes Q, respectively.
Also, we denote the summation over all dyadic cubes Q contained in P by∑

Q⊆P . For any dyadic cubes P and Q, either P and Q are non-overlapping
or one contains the other. For any function f defined on Rn, j ∈ Z and
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dyadic cube Q = Qjk, set

fQ(x) = |Q|−1/2f
(
x− xQ
`(Q)

)
= 2jn/2f(2jx− k),

fj(x) = 2jnf(2jx),

f̃(x) = f(−x).

It is clear that g̃j ∗ f(xQ) = |Q|−1/2〈f, gQ〉, where 〈f, g〉 denotes the paring
in the usual sense for g in a Fréchet space X and f in the dual of X.

Choose a fixed function ϕ in the Schwartz class S = S (Rn), the collec-
tion of rapidly decreasing C∞ functions on Rn, satisfying{

supp(ϕ̂) ⊆ {ξ : 1/2 ≤ |ξ| ≤ 2},
|ϕ̂(ξ)| ≥ c > 0 if 3/5 ≤ |ξ| ≤ 5/3.

(1.4)

For α ∈ R and 0 < p, q ≤ ∞, we say that f belongs to the homogeneous
Triebel–Lizorkin space Ḟα,qp if f ∈ S ′/P, the tempered distributions mod-
ulo polynomials, satisfies ‖f‖Ḟα,qp

<∞, where

‖f‖Ḟα,qp
:=
∥∥∥{∑

k∈Z
(2kα|ϕk ∗ f |)q

}1/q∥∥∥
Lp

for 0 < p <∞

and

‖f‖Ḟα,q∞ := sup
P

{
|P |−1

�

P

∞∑
k=− log2 `(P )

(2kα|ϕk ∗ f(x)|)qdx
}1/q

.

When 0 < p < ∞ and q = ∞, the above `q-norm is modified to be the
supremum norm as usual, and Ḟα,∞∞ is defined to be Ḃα,∞

∞ , that is,

‖f‖Ḟα,∞∞ := sup
k∈Z

sup
`(Q)=2−k

x∈Q

2kα|ϕk ∗ f(x)| ≈ sup
Q
|Q|−α/n−1/2|〈f, ϕQ〉| <∞.

Here we summarize some results on singular integral operators bounded
on Ḟα,qp .

Proposition 1.1 ([13, 21, 24]). Given ε ∈ (0, 1], |α| < ε,

max

{
n

n+ ε
,

n

n+ ε+ α

}
< p <∞ and max

{
n

n+ ε
,

n

n+ ε+ α

}
< q ≤ ∞,

if T ∈ SIO(ε), T ∈ WBP and T (1) = T ∗(1) = 0, then T extends to a
bounded operator on Ḟα,qp .

This article is motivated by [16, 17]. To show the CMOα,q
r -boundedness

of Calderón–Zygmund operators, we cannot apply the duality argument di-
rectly. In [16], the authors introduced a weak density property to overcome
this difficulty. In this article, we adopt the same method to deal with the
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boundedness of Calderón–Zygmund operators acting on CMOα,q
r . We now

recall the space CMOα,q
r introduced in [22].

Definition 1.2. Let ϕ ∈ S satisfy (1.4). For α, r ∈ R and 0 < q ≤ ∞,
the generalized Carleson measure space CMOα,q

r is the collection of all f ∈
S ′/P satisfying ‖f‖CMOα,qr

<∞, where

‖f‖CMOα,qr
:= sup

P

{
|P |−r

�

P

∑
Q⊆P

(
|Q|−α/n−1/2|〈f, ϕQ〉|χQ(x)

)q
dx
}1/q

for 0 < q <∞ and

‖f‖CMOα,∞r := sup
P

sup
Q⊆P
|Q|−α/n−1/2|〈f, ϕQ〉| = sup

Q
|Q|−α/n−1/2|〈f, ϕQ〉|.

As usual, χQ denotes the characteristic function of Q.

Remark 1.3. It follows from [23, p. 154, Theorem 4] that CMO0,2
1 =

BMO, and hence CMOα,q
r is a generalization of BMO. For α = 0, q = 2

and r = 2/p − 1, the space CMO0,2
2/p−1 reduces to the Carleson measure

space CMOp which was first introduced in [18] for the multiparameter Hardy
spaces associated with flag singular integrals, and in [20] for the wavelet char-
acterization of the weighted Carleson measure space CMOp

w with constant
weight function.

We will prove the following main result of this article.

Theorem 1.4. Let T be a Calderón–Zygmund operator with regularity
exponent ε and T ∗(1) = 0. Suppose −ε < α < ε and

max

{
n

n+ ε
,

n

n+ ε+ α

}
< p ≤ 1 < q <∞.

Set r = q/p − q/q′. If T (1) = 0, then T can be extended to a bounded
operator from CMOα,q

r to itself, and moreover there exists a constant C > 0
independent of f such that

‖T (f)‖CMOα,qr
≤ C‖f‖CMOα,qr

for all f ∈ CMOα,q
r .

Conversely, for (i) −ε < α < 0 and 1 < q <∞ or (ii) α = 0 and 2 ≤ q <∞,
if T admits a bounded extension from CMOα,q

r to itself, then T (1) = 0.

Remark 1.5. Recently Lee [19] obtained the boundedness of Riesz trans-
forms acting on CMOp

w. The key idea of his proof is that an almost orthog-
onality estimate can be applied to convolution operators, and hence the
assumption T (1) = T ∗(1) = 0 is not used explicitly. In practice T (1) =
T ∗(1) = 0 holds for any convolution operator T . We do not use the almost
orthogonality estimate and consider more general non-convolution operators
here. Lee’s result is essentially a special case of Theorem 1.4 whenever the
weight function w is constant, and our approach is easier.
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The article is organized as follows. In Section 2, we state two key lemmas
and use them to show our main result. Then we give the proofs of the key
lemmas in Section 3. Throughout, we use C to denote a universal constant
which does not depend on the main variables but may differ from line to
line. Also, Q and P always mean dyadic cubes in Rn.

2. Proof of the main result. Define a linear map Sϕ from S ′/P into
the family of complex sequences by

Sϕ(f) = {〈f, ϕQ〉}Q.
Let

S∞ =
{
f ∈ S :

�
xkf(x) dx = 0 for all k ∈ (N ∪ {0})n

}
.

For g ∈ CMO−α,q
′

p , define a linear functional Lg by

Lg(f) = 〈Sψ(g), Sϕ(f)〉 =
∑
Q

〈g, ψQ〉〈f, ϕQ〉 for f ∈ S∞.(2.1)

The following duality result can be found in [22].

Proposition 2.1. Suppose α ∈ R, 0 < p ≤ 1 and 1 < q <∞. Then the

dual of Ḟα,qp is CMO−α,q
′

q′/p−q′/q in the following sense.

(i) For g ∈ CMO−α,q
′

q′/p−q′/q, the linear functional Lg given by (2.1), de-

fined initially on S∞, extends to a continuous linear functional on
Ḟα,qp with ‖Lg‖ ≤ C‖g‖CMO−α,q

′
q′/p−q′/q

.

(ii) Conversely, every continuous linear functional L on Ḟα,qp satisfies

L = Lg for some g ∈ CMO−α,q
′

q′/p−q′/q with ‖g‖
CMO−α,q

′
q′/p−q′/q

≤ C‖L‖.

In order to prove the main theorem, we need the following two lemmas.

Lemma 2.2. Let ε ∈ (0, 1]. For −ε < α < ε and max
{

n
n+ε ,

n
n+ε+α

}
<

p ≤ 1 < q < ∞, let r = q/p − q/q′. Then the space CMOα,q
r ∩ L2 is

dense in CMOα,q
r in the weak topology (Ḟ−α,q

′
p ,CMOα,q

r ). More precisely,
for f ∈ CMOα,q

r , there exists a sequence {fm} ⊆ CMOα,q
r ∩ L2 such that

‖fm‖CMOα,qr
≤ C‖f‖CMOα,qr

and for g ∈ Ḟ−α,q
′

p ∩L2, limm→∞〈fm, g〉 = 〈f, g〉,
where the constant C is independent of m and f .

Lemma 2.3. Let T be a Calderón–Zygmund operator with regularity ex-
ponent ε and T (1) = T ∗(1) = 0. For −ε < α < ε and max

{
n
n+ε ,

n
n+ε+α

}
<

p ≤ 1 < q <∞, let r = q/p− q/q′. Then for f ∈ CMOα,q
r ∩ L2, there exists

a constant C > 0 independent of f such that

‖T (f)‖CMOα,qr
≤ C‖f‖CMOα,qr

.
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Assuming these two lemmas for the moment, let T be a Calderón–
Zygmund operator with regularity exponent ε and T (1) = 0. (Note that
we have the assumption T ∗(1) = 0.) We first define T (f) for f ∈ CMOα,q

r as
follows. Given f ∈ CMOα,q

r , by Lemma 2.2 there exists a sequence {fm} in

CMOα,q
r ∩L2 such that ‖fm‖CMOα,qr

≤ C‖f‖CMOα,qr
and, for g ∈ Ḟ−α,q

′
p ∩L2,

〈fm, g〉 → 〈f, g〉 as m→∞. Thus, for f ∈ CMOα,q
r , define

〈T (f), g〉 = lim
m→∞

〈T (fm), g〉 for g ∈ CMOα,q
r ∩ L2.

To see the existence of this limit, we write 〈T (fj − fk), g〉 = 〈fj − fk, T ∗(g)〉
since fj − fk and g both belong to L2, and both T , T ∗ are bounded on L2.

By Proposition 1.1, T ∗ is bounded on Ḟ−α,q
′

p since (T ∗)∗ = T and hence

(T ∗)∗(1) = 0. Therefore T ∗(g) ∈ Ḟ−α,q
′

p ∩ L2. Consequently, by Lemma 2.2
again, 〈fj − fk, T ∗(g)〉 tends to zero as j, k →∞. It is also easy to see that
the above definition of T (f) is independent of the choice of the sequence
{fm} satisfying the condition in Lemma 2.2.

We now conclude the proof of Theorem 1.4 as follows. We first prove
the “if” part. Given f ∈ CMOα,q

r , by Lemma 2.2 we choose a sequence
{fm} in CMOα,q

r ∩L2 such that ‖fm‖CMOα,qr
≤ C‖f‖CMOα,qr

and 〈T (f), g〉 =

limm→∞〈T (fm), g〉 for g ∈ Ḟ−α,q
′

p ∩L2. In particular, taking for g the function
ϕQ as in Definition 1.2, we get 〈T (f), ϕQ〉 = limm→∞〈T (fm), ϕQ〉, and hence
Fatou’s lemma implies, for each dyadic cube P in Rn,{
|P |−r

�

P

∑
Q⊆P

(
|Q|−α/n−1/2|〈T (f), ϕQ〉|χQ(x)

)q
dx
}1/q

≤ lim inf
m→∞

{
|P |−r

�

P

∑
Q⊆P

(
|Q|−α/n−1/2|〈T (fm), ϕQ〉|χQ(x)

)q
dx
}1/q

.

This yields

‖T (f)‖CMOα,qr
≤ lim inf

m→∞
‖T (fm)‖CMOα,qr

≤ C lim inf
m→∞

‖fm‖CMOα,qr

≤ C‖f‖CMOα,qr
,

where the second and the last inequalities follow from Lemmas 2.3 and 2.2,
respectively.

To show the “only if” part, we assume that T ∈ CZO(ε) is bounded on
CMOα,q

r for −ε < α < 0 and 1 < q < ∞. Then T ∗ is bounded on L2 and

Ḟ−α,q
′

p , the predual of CMOα,q
r . Now for g ∈ S∞, we have g ∈ L2 ∩ Ḟ−α,q

′
p

and T ∗(g) ∈ L2 ∩ Ḟ−α,q
′

p since T is bounded on L2 and on CMOα,q
r . By the

embedding theorem (cf. [25, p. 129] or [26, Theorem 2.4]), Ḟ−α,q
′

p ↪→ Ḟ 0,2
p1 =

Hp1 , where −ε < α < 0 and α + n/p = n/p1. Thus, T ∗(g) ∈ L2 ∩Hp1 and
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hence (cf. [15, Corollary 1.4])

0 =
�

Rn
T ∗(g)(x) dx =

�

Rn

�

Rn
g(y)K(y, x) dy dx = 〈T (1), g〉(2.2)

for all g ∈ S∞, which implies T (1) = 0. For the case α = 0 and 2 ≤ q <

∞, we use the embedding Ḟ 0,q′
p ↪→ Ḟ 0,2

p = Hp to obtain (2.2) again. This
completes the proof of Theorem 1.4.

3. Proofs of the key lemmas. Let us recall a result on the ϕ-transform
introduced by Frazier and Jawerth in [10, 11, 12].

Lemma 3.1. Suppose ϕ ∈ S (Rn) satisfies (1.4). Then there exists a
function ψ ∈ S (Rn) satisfying (1.4) such that

f =
∑
Q

〈f, ϕQ〉ψQ,

where the series converges in L2(Rn), S∞(Rn), and (S∞)′(Rn).

For m ∈ N, let

Qm = {Q dyadic cube in Rn : 2−m ≤ `(Q) ≤ 2m and Q ⊆ [−2m, 2m]n}.
For f ∈ CMOα,q

r , set

fm =
∑
Q∈Qm

〈f, ϕQ〉ψQ.(3.1)

Note that the cardinality of Qm is finite and hence fm ∈ L2.

Lemma 3.2. Let f ∈ CMOα,q
r and fm be given by (3.1). Then fm ∈

CMOα,q
r and

‖fm‖CMOα,qr
≤ C‖f‖CMOα,qr

,

where the constant C is independent of m and f .

Proof. It follows from [22, Lemma 3.2] that any almost diagonal operator
is bounded on CMOα,q

r . Hence

‖fm‖CMOα,qr
= sup

P

{
|P |−r

�

P

∑
Q⊆P

(
|Q|−α/n−1/2|〈fm, ϕQ〉|χQ(x)

)q
dx
}1/q

= ‖Am(f)‖CMOα,qr
≤ C‖f‖CMOα,qr

,

where Am is the almost diagonal operator defined by

Am(g) =
∑
Q∈Qm

〈∑
R

〈g, ϕR〉ψR, ϕQ
〉
ψQ

=
∑
Q∈Qm

∑
R

〈ψR, ϕQ〉〈g, ϕR〉ψQ.
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Hence Am is bounded on CMOα,q
r and its norm is dominated by the norm

of A defined by

A(g) =
∑
Q

∑
R

〈ψR, ϕQ〉〈g, ϕR〉ψQ.

This shows that the constant C is independent of m and f .

We now apply Lemmas 3.1 and 3.2, and Proposition 2.1, to prove Lemma
2.2.

Proof of Lemma 2.2. For each h ∈ S , by (3.1),

〈f − fm, h〉 =
〈 ∑
Q6∈Qm

〈f, ϕQ〉ψQ, h
〉

=
〈
f,
∑
Q6∈Qm

〈h, ψQ〉ϕQ
〉
.

Lemma 3.1 implies that ∑
Q 6∈Qm

〈h, ψQ〉ϕQ

tends to zero in S∞ as m → ∞. Since S∞ is dense in Ḟ−α,q
′

p , this implies

that for each g ∈ Ḟ−α,q
′

p , 〈f − fm, g〉 tends to 0 as m→∞. Indeed, for any
given ε > 0, there exists h ∈ S∞ such that ‖g−h‖

Ḟ−α,q
′

p
< ε. By Proposition

2.1 first and then Lemma 3.2 (i.e. ‖fm‖CMOα,qr
≤ C‖f‖CMOα,qr

),

|〈f − fm, g〉| ≤ |〈f − fm, g − h〉|+ |〈f − fm, h〉|
≤ C‖f − fm‖CMOα,qr

‖g − h‖
Ḟ−α,q

′
p

+ |〈f − fm, h〉|

≤ Cε‖f‖CMOα,qr
+ |〈f − fm, h〉|,

which implies 〈f − fm, g〉 → 0 as m→∞.

Lemma 2.3 follows from Propositions 1.1 and 2.1:

Proof of Lemma 2.3. Let f ∈ CMOα,q
r ∩ L2 and g ∈ Ḟ−α,q

′
p ∩ L2. By

Propositions 2.1 and 1.1 (i.e. T ∗ is bounded on Ḟ−α,q
′

p for max{ n
n+ε ,

n
n+ε+α}

< p ≤ 1),

|〈T (f), g〉| = |〈f, T ∗(g)〉| ≤ ‖f‖CMOα,qr
‖T ∗(g)‖

Ḟ−α,q
′

p

≤ C‖f‖CMOα,qr
‖g‖

Ḟ−α,q
′

p
.

This implies that for each f ∈ CMOα,q
r ∩L2, `f (g) = 〈T (f), g〉 is a continuous

linear functional on Ḟ−α,q
′

p ∩ L2. Note that Ḟ−α,q
′

p ∩ L2 is dense in Ḟ−α,q
′

p .

Thus, `f (g) = 〈T (f), g〉 belongs to the dual of Ḟ−α,q
′

p , and the norm of this
linear functional is dominated by C‖f‖CMOα,qr

. By Proposition 2.1 again,
there exists h ∈ CMOα,q

r such that 〈T (f), g〉 = 〈h, g〉 for g ∈ S∞ and
‖h‖CMOα,qr

≤ ‖`f‖ ≤ C‖f‖CMOα,qr
. In particular, taking for g the function

ϕQ as in Definition 1.2, we conclude that 〈T (f), ϕQ〉 = 〈h, ϕQ〉 for each Q.
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Therefore,

‖T (f)‖CMOα,qr
:= sup

P

{
|P |−r

�

P

∑
Q⊆P

(
|Q|−α/n−1/2|〈T (f), ϕQ〉|χQ(x)

)q
dx
}1/q

= sup
P

{
|P |−r

�

P

∑
Q⊆P

(
|Q|−α/n−1/2|〈h, ϕQ〉|χQ(x)

)q
dx
}1/q

= ‖h‖CMOα,qr
≤ C‖f‖CMOα,qr

.
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Cuerva et al. (eds.), Lecture Notes in Math. 1384, Springer, Berlin, 1989, 168–181.

[10] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J.
34 (1985), 777–799.

[11] M. Frazier and B. Jawerth, The ϕ-transform and applications to distribution spaces,
in: Function Spaces and Applications, M. Cwikel et al. (eds.), Lecture Notes in Math.
1302, Springer, Berlin, 1988, 223–246.

[12] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution
spaces, J. Funct. Anal. 93 (1990), 34–170.

[13] M. Frazier, R. Torres, and G. Weiss, The boundedness of Calderón–Zygmund oper-
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