Once more on positive commutators

by
Roman Drnovšek (Ljubljana)

Abstract

Let A and B be bounded operators on a Banach lattice E such that the commutator $C=A B-B A$ and the product $B A$ are positive operators. If the product $A B$ is a power-compact operator, then C is a quasi-nilpotent operator having a triangularizing chain of closed ideals of E. This answers an open question posed by Bračič et al. [Positivity 14 (2010)], where the study of positive commutators of positive operators was initiated.

1. Introduction. Let X be a Banach space. The spectrum and the spectral radius of a bounded operator T on X are denoted by $\sigma(T)$ and $r(T)$, respectively. A bounded operator T on X is said to be power-compact if T^{n} is a compact operator for some $n \in \mathbb{N}$. A chain \mathcal{C} is a family of closed subspaces of X that is totally ordered by inclusion. We say that \mathcal{C} is a complete chain if it is closed under arbitrary intersections and closed linear spans. If \mathcal{M} is in a complete chain \mathcal{C}, then the predecessor \mathcal{M}_{-}of \mathcal{M} in \mathcal{C} is defined as the closed linear span of all proper subspaces of \mathcal{M} belonging to \mathcal{C}.

Let E be a Banach lattice. An operator T on E is called positive if the positive cone E^{+}is invariant under T. It is well-known that every positive operator T is bounded and that $r(T)$ belongs to $\sigma(T)$. A bounded operator T on E is said to be ideal-reducible if there exists a non-trivial closed ideal of E invariant under T. Otherwise, it is ideal-irreducible. If the chain \mathcal{C} of closed ideals of E is maximal in the lattice of all closed ideals of E and if each of its members is invariant under an operator T on E, then \mathcal{C} is called a triangularizing chain for T, and T is said to be ideal-triangularizable. Note that such a chain is also maximal in the lattice of all closed subspaces of E (see e.g. [4, Proposition 1.2]).

In [3] positive commutators of positive operators on Banach lattices are studied. The main result [3, Theorem 2.2] is the following:

[^0]Theorem 1.1. Let A and B be positive compact operators on a Banach lattice E such that the commutator $C=A B-B A$ is also positive. Then C is an ideal-triangularizable quasi-nilpotent operator.

Examples in [3] show that the compactness assumption in Theorem 1.1 cannot be omitted. They are based on a simple example that can be obtained by setting $A=S^{*}$ and $B=S$, where S is the unilateral shift on the Banach lattice l^{2}.

Theorem 1.1 has been further extended in [5, Theorem 3.4]. Recall that a bounded operator T on a Banach space is called a Riesz operator or an essentially quasi-nilpotent operator if $\{0\}$ is the essential spectrum of T.

Theorem 1.2. Let A and B be positive operators on a Banach lattice E such that $A+B$ is a Riesz operator. If $C=A B-B A$ is a power-compact positive operator, then it is an ideal-triangularizable quasi-nilpotent operator.

In this note we answer affirmatively the open question posed in [3, Open questions $3.7(1)$] whether it is enough to assume in Theorem 1.1 that only one of the operators A and B is compact.
2. Preliminaries. If T is a power-compact operator on a Banach space X, then, by the classical spectral theory, for each $\lambda \in \mathbb{C} \backslash\{0\}$ the operator $\lambda-T$ has finite ascent k, i.e., k is the smallest natural number such that $\operatorname{ker}\left((\lambda-T)^{k}\right)=\operatorname{ker}\left((\lambda-T)^{k+1}\right)$. In this case the (algebraic) multiplicity $m(T, \lambda)$ of λ is the dimension of the subspace $\operatorname{ker}\left((\lambda-T)^{k}\right)$.

We will make use of the following extension of Ringrose's Theorem.
Theorem 2.1. Let T be a power-compact operator on a Banach space X, and let \mathcal{C} be a complete chain of closed subspaces invariant under T. Let \mathcal{C}^{\prime} be the subchain of \mathcal{C} of all subspaces $\mathcal{M} \in \mathcal{C}$ such that $\mathcal{M}_{-} \neq \mathcal{M}$. For each $\mathcal{M} \in \mathcal{C}^{\prime}$, define $T_{\mathcal{M}}$ to be the quotient operator on $\mathcal{M} / \mathcal{M}_{-}$induced by T. Then

$$
\sigma(T) \backslash\{0\}=\bigcup_{\mathcal{M} \in \mathcal{C}^{\prime}} \sigma\left(T_{\mathcal{M}}\right) \backslash\{0\}
$$

Moreover, for each $\lambda \in \mathbb{C} \backslash\{0\}$ we have

$$
m(T, \lambda)=\sum_{\mathcal{M} \in \mathcal{C}^{\prime}} m\left(T_{\mathcal{M}}, \lambda\right)
$$

Proof. In the case of a compact operator T the first equality is proved in [12, Theorem 7.2.7], while the second equality follows from [12, Theorem 7.2.9] asserting that the algebraic multiplicity of each nonzero eigenvalue of T is equal to its diagonal multiplicity with respect to any triangularizing chain.

An inspection of the proofs of these theorems reveals that it is enough to assume that the operator T is power-compact. Moreover, in [8] the first equality was extended even to the case of polynomially compact operators.

We will also need Pietsch's principle of related operators (see [11, 3.3.3]).
Theorem 2.2. Let A and B be bounded operators on a Banach space. If $A B$ is power-compact, then $B A$ is power-compact and

$$
m(A B, \lambda)=m(B A, \lambda)
$$

for each $\lambda \in \mathbb{C} \backslash\{0\}$.
The following theorem is a consequence of [9, Theorem 4.3]; see a recent paper [7, Theorem 1] which also contains the easily proved proposition [7, Proposition 2] that a positive operator is ideal-irreducible if and only if it is semi-nonsupporting (the notion used in [9]).

Theorem 2.3. Let S and T be positive operators on a Banach lattice E such that $S \leq T$ and $r(S)=r(T)$. If T is an ideal-irreducible power-compact operator, then $S=T$.
3. Results. The main result of this note is the following extension of Theorem 1.1 (and of [3, Theorem 2.4] as well).

Theorem 3.1. Let A and B be bounded operators on a Banach lattice E such that $A B \geq B A \geq 0$ and $A B$ is power-compact. Then $C=A B-B A$ is an ideal-triangularizable quasi-nilpotent operator.

Proof. Let \mathcal{C} be a chain (of closed ideals) that is maximal in the lattice of all closed ideals invariant under $A B$. By maximality, this chain is complete. Let \mathcal{C}^{\prime} be the subchain of all subspaces $\mathcal{M} \in \mathcal{C}$ such that $\mathcal{M}_{-} \neq \mathcal{M}$. Since $A B \geq B A \geq 0$ and $A B \geq C \geq 0$, every member of \mathcal{C} is also invariant under $B A$ and C, and these operators are power-compact by the AliprantisBurkinshaw theorem [2, Theorem 5.14]. For any ideal $\mathcal{M} \in \mathcal{C}^{\prime}$, we have $r\left((A B)_{\mathcal{M}}\right) \geq r\left((B A)_{\mathcal{M}}\right)$, since $(A B)_{\mathcal{M}} \geq(B A)_{\mathcal{M}} \geq 0$. We will prove that

$$
r\left((A B)_{\mathcal{M}}\right)=r\left((B A)_{\mathcal{M}}\right) \quad \text { for every ideal } \mathcal{M} \in \mathcal{C}^{\prime}
$$

and so $(A B)_{\mathcal{M}}=(B A)_{\mathcal{M}}$ by Theorem 2.3 .
Assume there are ideals $\mathcal{M} \in \mathcal{C}^{\prime}$ such that $r\left((A B)_{\mathcal{M}}\right)>r\left((B A)_{\mathcal{M}}\right)$. Among them choose $\mathcal{M}_{0} \in \mathcal{C}^{\prime}$ for which $\lambda_{0}:=r\left((A B)_{\mathcal{M}_{0}}\right)$ is maximal. Such an ideal exists, because for each $\epsilon>0$ there are only finitely many eigenvalues of $A B$ with absolute value at least ϵ. For each ideal $\mathcal{M} \in \mathcal{C}^{\prime}$ with $r\left((A B)_{\mathcal{M}}\right)>\lambda_{0}$, we must have $r\left((A B)_{\mathcal{M}}\right)=r\left((B A)_{\mathcal{M}}\right)$, and so $(A B)_{\mathcal{M}}=(B A)_{\mathcal{M}}$ by Theorem 2.3. The same conclusion holds in the case when $r\left((A B)_{\mathcal{M}}\right)=r\left((B A)_{\mathcal{M}}\right)=\lambda_{0}$. If $\lambda_{0}=r\left((A B)_{\mathcal{M}}\right)>r\left((B A)_{\mathcal{M}}\right)$, then

$$
m\left((A B)_{\mathcal{M}}, \lambda_{0}\right)>0=m\left((B A)_{\mathcal{M}}, \lambda_{0}\right)
$$

If $r\left((A B)_{\mathcal{M}}\right)<\lambda_{0}$, then

$$
m\left((A B)_{\mathcal{M}}, \lambda_{0}\right)=0=m\left((B A)_{\mathcal{M}}, \lambda_{0}\right)
$$

In view of Theorem 2.1 we now conclude that $m\left(A B, \lambda_{0}\right)>m\left(B A, \lambda_{0}\right)$. However, by Theorem 2.2 , we have $m\left(A B, \lambda_{0}\right)=m\left(B A, \lambda_{0}\right)$. This contradiction shows that, for each $\mathcal{M} \in \mathcal{C}^{\prime},(A B)_{\mathcal{M}}=(B A)_{\mathcal{M}}$ and so $C_{\mathcal{M}}=$ $(A B)_{\mathcal{M}}-(B A)_{\mathcal{M}}=0$. By Theorem 2.1, we conclude that C is quasinilpotent.

Finally, it is a simple consequence (see e.g. [5, Theorem 1.3]) of the well-known de Pagter theorem (see [1, Theorem 9.19] or [10]) that C has a triangularizing chain of closed ideals of E. In fact, we can simply complete the chain \mathcal{C} to a triangularizing chain of closed ideals for the operator C.

As a corollary we obtain the answer to an open question posed in [3, Open questions 3.7(1)].

Corollary 3.2. Let A and B be positive operators on a Banach lattice E such that $C=A B-B A$ is a positive operator. If one of the operators A and B is power-compact (in particular, compact), then C is an idealtriangularizable quasi-nilpotent operator.

Proof. By a simple induction, we have $0 \leq(A B)^{n} \leq A^{n} B^{n}$ for every $n \in \mathbb{N}$. Assume now that for some $n \in \mathbb{N}$ one of the operators A^{n} and B^{n} is compact, so that the operator $A^{n} B^{n}$ is compact. Then the operator $(A B)^{3 n}$ is also compact by the Aliprantis-Burkinshaw theorem [2, Theorem 5.14]. Therefore, Theorem 3.1 can be applied.

It should be noted that a recent preprint [6, Theorem 4.5] gives an independent proof of Corollary 3.2 in the case when one of the operators A and B is compact.

Acknowledgements. This research was partly supported by the Slovenian Research Agency.

References

[1] Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Amer. Math. Soc., Providence, 2002.
[2] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006, (reprint of the 1985 original).
[3] J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin and J. Zemánek, On positive commutators, Positivity 14 (2010), 431-439.
[4] R. Drnovšek, Triangularizing semigroups of positive operators on an atomic normed Riesz space, Proc. Edinburgh Math. Soc. 43 (2000), 43-55.
[5] R. Drnovšek and M. Kandić, More on positive commutators, J. Math. Anal. Appl. 373 (2011), 580-584.
[6] N. Gao, On commuting and semi-commuting positive operators, Proc. Amer. Math. Soc., to appear.
[7] D. W. Hadwin, A. K. Kitover and M. Orhon, Strong monotonicity of spectral radius of positive operators, arXiv:1205.5583v2 [math.FA].
[8] M. Konvalinka, Triangularizability of polynomially compact operators, Integral Equations Operator Theory 52 (2005), 271-284.
[9] I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math. 19 (1970), 607-628.
[10] B. de Pagter, Irreducible compact operators, Math. Z. 192 (1986), 149-153.
[11] A. Pietsch, Eigenvalues and s-numbers, Cambridge Univ. Press, 1987.
[12] H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Springer, New York, 2000.

Roman Drnovšek
Department of Mathematics
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 19
SI-1000 Ljubljana, Slovenia
E-mail: roman.drnovsek@fmf.uni-lj.si

[^0]: 2010 Mathematics Subject Classification: Primary 47B65, 47B47; Secondary 46B42.
 Key words and phrases: Banach lattices, positive operators, commutators, spectrum, compact operators.

